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In modern railway vehicles the use of Magnetic Braking Systems is continuously increasing,
because they are characterized by high braking performances and low energy consumptions.
Hence, the study and the accurate modelling of Magnetic Braking Systems is a very im-
portant issue, because they significantly affect the dynamics of vehicle and electrical supply
circuit. Usually the performances of Magnetic Braking Systems are evaluated on test-rigs in
order to reduce times and costs of testing phases. For this reason, the authors focus on the
development of a complete 3D model of Magnetic Brake System test-rig, (built in COMSOL)
including all the electro-magnetic, circuital and mechanical parts. These parts are often stud-
ied separately in the literature; however a combined analysis is crucial to correctly describe the
behaviour of the whole system. The proposed model is highly modular (to describe different
Magnetic Brake System test-rig layouts characterized by a different number of magnetic polar
expansions) and aims at obtaining a compromise between accuracy and numerical efficiency.
Subsequently, a second simplified lumped parameter model derived from the complete one and
built in MATLAB is developed, to further reduce the computational load without decreasing
the results accuracy. In this work, both the models have been developed and validated in
collaboration Ferrovie dello Stato and compared with other simplified models present in the
literature.

Keywords: magnetic braking systems; railway braking; railway vehicles

Nomenclature

A surface
B magnetic induction

F acc, F lump, F id, Fmeas complete model, lumped parameter model, ideal and measured forces
H magnetic field
J current density
Llump(x), Lid(x) lumped parameter model and ideal inductances

Macc, M lump complete model and lumped parameter model moments
N number of turns
O1 center of mass of the single polar expansion
O2 center of mass of the rail fraction
P c contact point position
R resistance
S wire section
U magnetic energy
V voltage

∗Corresponding author. Email: enrico.meli@unifi.it
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i current
n polar expansion number
r distance
x position
ẋ velocity
∆t time integration step
ε counter electromotive force
Φ magnetic flow
µ permeability

1. Introduction

Magnetic Braking Systems are widely used in the railway and tramway fields be-
cause they can strongly improve the efficiency and safety of railway vehicle braking
[1].

The Magnetic Brake System directly acts on the rails and is therefore inde-
pendent from the wheel-rail adhesion. Its action is obtained by friction due to the
magnetic attractive force generated electrically or by permanent magnets [2]. The
Magnetic Brake System is installed into the bogie or running gear between the
wheels to complement the braking action depending on the wheel-rail adhesion [3].

Figure 1. Typical layout of a magnetic braking system.

Moreover, Magnetic Brake System performance is a safety relevant issue in rail-
way practice, impacting vehicle longitudinal dynamics, signaling, and traffic man-
agement, and its features and requirements are important also for interoperability
problems [4]. The availability of software tools aimed at simulating the performance
of Magnetic Braking Systems is useful to speed up and optimize the design process
[5]. Some examples of train Magnetic Braking Systems simulators are available in
the literature. In [6], David et al. presented a software tool for the evaluation of
train stopping distance, developed in C language. In [7], the software TrainDy was
presented; it was developed to reliably evaluate the longitudinal force distribution
along a train during different operations. In [8], Kang described a Hardware In the
Loop (HIL) system for the Magnetic Braking Systems of the Korean high-speed
trains and analyzed the characteristics of the braking systems via Real Time (RT)
simulations. In [9], many interrelationships between various factors and types of
braking techniques were analyzed.

The development of accurate Magnetic Brake System mathematical models is
critical and allows an accurate evaluation of the whole system behaviour (both in
the design and in the operating phases) and a further improvement of the braking
performances.
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The results of a 2D Magnetic Brake System analytical model were compared to
the normal reaction force and magnetic density provided by a complete FEM model
and validated according to force experimental measurements by J.D.Edwards et
al. [10], in which the effects of the brake geometric parameters are pointed out. In
[11], a 3D model developed in ANSOFT (a software for 3D electromagnetic field
simulation) was employed for the evaluation of the influencing factors of braking
force on the Magnetic Brake System system.

