
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Automatica, Ottimizzazione e Sistemi Complessi

Machine Learning

applications in Science

Candidate

Lorenzo Buffoni

Supervisors

Prof. Duccio Fanelli

Prof. Filippo Caruso

Prof. Fabio Schoen

Prof. Michele Campisi

PhD Coordinator

Prof. Fabio Schoen

ciclo XXXIII, 2017-2020

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2021 by

Lorenzo Buffoni.

A Francesca.

All models are wrong, but some are useful.

- George Box

Acknowledgments

I would like to acknowledge the efforts and inputs of my supervisors, Prof.

Duccio Fanelli, Prof. Filippo Caruso, Prof. Fabio Schoen and Prof. Michele

Campisi and all my colleagues at CSDC an QDAB who were of great help

during my research. In particular my thanks go to Sara Nicoletti and Iuhsan

Adam who have been in this journey with me for all these three years. I

would also like to thank Walter Vinci and all the team at D-Wave for their

support and hospitality during my stay at D-Wave Systems, with funding

being provided by “Fondazione Angelo della Riccia”. Similarly I would like

to thank Tommaso Biancalani and his team at BROAD Institute for the op-

portunities and knowledge they have provided. One final acknowledgment

goes to some people which I’ve been privileged to have as mentors, Andrea

Trombettoni, Stefano Gherardini, Stefano Ruffo, Nicola Dalla Pozza, in ad-

dition to all my collaborators/coauthors. This thesis would have been rather

empty if there had not been their support.

Contents

Contents v

1 Introduction 1

2 Learning on experimental data 11

2.1 Mapping sequencing data into space 11

2.2 Computational pipeline . 14

2.3 Implementation details . 16

2.3.1 Siamese Network for anatomical registration 16

2.3.2 Semantic segmentation 20

2.3.3 Tangram mapping algorithm 22

2.4 Conclusions . 24

3 Network theory for Machine Learning 27

3.1 Linear and non-linear spectral learning 29

3.1.1 Single-layer spectral learning 30

3.1.2 Multi-layer networks in the spectral domain 36

3.2 Results . 37

3.3 Conclusions . 45

4 Hybrid Variational Autoencoders 47

4.1 Variational Autoencoders . 48

4.1.1 VAE with discrete latent variables 51

4.2 Sampling with Quantum Annealers 53

4.2.1 VAE hybridization with quantum prior 54

4.3 Training VAE with quantum annealers 55

4.3.1 Validation of training 56

4.4 A path towards quantum advantage with VAE 59

v

vi CONTENTS

4.4.1 Exploit large latent-space RBMs 60

4.4.2 Multi-modality of latent-space RBMs 69

4.4.3 Robustness to noise and control errors 72

4.5 Conclusions . 75

5 Quantum Machine Learning 77

5.1 Quantum Embeddings . 77

5.1.1 Theory . 79

5.1.2 Experiments . 82

5.2 Learning on a Quantum Maze 88

5.2.1 Reinforcement learning 88

5.2.2 Quantum Maze . 90

5.2.3 Implementation and Results 92

5.3 Conclusions . 96

6 Conclusion 97

6.1 Directions for future work 99

A Implementation: Hybrid VAE 101

A.1 Convolutional VAE . 101

A.2 Sample collection with D-Wave 2000Q 103

A.3 Estimating effective temperature during training 104

A.4 Chimera and Pegasus connectivities 106

B Publications 107

Bibliography 109

Chapter 1

Introduction

Machine learning (ML) [1–4] is a broad field of study, with multifaceted ap-

plications of cross-disciplinary breadth. ML ultimately aims at developing

computer algorithms that improve automatically through experience. The

core idea of artificial intelligence (AI) technology is that systems can learn

from data, so as to identify distinctive patterns and make consequently de-

cisions, with minimal human intervention. The range of applications of ML

methodologies is extremely vast [5–8], and still growing at a steady pace due

to the pressing need to cope with the efficiently handling of big data [9].

In parallel to the rise of ML techniques in industrial applications, scientists

have increasingly become interested in the potential of ML for fundamental

research, for example in physics, biology and engineering. To some extent,

this seems like a natural step, since both ML algorithms and scientists share

some of their methods as well as goals. The two fields are both concerned

about the process of gathering and analyzing data to design models that can

predict the behaviour of complex systems. However, they are fundamentally

different in the way they realize their goals. On the one hand, Science aims

at understanding the mechanisms of Nature, and uses prior knowledge and

intuition to inform the models. On the other hand, ML mostly does the

opposite: models are agnostic and the machine provides the knowledge by

extracting it from data. Although they are often powerful, the resulting

models are notoriously known to very opaque to our understanding. Ma-

chine Learning tools in Science are therefore welcomed enthusiastically by

some, while being eyed with suspicions by others, albeit producing surpris-

ingly good results in some cases.

1

2 Introduction

In this thesis we will argue, using practical cases and applications, that

the communication between these two fields can be not only beneficial but

perhaps necessary. On the one hand Machine Learning will find benefit from

the interaction with the scientific community (e.g. engineers and physicists)

in order to find new ways to speed up computations by breakthroughs in

physical hardware, as we argue in chapters 4 and 5. Probably ML can also

benefit from the knowledge that science has in dealing with complex systems,

let it be to understand better the process of learning or to improve existing

models as we will see in chapter 3. On the other hand scientists have lots of

experiments that do generate incredible amounts of data and ML could be a

great tool to analyze those and make predictions as in chapter 2, also it can

be used with good results to control the experiments itself as in chapter 5.

On top of that, data visualization techniques and other schemes borrowed

from ML can be of great use to theoreticians to have better intuition on

the structure of complex manifolds or to make simulate complex theoretical

models.

Outline

The text is divided in chapters, each one focusing on a particular application.

The chapter are ordered by going from the most straightforward applications

of existing ML to scientific data to the topics which are only subject of theo-

retical research. In particular, each chapter will cover one possible interplay

between Machine Learning and the physical sciences. To fulfill this goal the

chapters are organized as follows:

• In chapter 2 we will see how Machine Learning can be used to improve

experimental techniques, in this particular case coming from a biology

experiment. We will see how a well suited computational pipeline based

on existing Machine Learning techniques can be used to map genomics

data into space in order to visualize gene expression patterns in organs.

We will see how ML can give a sizeable improvement over the existing

experimental techniques and help researchers gaining previously inac-

cessible insights. Indeed, the application of existing ML models into

experimental analysis is the most common application in the scientific

domain and has already proven its effectiveness in multiple domains.

3

• In chapter 3 we devise a new interpretation of learning, based on the

spectral properties of Neural Networks. This insight given by network

theory will enable us to train a model with a fraction of the parameters

employed by the standard Machine Learning techniques, while return-

ing comparable performances. Also this type of spectral analysis could

help to better understand and interpret the learning process of Neural

Networks.

• In chapter 4 we introduce the possibility of accelerating existing ML

models, in this case a Variational Autoencoder, using cutting-edge

computing devices. In particular we will see how using a quantum

computer to perform sampling in the latent space of a Variational Au-

toencoder can lead to improvements to the model and holds promises

for a possible quantum advantage. This is a first step in exploiting the

power of quantum computing to improve Machine Learning algorithms

in an hybrid quantum-classical setting, this is also one of the first hy-

brid models reaching state-of-the-art performance on a real world task.

• Finally, in chapter 5 we will implement a simple supervised learning

algorithm fully in the quantum domain to give a final example on how

is possible to leverage the properties of quantum systems in Machine

Learning. We will also deploy this algorithm on different experimental

devices to see its robustness on real-world noisy environments. Then

we will see how we can apply Reinforcement Learning to control the

dynamics of a quantum random walker in a maze, improving the trans-

fer rate of the walker from the entry to the exit of the maze with just

some simple actions. These topics are examples of the theoretical re-

search that is ongoing at the edge between ML and the physical sci-

ences. These models are far from being scalable and useful in practical

cases, nevertheless, they can offer interesting proof of principle results

to move the boundary of scientific applications of ML a bit further.

Before going into the core of the thesis it is useful, for the sake of readability,

to give a brief introduction to some basic concepts in Machine Learning.

This will give the reader (independently from its scientific background) a

common ground to start, while the more technical details and concepts about

the specific applications will be discussed in each chapter separately.

4 Introduction

Concepts in Machine Learning

We start by introducing the various types of learning, which can be super-

vised, unsupervised or reinforced. In this manuscript we will touch all of

them at different points:

• Supervised learning: In supervised learning [1, 10] we deal with an

annotated dataset {(xi, yi)}Ni=1. Each element xi is called an input or

feature vector. It can be the vector of pixel values of an image or a

feature such as height, weight and gender and so on. All input data xi
belonging to the same dataset have the same features (with different

values). The label yi it is the ground truth upon which we build the

knowledge of our learning algorithm. It can be a discrete class in a set

of possible objects or a real number, representing some property we

want to predict, or even some complex data structure. For example

if you want to build a spam classifier a good choice of labels can be

yi = 1 (spam) or yi = 0 (not spam). The goal of a supervised learning

algorithm is to use the dataset to produce a model that, given an input

vector x, can predict the correct label y.

• Unsupervised learning: In unsupervised learning [11–13] the dataset

is a collection of unlabeled vectors {xi}Ni=1. The goal of unsupervised

learning is to take this input vector and extract some useful property

from the single data or the overall data distribution of the dataset.

Examples of unsupervised learning are clustering, where the predicted

property is the cluster assignment, dimensionality reduction, where the

distribution of data is mapped in a lower dimensional manifold, out-

lier detection where the property predicted is the “typicality” of the

data with respect to its distribution and generative models, where we

want to learn to generate new points from the same distribution of the

dataset.

• Reinforcement learning: The subfield of reinforcement learning [5]

assumes that the machine “lives” in an environment and can probe the

state of the environment as a feature vector. The machine can perform

different actions at different states, ultimately leading to different re-

wards. The goal of this machine (or agent) is to learn a policy. A policy

is a function that associates to a particular feature vector, representing

the state of the environment, the best action to execute. The optimal

5

policy maximizes the expected average reward. Reinforcement learn-

ing has been widely employed in scenarios where decision making and

long-term goals are crucial, for example in playing chess, controlling

robots or logistics.

In this intricate landscape of problems that fall under the umbrella of

“Machine Learning” there are lots of different models each one best suited to

different tasks. Some notable examples of such models are Support Vector

Machines [14] and decision tree learning [15] to solve classification tasks,

k-nearest neighbors [16] for clustering and UMAP [17] for dimensionality

reduction. All these algorithms share some building blocks that are the

basics of any learning algorithm. The three fundamental parts of a learning

algorithm are (i) some training data (ii) a loss (or objective) function (iii) an

optimization routine to minimize the loss function on the training data. It

is important now to point out that the minima that are achieved in learning

are often local, that is partially due to the fact that optimization landscapes

of learning problems are non-convex and usually quite complex, but also

to the fact that in learning our goal is often to have a model with good

generalization properties. That means that robustness of the model over

a broader set of new data is often more appealing than a better but less

generalizable one, thus favoring local minima with respect to global ones.

Now we will focus our attention on describing arguably the most popular

Machine Learning model, namely Neural Networks (NNs). It is important

to define here some concepts and general properties about NNs because they

will be used in all of the subsequent chapters. From a mathematical point

of view, a NN is a parametric function defined as

y = fNN(x) (1.1)

the function fNN has the form of a nested function reflecting the layer struc-

ture of the network. For example, a network with three layers will read

y = fNN(x) = f3(f2(f1(x))), (1.2)

where the function at the kth layer has the form

fk(x) = gk(Wkx+ bk), (1.3)

Where Wk is a matrix of trainable parameters (the weights of the network)

and bk is a vector of trainable parameters (the biases of the network). Given

6 Introduction

an input dimension D of the vector x the matrix Wk has shape M ×D and

the vector bk has dimension M , resulting in an output vector zk = Wkx+ bk
of dimension M . The final piece of the puzzle is the function gk(zk) that is

called the activation function or nonlinearity. Indeed this function has to be

a nonlinear function that mimics the activation (or spiking) that happens in

biological neurons. Some of the most popular activation functions used in

NNs are the sigmoid function

sigmoid(z) =
1

1 + e−z
, (1.4)

and its variant, the hyperbolic tangent tanh(z). Another popular choice is

the Rectified Linear Unit (ReLU) namely:

relu(z) =

{
0 if z < 0

z otherwise
(1.5)

that despite being almost linear is nonlinear enough to build a working NN.

With this notation set, is now important to notice that all the operations

in a NN are continuous and differentiable (with the notable exception of the

zero point in the ReLU) meaning that we can compute the gradient of the

output with respect to each one of the parameters {Wk, bk} with k = 1, ..., l.

So, for example, in a supervised learning problem we would have the tuples

{(xi, yi)}Ni=1 defining our training set and a NN that is giving an output

ỹi = fNN(xi) which we would like to be as close as possible to the label yi.

Following the recipe valid for all ML models, in order to train this NN we

thus have to define a cost function, as an example we will take the Mean

Squared Error (MSE):

MSE(y, ỹ) =
1

N

N∑
i=1

(yi − ỹi)2, (1.6)

and then optimize it with some strategy. In this case, since we know all the

derivatives of the cost function with respect to the trainable parameters, we

can simply optimize the function by gradient descent updating the weight

matrix Wk and the bias vector bk at each layer of our NN k = 1, ..., l. This it-

erative step of gradient descent is often referred to as backpropagation. Once

we have trained the model with a sufficient amount of training data and for

a sufficiently long amount of backpropagation steps, our NN will be in a

7

local minimum of the cost function. At this point the model is trained and

should output predictions ỹ which are mostly correct. The NN is the artifi-

cial analog of a biological network of spiking neurons (e.g. our brain), and it

is composed by stacking together multiple artificial neurons, which are called

perceptrons. Perceptrons are the “computational units” of NN as neurons

are for the brain, and they are capable to perform all the mathematical op-

erations we just described. Now it is also useful to have in mind a graphical

representation of the perceptron, that can be seen in Fig.1.1 where a single

artificial neuron is presented. By stacking neurons in layers and stacking lay-

Figure 1.1: Graphical representation of a single neuron (also called percep-

tron) of a NN. This is the computational building block of a NN composed

of an input x, some trainable parameters W (weights) and b (bias), and a

nonlinear activation function g(·) (e.g. the sigmoid as represented here) on

the output.

ers one after another we obtain the full NN structure in Fig.1.2. Since more

complex data require more layers this branch of ML is often referred to as

Deep Learning and networks used are called Deep Neural Networks (DNNs)

where the adjective “deep” refers to the depth of the network itself (i.e. the

number of layers). This is the most basic NN architecture, known as fully

connected or dense network. There are a whole bunch of different architec-

ture such as Convolutional Neural Networks (CNNs) in which the trainable

parameters are the values of some filters to be convoluted with the input

8 Introduction

Figure 1.2: Example of a full NN obtained by stacking layers of single neurons

(colored circles). Each neuron implements the same operations described in

Fig.1.1 where the trainable parameters are the weights, represented by the

links in this picture. The input layer reads the feature vectors from the

dataset, the hidden layers (i.e. the layers which are neither input nor output

ones) process the information, and the output layer gives the final prediction

used to compute the cost function and subsequently perform backpropaga-

tion.

image, or Recurrent Neural Networks (RNNs) that are specifically built to

deal with time series and have some memory mechanisms in it. Indeed a

consistent part of the research done in Deep Learning by computer scientists

is aimed at inventing new network architectures that perform better on dif-

ferent problems. A detailed review and explanation of the different types of

NNs is out of the scope of this thesis and we will refer to the literature for

more details [4,10,18]. One more thing that is important to specify, are the

computational tools by which these algorithms are implemented. Albeit the

mathematics behind NNs is rather simple, at a first glance implementing the

backpropagation algorithm (i.e. computing the derivatives of the cost func-

tion with respect to each one of the trainable parameters) seems like a lot

of work, even more when confronted with the typical number of parameters

of a NN being in the range of 105 − 108. In fact, ad-hoc libraries to perform

9

automatic differentiation have been developed, the most popular ones being

TensorFlow and PyTorch. These libraries allow the user to simply specify

the NN architecture and let the library to do the heavylifting of computing

the gradients and updating the parameters resulting in a much easier imple-

mentation. Now that we have introduced these concepts that are central to

the following chapters, we can move onto the applications of ML in Science

that are the core of this thesis.

10 Introduction

Chapter 2

Learning on experimental data

In this chapter, we will introduce arguably the most common application

of ML to scientific research, that is performing ML pipelines on experimen-

tal data. Data coming from physics, biology or chemistry experiments are

almost always complex in nature and require advanced statistical tools to

be processed, which is exactly what algorithms of Pattern Recognition and

Machine Learning [1–3] were designed to do from the beginning. It thus

seems natural that more and more researchers are starting to employ such

algorithms to get better, faster pipelines to process their data. As an ex-

ample we will illustrate one of these pipelines we have developed [19], in

collaboration with the BROAD Institute of MIT and Harvard, to gain a

huge advantage in gene throughput over existing techniques to reconstruct

spatial maps of sequencing data.