The above mentioned papers consider complex models that couple electromag-
netism with dynamics, however result in an excessive computational load, thence
the coupling of these models in complete railway systems is impracticable.

In addition, many lumped parameter models can be found in literature. For in-
stance, in [12], a 2D analytical model of a permanent magnet Eddy-current brake is
presented; then, a physical analysis and a comparison with a 3D FEM model of the
same component are performed. Also, Baran [13], Hazry et al.[14] presented several
formulas for the computation of the braking force, derived from an Eddy-current
braking system, according to its magnetic field profile. In [15], a solenoid (mag-
netic) valve system is modelled, for brakes employed in the automotive industry;
in particular, the lumped parameter modelling of the electrical, electromechani-
cal and mechanical subsystems is shown. Moreover, the motional Eddy-currents
modelling is achieved through the Magnetic Equivalent Circuits (MEC) method,
based on an analytical description of the phenomenon [16]. In [17], the analytical
model of an electromagnetic massive core brake actuator is based on magnetic and
electric equivalent circuits of iron core, for which the lumped parameters are used
for the evaluation of reluctances.

The above mentioned simplified models, in spite of the high efficiency, could be
not sufficient to describe the real behaviour of the whole system in a proper way.

Consequently, the authors focused on the development of an innovative model
of an Magnetic Brake System test-rig, able to couple electromagnetic, circuital
and mechanical parts of the system and to achieve a good compromise between
accuracy and efficiency. Another goal of this approach is the modularity. The model
must be able to describe different supply circuit topology and different Magnetic
Brake System test-rig layouts (characterized by a different number of brake polar
expansions)[2].

The physical system is composed by three main components (see Figure 1):

• polar expansion (replicated n times);

• rail;

• electric plant (circuit).

In this paper two models are proposed: a complete 3D Partial Differential Equa-
tions (PDE) model (which reproduces the interaction among polar expansion, rail
and electric plant) and a simplified one, which is a lumped parameter Ordinary
Differential Equations (ODE) model extracted from the complete one. The lumped
parameter model aims at further improving the compromise between accuracy and
efficiency with respect to the complete one.
The main parts of the complete 3D model are the following:

• circuit model;

• rail-polar expansion electromagnetic model;

• rail-polar expansion mechanical multibody model.

On the other hand, the main parts of the lumped parameter model are the
following:

• circuit model;
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• simplified rail-polar expansion electromagnetic model, including:
• inductance model;
• force model;

• rail-polar expansion mechanical multibody model.

The PDE electromagnetic part of the complete model is implemented in COM-
SOL [18]. At each time integration step, the model is solved in steady-state condi-
tions: this assumption is acceptable if the integration time step ∆t is small enough.
The other parts of the complete model (ODE parts) are implemented in MATLAB
[19]. Instead, all the simplified model (composed only by ODE parts) is imple-
mented in MATLAB.

Both the simplified and the whole model have been developed and validated
in collaboration with Italcertifer S.p.a. (Ferrovie dello Stato group, owner of the
Italian railway network) and compared with other models present in literature
[20]. In particular, the experimental data are referred to the test-rig suitably
built in the research center “Centro di Dinamica Sperimentale dell’Osmannoro”
(CDSO) in Florence (Italy) for the verification of such components. The technical
and physical data employed for the development of the model were provided by
Italcertifer S.p.a..

2. General architecture

Generally, a Magnetic Brake System is a typical mechatronic application, as shown
in Figure 2, because it comprises many mechanical and electrical devices. In partic-
ular, in Figure 2 the polar expansion, the rail and the electric plant are highlighted.

Figure 2. Main components of a magnetic braking system.

According to the introduction, the complete model shown in Figure 3 consists
of the following parts:

• the circuit model solves the electric dynamics characterizing the Magnetic Brake
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Figure 3. General architecture scheme of the complete model.