2.1 Mapping sequencing data into space

Single-cell/single-nuclear RNA sequencing technology (sc/snRNA-seq) is a

technique that allows for identification of transcriptional clusters at single

cell level, which is instrumental in revealing cell types [20], developmental

trajectories [21] and gene programs [22] that are present in a certain tissue

sample. Despite the paramount attention recently received from this tech-

nology [23–25], we still lack the ability of precisely reconstructing the spatial

location of cells from sc/snRNA-seq data. Indeed, the tissue samples are

dissolved in a liquid solution to enable separation of single cells into single

droplets that are later processed to extract the genetic information of the

11

12 Learning on experimental data

cell. This process, while enabling single-cell accuracy, destroys all the spa-

tial information about the location of the cells in the tissue. In contrast,

various spatial technologies allow for in-situ measurements [26–28] of tran-

scriptional clusters, thus providing finer spatial localization, but suffer from

either lower throughput or lower resolution compared to sc/snRNA-seq coun-

terparts. Therefore, we would like to somehow harmonize in-situ data with

sc/snRNA-seq data combining various forms of spatial information from the

brain region from which snRNA-seq data have been collected, including his-

tological images, public atlases and in-situ data. We will see how to build a

Deep Learning pipeline in order to automatically retrieve in-situ data from

a region of interest in an histology image then we will define an objective

function based on these two complementary types of data, the optimization

of which leads to a spatial alignment of the snRNA-seq data.

Our goal is thus to learn a probabilistic spatial alignment of cells, via which

we reconstruct patterns of cell clusters or gene expressions by transferring

snRNA-seq annotations onto space. Our method builds up on previous

works [23, 24], although we perform cell mapping by globally considering

the cell spatial context (as opposed to local cell-by-cell integration meth-

ods [23]), instead we do not add hypotheses on gene expression patterns

(such as continuity, as done in [24]) and we map by accounting for both his-

tology and gene expression. Our strategy is based on constructing a suitable

objective function by using cell density and spatial gene expression which

we estimate from histology, existing atlases, in-situ data or any combination

of these. By optimizing the objective function, we learn an alignment such

that cell density and gene expression of the mapped cells are as similar as

possible to those estimated from spatial data. We validate the alignment by

showing that we recover known cell type patterns and predict gene expres-

sion of holdout genes. We will map cells using the public Allen Mouse Brain

Atlas [29] (3k genes at 200µm resolution): by introducing a deep learning-

based registration and mapping pipeline, we reconstruct a spatial map of the

primary motor area with 30k genes at single-cell resolution, revealing spatial

gene expression patterning beyond current limitation of in-situ technologies.

Our strategy, as depicted in Fig.2.1, consists of locating the region of

dissection onto the Allen Common Coordinate Framework [29] (Allen CCF)

so as to query the mouse brain atlas for building the objective. To do so, we

first introduce a deep learning registration pipeline. By borrowing methods

from face recognition, we start by learning a latent space using a Siamese

2.1 Mapping sequencing data into space 13

Neural Network [30] model, a particular type of NN that we will describe

in detail in the following sections, trained on mouse brain images. We train

the model so that each image is encoded according to salient anatomical

landmarks, whereas technical properties such as illumination or staining are

factored out. Indeed, we confirm that the learned latent space displays a

one-dimensional manifold structure, where the head of the manifold contains

images from the olfactory bulb (at the front of the mouse brain), and the

tail, images from cerebellum (at the bottom of the mouse brain). The model

predicts the image from the Allen CCF at the same coronal depth of our

histological image. Predictions are validated by checking consistency across

the whole training set, and by inspection. We use this model to retrieve the

image from the Allen CCF onto which we register our histological image.

Next, we apply semantic segmentation [31], and segment five classes on our

histological image: background, cortex, cerebellum, white matter and other

grey matter. The goal of segmentation is to generate a custom mask for our

images using the same color scheme adopted by the Allen Atlas. Once the

histological image(s) are registered, we query two atlases to build the objec-

tive: from the Allen Atlas, we estimate gene expression at spatial resolution

200µm; from the Blue Brain Cell Atlas [32] we compute the expected cell

density in each spatial voxel; finally, we compute an anatomical map from

the Allen Atlas, which we use post mapping to assess on which anatomical

region each cell has been mapped. To perform mapping, we learn a map-

ping matrix denoting the probability of finding each cell into each spatial

voxel. We show mapping predictions for cell types across the three regions

of interest (ROIs), which results consistent across each other and with our

expectations.

In conclusion, gene expression exhibits a variety of spatially-organized

patterns whose knowledge is central to unravel biological function. Spa-

tially resolved transcriptomic data provide an opportunity to reveal such

patterns, but are currently limited by spatial resolution or gene throughput.

We showed that by harmonizing snRNA-seq data with in-situ data, some

of these limitations are removed. Our work focused on mouse brain tissue

although the mapping method is in principle applicable to any organ. In

contrast, our registration pipeline requires a CCF and is therefore applicable

to a few organs at present.

14 Learning on experimental data

Figure 2.1: Schematics of our computational pipeline. We start from an

histological image (top-left figure) in which we highlight a ROI indicating

where snRNA-seq data were collected. We compute cell clusters in snRNA-

seq data using a conventional pipeline. A registration pipeline is used to

locate the ROI onto the mouse common coordinate framework (top-right

figure). Through registration, we estimate gene expression from the Allen

Mouse Brain Atlas, an anatomical region map and cell density map. We

leverage the estimated properties to map snRNA-seq data to space by solving

an optimization problem. In the bottom-right figure, we show a few model

predictions showing layering of cortical neurons and uniform distribution of

mPVM cells [19]

2.2 Computational pipeline

To build our dataset, we assembled an integrated atlas of the somatomotor

area of the healthy adult mouse brain using publicly available atlases. A total

of 160, 000 snRNA-seq profiles were collected from three dissected regions of

interest (ROIs) in the somatomotor area, using a lab procedure [33] where

nuclei are isolated from a biopsy punch in a frozen dissected region. To help

relate this region to the known anatomy, we also obtained stained histological

sections on the punched section, which are approximately 200µm deep.

In many cases, only histological data is directly available for the speci-

2.2 Computational pipeline 15

mens collected as part of single cell atlases, but those can serve as a bridge to

pre-existing atlases, with measured in situ hybridization (ISH) data, and rich

anatomical annotations in the as in the case of the Allen CCF. Using these

data should allow relating cellular features (e.g., gene expression, cell types)

to the histological or organ scale, especially in the brain. However, typi-

cal methods from computer vision for registration of medical images [34,35]

require human supervision, such as identification of a few corresponding

anatomical landmarks in experimental and atlas images. Such supervision,

albeit minimal, has prevented complete automation so far. A common strat-

egy to remove supervision uses machine learning for identifying the few key

landmarks required in registration, as has been shown in [36]. However, this

method is not suitable for images that are torn or contain holes, for example,

if tissue has been first dissected for profiling sc/snRNA-seq data as in our

case.

To this end, we first developed a module to connect across scales by reg-

istering histology/spatial data on an anatomically annotated CCF, such as

the Allen CCF for the adult mouse brain. As an alternative to methods

that either require supervision or intact tissue, we combine a Siamese neural

network model with a semantic segmentation algorithm to produce full seg-

mentation masks of anatomical images. The Siamese network model builds

a latent space which allows a uniform encoding irrespective of technical ar-

tifacts in the images, such as the presence of holes in dissected regions (from

which cells or nuclei were collected). The semantic segmentation model pro-

duces a segmentation mask with a color scheme that is compatible with the

Allen ontology. Because we produce a mask with matching colors, we can

then register the images automatically as we do not need to provide cor-

responding landmarks; instead the anatomical regions in the mask are the

landmarks.

First, we learned a latent space using a Siamese Neural Network [30]

model trained on mouse brain images. We trained the model so that each

image was encoded according to salient anatomical landmarks, whereas tech-

nical properties such as illumination or staining were factored out. We then

used the trained model to retrieve the image from the Allen CCF onto which

we register our histological image.

Next, we segmented our images to generate a custom mask for our images

using the same color scheme adopted by the Allen CCF. For this, we applied

semantic segmentation [31], and segmented five classes in our histological im-

16 Learning on experimental data

age: background, cortex, cerebellum, white matter and other grey matter.

As the training set is scarce, we adopted a combination of transfer learning

and heavy augmentation during training and validated it by inspecting pre-

dictions on test atlases. Finally, we combined segmentation with the Siamese

model, to obtain a fully automated registration pipeline.

After we applied this anatomical mapping module to the histological im-

ages to precisely locate the region of dissection on the Allen CCF, we queried

the Allen Atlas to estimate spatial gene expression at 200µm resolution and

the Blue Brain Cell Atlas to compute the expected cell density in each spa-

tial voxel. The final mapping algorithm, called Tangram, then computed an

anatomical map from the Allen Reference Atlas, and used it post-mapping to

estimate the anatomical region to which each cell has been mapped. We re-

peated this procedure for the three ROIs, and finally mapped the snRNA-seq

profiles to their corresponding ROIs.

In the next section we will go into details about the implementation of

each of the parts of the pipeline listed above before giving some comments

on the results.

2.3 Implementation details

In this section we will focus on the implementations of the various algorithms

that construct our pipeline. We will focus our attention on the first part of

anatomical registration, that is because the main contribution of the author

was in this particular piece of the work. However, to give context and detail

we will include also the broader picture so that the reader can understand

how this pipeline all comes together to fit the intended purpose.

2.3.1 Siamese Network for anatomical registration

The first goal we have is, given an histology image, to automatically register

it on the Allen CCF to subsequently extract the known features of the ROI

and perform the mapping of sequencing data into space. We used a Siamese

Neural Network [30] model trained on mouse brain images. Siamese networks

are just regular Neural Networks that share identical structure and weights

(as Siamese twins). Such architectures are used to encode a complex object

(e.g. an image) into a latent space to perform some operation usually in

the context of one-shot-learning. For example these architectures are widely

2.3 Implementation details 17

used in face recognition problems where a reference database of faces is

available. With a Siamese network, one can take a new face, encode it in

the latent space and find the best match in the database by just computing

some distance metric and finding the nearest neighbor. Here we would like

to leverage the same concept using the Allen Atlas as our face database and

match it with the experimental images. For training we used images from

different public datasets:

• avg: 1320 images/segmentation masks of coronal slices from the aver-

age template of the Allen adult mouse brain atlas at resolution 10µm

(this was used as our objective Allen CCF for registration) (link).

• ara: 1320 images/segmentation masks of coronal slices from the Nissl

template of the Allen adult mouse brain atlas at resolution 10µm (link).

• p56c: 132 images/segmentation masks of coronal slices from the Allen

P56 coronal reference atlas (link).

• p56d: 504 images of coronal slices from the Allen Development Atlas

P56 (link).

Training images were resized to 224× 224 pixels and casted to type float32.

Pixel values were rescaled in between zero and one, prior to training. All

images were augmented using imgaug library with a series of deformations,

noise and color transformations to prevent overfitting. Training labels are

numerical coordinates indicating the spatial coronal depth (i.e. posterior) of

each mouse brain image on a scale of 10µm, ranging from 0− 13200µm. As

an example, an image from the olfactory bulb, located at the front of the

brain will have a label of, let’s say, 50µm. For the avg and ara datasets,

labels were readily available from their tensor coordinates. Labels for the

p56c and p56d datasets were also readily obtained using the AllenSDK API.

We used images from two different datasets as test sets that were manually

annotated:

• brainmaps: 111 images of coronal slices from Nissl-stained Brain-

Maps atlas (link), and 87 images of coronal slices from Nissl-stained

BrainMaps atlas (link).

• ish: 30 images of coronal slices from the Allen ISH Data (link).

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/average_template/slice_images/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/ara_nissl/
https://mouse.brain-map.org/experiment/thumbnails/100048576?image_type=atlas
http://help.brain-map.org/display/atlasviewer/Allen+Developing+Mouse+Brain+Atlas
http://brainmaps.org/index.php?action=viewslides&datid=43
http://brainmaps.org/index.php?action=viewslides&datid=38
https://mouse.brain-map.org/search/index

18 Learning on experimental data

In designing the Siamese network model, we used a DenseNet169 [37] en-

coder pretrained on the ImageNet [38] dataset and open-sourced through

Keras Applications. We fine-tuned the encoder by training the last convo-

lutional layer. We added two fully connected layers on top of the encoder

in order to map the extracted features to our 512-dimensional latent space.

We then take the L1 distance between the experimental and atlas images

in the encoded latent spaces of the Siamese network. A last fully connected

layer was used to map the distance in latent space to the model output as

represented in Fig.2.2. All fully connected layers were trained. A training

Figure 2.2: Schematic of Siamese Neural Network architecture. A pair of

images is fed to two convolutional encoders, which encode them into a 512-

dimensional latent space. The image pair is labeled by the spatial coordinate

(i.e., coronal depth) difference between the two images.

sample consisted of two random images from the annotated datasets. The

difference of the spatial depth coordinates between the two images, denoted

by d̂i, was used as a label. For example, if the first image were at posterior

(depth) 500µm and the second at a posterior 700µm the corresponding label

would be d̂i = 200. We used as penalty the MSE between the spatial depth

difference predicted by our network di, and the labels d̂i:

MSE(d, d̂) =
1

N

N∑
i=2

(
di − d̂i

)2

(2.1)

where N indicates the number of training samples. We trained the model for

50 epochs using 18k image couples per epoch, subdivided in batches of 16

images. After training the NN, we wanted to investigate the structure of the

latent space. We thus had to employ to a dimensionality reduction algorithm

2.3 Implementation details 19

in order to plot the data in 2 dimensions but preserving the topology of

the original space that has dimension 512. For that, we choose the popular

UMAP [17] algorithm. The learned latent space displayed a one-dimensional

manifold structure as we can see in in the UMAP plot of Fig.2.3, where

the head of the manifold contains images from the olfactory bulb, and the

tail, images from cerebellum. To have a better prediction and also some

Figure 2.3: The learned latent space is a 1D-manifold ordered by spatial

coordinates. UMAP plot of the encoded training images from individual

atlases (legend) colored by spatial depth (color bar). Insets illustrate four

anatomically similar images from three different atlases and a test image.

confidence on the prediction itself we check every image against all the Allen

CCF to obtain a series of predictions as in Fig.2.4. Then we use a piecewise

linear function to fit these predictions and we pick the minimum of the fit as

our best estimate of the depth, this adds very little overhead to the model

since we already have the latent space of the Allen CCF and improves our

precision. Furthermore, if the predictions of our model are not precisely on a

linear shape as in Fig.2.4, but they have flat spots, multiple minimums etc.,

we know at a glance that our model is having trouble with that image and its

prediction should be checked manually. This last bit is a great improvement

in reliability that comes at a really small computational cost. The model

predicted the image from the Allen CCF at the same coronal depth of our

histological images. We validated the predictions by checking consistency

across the whole training set, and by visual inspection, see Fig.2.4. We also

validated our model with images from which a ROI was previously removed

20 Learning on experimental data

Figure 2.4: On the left: predicted spatial coordinate distance (y-axis) be-

tween a test image (inset, left panel) and each image of the training set

obtained at different spatial coordinates (x-axis). Dashed orange line: piece-

wise linear fit on predictions. The minimum of the fit is the predicted spatial

coordinate (associated image is in the inset, right panel). On the right: some

test predictions from different sources. We can see that, from very different

types of images (staining, noise, illumination), the model outputs predictions

that are consistent with the anatomical features present in the images.

in order to sequence its cells. Indeed that is the kind of images our model

will need to deal with, and for all the images tested it performed as well as

the regular images. The code to reproduce these results can be found in a

public version here [39]. Once we have registered our histology image onto

the Allen CCF is time to estract all the available informations about the

ROI of our sample.

2.3.2 Semantic segmentation

Here, we used datasets avg, ara and p56c as training sets, since masks were

available. Training images were resized to 512 × 512 and casted to type

float32. Pixel values were rescaled in between zero and one. Labels are su-

perimposable segmentation masks with the same dimension of the training

images. Each mask was one-hot encoded into a 5-channel tensor to anno-

tate each pixel into five different classes: background (black), cortex (green),

cerebellum (yellow), other grey matter (grey), and white matter (brown).

We used colors consistent with the Allen ontology to facilitate registration.

For avg and ara datasets, we used masks from the Allen CCFv3 ontology

2017 (available at this link). For the p56c dataset, we downloaded the SVG

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/annotation/ccf_2017/annotation_10.nrrd

2.3 Implementation details 21

masks from the Allen Institute website, and rendered them into images.

Both images and masks were augmented using the same pipeline adopted

for the Siamese model. In transforming the masks, we ensured that the one-

hot structure was preserved in the masks after augmentation. We used a

Figure 2.5: Prediction examples. Experimental images (left) and their pre-

dicted anatomical region calls (right).

semantic segmentation model from the Tensorflow Keras version of the seg-

mentation models library. Specifically, we chose a U-NET [31] architecture

with a ResNet50 [40] backbone. All weights have been randomly initialized

following the He scheme, with the exception of the ResNet50 encoder which

was pre-trained on ImageNet. Model was trained to optimize the superpo-

sition of the cross entropy and Jaccard index (i.e. intersection-over-union).

Denoting by L such loss function, by g a ground truth image and by p the

corresponding prediction of the model, the loss we used reads:

L(g, p) = −g log(p)− p ∩ g
p ∪ g

(2.2)

The model last unit employs a softmax activation function, thus outputting

the probability of each pixel to be in each of the five classes. By applying an

argmax function, we assign each pixel to its most probable class. Finally, we

relied on test-time augmentation to increase model performances: each test

image was augmented twelve times, and final predictions were de-augmented

and averaged. An example of the result of the Siamese network plus semantic

segmentation can be seen in Fig.2.5.

22 Learning on experimental data

2.3.3 Tangram mapping algorithm

Here we briefly illustrate the final mapping of the single-cell RNA sequenc-

ing data into space using an method we named Tangram. In the following

we will use the index i for cells (i.e. snRNA-seq data), k for genes and j

for spatial voxels (circular spots, pucks, etc.). From scRNA-seq we obtain a

matrix S with dimensions ncells×ngenes , where ncells is the number of single

cells, such that Sik ≥ 0 is the expression level of gene k in cell i. In order to

map, we voxelize the spatial volume at the finest possible resolution (which

depends on the mapping case, e.g. 200µm when mapping with the Allen

Brain Atlas), and index the voxels in an arbitrary one-dimensional fashion.

We then introduce two quantities: the nvoxels × ngenes gene expression ma-

trix G, where Gjk ≥ 0 denotes the expression of gene k in voxel j (we do

not assume that G and S measure gene expression using the same unit of

measures), and a vector ~d of length nvoxel representing cell densities, where

0 ≤ dj ≤ 1 is the cell density in voxel j, and
∑nvoxel

j dj = 1. We aim to learn

a mapping matrix M with dimension ncells×nvoxels, such that Mij ≥ 0 is the

probability of cell i of being in voxel j. Therefore, we require a probability

constraint
∑nvoxel

j Mij = 1. Our mapping strategy is probabilistic, perform a

soft assignment. From the mapping matrix M , we further define two quanti-

ties: MTS, the spatial gene expression as predicted by the mapping matrix,

and the vector ~m with components mj =
∑ncells

i Mij/ncells for the predicted

cell density in voxel j. Finally, we define the softmax function along the voxel

axis for any given matrix M̃ (with dimensions ncells×nvoxels). The resulting

matrix M has elements:

Mij = softmax(M̃)ij =
eM̃ij∑nvoxels

l=1 eM̃il
(2.3)

By applying the softmax, we ensure that 0 ≤Mij ≤ 1 and
∑nvoxels

j=1 Mij = 1.

To learn the mapping matrix, we minimize the following objective function

with respect to M̃ (note that in the objective we use M = softmax(M̃)):

Φ(M̃) = KL(~m, ~d)−
ngenes∑
k=1

cossim((MTS)∗,k, G∗,k)−
nvoxels∑
j=1

cossim((MTS)j,∗, Gj,∗)

(2.4)

where KL indicates the Kullback-Leibler divergence and cossim() is the co-

sine similarity function. The first term is the density term: we enforce that

2.3 Implementation details 23

Figure 2.6: Top row: Regions of interests. Nissl-stained images of coro-

nal mouse brain slices highlighting the three regions of interest from which

snRNA-seq data from the motor area were collected. Middle row: Registra-

tion pipeline generates anatomical region and cell density maps. Anatomical

region (color legend, from the Allen Common Coordinate Framework) and

cell density (color bar, from the Blue Brain Cell Atlas) maps of each of the

three dissected ROIs. Bottom row: Probabilistic mapping of some sample

snRNA-seq data on the ROI. Probability of mapping (color bar) of each cell

subset (grey label) from each of 3 major categories within each ROI (rows).

We can appreciate how different genes are spatially organized in the brain

layers.

the learned density distribution is as similar as possible to the expected den-

sity. The second term is the gene/voxel expression term: it enforces that,

for each gene, its predicted expression over the voxels is proportional to the

expected gene expression over the voxels. The third term is the voxel/gene

24 Learning on experimental data

expression term: for each voxel, the predicted gene expression needs to be

proportional to the expected gene expression. We minimize the objective

function using gradient-based optimization, written using the PyTorch li-

brary (training converges after ∼ 150 epochs for the case of the Allen atlas).

Tangram does not contain any hyperparameters, maps a hundred thousand

cells in a few minutes (using a single P100 GPU). With this final piece our

pipeline is complete, we can see an example result in Fig.2.6 where three

different ROIs from different regions have been processed, we were thus able

to map all the genetic expression into space at the same resolution of the

Allen atlas effectively increasing the number of available genes from 3k to

30k.

2.4 Conclusions

We mapped cells using the information of the public Allen Mouse Brain At-

las (3k genes at 200µm resolution): by introducing a deep learning-based

registration and mapping pipeline, we were able to map 30k genes obtained

by scRNA-seq of the primary motor area, revealing spatial gene expression

patterning beyond the limitations of current technologies.

The mapping predictions for cell types across the three ROIs examined, were

self-consistent albeit less accurate than mappings using the higher resolution

spatial technologies (e.g. MERFISH) we tried in our original work [19], that

could push the resolution of our method from 200µm to single-cell resolution.

Cortical layers were successfully recovered across the three ROIs. While our

work focused on a specific region in the mouse brain is applicable to any brain

region, towards its complete atlas, and to any other organ, as well as disease

tissue. To integrate across scales, registration pipeline requires a CCF and is

therefore currently applicable to a few organs. At present, the mouse brain

possesses the most advanced and well-developed CCF, but efforts are under-

way to construct analogous reference maps for different organs, towards the

construction of cell atlases of all organ in mouse and human.

This case makes clear how using machine learning pipelines can help im-

proving experimental techniques, this area of research is indeed already very

active and, of the ones we will explore in our dissertation, the one that is

giving the bigger returns in terms of applicability. Of course, the case shown

was a single example but similar techniques can be found not only on bio-

logical data, but also in high energy physics [41], quantum mechanics [42]

2.4 Conclusions 25

and chemistry [43] to name a few.

26 Learning on experimental data

Chapter 3

Network theory for Machine

Learning

In this chapter, we will focus on how to use Network Theory to improve

existing ML models. In particular here we will focus on Multilayer Percep-

trons (MLP) which are trained as supervised classifiers but, as we will argue

in the conclusions, the intuitions behind this chapter are broader, and, in

principle, applicable to whatever NN architecture. To this extent, is worth

pointing out that a MLP is nothing but a bipartite fully connected network

with directed weights which are adjusted via some form of gradient descent

during the training phase. This is the same basic architecture we introduced

in chapter 1. The network can be described by the transfer (or adjacency)

matrix between nodes with some interesting properties that, as we will see

in the following, can be leveraged to improve MLPs in several ways [44].

The aims of this chapter are multifold. On one side, we will develop a novel

learning scheme which is anchored on reciprocal space. Instead of iteratively

adjusting the weights of the edges that define the connection among nodes,

we will modify the spectra of a collection of suitably engineered matrices

that bridge adjacent layers. To eventually recover a multilayered feedfor-

ward architecture in direct space, we postulate a nested indentation of the

associated eigenvectors. These latter act as the effective gears of a process-

ing device operated in reciprocal space. The directed indentation between

stacks of adjacent eigenvectors yield a compression of the activation pattern,

which is eventually delivered to the detection nodes.

As a starting point, assume eigenvectors are frozen to a reference setting

which fulfills the prescribed conditions. The learning is hence solely restricted

27

28 Network theory for Machine Learning

to the eigenvalues, a choice which amounts to performing a global training,

targeted to identifying key collective modes, the selected eigen-directions,

for carrying out the assigned classification task. The idea of conducting a

global training on a subset of parameters has been also proposed in other

works [45, 46]. This is at odd with the usual approach to machine learning

where local adjustments of pairwise weights are implemented in direct space.

As we shall prove, by tuning the eigenvalues, while freezing the eigenvectors,

yields performances superior to those reached with usual (local) techniques

bound to operate with an identical number of free parameters, within an

equivalent network architecture. Eigenvalues are therefore identified as key

target of the learning process, proving more fundamental than any other set

of identical cardinality, allocated in direct space. Remarkably, the distri-

bution of weights obtained when applying the spectral learning technique

restricted to the eigenvalues is close to that recovered when training the NN

in direct space, with no restrictions on the parameters to be adjusted. In

this respect, spectral learning bound to the eigenvalues could provide a viable

strategy for pre-training of DNN. Further, the set of trainable eigenvalues

can be expanded at will by inserting linear processing units between the

adjacent layers of a non-linear multilayered perceptron. Added linear layers

act as veritable booms of a telescopic neural network, which can be extracted

during the learning phase and retracted in operational mode, yielding com-

pact networks with improved classification skills. The effect of the linear

expansion is instead negligible, if applied to learning of standard concep-

tion. The entries of the indented eigenvectors can be also trained resulting

in enhanced performance, as compared to the setting where eigenvalues are

exclusively modulated by the learning algorithm. To demonstrate the prin-

ciples which underly spectral training, we employ the MNIST database, a

collection of handwritten digits to be classified. The examined problem is rel-

atively simple: a modest number of tunable parameters is indeed necessary

for achieving remarkable success rates. When allowing for the simultaneous

training of the eigenvalues and (a limited fraction of) eigenvectors, the NN

quickly saturates to accuracy scores which are indistinguishable from those

obtained via conventional approaches to supervised learning. More challeng-

ing tasks should be probably faced to fully appreciate the role played by a

progressive optimization of the eigenmodes, the collective directions in re-

ciprocal space where information flows. As remarked above, the eigenvectors

have been here constructed so as to yield a feedforward multi-layered archi-

3.1 Linear and non-linear spectral learning 29

tecture in direct space. By relaxing this assumption, comes to altering the

network topology and thus exporting the spectral learning strategy to other

frameworks. In general terms, working in the spectral domain corresponds

to optimizing a set of non orthogonal directions (in the high dimensional

space of the nodes) and associated weights (the eigenvalues), a global out-

look which could contribute to shed novel light on the theoretical foundations

of supervised learning.

3.1 Linear and non-linear spectral learning

To introduce and test the proposed method we will consider a special task,

i.e. recognition of handwritten digits. To this end, we will make use of the

MNIST database [47] which has a training set of 60,000 examples, and a

test set of 10,000 examples. Each image is made of N1 = 28× 28 pixels and

each pixel bears an 8-bit numerical intensity value, see Fig. 3.1. A DNN

can be trained using standard backpropagation [13] algorithms to assign the

weights that link the nodes (or perceptrons) belonging to consecutive layers.

The first layer has N1 nodes and the input is set to the corresponding pixel’s

intensity. The highest error rate reported on the original website of the

database [47] is 12 %, which is achieved using a simple linear classifier, with

no preprocessing. In early 2020, researchers announced 0.16 % error [48]

with a DNN made of branching and merging convolutional networks. Our

goal here is to contribute to the analysis with a radically different approach

to the learning, rather than joining the efforts to break current limit in terms

of performance and classification accuracy. More specifically, and referring

to the MNIST database as a benchmark application, we will assemble a

network made of N nodes, organized in successive ` layers, tying the training

to reciprocal space.

Directed connections between nodes belonging to consecutive layers are

encoded in a set of `−1, N×N adjacency matrices. The eigenvectors of these

latter matrices are engineered so as to favour the information transfer from

the reading frame to the output layer, upon proper encoding. The associated

eigenvalues represent the primary target of the novel learning scheme. In the

following we will set up the method, both with reference to its linear and

non-linear versions. Tests performed on the MNIST database are discussed

in the next Section.

30 Network theory for Machine Learning

Figure 3.1: Each image of the training set is mapped into a column vector

~n1, of size N , whose first N1 = 28× 28 entries are the intensities displayed

on the pixels of the image. A pictorial view of this flattening mechanism is

reported in the figure.

3.1.1 Single-layer spectral learning

Assume Ni to label the nodes assigned to layer i, and define N =
∑`

i=1 Ni.

For the specific case here inspected the output layer is composed by ten

nodes (N` = 10), where recognition takes eventually place. Select one image

from the training set and be n1 (= 0, 1, 2.., 9) the generic number therein

displayed. We then construct a column vector ~n1, of size N , whose first N1

entries are the intensities displayed on the pixels of the selected image (from

the top-left to the bottom-right, moving horizontally), as illustrated in Fig.

3.1. All other entries are initially set to zero. As we shall explain in the

following, our goal is to transform the input ~n1 into an output vector with

same dimensions. The last N` elements of this latter vector represent the

output nodes where reading is eventually performed.

To set the stage, we begin by reporting on a simplified scenario that,

as we shall prove in the following, yields a single layer perceptron. The

extension to multi-layered architectures will be discussed right after.

Consider the entry layer made of N1 nodes and the outer one composed

3.1 Linear and non-linear spectral learning 31

of N2 elements. In this case N = N1 +N2. The input vector ~n1 undergoes a

linear transformation to yield ~n2 = A1~n1 where A1 is a N ×N matrix that

we shall characterize in the following. Introduce matrix Φ1: this is the iden-

tity matrix IN×N modified by the inclusion of a sub-diagonal block N2×N1,

e.g. filled with uniformly distributed random numbers, defined in a bounded

interval, see Fig. 3.2. The columns of Φ1, hereafter
(
~φ1

)
k

with k = 1, ..., N ,

define a basis of the N dimensional space to which ~n1 and ~n2 belong. Then,

we introduce the diagonal matrix Λ1. The entries of Λ1 are set to random

(uniform) numbers spanning a suitable interval. A straightforward calcula-

tion returns (Φ1)−1 = 2IN×N−Φ1. We hence define A1 = Φ1Λ1 (2IN×N − Φ1)

as the matrix that transforms ~n1 into ~n2. Because of the specific structure

of the input vector, and owing the nature of A1, the information stored in

the first N1 elements of ~n1 is passed to the N2 successive entries of ~n2, in a

compactified form which reflects both the imposed eigenvectors’ indentation

and the chosen non trivial eigenvalues.

To see this more clearly, expand the N -dimensional input vector ~n1 on

the basis made of
(
~φ1

)
k

to yield ~n1 =
∑N

k=1 ck

(
~φ1

)
k

where ck stands for the

coefficients of the expansion. The first N1 vectors are necessarily engaged to

explain the non zero content of ~n1 and, because of the imposed indentation,

rebound on the successive N2 elements of the basis. These latter need to

adjust their associated weights ck to compensate for the echoed perturbation.

The action of matrix A1 on the input vector ~n1 can be exemplified as follows:

~n2 = A1~n1 = A1

N∑
k=1

ck

(
~φ1

)
k

=

N1+N2∑
k=1

ck (Λ1)k

(
~φ1

)
k

(3.1)

where (Λ1)k are the element of matrix Λ1. In short, the entries of ~n2 from

position N1 + 1 to position N1 + N2 represent a compressed (if N2 < N1)

rendering of the supplied input signal, the key to decipher the folding of

the message being stored in the N2 ×N1 sub-diagonal block of Φ1, (i.e. the

eigenvector indentation) and in the first set of N = N1+N2 eigenvalues (Λ1)k.

The key idea is to propagate this message passing scheme, from the input

to the output in a multi-layer setting, and adjust (a subset of) the spectral

parameters involved so as to optimize the encoding of the information.

To this end, we introduce the N×N matrix operator Φk, for k = 2, ..., `−
1. In analogy with the above, Φk is the identity matrix IN×N modified with a

sub-diagonal block Nk+1×Nk, which extends from rows Nk to Nk+Nk+1, and

32 Network theory for Machine Learning

:Trainable

:Trainable

Figure 3.2: Panel (a): the structure of matrix Φk is schematically depicted.

The diagonal entries of Φk are unities. The sub-diagonal block of size

Nk+1 × Nk for k = 1, ` − 1 is filled with uniform random numbers in [a, b],

with a, b ∈ R. These blocks yields an effective indentation between suc-

cessive stacks of linearly independent eigenvectors. The diagonal matrix of

the eigenvalues Λk is also represented. The sub-portions of Φk and Λk that

get modified by the training performed in spectral domain are highlighted

(see legend). In the experiments reported here, the initial eigenvectors en-

tries are uniform random variables distributed in [−0.5, 0.5]. The eigenvalues

are uniform random numbers distributed in the interval [−0.01, 0.01]. Op-

timizing the range to which the initial guesses belong (for both eigenvalues

and eigenvectors) is an open problem that we have not tackled.Panel (b): a

(N1 +N`)×(N1 +N`) matrix Ac can be obtained from A =
(
Π`−1
k=1Ak

)
, which

provides the weights for a single layer perceptron, that maps the input into

the output, in direct space.