System supply system; the inputs are the voltage V and the counter electromo-
tive force ε, while the output is the current iacc;

• the electromagnetic model solves the electromagnetic problem; the inputs are
the current iacc, the position x = (x y z α β γ)T and velocity (both translational
and rotational) ẋ = (ẋ ẏ ż α̇ β̇ γ̇)T between rail and polar expansion, while the
outputs are the electromagnetic force F acc and moment Macc and the counter
electromotive force ε;

• the mechanical multibody model describes the mechanical interaction between
rail and singular polar expansion; the inputs are the electromagnetic force F acc

and moment Macc and the possible external load F e, M e acting on it (e.g.
interaction with the vehicle) and the outputs are the position x and velocity ẋ
(between rail and polar expansion).

From the previous complete model, a simplified lumped parameter model is
extracted. The aim of the new model is to achieve an accuracy comparable to
the complete model one and to significantly reduce the computational time. The
simplified model shown in Figure 4 consists of the following parts:

Figure 4. General architecture scheme of the simplified model.

• the circuit model solves the electric dynamics characterizing the Magnetic Brake
System supply system; the inputs are the voltage V and the counter electromo-
tive force ε, while the output is the current ilump;

• the simplified electromagnetic model is composed by the two sub-models (ap-
proximating the real electromagnetic model):
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• the inductance model computes the approximated inductance value; its inputs
are the current ilump, the relative position x and velocity ẋ while the output
is defined by the counter electromotive force ε;

• the force model calculates the approximated electromagnetic forces and mo-
ments exerted by the Magnetic Brake System; the inputs are the current ilump,
the relative position x and velocity ẋ while the outputs are the force F lump,
moment M lump;

• the mechanical multibody model describes the mechanical interaction between
rail and singular polar expansion; the inputs are the electromagnetic force F lump,
moment M lump and the possible external load F e, M e acting on it (e.g. inter-
action with vehicle) and the outputs are the relative position x and velocity
ẋ.

An important feature of the developed architecture is the modularity of the
approach. The singular polar expansion model can be repeated n times (where n
represents the polar expansions number), allowing the simulation of different Mag-
netic Brake System layouts by adding or reducing the polar expansions number.
In this study case 10 poles are implemented, even if this number can be different
for other Magnetic Braking Systems.

Figure 5. General architecture scheme of the whole model.

In the complete model, as shown in Figure 6, to integrate the electromagnetic,
the circuital and the mechanical parts, the model numerical architecture is divided
into two parts:

Figure 6. Numerical flowchart of the proposed algorithm.

• Partial Differential Equations (PDE) problem: the Maxwell equation for the
electromagnetic model is solved in steady-state conditions using the COMSOL
software.
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• Ordinary Differential Equations (ODE) problem: both the motion equations of
the mechanical model and the equations of the circuit model are solved in MAT-
LAB.

This approach separately describes the electromagnetic part and the elec-
tric/mechanic ones, reaching a good trade off between numerical efficiency and
accuracy. Such decoupling is possible if the time integration step ∆t is small enough;
under this assumption, within the temporal interval ∆t, the electromagnetic prob-
lem is solved as steady-state (according to Maxwell equation).

An implicit, variable order and variable step ODE-solver is used to simulate
the time-dependent part, suitable for stiff problems (conventionally defined as
ode15s)[23], [24].

The electromagnetic model is simulated using an iterative non linear solver
based on inexact Newton methods [22]. The linear problems arising from the non
linear solver are solved through an iterative method (BicGStab [25]). The previ-
ously mentioned algorithms have been chosen in order to obtain the best trade off
between numerical efficiency and accuracy.

As regards the mesh, for the electromagnetic problem, it has been realized
by means of threedimensional BRICK elements, to obtain acceptable efficiency
performances and accurate results [29].

Conversely, since the simplified model is completely composed by Ordinary Dif-
ferential Equations, it is entirely solved with the ODE-solver ode 45, realizing the
best compromise between accuracy and efficiency.

3. Model description

In the following sections the three sub-models of the complete model and the four
sub-models of the simplified lumped parameter model will be described in detail.
In particular, the Magnetic Brake System model evaluates the temporal evolution
of the following variables:

• electric current i of the electrical plant and all the circuital variables;

• electromagnetic force F and moment M acting on the rail;

• the relative position x and velocity ẋ between polar expansion and rail.