3.1 Linear and non-linear spectral learning 33

touches tangentially the diagonal, as schematically illustrated in Fig. 3.2 (a).

Similarly, we introduce Λk, for k = 2, ..., ` − 1, which is obtained from the

identity matrix IN×N upon mutating to uniformly distributed random entries

the diagonal elements that range from
∑k

i=1Ni (not included) to
∑k+1

i=1 Ni

(included). Finally, we define Ak = ΦkΛk (2IN×N − Φk), as the matrix that

transforms ~nk into ~nk+1, with k = 2, ..., `− 1. In principle, both non trivial

eigenvalues’ and eigenvectors’ input can be self-consistently adjusted by the

envisaged learning strategy. The input signal ~n1 is hence transformed into an

output vector ~n` following a cascade of linear transformations implemented

via matrices Ak. In formulae:

~n` = A`−1...A1~n1 =
(
Π`−1
k=1ΦkΛk (2IN×N − Φk)

)
~n1 (3.2)

where in the last step we made use of the representation of Ak in dual

space. The generic vector ~nk+1, for k = 1, ..., ` − 1 is obtained by applying

matrix Ak to ~nk. The first N1 + N2 + ... + Nk components of ~nk+1 coincide

with the corresponding entries of ~nk, namely [~nk+1]m ≡ [~nk]m for m < N1 +

N2 + ... + Nk. Here, [(~·)]m identifies the m-th component of the vector (~·).
Recall that, by construction, [~nk]m = 0 for m > N1 + N2 + ... + Nk. On

the contrary, the components [~nk+1]m with N1 + N2 + ... + Nk + 1 < m <

N1 +N2 + ...+Nk +Nk+1 are populated by non trivial values which reflect

the eigenvectors indentation, as well as the associated eigenvalues. This

observation can be mathematically proven as follows. Write ~nk on the basis

formed by the eigenvectors
(
~φk

)
l

to eventually get:

~nk =

N1+N2+...+Nk+1∑
l=1

cl

(
~φk

)
l
≡

N1+N2+...+Nk∑
l=1

cl~el (3.3)

where (~e1, ~e2...) stand for the canonical basis and the last inequality fol-

lows the specific structure of the eigenvectors (remark that the leftmost sum

in the above equation includes Nk+1 more elements than the second). By

definition:

~nk+1 = Ak~nk =

N1+N2..+Nk+1∑
l=1

cl (Λk)l

(
~φk

)
l

(3.4)

34 Network theory for Machine Learning

From the above relation, one gets for m ≤ N1 +N2 + ...+Nk

[~nk+1]m =

N1+N2..+Nk∑
l=1

cl [~el]m ≡ [~nk]m (3.5)

where the first equality sign follows from the observation that
(
~φk

)
l

coincides with ~el and (Λk)l = 1, over the explored range of m. For N1 +N2 +

...+Nk + 1 ≤ m ≤ N1 +N2 + ...+Nk +Nk+1, we obtain instead:

[~nk+1]m =

N1+N2..+Nk+1∑
l=N1+N2..+Nk−1

cl (Λk)l

[(
~φk

)
l

]
m

(3.6)

Finally, it is immediate to show that [~nk+1]m = 0 for m > N1 + N2 +

... + Nk + Nk+1, because of the specific form of the employed eigenvectors.

In short, the information contained in the last non trivial Nk entries of ~nk
rebound on the successive Nk+1 elements of ~nk+1, funnelling the informa-

tion downstream from the input to the output. The successive information

processing relies on the indented (non orthogonal) eigenvectors and the asso-

ciated eigenvalues, which hence define the target of the training in reciprocal

space.

To carry out the learning procedure one needs to introduce a loss function

L(~n1). For illustrative purposes this latter can be written as:

L(~n1) =
∥∥l(~n1)− σ

[(
Π`
k=1ΦkΛk (2IN×N − Φk)

)
~n1

]∥∥2
(3.7)

where σ(·) is the softmax operation applied to the last entries of the `-th

image of the input vector ~n1. In the above expression, l(~n1) stands for the

label attached to ~n1 depending on its category. More into details, the k-th

entry of l(~n1) is equal unit (and the rest identically equal to zero) if the

number supplied as an input is identical to k, with k = 0, 1, ..., 9. The loss

function can be minimized by acting on the free parameters of the learning

scheme. Specifically, the learning can be restricted to the set of N non trivial

eigenvalues, split in ` distinct groups, each referred to one of the Ak matrices

(i.e. N1 + N2 eigenvalues of A1, N3 eigenvalues of A2,...., N` eigenvalues of

A`−1). In addition, the sub-diagonal block entries of Φk, the elements of the

basis which dictate the successive indentation between adjacent layers, can

be adjusted as follows the training scheme. In the following section we will

report about the performance of the method, implemented in its different

3.1 Linear and non-linear spectral learning 35

modalities, against those obtained with a classical approach to the learning

anchored in direct space. In the actual implementation we have chosen to

deal with a categorical cross-entropy loss function.

Before ending this section a few remarks are mandatory. Introduce A =

Π`
k=1Ak. The linear transformation that links the input vector ~n1 to the

generated output ~n`, can be compactly expressed as ~n` = A~n1. Then, recall

that the classification relies on examining the last N` entries of ~n`. Hence,

for the specific setting here examined, where the mapping is obtained as

a cascade of linear transformations, one can imagine to recast the whole

procedure in a space of reduced dimensionality. Be ~z a column vector made

of N1 +N` elements. The first N1 entries of ~z are the intensities on the pixels

of the selected image, as for the homologous ~n1 quantity. The other elements

are set to zero. Then, consider the (N1+N`)×(N1+N`) matrixAc (the label c

stands for compact), constructed from A by trimming out all the information

that pertain to the intermediate layers, as introduced in the reciprocal space

(see Fig. 3.2(b)). Stated differently, matrix Ac provides the weighted links

that feed from the input to the output layer in direct space, via the linear

transformation Ac~z: this is a single layer perceptron, shown in Fig. 3.2(b),

which was trained by endowing reciprocal space with an arbitrary number of

additional dimensions, the intermediate stacks responsible for the sequential

embedding of the information. Intermediate layers can be literally extracted,

during the training phase, and subsequently retracted in operational mode.

The importance to allowing for additional layers, and so provide the NN of

a telescopic attribute, will be assessed in the forthcoming sections.

From the algorithmic point of view the process outlined above can be

rephrased in simpler, although equivalent terms. For all practical purposes,

one could take the (column) input vector ~n1 to have N1 + N2 elements.

Following the scheme depicted above, the first N1 entries are the intensities

on the pixels of the selected image, while the remaining N2 elements are set

to zero. We now introduce a (N1 +N2)× (N1 +N2) matrix A1. This is the

identity matrix I(N1+N2)×(N1+N2) with the inclusion of a sub-diagonal block

N2 × N1, which handles the information processing that will populate the

second N2 elements of the output vector ~n2 = A1 ~n1. Then, we formally

replace the (N1 +N2) column vector ~n2 with a column vector made of (N2 +

N3) elements, termed ~n2t, whose first N2 elements are the final entries of ~n2.

The remaining N3 elements of ~n2t are set to zero. Now, rename ~n2t as ~n2 and

presents it as the input of a (N2 + N3) × (N2 + N3) matrix A2, with a non

36 Network theory for Machine Learning

trivial sub-diagonal N3 × N2 block. This latter maps the first N2 elements

of the input vector, into the successive N3 of the output one, by completing

the second step of an algorithmic scheme which can be iteratively repeated.

In analogy with the above, each (Nk + Nk+1) × (Nk + Nk+1) matrix Ak

can be written as Ak = ΦkΛk

(
2I(Nk+Nk+1)×(Nk+Nk+1) − Φk

)
, where now the

column vectors of Φk are the eigevenctors of Ak and form a non-orthogonal

basis of the (Nk + Nk+1) space where input and output vectors belong. Λk

is a diagonal matrix of the eigenvalues: the first Nk are set to one, while

the other Nk+1 are non trivial entries to be adjusted self-consistently via

the learning scheme. Framing the process in the augmented space of N

dimensions, as done earlier, allows us to avoid adapting the dimensions of

the involved vectors at each iteration. On the contrary, this is a convenient

procedure to be followed when aiming at a numerical implementation of

the envisaged scheme. Notice that to discuss the algorithmic variant of the

method, we made use of the same symbols employed earlier. The notation

clash is however solely confined to this paragraph.

In the following, we will discuss how these ideas extend to the more

general setting of non-linear multi-layered NN.

3.1.2 Multi-layer networks in the spectral domain

In analogy with the above, the image to be processes is again organized

in a N × 1 column vector ~n1. This latter is transformed into ~n2 = A1~n1,

where matrix N ×N matrix A1 is recovered from its spectral properties, re-

spectively encoded in Φ1 and Λ1. The output vector ~n2 is now filtered via a

suitable non-linear function f(·). This step marks a distinction between, re-

spectively, the linear and non-linear versions of the learning schemes. For the

applications here reported we have chosen to work with a rectified linear unit

(ReLU) f(·) = max(0, ·). Another possibility is to set f(·, β1) = tanh[β1(·)],
where β1 is a control parameter which could be in principle self-consistently

adjusted all along the learning procedure. We are now in a position to it-

erate the same reasoning carried out in the preceding section, adapted to

the case at hand. More specifically, we introduce the generic N ×N matrix

Ak = ΦkΛk (2IN×N − Φk) which transforms ~nk into ~nk+1, with k = 2, ..., `−1.

The outcome of this linear transformation goes through the non-linear filter.

3.2 Results 37

The loss function L(~n) generalizes to:

L(~n) = ‖l(~n1)− σ (f (A`−1....f (A2f (A1 ~n1, β1) , β2) , β`−1))‖2 (3.8)

with an obvious meaning of the involved symbols. In the set of experi-

ments reported below we assume, in analogy with the above, a categorical

cross-entropy loss function. The loss function is minimized upon adjust-

ing the free parameters of the learning scheme: the ` − 1 blocks of tunable

eigenvalues, the elements that define the successive indentation of the nested

basis which commands the transfer of the information (and e.g. the quanti-

ties βk, if the sigmoidal hyperbolic function is chosen as a non-linear filter).

This eventually yields a fully trained network, in direct space, which can

be unfolded into a layered architecture to perform pattern recognition (see

Fig. 3.3). Remarkably, self-loop links are also present. The limit of a lin-

ear single layer perceptron is recovered when silencing the non-linearities: a

(N1 +N`)× (N1 +N`) matrix Ac can be generated from the N ×N matrices

Ak, following the same strategy outlined above. A sequence of linear layers

can be also interposed between two consecutive non-linear stacks. The inter-

posed layers allow to enlarge the space of parameters employed in the learning

scheme, and can be retracted when operating the DNN after completion of

the learning stage. Their role is de facto encapsulated in the entries of the

linear operator that bridges the gap between the adjacent non-linear stacks,

as explained above when referring to the telescopic operational modality.

3.2 Results

To build and train the aforementioned models we used TensorFlow and cre-

ated a custom spectral layer matrix that could be integrated in virtually

every TensorFlow or Keras model. That allowed us to leverage on the auto-

matic differentiation capabilities and the built-in optimizers of TensorFlow.

Recall that we aim at training just a a portion of the diagonal of Λk and a

block of Φk. To reach this goal we generated two fully trainable matrices,

for each layer in the spectral domain, and applied a suitably designed mask

to filter out the sub-parts of the matrices to be excluded from the training.

This is easy to implement and, although improvable from the point of view of

computational efficiency, it works perfectly, given the size of the problem to

be handled. We then trained all our models with the AdaMax optimizer [49]

by using a learning rate of 0.03 for the linear case and 0.01 for the non-linear

38 Network theory for Machine Learning

Figure 3.3: The non-linear version of the training scheme returns a multi-

layered architecture with self-loops links in direct space. Linear and non-

linear transformation can be combined at will, matrices Ak providing the

connection between successive layers. Linear layers can be retracted in op-

erational mode, following a straightforward variant of the compactification

procedure described in the main text.

one. The training proceeded for about 20 epochs and during each epoch the

network was fed with batches of images of different size, ranging from 300

to 800. These hyperparameters have been chosen so as to improve on GPU

efficiency, accuracy and stability. However, we did not perform a systematic

study to look for the optimal setting. All our models have been trained on

a virtual machine hosted by Google Colaboratory. Standard NN have been

trained on the same machine using identical software and hyperparameters,

for a fair comparison. Further details about the implementation, as well as

a notebook to reproduce our results, can be found in the public repository

of this project [50].

We shall start by reporting on the performance of the linear scheme.

The simplest setting is that of a perceptron made of two layers: the input

layer with N1 = 28 × 28 = 784 nodes and the output one made of N2 = 10

elements. The perceptron can be trained in the spectral domain by e.g. tun-

ing the N = N1 + N2 = 794 eigenvalues of A1, the matrix that links the

input (~n1) and output (~n2) vectors. The learning restricted to the eigenval-

ues returns a perceptron which performs the sought classification task with

an accuracy (the fraction of correctly recognized images in the test-set) of

3.2 Results 39

(82 ± 2)% (averaging over 5 independent runs). This figure is to be con-

fronted with the accuracy of a perceptron trained with standard techniques

in direct space. For a fair comparison, the number of adjustable weights

should be limited to N . To this aim, we randomly select a subset of weights

to be trained and carry out the optimization on these latter. The process is

repeated a few (5 in this case) times and, for each realization, the associated

accuracy computed. Combining the results yields an average performance

of (79± 3)% , i.e. a slightly smaller score (although compatible within error

precision) than that achieved when the learning takes place in the spectral

domain. When the training extends to all the N1×N2 weights (plus N1 +N2

bias), conventional learning yields a final accuracy of (92.7± 0.1)%. This is

practically identical to the score obtained in the spectral domain, specifically

(92.5± 0.2)%, when the sub-diagonal entries of the eigenvectors matrix are

also optimized (for a total of N1+N2+N1×N2 free parameters). The remark-

able observation is however that the distribution of the weights as obtained

when the learning is restricted on the eigenvalues (i.e using about the 10 %

of the parameters employed for a full training in direct space) matches quite

closely that retrieved by means of conventional learning schemes, see Fig. 3.4

. This is not the case when the learning in direct space acts on a subset of

N , randomly selected, weights (data not shown). Based on the above, it can

be therefore surmised that optimizing the eigenvalues constitutes a rather

effective pre-training strategy, which engages a modest computational load.

To further elaborate on the potentiality of the proposed technique, we

modify the simple two-layers perceptron, with the inclusion of supplementary

computing layers. As explained above the newly added layers plays an active

role during the learning stage, but can be retracted in operating mode so as

to return a two-layers perceptron. The weights of this latter bear however

an imprint of the training carried out for the linear network in the expanded

configuration. Two alternative strategies will be in particular contemplated.

On the one side, we will consider a sole additional layer, endowed with N2

nodes, interposed between the input and output layers made of, respectively,

N1 = 784 and N` ≡ N3 = 10 nodes. We will refer to this as to the wide linear

configuration. The performance of the method can be tested by letting N2

to progressively grow. On the other side, the deep linear configuration is

obtained when interposing a sequence of successive (linear) stacks between

the input (N1 = 784) and the output (N` = 10) layers.

40 Network theory for Machine Learning

Figure 3.4: Distribution of the weights of a perceptron. The red line follows

the spectral training limited the N1 +N2 eigenvalues. The black line follows

the training in direct space. Here, N1 × N2 parameters are adjusted in

the space of the nodes. The distribution are very similar, but the spectral

learning employs about 10% of the parameters used in direct space. The

distributions obtained when forcing the training in direct space to operate

on a subset of N1 +N2 weights are very different from the one displayed (for

every choice of the randomly selected family of weights to be trained).

In Fig. 3.5, we report on the performance of the wide learning scheme as

a function of N2 +N3. As we shall clarify, this latter stands for the number

of trained parameters for (i) the spectral learning acted on a subset of the

tunable eigenvalues and for (ii) the conventional learning in direct space

restricted to operate on a limited portion of the weights. The red line in

the main panel of Fig. 3.5 refers to the simplified scheme where a subset of

the eigenvalues are solely tuned (while leaving the eigenvectors fixed at the

random realization set by the initial condition). We have in particular chosen

to train the second bunch of N2 eigenvalues of the transfer matrix A1 and the

N3 = 10 non trivial eigenvalues of matrix A2, in line with the prescriptions

reported in the preceding Section. The blue line reports on the accuracy of

the NN trained in direct space: the target of the optimization is a subset of

cardinality N2 +N3 of the N1N2 +N2N3 weights which could be in principle

3.2 Results 41

adjusted in the space of the nodes. The performance of the spectral method

proves clearly superior, as it can be readily appreciated by visual inspection

of Fig. 3.5. The black line displays the accuracy of the linear NN when

the optimization acts on the full set of N1N2 + N2N3 trainable parameters.