3.1. Complete model

The complete model reproduces the electromagnetic, the circuital and the mechan-
ical parts of the system.

3.1.1. Circuit model

This section describes the main features of the whole electric circuit. The input
are the voltage V , and the counter electromotive force ε (provided by the rail-polar
expansion electromagnetic model).

This component, which is represented in Figure 7, consists of an horseshoe
shaped electromagnet and a block of ferromagnetic material. An electromagnet
winding consists of N turns of insulated conductive material (e.g. copper). The
system variables are the electric current iacc and the air gap amplitude x, while
A1 and A2 are respectively the surfaces of the rail fraction and of a single side of
the polar expansion (see Figure 7). The relationships between V and iacc can be
written as follows:
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Figure 7. Simple magnetic actuator model.

V = (R+Ramm)iacc + ε, (1)

where R is the winding equivalent resistance and Ramm is the ammeter resis-
tance. In particular, the counter electromotive force ε is defined as:

ε = dΦ
dt ,

Φ =
∫
A2
B · n dA2

(2)

where Φ is the magnetic flow.
The output is the current iacc.

3.1.2. Electromagnetic model

The model inputs are the current iacc, the relative position x and velocity ẋ.
The geometry of the singular polar expansion is shown in in Figure 7 and is

defined according to regulations prEN 16207 [26] and DIN VDE 0580 § 44 [27].
The electromagnetic model is characterized of the magnetic field H, the current

density J and the magnetic induction B. These variables are combined according
to the Maxwell equations:

{
−rot H + J = 0
div B = 0

, (3)

where the approximated relation between iacc and J is the following:

J =
iacc

S
n, iacc =

∫
S
J dS, (4)
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in which S defines the wire section and n is the vector unit normal to the wire
section.

Figure 8. B-H curve for 3% silicon steel.

Using the constitutive relation B = µH, where µ = µ0µr (µ0 andµr are re-
spectively the void and relative permeability) and the saturated relation between
B and H (see Figure 8), the electromagnetic forces are calculated through the
Maxwell stress tensor [28]:

T = −1

2

(
H ·BT +B ·HT

)
(5)

More in detail, the forces and moments acting on the polar expansion and on
the rail are calculated according to the surface integral Equations (6) and (7):

F acc1 =

∫
A1

Tn1 dA1, F acc2 =

∫
A2

Tn2 dA2, (6)

Macc
1 =

∫
A1

r1 × (Tn1) dA1, Macc
2 =

∫
A2

r2 × (Tn2) dA2, (7)

where n1 and n2 are the outward normals respectively from the polar expansion
and the rail, r1 and r2 are the distances from the center of mass of polar expansion
and rail, A1 and A2 are the surfaces of rail and polar expansion that the forces F 1

and F 2 respectively act on (see Figure 7).
The outputs are the electromagnetic force F acc1 , moment Macc

1 acting on the
rail and the counter electromotive force ε = dΦ

dt .

3.1.3. Mechanical model

The mechanical model defines the motion equation of the polar expansion. The
inputs are defined by the electromagnetic forces F acc1 , the moments Macc

1 and the
possible external load F e, M e acting on it (e.g caused by the train).

The model is able to describe the motion considering all the 6 DOF (x =
(x y z α β γ)T ) of the polar expansion and therefore will be characterized by the
following equation:
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Figure 9. Simple magnetic actuator model.

{
Q̇

1
= F acc1 + F e + F c1

K̇1 = Macc
1 +M e +M c

1

(8)

where Q
1

and K1 are respectively the linear moment and the moment of the
linear moment of the polar expansion, F c1 and M c

1 are the force and moment given
by the train. The Equation (9) defines the force contact vector:

F c1 =

 Ft
Fn
0

 =

f(s) · Fn
Kd+ cḋ

0

 , (9)

where d is the penetration between polar expansion and rail surface and f(s)
is the friction coefficient [31], [30], [32], [33]. In particular [21], s represents the
sliding between rail and polar expansion, which determines the friction coefficient,
as shown in Figure 10.

The moment contact vector is expressed by following equation:

M c
1 = (P c −O1)× F c1, (10)

where P c is the contact point position and O1 is the center of mass of the polar
expansion.

The outputs are represented by the relative position x = (x y z α β γ)T and
the velocity ẋ = (ẋ ẏ ż α̇ β̇ γ̇)T .
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Figure 10. Friction coefficient f behaviour in function of the sliding s.

3.2. Lumped parameter model

The simplified model is extracted from the previous one. The lumped parameter
model allows to improve the compromise between accuracy and efficiency provided
by the complete one. In parallel with the complete model, it is divided into:

• circuit model;

• simplified electromagnetic model:
• inductance model;
• forcing model;

• mechanical model.

This model will be compared with the complete one in section 5.

3.2.1. Circuit model

The input are the voltage V and the counter electromotive force ε. The rela-
tionships between V and ilump, is the following:

V = (R+Ramm)ilump + ε, (11)

where, in this case, differently from the Equation (1), ε = dΦ(x)
dt = d(L(x)ilump)

dt
and

dΦ

dt
=
dL

dt
ilump + L

dilump

dt
=
dL(x)

dx
· ẋilump + L

dilump

dt
. (12)

The output of this model is the current ilump.
At this point, for simplicity, the inductance function L(x) can be computed

defining a range of possible positions (x ∈ Ωx) to which the corresponding in-
ductance values (computed with the Maxwell equations) are associated, and hence
defining a multidimensional Look-Up Table (see Section 3.2.2). If the Look-Up Ta-
ble is simple enough, an analytical approximation of the Look-Up Table is also
possible.

3.2.2. Inductance model

The inductance model computes the inductance function L(x) value for any x;
its inputs are the current ilump and the relative position x.
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The inductance L(x) values are extracted from the complete model according
to the following algorithm:

• for each position x ∈ Ωx, the magnetic field density B(x) is obtained through
the Maxwell equations by the complete model;

• from Equation 2 the magnetic flow Φ(x) is calculated;

• finally, the inductance values L(x) are given by L(x) = Φ(x)/ilump (ilump is
calculated by the complete model).

This approach allows, for any x, to define the Look-Up Table of L(x). If the
Look-Up Table is simple enough, an analytical approximation of the Look-Up Table
is also possible.
The output is defined by the approximated inductance L(x).

3.2.3. Forcing model

The model inputs are the current ilump and the relative position x.
Usually the magnetic energy U stored in an inductor is defined as:

U =
1

2
L(ilump)2, (13)

then, the magnetic energy U variation respect to distance x defines the electro-
magnetic force and moment obtained from the inductance function value, obtained
in section 3.2.2:

(
F lump1

M lump
1

)
=

(
dU(x)

dx

)T
=

(
d1/2L(x)(ilump)2

dx

)T
=

1

2

(
dL(x)

dx

)T
(ilump)2, (14)

The outputs are the approximated force F lump1 and the approximate moment

M lump
1 .

3.2.4. Mechanical model

The mechanical model is equal to that described in section 3.1.3.

3.3. Numerical implementation

As already shown in Figure 6, the authors divided the numerical problem solution
(of the complete model) into two parts:

• Partial Differential Equation (PDE) problem, for the electromagnetic model
(solved in steady state condition within the time integration step ∆t).

• Ordinary Differential Equation (ODE) problem, for the circuit and mechanical
models (time-dependent).

The PDE problem part, shown in detail in Figure 11, is solved in COMSOL
through an inexact Newton’s Method, which is usually employed in sparse problems
of great dimensions. The linear problems arising from the nonlinear solver are solved
through an iterative method, the BiCGStab (BiConjugate Gradient Stabilized) [25].

The mesh has been built using three-dimensional BRICK elements, in order to
maintain acceptable performances (in terms of numerical efficiency) and accurate
results.

In MATLAB, the ODE problem is solved through the ode15s algorithm (Figure
11): this algorithm has been chosen in order to obtain the best compromise between
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Table 1. Solver, tolerances and mesh features.