No improvement is detectable when increasing the size of the intermediate

layer: the displayed accuracy is substantially identical to that obtained for

the basic perceptron trained with N1N2 = 7840 parameters. The spectral

learning allows to reach comparable performance already at N2 = 1000 (13%

of the parameters used for the standard two layers perceptron with N1×N2

parameters, as discussed above). In the inset of Fig. 3.5, the distribution

of the entries of matrix Ac, the equivalent perceptron, is depicted in red

for the setting highlighted in the zoom. The black line refers to the two-

layers equivalent of the NN trained in direct space, employing the full set

of trainable parameters (black dot enclosed in the top-left dashed rectangle

drawn in the main panel of Fig. 3.5). The two distributions look remarkably

close, despite the considerable reduction in terms of training parameters, as

implemented in the spectral domain (for the case highlighted, 0.13% of the

parameters employed under the standard training). Similarly to the above,

the distribution obtained when forcing the training in direct space to act on

a subset of N1 + N2 weights are just a modest modulation of the initially

assigned profile, owing to the local nature of the learning in the space of the

nodes.

In Fig. 3.6, we report the results of the tests performed when operating

under the deep linear configuration. Symbols are analogous to those em-

ployed in Fig. 3.5. In all inspected cases, the entry layer is made of N1 = 784

elements and the output one has N` = 10 nodes. The first five points, from

left to right, refer to a three layers (linear) NN. Hence, ` = 3 and the size of

the intermediate layer is progressively increased, N2 = 20, 80, 100, 500, 800.

The total number of trained eigenvalues is N2 +N3, and gets therefore larger

as the size of the intermediate layer grows. The successive four points of the

collections are obtained by setting ` = 4. Here, N2 = 800 while N3 is varied

(= 100, 200, 400, 600). The training impacts on N2 + N3 + N4 parameters.

Finally the last point in each displayed curve is obtained by working with a

five layers DNN, ` = 5. In particular N2 = 800, N3 = 600 and N4 = 500,

for a total of N2 + N3 + N4 + N5 tunable parameters. Also in this case,

the spectral algorithm performs better than conventional learning schemes

constrained to operate with an identical number of free parameters. Simi-

42 Network theory for Machine Learning

larly, the distribution of the weights of an equivalent perceptron trained in

reciprocal space matches that obtained when operating in the space of the

nodes and resting on a considerably larger number of training parameters.

To sum up, eigenvalues are parameters of key importance for NNs training,

way more strategic than any other set of equivalent cardinality in the space

of the nodes. As such, they allow for a global approach to the learning, with

significant reflexes of fundamental and applied interest. In all cases here

considered, the learning can extend to the eigenvectors: an optimized inden-

tation of the eigen-directions contribute to enhance the overall performance

of the trained device.

We now turn to considering a non-linear architecture. More specifically,

we will assume a four layers network with, respectively, N1 = 784, N2, N3 =

120, N4 = 10. The non-linear ReLU filter acts on the third layer of the

collection, while the second is a linear processing unit. As in the spirit of the

wide network configuration evoked above, we set at testing the performance

of the NN for increasing N2. For every choice of N2, the linear layer can

be retracted yielding a three-layered effective non-linear configurations. We

recall however that training the network in the enlarged space where the

linear unit is present leaves a non trivial imprint in the weights that set the

strength of the links in direct space.

In Fig 3.7, we plot the computed accuracy as a function of N2, the size of

the linear layer. In analogy with the above analysis, the red curve refers to

the training restricted to N2+N3+N4 eigenvalues; the blue profile is obtained

when the DNN is trained in direct space by adjusting an identical number

of inter-nodes weights. As for the case of a fully linear architecture, by

adjusting the eigenvalues yields better classification performances. The black

line shows the accuracy of the NN when the full set of N1N2 +N2N3 +N3N4

is optimized in direct space. The green line refer instead to the spectral

learning when the eigenvalues and eigenvectors are trained simultaneously.

The accuracies estimated for these two latter settings agree within statistical

error, even if the spectral scheme seems more robust to overfitting (the black

circles declines slightly when increasing N2, while the collection of green

points appears rather stable).

3.2 Results 43

Figure 3.5: A three layer NN is considered. The accuracy of the network is

plotted as a function of the number of parameters that we chose to train with

the spectral algorithm, N2 +N3. The red line reports on the performance of

the spectral training. The blue line refers to the network trained in direct

space: the optimization runs on N2 + N3 parameters, a subset of the total

number of adjustable weights N1N2 + N2N3. The black line stands for the

accuracy of the linear NN when training the full set of N1N2 + N2N3 pa-

rameters. Notice that the reported accuracy is comparable to that obtained

for a standard two layer perceptron. Inset: the distribution of the entries of

the equivalent perceptrons are plotted. The red curve refer to the spectral

learning restricted to operate on the eigenvalues; the black profile to the net-

work trained in direct space, employing the full set of adjustable parameters.

In both cases, the weights refer to the two layers configuration obtained by

retracting the intermediate linear layer employed during the learning stage.

44 Network theory for Machine Learning

Figure 3.6: The performance of the spectral algorithm are tested for a multi-

layered linear configuration. Symbols are chosen in analogy to Fig. 3.5. In all

cases, the input layer is made of N1 = 784 elements and the output layer has

N` = 10 nodes. The first five points, from left to right in each of the curves

depicted in the main panel, refer to a three layers (linear) NN. The size of the

intermediate layer is progressively increased, as N2 = 20, 80, 100, 500, 800.

The total number of trained eigenvalues is N2 + N3. The subsequent four

points are obtained by considering a four layers architecture. In particular,

N2 = 800 while N3 takes values in the interval (100, 200, 400, 600). The

training acts on N2 + N3 + N4 eigenvalues. The final point in each curve

is obtained with a four layers DNN. Here, N2 = 800, N3 = 600 and N3 =

500, for a total of N2 + N3 + N4 + N5 tunable parameters in the spectral

setting. Inset: the distribution of the entries of the equivalent perceptrons

are displayed, with the same color code adopted in Fig. 3.5. Also in this

case, the weights refer to the two layers configuration obtained by retracting

the intermediate linear layers employed in the learning stage.

3.3 Conclusions 45

Figure 3.7: The accuracy of the non-linear DNN is tested. We assume a

four layers network with, respectively, N1 = 784, N2, N3 = 120, N4 = 10; N2

is changed so as to enlarge the set of parameters to be trained. The red

line refers to the spectral training, with N2 +N3 +N4 adjusted eigenvalues.

The blue line stands for a network trained in direct space, the target of the

optimization being a subset made of N2+N3+N4 weights, randomly selected

from the available pool of N1N2 + N2N3 + N3N4 tunable parameters. The

black line reports the accuracy of the linear NN when training the full set of

N1N2 +N2N3 +N3N4 weights. The green line refer to the spectral learning

when eigenvalues and eigenvectors are simultaneously trained.

3.3 Conclusions

Summing up, we have here proposed a novel approach to the training of

DNNs which is bound to the spectral, hence reciprocal, domain. The eigen-

values and eigenvectors of the adjacency matrices that connects consecutive

layers via directed feed-forward links are trained, instead of adjusting the

weights that bridge each pair of nodes of the collection, as it is customarily

done in the framework of conventional ML approaches.

The first conclusion of our analysis is that optimizing the eigenvalues,

when freezing the eigenvectors, yields performances which are superior to

those attained with conventional methods restricted to a operate with an

46 Network theory for Machine Learning

identical number of free parameters. It is therefore surmised that eigenval-

ues are key target parameters for NN training, in that they allow for a global

handling of the learning. This is at variance with conventional approaches

which seek at modulating the weights of the links among mutually connected

nodes. Secondly, the spectral learning restricted to the eigenvalues yields a

distribution of the weights which resembles quite closely that obtained with

conventional algorithms bound to operate in direct space. For this reason,

the proposed method could be used in combination with existing ML al-

gorithms for an effective (and computationally advantageous) pre-training

of DNNs. We have also shown that linear processing units inserted in be-

tween consecutive, non-linearly activated layers produce an enlargement of

the learning parameters space, with beneficial effects in terms of performance

of the trained device. Extending the learning so as to optimize the eigenvec-

tors enhances the ability of the network to operate the sought classification.

In the proposed implementation, and to recover a feed-forward architecture

in direct space, we have assumed a nested indentation of the eigenvectors.

Entangling the eigenvectors referred to successive stacks is the key for a re-

cursive processing of the data, from the input to the output layer. Employ-

ing other non-orthogonal basis could eventually allow to challenge different

topologies in direct space and shed novel light on the surprising ability of

deep networks to cope with the assigned tasks.

Chapter 4

Hybrid Variational

Autoencoders

In this chapter we will focus on using cutting-edge physical hardware to

improve (or even accelerate) classical machine learning tasks. This part of

the work has been carried out during a visit at D-Wave Systems Inc., in

collaboration with the Quantum Machine Learning team of D-Wave. In

particular our focus was to harness the complexity of D-Wave’s quantum

processor in order to create a powerful hybrid quantum-classical deep neural

network [51] which could be trained end-to-end using standard ML libraries

as TensorFlow. In general, research in the hybrid quantum-classical mod-

els focuses on deep supervised learning [13, 18, 52–54], in which a labeled

dataset is used to train a statistical model to solve classification tasks. In

this context, deep neural networks are now commonly used in many scien-

tific and industrial applications and that’s a great driver to find compelling

applications of quantum algorithms. However there’s more than can be done

using such networks, for example unsupervised learning. Unlike supervised

learning [10], unsupervised learning is a much harder, and still largely un-

solved, problem. And yet, it has the appealing potential to learn the hidden

statistical correlations of large unlabeled datasets [11–13], which constitute

the vast majority of data available today.

Training and deployment of large-scale machine learning models, espe-

cially for unsupervised learning, faces computational challenges [55] that are

only partially met by the development of special purpose classical computing

units such as GPUs. This has led to an interest in applying quantum com-

47

48 Hybrid Variational Autoencoders

puting to ML tasks [56–60] and to the development of several quantum algo-

rithms [61–64] with the potential to accelerate training. Most quantum ma-

chine learning algorithms need fault-tolerant quantum computation [65–67],

which requires the large-scale integration of millions of qubits and is still not

available today. It is however possible that quantum machine learning will

provide the first breakthrough algorithms to be implemented on commer-

cially available quantum annealers [68, 69] and gate-model devices [70, 71].

For example, small gate-model devices and quantum annealers have been

used to perform quantum heuristic optimization [71–76] to solve cluster-

ing [77] and classification problems [78–81]. In this chapter we will imple-

ment an hybrid quantum-classical Variational Autoencoder (VAE) using the

commercially available D-Wave 2000Q quantum annealer. The chapter is

structured as follows. In Sec. 4.1 we review VAE and the implementations of

discrete latent variables, a necessary step to implement quantum and clas-

sical Boltzmann Machines (BMs) in their latent space. In Sec. 4.2 we will

introduce quantum annealers as samplers to train quantum and classical

BMs. In Sec. 4.3 we report our experiments in training VAEs with D-Wave

2000Q systems. In Sec. 4.4 we discuss a possible path toward quantum ad-

vantage in our setup. Finally, we present our conclusions in Sec. 4.5.

4.1 Variational Autoencoders

In this section, we will briefly introduce VAEs and describe their extension

to discrete latent variables, a necessary step to hybridize with quantum pro-

cessors and to perform quantum-assisted training.

In generative modeling, the goal is to train a probabilistic model such that

the model distribution pθ(X) (where θ are the parameters of the model) is

as close as possible to the data distribution, pdata(X), which is unknown but

assumed to exist. The ensemble X = {xd}Nd=1 represents the training set, i.e.

N independent and identically distributed samples coming from pdata(X).

The preferred method to training probabilistic models is arguably maximum

likelihood estimation (MLE), which means the optimal model parameters

are obtained by maximizing the log-likelihood L(X,θ) of the dataset with

4.1 Variational Autoencoders 49

respect to the model:

L(X,θ) =
∑
x∈X

pdata(x) log pθ(x) = Ex∼pdata [log pθ(x)] , (4.1)

where Ex∼pdata [. . .] is the expectation over pdata(x). Similarly to generative

adversarial networks (GANs) [82], VAEs [83] are “directed” probabilistic

models with latent variables (see Fig. 4.1): the model distribution, defined

as the joint distribution between the visible units x and latent units ζ, is

explicitly parametrized as the product of the “prior” pθ(ζ) and “marginal”

pθ(x|ζ) distributions, pθ(x, ζ) = pθ(x|ζ)pθ(ζ). The model prediction for the

data is then obtained by marginalizing over the latent units:

pθ(x) =

∫
pθ(x|ζ)pθ(ζ)dζ . (4.2)

Generative models with latent variables can potentially learn and encode

useful representations of the data in the latent space. This is an important

property that can be exploited in many practical applications [84–87] to

improve other tasks such as supervised and semi-supervised learning [88].

The drawback is “intractable inference” due to the appearance of integrals

such as the one in Eq. 4.2. Essentially, VAEs remove the necessity to evaluate

such integrals by introducing a variational approximation qφ(ζ|x) to the true

posterior pθ(ζ|x). A so-called “reparameterization trick” is also introduced

to obtain an efficient and low-variance estimate of the gradients needed for

training. We will briefly review these two important elements in the next

two sections.

Variational inference

Training generative models with latent variables via MLE requires the eval-

uation of the intractable integral of Eq. 4.2 to calculate the posterior distri-

bution pθ(ζ|x). VAEs circumvent this problem by introducing a tractable

variational approximation qφ(ζ|x) to the true posterior [89], with variational

parameters φ (see Fig. 4.1). VAEs are then trained by maximizing a varia-

tional lower bound L(x,θ,φ) to the log-probabilities log pθ(x):

L(x,θ,φ) = log pθ(x)− Eζ∼qφ(ζ|x)

[
log

qφ(ζ|x)

pθ(ζ|x)

]
≡

≡ log pθ(x)−DKL(qφ(ζ|x)||pθ(ζ|x)) , (4.3)

50 Hybrid Variational Autoencoders

ζ

x

prior: pθ(ζ)

joint: pθ(x, ζ)

marginal: pθ(x|ζ)approx. posterior: qφ(ζ|x)

Figure 4.1: Generative models with latent variables can be represented as

probabilistic graphical models that describe conditional relationships among

variables. In a directed generative model, the joint probability distribution

pθ(x, ζ), is decomposed as pθ(x, ζ) = pθ(x|ζ)pθ(ζ). The prior distribu-

tion over the latent variables pθ(ζ) and the marginal (decoder) distribution

pθ(x|ζ) are hard-coded to explicitly define the model. The computation

of the true posterior, pθ(ζ|x) is intractable. In VAEs, an approximating

posterior qφ(ζ|x) (decoder) is introduced to replace the true posterior.

where DKL(qφ(ζ|x)||pθ(ζ|x)) is the Kullback-Leibler divergence (KL diver-

gence) between the true and approximating posteriors. Since KL divergences

are always non-negative, we have

L(x,θ,φ) ≤ log pθ(x), (4.4)

which immediately gives:

L(X,θ,φ) ≡ Ex∼pdata [L(x,θ,φ)] ≤ Ex∼pdata [log pθ(x)] ≡ L(X,θ) , (4.5)

where L(X,θ,φ) is called the evidence lower bound (ELBO). The ELBO

can be written in terms of tractable quantities:

L(X,θ,φ) = Ex∼pdata

[
Eζ∼qφ(ζ|x)[log pθ(x|ζ)]−DKL(qφ(ζ|x)||pθ(ζ))

]
. (4.6)

The marginal pθ(x|ζ) and approximating posterior qφ(ζ|x), also called “de-

coder” and “encoder” respectively, are commonly parameterized using deep

neural networks.

The reparameterization trick

To train VAEs, we need to calculate the derivatives of the objective function

(Eq. 4.6) with respect to the generative (θ) and inference (φ) parameters.

4.1 Variational Autoencoders 51

The naive evaluation of ∂φ of terms of the type Eζ∼qφ [f(ζ)] is called REIN-

FORCE [90]. With the use of the identity ∂φqφ = qφ∂φ log qφ, one has:

∂φEζ∼qφ [f(ζ)] = Eζ∼qφ [f(ζ)∂φ log qφ] . (4.7)

However, the term above has high variance and requires intricate variance-

reduction mechanisms to be of practical use [91].