PDE problem (steady state):
Newton:

Maximum iterations number for the iterative solver 4
Relative tolerance of the iterative solver 2.5 · 10−6

BiCGStab:
Maximum iterations number for the iterative solver 10
Relative tolerance of the iterative solver 2.5 · 10−6

Mesh:
Minimum element size 0.000304 (m)
Maximum element size 0.00169 (m)
Maximum element growth rate 1.3

ODE problem (in ∆t):
ode15s:

Minimum integration step-size 0.1
Relative tolerance of the integrator 10−3

Absolute tolerance of the integrator 10−4

Figure 11. Numerical flowchart of the solution algorithm.

efficiency and accuracy.
The lumped parameter model is completely solved in MATLAB (being com-

posed exclusively of Ordinary Differential Equations).
Solvers, tolerances and mesh features are shown in Table 1.
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4. Experimental tests

4.1. Experimental conditions

At this initial phase of the research activity, the range of possible positions considers
only one direction of motion (x = (0 y 0 0 0 0)T ), that is the normal problem. The
range of the position Ωx is from the contact between polar expansion and rail
fraction (y1 = 0 m) to a relative position in which the magnetic field is dispersed
in the air (y2 = 0.35 m).

Consequently, the inductance Look-Up Table L(x) is reduced to a one-
dimensional Look-Up Table Llump(y) that the authors decided to analytically ap-
proximate with the following equation:

Llump(y) =
µN2Ag

l + y2

(
y
y2

)α , (15)

where α is a parameter greater than 1 (if α = 1, the same formula present in
literature is obtained, see Equation (18)). The authors suggest a range of α equal
to [3.4− 3.6], for the best fitting of the real inductance value.

Figure 12. Inductance variation.

In Figure 12, the black dashed line represents the relation Lid(y) usually em-
ployed in literature (see Equation 18), the red crosses line regards the inductance
value calculated according to the Look-Up Table approach (see section 3.2.2) and
the blue line represents the inductance computed with the Equation (15). The com-
plete model is more accurate if compared to the lumped parameter and literature
model Experimental results directly related to the inductance were not available;
however, the comparison can be made considering the behaviour of the currents
with respect to measured data (Figure 16).

With regard to the electromagnetic force and moment the Equation (14) be-
comes (in the considered simplified case):



Development of efficient models of magnetic braking systems of railway vehicles 15

(
F lump1

M lump
1

)
=



0
1
2
dLlump(y)

dy (ilump)2

0
0
0
0

 . (16)

4.2. Experimental data description

The test rig is composed by ten polar expansion (the proposed model allows, how-
ever, a variable polar expansion number). The applied external forces are:

(
F e

M e

)
= (0 F ey 0 0 0 0)T . (17)

The authors use a incremental F ey (that is put to zero after the detachment
thanks to the force control system of the test rig) and measure imeas, Fmeasy1 (to be

compared to F accy1 and F lumpy1 provided by the complete and simplified models re-
spectively) and ymeas during all the test. The Magnetic Braking System model has
been validated through comparison with experimental data provided by Italcertifer
S.p.a. and coming from the Magnetic Brake System testing, represented in Figure
13, built at the “Centro di Dinamica Sperimentale dell’Osmannoro” (CDSO) of
Florence (Italy).

The test-rig is designed in order to verify the performances in braking phase of
the Magnetic Brake System, in accordance with the normative DIN VDE 0580 §44
[27]. It performs generic motions (x, ẋ) between polar expansion and rail fraction
(for simplicity, at this initial phase only the normal motion along y is considered,
see section 4.1).

The test-rig represented in Figure 13 comprises the following units:

• electric plant:
• electrical components;
• supply system;
• current sensor;

• polar expansion:
• polar expansion elements;
• supports;
• double-acting pneumatic cylinders;
• bracket for lifting / lowering pad;
• load cell;

• rail:
• pneumatic cylinder;
• rail fraction.

In particular, the rail unit is constituted by two test half rails, type UIC 60, 72
mm wide. The main parameters characterizing the electromagnetic circuit of the
test-rig are shown in Table 2.

The test-rig allows the measurement of the detachment force Fmeas1 and moment
Mmeas

1 (in the considered case only Fmeasy1 ) to be compared to F acc1 , Macc
1 and

F lump1 , M lump
1 provided by the complete and simplified models respectively, and of
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(a) Complete test rig.

(b) Detail of the actuation system.

Figure 13. Magnetic Braking System test rig.

the displacements x (in the considered case only ymeas) on any type of Magnetic
Braking System, and the relief of the excitation current imeas of winding.

In particular, imeas is measured with an ammeter situated downstream the
parallel of the ten polar expansions, Fmeasy1 is evaluated through a load cell placed
on the pneumatic piston and ymeas is function of the motion of the pneumatic
cylinder. The extracted experimental data refer to the full test-rig (with 10 polar
expansions).

In Figures 14 and 15 the behaviour of the experimental force Fmeasy1 (t) and
current imeas(t) are represented. The presence of two peaks in Figure 14 and 15
indicates that two consecutive detachment were carried out.

In the current and force behaviour modest fluctuations (see Figures 16 and 17)
can be noticed (in the force behaviour this fluctuations are smaller), due to heat
loss phenomena, noise and unmodelled dynamics.

The current and force peaks occur when the rail fraction is detached from the
polar expansion, otherwise, in contact phase, the current remains almost constant
and the force equal to zero. The authors focus primarily on the detachment phase
(see Figure 16 and 17). The present study considers an interval of 0.35 seconds,
which is sufficient to properly analyze the trend of the current and of the force
during the detachment phase.

In Figure 16 the ideal current curve iid is obtained through the following formula
usually employed in the simplified literature models [20], which was implemented
in the lumped parameter model instead of the Equation 15:
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Table 2. Main parameters of the Magnetic Braking System.

Polar expansion:
Ag 0.0037 m2 air gap section
l 0.385 m length of the magnetic circuit
µr 100 relative magnetic permeability

Rail:
section double-T beam
type UIC 60
wide 72 mm rail width

Electric plant:
N 95 turns number
R 4.5 Ω resistance of a singular pad
Ramm 0.125 Ω resistance of the ammeter
L 1.2 H inductance of a singular pad
V 24 V generator voltage
µ0 4π · 10−7 H/m void magnetic permeability
isat 100 A saturation current
Bsat 1.6 T saturation magnetic field density

Figure 14. Behaviour of the experimental force Fmeas
y1 during the detachment and contact

phases.

Lid(y) =
µN2Ag
l + y

. (18)

In parallel with the previous considerations, in Figure 17 the ideal force curve
F id is obtained through the following formula usually employed in the simplified
literature models [20]:

F idy1(y) =
µ0N

2Ag(i
id)2

(l + y)2 . (19)

In Figure 16 and 17 it can be noticed that a good matching between experimen-
tal data and the formula present in literature is not achieved (there are excessive
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Figure 15. Behaviour of the experimental current imeas during the detachment and contact
phases.

delay in the detachment phase).

5. Validation and results

In this section, the authors compare simulated and experimental data referred to
a Magnetic Brake System. In particular the following results are presented:

• comparison between the currents ilump, iacc, imeas and iid respectively computed
in the lumped parameter and complete models, measured in the test-rig and
calculated with literature equations;

• comparison between the forces F e,lumpy , F e,accy , F e,measy and F e,idy respectively
computed in the lumped parameter and complete models, measured in the test-
rig and calculated with literature equations;

• computation time.

5.1. Current results

In Figure 16 ilump and iacc, obtained from the simulations performed with the pro-
posed model, are compared to imeas and iid. The ideal current curve iid is obtained
considering the ideal inductance formula expressed in Equation 18 implemented in
the lumped parameter model.