A better approach is to write the random variable ζ as a deterministic

function of the distribution parameters φ and of an additional auxiliary

random variable ρ. The latter is given by a probability distribution p(ρ)

that does not depend on φ. This reparameterization ζ(φ,ρ) is appropriately

chosen so that one can write Eζ∼qφ [f(ζ)] = Eρ∼p(ρ)[f(ζ(φ,ρ))]. Therefore,

we can move the derivative inside the expectation with no difficulties:

∂φEζ∼qφ [f(ζ)] = Eρ∼p(ρ) [∂φf(ζ(φ,ρ))] . (4.8)

This is called the reparameterization trick [83] and its efficient implementa-

tion is responsible for the recent success and proliferation of VAE.

4.1.1 VAE with discrete latent variables

The application of the reparameterization trick as in Eq. 4.8 requires that

f(ζ(φ,ρ)) be differentiable, so the latent variables ζ are continuous. How-

ever, discrete latent units can be indispensable to represent the right distri-

butions, such as in attention models, language modeling, and reinforcement

learning [88, 92, 93]. For example, a latent space composed of discrete vari-

ables can learn to disentangle content and style information of images in

an unsupervised fashion [94]. Several methods have thus been developed to

circumvent the non-differentiability of discrete latent units [91, 95–97]. In

the context of VAE, the reparameterization trick has been extended to dis-

crete variables by either relaxation of discrete variables into continuous vari-

ables [92, 98, 99] or by introducing smoothing functions [100]. In Ref. [101],

QVAE was introduced based on the implementation of Ref. [100]. Here,

we follow the implementation of Ref. [99], which gives biased estimates but

provides a much simpler and flexible implementation.

To set up a notation that we keep throughout the chapter, we now assume

the prior distribution is defined on a set of discrete variables z ∼ pθ(z), with

z ∈ {0, 1}L. Given a discrete variable z with mean q and logit l = σ−1(q) =

log(q) − log(1− q) (where σ = 1/[1 + exp(−l)] is the sigmoid function), a

52 Hybrid Variational Autoencoders

non-differentiable implementation of Eq. 4.8 for discrete variables can be

obtained as

z = Θ[ρ− (1− q)] = Θ[σ−1(ρ) + l)] , (4.9)

where Θ is the Heaviside function and the random variable ρ ∈ [0, 1] is

distributed according to a uniform distribution U . In the second equality,

we have used the fact that the inverse sigmoid function is monotonic.

A continuous smoothing (also known as the Gumbel trick [98]), is per-

formed by replacing the Heaviside function with the sigmoid function:

z = Θ[σ−1(ρ) + l] ; ζ = σ

(
σ−1(ρ) + l

τ

)
, (4.10)

where τ is a temperature parameter introduced to control the smoothing.

Typically, τ is annealed from large to low values during training. For large

values of τ , the bias introduced by substituting z with ζ everywhere in the

loss function is large, but the gradients propagating through ζ are also large,

facilitating training. Conversely, for low values of τ the bias is reduced but

gradients vanish and training stops. Evaluation of trained models is done in

the limit τ → 0, where ζ → z.

Throughout this chapter, we will use BMs to provide powerful and ex-

pressive prior distributions defined on discrete variables:

pθ(z) ≡ e−Hθ(z)/Zθ , Zθ ≡
∑
z

e−Hθ(z) ,

Hθ(z) ≡
∑
l

σzl bl +
∑
l<m

Wlmσ
z
l σ

z
m . (4.11)

To train a VAE with BM prior, following the prescription of the previous

section, we formally replace pθ(z) ; pθ(ζ). As usual, the gradients of the

log-probability is given by the difference between a positive and negative

phase:

∂ log pθ(ζφ) = −∂Hθ(ζφ) + Ez̄∼pθ [∂Hθ(z̄)] . (4.12)

In the equation above, we have highlighted the fact that the smoothed latent

samples ζφ depend on the variational parameters φ. The model samples z̄,

however, remain discrete variables sampled from the BM, and are thus not

smoothed during training [99].

4.2 Sampling with Quantum Annealers 53

4.2 Sampling with Quantum Annealers

Currently manufactured quantum annealers physically implement a transverse-

field Ising model:

H(s) = A(s)
∑
l

σxl +B(s)

[∑
l

σzl hl +
∑
l<m

Jlmσ
z
l σ

z
m

]
,

where s ∈ [0, 1] is a control parameter, and A(s) and B(s) are respec-

tively decreasing and increasing monotonic functions of the parameter s with

A(0)� B(0) and A(1)� B(1). Quantum annealers operate immersed in a

thermal environment. There is theoretical and numerical evidence [102–105]

that when the anneal is performed sufficiently slowly the system above is in

thermal equilibrium with the environment. This property can be exploited

to turn quantum annealers into programmable Boltzmann samplers. Ther-

mal relaxation rates are controlled by the intensity of the transverse field

A(s). At the beginning of the anneal, relaxation times are small, and the

system proceeds through a sequence of thermal states. As the anneal pro-

ceeds, relaxation times become larger and eventually the state of the system

freezes at the point s∗ where relaxation times roughly become larger than

the annealing time ta.

With the above picture in mind, we can use quantum annealers to sample

from the distribution:

pθ(z) ≡ Tr[Λze
−Hθ]/Zθ , Zθ ≡ Tr[e−Hθ] ,

Hθ =
∑
l

σxl Γl +
∑
l

σzl bl +
∑
l<m

Wlmσ
z
l σ

z
m, (4.13)

where Γ,h,W ∈ {θ}, Λz ≡ |z〉〈z| is the projector on the classical state z,

and σx,zl are Pauli operators, and:

bl = β∗effhl, Wlm = β∗effJlm, Γl = β∗effΓ
∗,

βeff ≡ B(s∗)/βphys, Γ∗ ≡ A(s∗)/B(s∗) (4.14)

as defined in Eq. 4.13. Advanced control techniques for the anneal schedule

(such as pauses and fast ramps present in the latest generation of D-Wave

quantum annealers) allow in principle to control the freezing point s∗. To

perform such sampling we used the publicly available Solver API provided

by D-Wave [106].

54 Hybrid Variational Autoencoders

It is useful to point out now that knowledge of the effective transverse field

Γ∗ is unnecessary. As we will see below QBMs are trained via the Q-ELBO

loss function, in which the transverse field does not appear explicitly, but

only implicitly in sampling from the model. In the following we assume that

for the models and datasets under consideration freezing happens late in the

anneal. This means we effectively sample from a QBM that is very close to a

classical BM. More specifically, we use quantum annealers to quantum-assist

training of VAEs with classical latent-space BMs.

4.2.1 VAE hybridization with quantum prior

Once we have a framework to train VAEs with discrete latent variables, we

can consider quantum-classical hybrid VAEs in which the generative process

z ∼ pθ(z) is realized by measuring the computational basis on a given quan-

tum state ρθ realized by a quantum annealing process controlled by a set of

parameters θ we wish to adjust during training of the model.

As introduced in Ref. [101], a QVAE can be obtained by assuming the

quantum state ρθ is a thermal state of a transverse field Ising model; i.e., a

QBM [107]. The prior pθ(z) distribution is then given by Eq. 4.13. Unlike

for a classical BM, the direct evaluation of the gradients of the distribution is

intractable. As discussed in Ref. [107], a possible workaround is to perform

the following substitution:

pθ(z) = Tr[Λze
−Hθ]/Zθ → p̃θ(z) = e−Hθ(z)/Zθ (4.15)

in the ELBO L to obtain the so-called quantum ELBO (Q-ELBO) L̃. As a

consequence of the Golden-Thompson inequality Tr[eAeB] ≥ Tr[eA+B], one

has:

pθ(z) ≥ p̃θ(z) ⇒ L ≥ L̃ . (4.16)

The Q-ELBO L̃ is thus a lower bound to the ELBO with tractable gradients

that can be used during training. The derivatives of the log-probabilities

log p̃θ(z) can be estimated via sampling from the QBM [107]:

∂ log p̃θ(z) = −∂Hθ(z) + Ez̄∼pθ [∂Hθ(z̄)] , (4.17)

where z̄ are the model samples distributed according to the quantum Boltz-

mann distribution. The use of the Q-ELBO and its gradients precludes the

4.3 Training VAE with quantum annealers 55

training of the transverse field Γ [107], which is treated as a constant (hyper-

parameter) throughout the training. Training via the Q-ELBO is performed

as in the BM case, by smoothing z ; ζ.

4.3 Training VAE with quantum annealers

We have implemented a convolutional VAE whose prior is implemented by

a BM and sampling is offloaded to a D-Wave 2000Q quantum annealer. To

improve the performance of the model, we use several techniques such as

learning-rate and KL-term annealing, importance-weight annealing, convo-

lution gating, and batch normalization. We give a detailed description of the

model in Appendix A.1. In this section, we restrict ourselves to a Chimera

structured restricted BM (RBM) with 288 latent units (a six-by-six patch of

Chimera cells see Appendix A.4) and present our results with models trained

end-to-end by using samples drawn with D-Wave 2000Q quantum annealers

on the same MNIST dataset [47] we have already used in chapter 3. Samples

used to estimate the negative phase (second term of Eq. 4.17) are obtained

following the prescription given in Appendix A.2.

The effective temperature β∗eff must be chosen appropriately to correctly

train the parameters of the inference network qφ (see appendix A.3 for a

more detailed discussion). The parameter β∗eff can be considered as a mul-

tiplicative correction for the learning rate of the prior parameters b,W ∈ θ.

However, this observation is not true for the inference parameters φ, whose

gradients also propagate through the first term in Eq. 4.17 via ζ(φ,ρ). Due

to our simple forward-anneal schedule, we expect the value of β∗eff to change

during training. To account for this effect, here we employ a real-time β∗eff
estimation as explained in Appendix A.3. It should be possible, in the future,

to train at a fixed-temperature with appropriate pause-and-ramp annealing

schedules [108,109].

Training is performed jointly on the parameters of the classical networks

and on the parameters of the quantum device. The gradients of the latter

parameters require estimation of the negative phase (a thermal expectation

of the energy) in Eq. 4.17. At each gradient update, such expectations are

computed using samples from the quantum annealer only, and do not involve

any classical Gibbs sampling such as persistent contrastive divergence, or any

classical post-processing of the samples obtained by the annealer. We typi-

cally trained our models for 2000 epochs and a batch size of 1000. Figure 4.2

56 Hybrid Variational Autoencoders

Figure 4.2: Images generated by sampling latent configurations with a quan-

tum annealer that are subsequently transformed by a classical deconvolu-

tional decoder. The classical networks and the quantum annealer weights

have been trained end-to-end for 2000 epochs on the MNIST dataset us-

ing the quantum annealer as a sampler for estimating the gradients of the

annealing parameters.

shows a set of images generated by a VAE trained end-to-end using a D-Wave

2000Q system. The set of images, obtained by generating latent samples z

with the quantum annealer and subsequently decoded as x ∼ pθ(x|z), shows

a good amount of global consistency and consistent statistical variety.

4.3.1 Validation of training

In this section we give evidence that we have successfully exploited the

Chimera-structured RBM prior in the latent space of our convolutional VAE.

Validating the training of quantum-classical hybrid generative models can

be nontrivial and must be assessed carefully, especially when training uses

a large amount of classical processing. We trained the deep networks of our

model using GTX 1080 Ti GPUs, and the quantum annealer is called only

to estimate the negative phase. A principled validation strategy is thus to

compare a model trained with quantum assistance to a fully classical baseline

for which the quantum hardware is not required. In our case, a convenient

baseline is a model that has the same classical networks but whose prior is

4.3 Training VAE with quantum annealers 57

(a) Chimera (b) Bernoulli

Figure 4.3: Visual validation of training with Chimera connectivities is not

conclusive.

trivial. As a trivial prior, we choose a set of independent Bernoulli variables,

which is equivalent to an RBM with vanishing weights between latent units.

For simplicity, in the following we refer to such prior as RBM with Bernoulli

prior. While generative models with latent variables are also powerful tools

to perform supervised and semi-supervised tasks, here we focus on training

VAEs as purely generative models.

For image processing, comparison between different generative models

could be done qualitatively by visually inspecting the generated samples. In

our research however, visual comparison is inconclusive [110]. In Fig. 4.3, for

example, we compare samples generated by a trained model with Chimera

(Fig. 4.3(a)) and Bernoulli (Fig. 4.3(b)) priors. Both models have been

trained by evaluating the negative phase with a D-Wave 2000Q system. The

images are also generated using samples coming from the annealers. Given

our specific implementation, it is difficult to discern an improvement of vi-

sual quality when using a Chimera-structured RBM rather than a Bernoulli

prior. To overcome this difficulty, we evaluate quantitatively 1 the generative

performance of VAEs by computing the ELBO defined in Eq. 4.3 or by esti-

1The existence of a well-defined loss function that allows quantitative validation is an

important advantage of VAE, compared to other generative models such as Generative

Adversarial Networks

58 Hybrid Variational Autoencoders

mating the log-likelihood via an importance sampling technique as described

in Ref. [111].

These quantities are however not accessible when training with analog

devices as samplers. In fact, while we assume that samples generated by

quantum annealers are distributed according to the required Boltzmann dis-

tribution, we must treat quantum annealers as black-box samplers during

testing and validation. In other words, the log-probabilities for the quan-

tum generative process log pDW
θ (z) must be assumed to be unknown. There-

fore, we validate results by replacing the unknown hardware log-probabilities

with those of an auxiliary RBM whose weights are given by the relations in

Eq. 4.14 2:

log pDW
h,J (z) ; log pRBM

b,W (z) . (4.18)

This approach can be more rigorously interpreted as validating the fully

classical model in which we replace the quantum annealer by the auxiliary

RBM defined by the relations above.

In Tab. 4.1 we report the LL of the auxiliary VAE with 288 latent unit

on a Chimera connectivity trained with a D-Wave 2000Q quantum annealer.

We compare it to the same model trained end-to-end with population an-

nealing [101]. We also compare each model with its respective Bernoulli

baseline. We have reported the mean and the standard error over 5 inde-

pendent training runs. Training with a Chimera-structured RBM improves

MNIST (dynamic binarization) LL

Sampler Chimera Bernoulli

DW2000Q −82.8± 0.2 −83.7± 0.2

PA −82.8± 0.1 −84.2± 0.05

Table 4.1: Log-likelihood of convolutional VAEs trained with samples coming

from either D-Wave 2000Q or PA. All models share the same encoding and

decoding networks, but are trained independently for 2000 epochs on the

MNIST dataset.

significantly the log-likelihood over the Bernoulli baseline. Moreover, the

models trained with quantum annealers achieved the same log-likelihood as

2The computation of the log-probabilities requires the estimation of the partition func-

tion, which is done using annealed population sampling as in Ref. [101]

4.4 A path towards quantum advantage with VAE 59

the models trained with PA. Notice that each model and its baseline em-

ployed exactly the same amount of classical computational resources. Mod-

els trained with structured RBMs achieve better performance by requiring

thermal sampling, a computational task that can be offloaded to a quantum

annealer.

In general we would like to use quantum annealers to sample from the

trained generative model. As explained above, treating quantum annealers as

black-boxes means we cannot quantitatively evaluate such a model. However,

we argue that the log-likelihood of such a VAE is likely very close to that

of the auxiliary VAE. After all, the training assumes the hardware samples

are distributed according to a Boltzmann distribution of the auxiliary RBM,

and in the previous section we have shown that this assumption is accurate

enough to correctly train the auxiliary RBM. We can confirm this visually

in Fig. 4.4. On the left panel we show a set of digits generated by sampling

from a D-Wave 2000Q. On the right panel we use the same trained model

but sample from a D-Wave 2000Q after setting its weights to zero. We see

that while the annealer still generates plausible digits, it does not generate

a number of digits with the correct statistics (in the right panel of Fig. 4.4,

digits 9 and 4 seem to dominate the scene). This gives evidence that D-

Wave 2000Q quantum annealers sampled consistently, such that the classical

networks were able to correctly learn the correlations between latent units

existing due to the RBM with non-vanishing weights.

4.4 A path towards quantum advantage with

VAE

In the previous section we have shown that it is possible to use quantum an-

nealers as Boltzmann samplers to train RBM-structured priors placed in the

latent space of deep convolutional VAE. In the experiments presented, we

have settled on relatively small, Chimera-structured RBMs with 288 latent

units. We found that larger RBMs did not appreciably improve performance

of the overall VAE when training on the MNIST dataset. We will explain

why this is the case in this section. Sampling from RBMs with a few hundred

units can still be done classically with relative ease, and the natural question

that arises is whether our approach offers a path towards obtaining quan-

tum advantage with quantum annealers in machine learning applications. To

60 Hybrid Variational Autoencoders

Figure 4.4: Left panel: Samples generated by D-Wave 2000Q using a fully

trained model. Right panel: Samples generated by D-Wave 2000Q after

setting the couplings of the annealer to zero.

achieve such a goal, we need to exploit large latent-space RBMs that develop

complex multimodal probability distributions (i.e., a complex energy land-

scape) from which sampling is classically inefficient. We give evidence that

this is indeed possible. For example, we demonstrate that the BMs placed

in the latent space develop nontrivial modes that are likely to cause classical

Monte Carlo algorithms to have long mixing times. Moreover, we show that

training on more complex datasets likely takes advantage of larger BMs to

improve performance. In addition, we discuss the role of connectivity, em-

phasizing its importance even in this hybrid approach, and the necessity to

develop device-specific classical NN to better exploit physical connectivities

such as the Chimera graph.

In the next sections, we give evidence of the existence of a natural path

towards obtaining quantum advantage by applying quantum annealing to

generative modeling within the proposed VAE framework.

4.4.1 Exploit large latent-space RBMs

Exploiting a larger number of latent units to improve the generative perfor-

mance of a VAE is a popular and active research area. One known obstacle

in achieving this is the loss function used for training. We rewrite the ELBO

4.4 A path towards quantum advantage with VAE 61

here for convenience by highlighting its two terms:

L(x, z,φ) = Ez∼qφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
autoencoding term

−DKL(qφ(z|x)||pz(z))︸ ︷︷ ︸
KL−regularization

. (4.19)

The first term is sometimes called the “autoencoding” term and can be

thought of as a reconstruction error: an encoded latent configuration ζ is first

sampled from the encoder qφ(ζ|x) and is subsequently decoded by pθ(x|ζ).

When both approximating posterior and marginal distributions are factor-

ized distributions, this term can be also interpreted as a reconstruction error.

Maximizing the ELBO results in maximizing this term, which tends to max-

imize the number of latent units used to prevent information loss during the

encoding-decoding steps. The second term, the KL divergence between the

approximating posterior and the prior, has the effect of a regularization term

and it is sometimes also called KL regularization. Maximizing the ELBO re-

sults in minimizing the KL term, which pushes the approximating posterior

close to the prior. This also means the approximating posterior depends less

sharply on the inputs x. In the case of factorized distributions, this usu-

ally means some latent units are conditionally independent from the input

(“inactive units”): zinact ∼ qθ(zinact|x) = qθ(zinact).

0 250 500 750 1000 1250 1500 1750 2000
Epochs

50

100

150

200

250

300

Ac
tiv

e
Un

its

DW2000Q: Chimera
DW2000Q: Bernoulli
PA: Chimera
PA: Bernoulli

Figure 4.5: Comparison of active units during training between a D-Wave

2000Q and population annealing on both Chimera and Bernoulli priors.

62 Hybrid Variational Autoencoders

The balance between the autoencoding and KL terms means using VAE

can be efficient at lossy data compression by using the right number of latent

units. However, the tension between KL and autoencoding terms results

in an optimization challenge: during training the model is usually stuck

in a local minimum with a suboptimal number of latent units. The main

takeaway, for our purposes, is that the number of latent units effectively

used is highly dependent on the model, the optimization technique, and the

training set. To exploit a larger RBM, one thus has to work on all these

elements. In Fig. 4.5 we show the number of active units during a training

run of 2000 epochs when the models are trained with either PA or D-Wave

2000Q, with either a Chimera-structured RBM or a Bernoulli prior. Lines

(bold or dashed) are the means over 5 independent runs while light-color

areas delimit the smallest and largest values among the 5 runs. To identify

whether a latent unit is active or not, we compute the variance σ of the

value of each unit z over the test set and we set a threshold of σ > 0.01 as

definition of an active unit.

Figure 4.5 shows several key points that we will expand upon in the next

sections. First, it shows the use of a KL annealing technique: the KL term is

turned off at the beginning of the training and it is slowly (linearly) turned

on within 200 epochs. The figure clearly shows the effect of the KL term in

shutting down a large number of active units. Since the number of active

units plateaus around a number much lower than 288, using a larger RBM

usually does not improve performance of our implementation on MNIST. It

also shows that connectivity of the RBM plays a major role in determining

the number of active units, which is much higher with a Chimera-structured

RBM. Notice also that in the Bernoulli case, both samplers (PA and D-

Wave 2000Q) train a model that uses a very similar number of latent units.

However, when sampling is nontrivial (as in a Chimera-structured RBM)

the model trained with the quantum annealer uses a number of units larger

than the Bernoulli case, but smaller than the model trained with PA. This

is a manifestation (which we will discuss later) of biased sampling with the

quantum annealer: sampling quality is good enough to train the model (in-

deed we obtained a log-likelihood as good as that of the model trained with

PA) but exploits a smaller number of latent units.

4.4 A path towards quantum advantage with VAE 63

0 250 500 750 1000 1250 1500 1750
Epochs

92

90

88

86

84

82

80

Lo
g

Lik
el

ih
oo

d

RBM
Pegasus
Chimera
Bernoulli

0 250 500 750 1000 1250 1500 1750 2000
Epochs

50

100

150

200

250

Ac
tiv

e
Un

its

RBM
Pegasus
Chimera
Bernoulli

Figure 4.6: Comparison between VAE using different latent-space RBM con-

nectivities and same convolutional networks. Both log-likelihood (left panel)

and latent-space utilization (right panel) improve with more densely con-

nected RBM. Performance on Pegasus graph increases despite the develop-

ment of an architecture fairly optimized for Chimera graphs.

In the next three sections we discuss three important elements that would

allow to build quantum-classical hybrid VAEs that can effectively exploit

large latent-space RBMs. This is a necessary condition to search for quan-

tum advantage in these models: speed-up and scale-up sampling from large

RBMs using quantum annealers rather than inefficient classical sampling

techniques.

Denser connectivities

Connectivity of the RBM in the latent space plays an important role in de-

termining both performance of the generative model and number of active

latent units. While these two elements are not directly related, we typi-

cally observe a correlation between them. In this section, we investigate in

more detail the effects of implementing denser connectivities by performing

numerical experiments in four different cases: Bernoulli prior and Chimera,

Pegasus, and fully connected RBM. Together with Bernoulli and RBM, we

pick the connectivities of currently available D-Wave 2000Q quantum an-

nealers and D-Wave’s next-generation Pegasus architecture [112] (see also

Appendix A.4).

In Fig. 4.6 we compare the log-likelihood and the number of active units

64 Hybrid Variational Autoencoders

along training runs obtained using the same classical networks but using a

different connectivity for the latent-space RBM prior. At each step during

the training run, we employed roughly the same amount of classical resources

for back-propagation. Unsurprisingly, using a more capable (dense) RBM

results in better generative performance (log-likelihood) of the model (left

panel)). It also results in using a larger number of latent units (right panel).

Notice how Bernoulli and Chimera priors effectively use a number of latent

units well below 150, while Pegasus and fully connected use well above 150.

Because of this, we could not improve generative performance of Bernoulli

and Chimera models by just using larger graphs, at least when training on

MNIST. On the other hand, using larger Pegasus and fully connected RBMs

would likely have improved the log-likelihood of the model. In Fig. 4.6 we

show results on the same number of latent units (288) for proper comparison.

Working with VAEs allows us to easily take advantage of new connec-

tivities without having to implement a new convolutional VAE. In fact, our

model has been fairly optimized to improve performance on Chimera graphs

(see the next section). Despite this architecture-specific optimization, just

using the denser Pegasus graphs improve performance of the model. More-

over, the flexibility of the VAE hybrid approach allows us to easily adapt the

implementation to the slightly different working graphs of different proces-

sors with different active/inactive qubits. By using the same implementation,

during training the model naturally learns to deactivate latent units corre-

sponding to uncalibrated qubits. We have indeed seamlessly used the same

model to train on different D-Wave 2000Q processors, as well as using differ-

ent groups of qubits within the same processor. In no case was a hard-coded

connectivity (which would change for each processor) necessary.

The results of Fig. 4.6 show that developing quantum annealers with

denser connectivities (such as Pegasus) naturally leads to exploiting larger

latent-space RBMs, possibly getting us closer to a regime where quantum

advantage is possible. Indeed we expect that for a VAE trained on a complex

dataset, requiring a high amount of latent units (in the order of 103) we would

see a substantial advantage in sampling the latent space with a quantum

annealer.

4.4 A path towards quantum advantage with VAE 65

x convolutional

dense

q(z1|x) z1

dense

q(z2|z1,x) z2

(a) Conditional posterior (b) Bipartite mapping

(c) Chains mapping

Figure 4.7: Implementation of a conditional approximate posterior (left),

with two possible mappings between groups.

Hardware-specific optimization of classical networks

In our implementation, we have used fairly conventional convolutional neural

networks. As we will discuss in this section, we have implemented only one

specific architecture-dependent element in the encoder network that turned

out to be very effective at improving performance on the Chimera graph.

In general, we believe more elaborate, hardware-specific implementations

of both the approximating posterior qφ(z|x) and the marginal distribution

pθ(x|z) will significantly improve performance of VAE trained with analog

devices with quasi two-dimensional connectivities. This is not just a problem

of building a model with more capacity. As we discussed in the case of latent-

unit use, it is also a problem of optimizing the model hyperparameters. When

working with sparsely connected RBMs, it is easier for the KL term to push

both approximating posterior and RBM prior to a local minimum of the loss

function in which they are both trivial. Developing hardware-specific hybrid

models will thus also aim at reaching local minima during training in which

66 Hybrid Variational Autoencoders

the RBM prior is as expressive as possible, exploiting the largest amount of

correlations between latent units.

In the context of hybrid VAE models trained with quantum annealers, the

considerations above could replace more standard mapping techniques used

in the quantum annealing community such as minor embedding [113, 114]

and majority voting. The latter techniques typically require a hard-coded

specification of the hardware connectivity of each processor, which makes

adapting the code to different processors cumbersome. Our perspective in

the contest of hybrid generative modeling is to work by adapting classical

networks using a high-level specification of the connectivity and letting the

model, through stochastic gradient descent, learn the details of the connec-

tivity of each processor (such as the locations of uncalibrated qubits).

We now discuss an example of how the classical networks can be opti-

mized for a given architecture (in our case the Chimera graph). A common

technique to implement a more expressive approximating posterior qφ(z|x)

(with a tighter variational bound) is to introduce conditional relationships

among latent units, also called hierarchies. In the case of two hierarchies,

we first define an approximating posterior for a subset of latent units z1 and

sample from it, then define a second approximating posterior for the remain-

ing latent units z2 that depends conditionally on both the input data and

the sampled values of the first group of latent variables:

z1 ∼ q1,φ(z1|x) , z2 ∼ q2,φ(z2, |ζ1,x) . (4.20)

The schematic of our implementation is shown in Fig. 4.7(a). We notice that

models with a large number of hierarchies (possibly as large as the number

of latent units) are possible. Such models, also referred to as autoregressive

models [115], are very powerful but have inefficient inference, since sampling

must be performed sequentially and cannot be parallelized on modern GPU

hardware.

The two hierarchical groups (z1, z2), as well as the physical qubits on the

Chimera connectivity, are not equivalent. We can thus build different models

by simply choosing the mapping between the two hierarchical groups and an

arbitrary bipartition of the physical qubits. Notice that training and deploy-

ing each of these models will involve exactly the same amount of classical

and quantum computational resources. In our experiments we consider two

possible mappings of the two hierarchical groups onto the physical qubits of

the Chimera graph, which we call “Bipartite” and “Chains”. The Bipartite

4.4 A path towards quantum advantage with VAE 67

mapping corresponds to the bipartite structure of the Chimera graph (see

Fig. 4.7(b)). The Chains mapping corresponds to the vertical and horizontal

physical layout of qubits of the Chimera architecture (see Fig. 4.7(c)). The

identification of vertical and horizontal chains of qubits is commonly used to

perform a minor embedding of a fully connected RBM on the Chimera graph.

We stress again, however, that we never perform any minor embedding, and

we always sample from the native Chimera graph in all cases.

0 200 400 600 800 1000 1200 1400 1600
Epochs

90

88

86

84

Lo
g

Lik
el

ih
oo

d

Chains
Bipartite

0 250 500 750 1000 1250 1500 1750
Epochs

100

150

200

250

Ac
tiv

e
Un

its

Chains
Bipartite

Figure 4.8: Left panel: Log-likelihood comparison for chains and bipartite

mappings. Right panel: Active units comparison for chains and bipartite

mappings.

Comparative results of the two mappings, obtained with classical sam-

pling, are shown in Fig. 4.8. In the left panel we see that there is a sizeable

difference in generative performance between the two mappings, with the

Chains mapping performing remarkably better. This better performance is

also reflected in the much higher number of latent units exploited by the

Chains mapping (see right panel of Fig. 4.8). An intuitive explanation of the

results above can be given as follows. Let us first write the KL term as:

DKL(qφ(z|x)||pθ(z)) = DKL(q1,φ(z1|x)||pθ(z1)) +

+ DKL(q2,φ(z2|z1,x)||pθ(z2|z1)) .

(4.21)

In the Bipartite mapping, the conditional pθ(z2|z1) has a simple form that

can be computed analytically due to the bipartite structure of the Chimera

RBM. During training, it is very easy for the model to use the capacity

68 Hybrid Variational Autoencoders

of q2,φ(z2|z1,x) to match the simple prior marginal pθ(z2|z1) and be inde-

pendent from x. As a consequence, a large portion of the representational

capacity of the approximating posterior is wasted in representing the sim-

ple marginal pθ(z2|z1). In the Chains mapping, in contrast, the marginal

pθ(z2|z1) is nontrivial, and the approximating posterior q2,φ(z2|z1,x) has

more difficulties in matching it and decoupling x. As a consequence, the

model ends up using more efficiently all the variational parameters φ. This

is another manifestation of the optimization challenge present with VAE

models mentioned before, which in this case it is exploited to find better

local minima of the loss function.

In this section we have shown how a simple architecture-aware modifica-

tion of the encoder network allows us to train better models and to exploit a

given architecture more efficiently. This architectural work done on the VAE

model has also produced, as a side effect, a new state-of-the-art classical VAE

architecture [116]. We expect that architecture-aware model-engineering will

be crucial to fully exploit large physical connectivities in the latent space of

VAE.

Training on larger datasets

Implementing more highly connected RBMs and developing classical en-

coders and decoders tailored to a given connectivity can only go so far in

helping to exploit larger latent spaces. Together with other techniques such

as KL-term anneal, the ideas mentioned in the previous two sections help

reduce the pressure of the KL term to reach suboptimal local minima. In

essence, VAE are also efficient lossy encoders. An alternative direction to

increase latent space utilization is thus to train on more complex datasets.

By doing so, a larger number of latent units is necessary to store enough in-

formation such that the reconstruction term (first term in Eq. 4.19) is large

enough.

We give numerical evidence of the intuition above by training the same

VAE models used in the previous sections on the Fashion MNIST (FMNIST)

dataset. A set of images from the FMINST dataset is shown in the left panel

of Fig. 4.9. FMNIST is the same size as MNIST (50000, 28×28 images) and

has the same number of classes. However, its images are more complex

with more fine details, including grey-scale features that are important for

correct image classification (whereas MNIST digits are substantially black

4.4 A path towards quantum advantage with VAE 69

and white). In the right panel of Fig. 4.9, we train the same models on

MNIST (shaded) and FMNIST (solid) and compare the number of active

units during training. We see that, apart from the case with fully connected

RBMs, all other models use a substantially larger number of latent units.

Figure 4.9: Left panel: Fashion MNIST dataset. Right panel: Active units

for the same VAE models trained on FMNIST (solid colors) and on MNIST

(shaded colors). All models with sparse latent connectivities use a much

larger number of latent units when trained on the more complex dataset.

4.4.2 Multi-modality of latent-space RBMs

Exploiting large latent-space RBMs is a necessary condition to eventually

achieve quantum advantage when sampling with quantum annealers. This

condition is however not sufficient. The typical computational bottleneck

in training an RBM is due to the appearance of well-defined modes. These

modes make classical sampling techniques inefficient and slow-mixing, result-

ing in highly correlated samples used both during training and generation.

While making sampling harder, the development of multi-modal distribu-

tions is actually an appealing property of RBMs, since it allows such models

to represent complex and powerful probability distributions. The idea behind

searching for quantum advantage in training RBM with quantum annealers

is, indeed, to exploit quantum resources (such as tunneling) to more effi-

70 Hybrid Variational Autoencoders

ciently mix between different modes in the landscape defined by the RBM.

When trained on visible data, an RBM naturally develops complex land-

scapes to match the complexity of the statistical relationship present in the

training data. However, while RBMs trained on latent representations can

potentially develop well-defined modes, they do not necessarily do so. In fact,

one of the capabilities of generative models with latent variables is finding

a set of statistically independent latent features [117]. This is typically en-

forced during model building by using trivial priors such as the product of

independent Gaussian (for continuous latent units) or the product of in-

dependent Bernoulli (for discrete latent spaces). Even when the prior is

potentially complex and trainable, as an RBM, the presence of the KL term

can push the model during training into local minima in which the trained

RBM develops a trivial landscape.