In particular, the time instants in which the peak values of current occur are
very similar for ilump, iacc and imeas. In addition, as in the imeas curve, the growth
rates of ilump and iacc are almost vertical, while in iid the current grows more
slowly. Finally, in the descent phase, the behaviour of ilump and iacc reproduce with
a good approximation the curve imeas while iid is slower. The errors introduced
by the new models are probably due to unmodelled dynamics. The fluctuations in
imeas are not reproduced by iid, ilump and iacc behaviours because the heat loss
phenomena and noise are neglected. The difference between imeas and iid, ilump

and iacc in the time range between 3 and 3.4 s is due to the progressive heating
of the electric circuit. This behaviour is explained in Figure 15, where in the time
range between 0 and 3.4 s the current decreases (the resistance grows because of
the increasing temperature).
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Figure 16. Comparison between ilump and iacc, and between imeas and iid in the detachment
phase.

5.2. Force results

In Figure 17, the forces F e,lumpy and F e,accy obtained from the simulations performed
with the proposed models are compared to the experimental force F e,measy and the

ideal force F e,idy . The ideal force curve F e,idy is obtained applying the Equation 19 in
which the ideal current iid behaviour is obtained considering the lumped parameter
model.

Figure 17. Comparison between the forces F lump
y1 and F acc

y1 , the experimental force Fmeas
y1

and the ideal force F id
y1 in the detachment phase.

In particular, the time instants in which the peak values of force occur are very

similar for F e,lumpy , F e,accy and F e,measy . Finally, in the descent phase, the behaviour

of F e,lumpy and F e,accy reproduces with a good approximation the curve F e,measy while

F e,idy descends more quickly. The error introduced by the new models are probably

due to noise, unmodelled dynamics and heat loss. Instead, the ideal curve F e,idy

appears more distant from the F e,measy .
In addition, among all the possible outcomes extracted from the model, the

authors represent below the magnetic field density lines of B that are generated
during the simulation before the detachment, at the instant t = 3.025 s (hence in
the detachment phase):
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Figure 18. Magnetic field density B.

5.3. Computation time

The singular polar expansion has been discretized using 1588 three dimensional
BRICK elements with the number of DOFs equal to 2373. The simulations are
performed using a standard personal computer, characterized by an Intel CORE
i5 (whose clock frequency is 2.30 GHz) and by 4 Gb of RAM memory, while the
installed Operative System is Windows 7 (64 bit version).

The time ratios of the machine calculation times with respect to the simulated
ones are respectively 32 and 2.6 for the complete and simplified models. In partic-
ular, these results show the execution efficiency of the simplified model considering
a mid range hardware employed for the simulations.

6. Conclusions and future developments

In the present paper, Magnetic Braking Systems (Magnetic Brake System) are
analyzed in detail because they are widely used in railway field and deeply affect
both the vehicle dynamics and the supply system behaviour.

Therefore, authors focused on the development of two models representing the
electrical and mechanical behaviour of the Magnetic Brake Systems. In particular,
these models consider all the electromagnetic, circuital and mechanical parts at
the same time, with the purpose to obtain a complete description of the system.

Consequently, an innovative model for the simulation of the behaviour of Mag-
netic Braking Systems is presented with the aim of achieving a good compromise
between accuracy and efficiency. In addition, the model provides a wide flexibility
in terms of supply circuit topology and implementable polar expansions number
(modularity). To achieve a good compromise between accuracy and efficiency and
to realize a modular model, are both necessary to describe complex systems.

The results in term of currents and forces iacc, ilump, F e,accy , F e,lumpy calculated
with the proposed models are quite encouraging, as they show a better agreement,
if compared with the measured experimental quantities imeas and F e,measy , with
respect to variables iid and F id obtained considering the models commonly available
in literature. Instead, the computational times are comparable.

The following future developments are scheduled for the future to improve the
model accuracy:



REFERENCES 21

• extension of the approach to generic motion x, using generic external force F e

and moment M e (implementation of the tangential contact problem), always
considering the proposed Look-Up Table/Analytical approach;

• further experimental validations;

• simulation and validation on a real vehicle in motion;

• opportunity to consider the phenomena of heat loss (important to accurately
model the current);

• more realistic features in the circuit model (mutual inductance between the coils,
supply voltage variations,. . . ).
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