In this section we give evidence that RBMs trained in the latent space

of a VAE model do indeed develop a nontrivial landscape with well-defined

modes. As we have shown in Sec. 4.4.1 (see Fig. 4.6), RBMs with denser

connectivities naturally lead to better performing VAEs. This is an indi-

rect indication that we are indeed exploiting the additional capacity and

expressivity of more connected RBMs. In this section we give more explicit

evidence of this. In Fig. 4.10, we generate a sequence of images via block

Gibbs sampling. The top left image is generated by picking a latent config-

uration z out of a uniform distribution over all configurations. This latent

sample is then sent through the decoder. Going from left-to-right, top-to-

bottom, each subsequent image is obtained after updating all latent units

with a sequence of block Gibbs updates (one for Bernoulli, two for the bi-

partite connectivities Chimera and RBM, four for the quadripartite Pegasus

connectivity). As expected, in the Bernoulli case (Fig. 4.10(a)), each update

results in uncorrelated samples. The Chimera connectivity (Fig. 4.10(b)) is

able to develop weakly correlated samples, as shown by short sequences of

similar images. Correlated samples with well-defined modes are more clearly

visible with the Pegasus connectivity ((Fig. 4.10(c))). Finally, we confirm

that increasing the connectivity up to a fully connected RBM (Fig. 4.10(d))

results in long sequences of correlated samples and related to the deep valleys

of the RBM energy landscape.

The results shown in Fig. 4.10 show that RBMs trained as priors of gen-

erative models with latent variables naturally learn multi-modal, nontrivial

probability distributions. These distributions are expressive, making the

4.4 A path towards quantum advantage with VAE 71

(a) Bernoulli. (b) Chimera.

(c) Pegasus. (d) RBM.

Figure 4.10: Block Gibbs sampling with different connectivities. Going from

left to right, denser connectivities result in more well-defined modes devel-

oped in the trained RBM. Especially in the case of Pegasus and an RBM,

for example, it is clearly visible how the block Gibbs chain is trapped in a

typical basin of the landscape for MNIST connected to the digits 4 and 9.

72 Hybrid Variational Autoencoders

whole VAE more expressive, while at the same time developing the same

types of computational bottlenecks that make classical sampling algorithms

inefficient. This paves the way to effectively use quantum annealers as means

to more scalable quantum-assisted sampling, enabling us to sample from

RBMs of sizes and complexity that are infeasible with classical methods.

4.4.3 Robustness to noise and control errors

Using quantum annealers to train large RBMs directly on complex data re-

mains challenging. Apart from the unsatisfying performance of using RBMs

with quasi two-dimensional connectivities on visible data, a major difficulty

is biased sampling (and thus inaccurate gradients) obtained with quantum

annealers. There are two main sources of bias: control errors and imper-

fect or incomplete thermalization at the freezing point. While the latter can

be improved with appropriate pause-and-ramp annealing schedules, the for-

mer can only be improved with technological advancements. Despite these

known difficulties, we have shown in the previous sections we have success-

fully trained large RBM (hundreds of units) in the latent space of a VAE

solely using samples coming from a D-Wave 2000Q, without using any hard-

coded pre or post-processing to the raw data obtained from the annealer.

We interpret our positive results as an indication that training RBMs

with our setup is relatively robust to noise and control errors. In fact, we

can interpret both the encoder and decoder as powerful tools to pre- and

post-process data to be sent to the quantum annealer. Using stochastic

gradient descent, we train the encoder and decoder to generate a set of

latent features that are more easily modeled by the latent-space RBM. For

example, real images might have strongly correlated, sharp features (such

as regions with black or white pixels), which require large weights to be

modeled correctly. A precise implementation of such large weights might be

challenging for analog devices with finite range such as quantum annealers.

Additionally, both encoders and decoders might be able to learn and correct,

or at least reduce the effects of, systematically biased sampling.

To investigate the role of noise and control errors in determining sampling

quality and performance of the trained models, we perform a set of compara-

tive experiments in which we train the same model on MNIST dataset, using

samples coming from three D-Wave 2000Q with different noise profiles. The

Baseline and Lower-Noise D-Wave 2000Q are both publicly available on D-

4.4 A path towards quantum advantage with VAE 73

0 200 400 600 800 1000 1200 1400 1600
Epochs

90

89

88

87

86

85

84

83

Lo
g

Lik
el

ih
oo

d

Lower-Noise
Interim Lower-Noise
Population Annealing

(a) Models trained on different D-Wave

2000Q achieved performance comparable to

training with population annealing. Log-

likelihood evaluation for Baseline D-Wave

2000Q did not converge due to diverging

weights.

0 200 400 600 800 1000 1200 1400 1600
Epochs

50

100

150

200

250

300

350

400

W
ei

gh
ts

 L
1

No
rm

Lower-Noise
Interim Lower-Noise
Baseline
Population Annealing

(b) The weights of the Baseline D-Wave

2000Q weights diverge after about 100

epochs. For the Interim Lower Noise proces-

sors weights are suboptimally small. Weight

size of the Lower Noise D-Wave 2000Q is clos-

est to population annealing.

0 200 400 600 800 1000 1200 1400 1600
Epochs

100

150

200

250

Ac
tiv

e
Un

its

Lower-Noise
Interim Lower-Noise
Baseline
Population Annealing

(c) The Lower-Noise D-Wave 2000Q is able

to exploit a larger number of latent units than

the more noisy Interim Lower-Noise D-Wave

2000Q.

0 200 400 600 800 1000 1200 1400 1600
Epochs

6

7

8

9

10

11

12

Ef
fe

ct
iv

e
Be

ta

Lower-Noise
Interim Lower-Noise
Baseline

(d) Different temperature profiles during

training for the three D-Wave 2000Q.

Figure 4.11: Training on different quantum annealers with different noise

profiles.

74 Hybrid Variational Autoencoders

Wave’s LeapTM cloud service. We have also included an Interim Lower-Noise

processor with an intermediate noise profile that is internally available at D-

Wave.

Results are shown in Fig. 4.11. In Fig. 4.11(a) we report the log-likelihood

during training. Models trained on the Lower and Interim Lower-Noise D-

Wave 2000Q achieved performance comparable to training with population

annealing. The evaluation of the log-likelihood for the Baseline D-Wave

2000Q diverged due to diverging weights, as can be seen in Fig. 4.11(b).

The weights of the Baseline processor start diverging after about 100 epochs.

The Interim Lower-Noise processor shows an opposite behavior, with weights

getting small and plateauing after about 500 epochs. For the Lower-Noise

processor, the L1 of the weights plateaus at a value that is closer to that

obtained with “noiseless” population annealing. Notice that a consistent

comparison in Fig. 4.11(b) we have reported the weights W rescaled by the

effective temperature (see Eq. 4.14, and not the “bare” annealing values J .

Figure 4.11(b) highlights the remarkably different response of three different

quantum annealers to our model. Despite such differences, the performance

of our hybrid implementation is robust (as shown in Fig. 4.11(a)) and does

not require any hardware-specific adaptations or fine-tuning. Only while

training with the Baseline D-Wave 2000Q, we needed a more aggressive clip-

ping (that is restricting the weights and biases to have narrower range than

the maximum allowed) to achieve similar performance and converged log-

likelihood estimation.

Noise and control errors also manifest in a less efficient use of the la-

tent space, as seen in Fig. 4.11(c). All models trained with D-Wave 2000Q

use fewer active units than population annealing. Since the estimate of the

log-likelihood of the models trained with the Baseline processor did not con-

verge, we focus on the comparison between the Interim and Lower Noise

processor: the latter can exploit a larger number of latent units. We fi-

nally show in Fig. 4.11(d) the profile for the extracted effective temperature

during training, which is remarkably different for the three D-Wave 2000Q.

The results shown in Fig. 4.11(d) underlines the importance of developing

advanced annealing techniques to stabilize temperature during training.

In this section we have demonstrated the robustness to noise of our im-

plementation, as highlighted in Fig. 4.11(a). At the same time, Fig. 4.11(c)

shows an important effect of noise, which is to make it harder for our hybrid

model to exploit the optimal number of latent units. We thus anticipate

4.5 Conclusions 75

that exploiting large RBMs (with thousands of units, eventually) following

the directions indicated in the previous sections must be accompanied by

continued efforts in reducing sampling bias due to noise and control errors

of future-generation quantum annealing devices.

4.5 Conclusions

In this chapter, we have demonstrated the use of quantum annealers (specifi-

cally D-Wave 2000Q) as Boltzmann samplers to estimate the negative phase

of classical RBMs placed in the latent space of deep convolutional variational

autoencoders. This setup allows for the construction of quantum-classical hy-

brid generative models that can be scaled to large, realistic datasets. We have

mostly experimented with MNIST, a common testbed dataset which includes

60, 000, 28 × 28 binarized handwritten digits to achieve a log-likelihood of

about−82.2±0.2 nats, which compares favorably to state-of-the-art achieved

with autoregressive models (−78.5 nats (natural unit of information)). In

addition to demonstrating scalability and performance, we have discussed

several other features of our hybrid approach.

First, we are able to use quantum annealers as “native samplers”, that is,

samplers from their native graph: we do not use any hard-coded encoding-

decoding scheme such as minor embedding or majority vote. Arguably this

is one of the most effective ways to exploit the computational capabilities

of quantum annealers. The encoding and decoding process is indeed ef-

ficiently performed by deep convolutional networks, which are trained to

extract relevant feature via stochastic gradient descent. As we have shown,

this approach is particularly flexible, since it naturally adapts to different

connectivities and arbitrary working graphs.

Second, by successfully training the same model on three quantum an-

nealers with different noise profiles, we have shown that our implementation

is fairly robust to noise and control errors. Indeed, the deep convolutional

networks can be seen as learned pre- and post-processing steps that regular-

ize both the visible data and the effects of noise. A key reason of the success

of our implementation is indeed the fact that the weights and biases as im-

plemented on the quantum annealers rarely grow (during training) beyond

their allowed range, even with minimal or no regularization. This result is to

be contrasted to training RBMs directly on visible data, for which weights

are typically much larger and regularization is critical to avoid overfitting.

76 Hybrid Variational Autoencoders

The latter case is much more challenging for analog devices with limited

allowed range.

This application, albeit not showing any definitive advantage or speedup,

is an example of how new physical hardware can improve ML capabilities in

the future. Here we focused on quantum hardware but efforts are being made

also in the classical domain, for example with optical computing devices or

special purpose electronic devices.

Chapter 5

Quantum Machine Learning

In this final chapter we will focus on two applications of Machine Learning in

the quantum domain, putting them under the generic umbrella of “Quantum

Machine Learning” models. In the first part we will consider the implemen-

tation of a simple classification model on different quantum platforms. This

model differs from the one we have just discussed in chapter 4 for two main

reasons: first is a supervised classification task instead of an unsupervised

generative model and second, and most importantly, it is a completely quan-

tum model with no external GPUs or classical post-processing required to

obtain the results. The other application is about applying a Reinforcement

Learning model to the stochastic quantum walk on a maze. Having only

partial information about the system we will see how ML can find ways to

further improve the exit probability of the quantum walker using few simple

actions. This new framework also has some potential to be applied in future

devices for example to improve energy or information transfer in the quan-

tum domain.

5.1 Quantum Embeddings

To classify big data it is usually required to map them into new data clusters

that later can be more feasibly and possibly linearly separated by well-trained

artificial neural networks. However, in most cases the huge amount of data

needs to be pre-processed in a very clever way in order to more feasibly apply

the available machine learning algorithms on the post-processed data. For

77

78 Quantum Machine Learning

instance, in classification problems the main goal is so classify the original

data into different groups with a tight border among them. In the case of

a two-class classification problem, the simplest scenario is to find a classifier

by splitting the high-dimensional space of the input data with a hyperplane.

It is named as linear classifier. Then, all points living on one side of the

hyperplane are classified as ’group A’, while the others as ’group B’. Let

us point out that this leads to a new metric in the new data space that

faithfully reproduces the unknown, and usually much more complex, metric

of the original data (e.g. the human-perceived “distance” between cat and

dog pictures) where the classifier would be highly non-linear (hence more

difficult to be found).

Figure 5.1: Pictorial view of the quantum embedding process where classi-

cal data (originally in a high-complex set) can be embedded into the larger

(Hilbert) space of quantum states in order to be mapped into tight, more

distant and linearly separable clusters and then be later (quantum) classi-

fied into different groups. We have implemented several experimental tests

(based on quantum optics, IBM and Rigetti superconducting systems) of

this quantum embedding, originally proposed in Ref. [118], in order to ex-

ploit their complementarity that is really crucial towards practical and more

feasible hybrid quantum technologies [119].

Here, we investigate a scheme, originally proposed in Ref. [118], where

classical data are embedded (as in Fig. 5.1) into a larger quantum (Hilbert)

space describing the state of a physical system in the microscopic world where

classical mechanics laws fail. We implement these ideas by engineering an ex-

5.1 Quantum Embeddings 79

perimental platform, based on quantum optics and publicly available Noisy

Intermediate Scale Quantum (NISQ) processors, where we adapt and numer-

ically optimize the quantum embedding protocol by machine learning meth-

ods, and test it for some validation data on the various platforms. Therefore,

we will see that the quantum embedding approach successfully works also at

the experimental level and, in particular, we show how different platforms

could work in a complementary fashion to achieve this task. These studies

might pave the way for future investigations on quantum machine learning

techniques especially based on NISQ technologies.

5.1.1 Theory

(a) (b)

Figure 5.2: Bloch representation of the embedded before training (a) and at

the final learning step (b). After learning the states are clustered into families

that can be easily classified by a plane, this was not originally possible at

lower dimension [119].

This approach is similar in spirit to the classical Support Vector Machines

(SVM) commonly used in Machine Learning to perform classification [14].

SVMs maps complex data (i.e. non linearly separable) via a nonlinear kernel

into an high dimensional space where the data can be easily classified by an

hyperplane.

A quantum embedding is a representation of classical points x from a

data domain X as a (quantum) feature state |x〉. Either the full embedding,

or part of it, can be facilitated by a quantum feature map, a quantum circuit

Φ(x) that depends on the input. If the circuit has additional parameters θ

80 Quantum Machine Learning

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300

C
o
st

Epochs

(a)

(b) (c)

Figure 5.3: Learning curve of the quantum embedding algorithm (a). Gram

matrix of some embedded states at step 0 (b) and at the final training step

(b). It shows the presence of two classes that can be now linearly classified

[119].

that are adaptable, Φ(x) = Φ(x, θ), the quantum feature map can be trained

via optimization. So if we have some embedded data points |a〉 from class

A and |b〉 from class B what we want to do is to separate them as much as

possible in the Hilbert space. That means to compute the overlaps |〈a|b〉|2,

|〈a|a〉|2, |〈b|b〉|2 and optimize the parameters of the embedding in order to

minimize the cost function:

C = 1− 1

2

(∑
i,i′

|〈ai|ai′〉|2 +
∑
j,j′

|〈bj|bj′〉|2
)

+
∑
i,j

|〈ai|bj〉|2. (5.1)

That means to maximize the Hilbert-Schmidt norm between the two classes.

The optimal results can be shown in terms of the Gram matrix containing

all the scalar products between the embedded states and then showing the

5.1 Quantum Embeddings 81

presence of two cluster of states – see Gram matrices in Fig. 5.3 and the

corresponding Bloch sphere representations in Fig. 5.2. The classical data

set is reported in Fig. 5.4, while the representation of the embedded states

on the Bloch sphere, before and after training, is shown in Fig. 5.2.

(a)

(b)

Figure 5.4: In panel (a) the 1D syntetic dataset used as classification bench-

mark. Class A are the blue dots while class B are the red crosses. Note

that in the 1D space the dataset can’t be classified linearly, i.e. there’s not

a simple threshold we could use to separate the two classes. In panel (b) an

example of the embedding circuit including the final SWAP test to compute

the overlap between the two embeddings [119].

The training is achieved by using the open-source software Pennylane

[120] and the quantum circuit in Ref. [118] that is based on a sequence

of rotations on non-commuting axes. As the system is trained we can see

from the Gram matrix that it learns to separate the points in the Hilbert

space. The training is done taking two datapoints, embedding them into two

separate qubits and using a third qubit to perform a SWAP test between

the two embeddings, hence giving us the overlaps we need to compute the

cost function in Eq. (5.1). The parameters of the embedding circuit are

82 Quantum Machine Learning

then updated by gradient descent using Pennylane. After some hundreds of

training steps we have been able to replicate the results in Ref. [118] – see

Fig. 5.3 – and then to adapt this approach to a syntetic dataset to provide

a flexible scheme to be tested via different experimental platforms we have

at disposal for this task.

More specifically, we implement some experiments of data embedding on

a single qubit but on different complementary platforms, with the aim to

prove that this quantum embedding is really feasible and also robust against

experimental errors. To start with, the training is performed offline, sim-

ulating the series of rotations allowed by each experiment itself. Once we

have the optimal trained parameters we exploit each experiment to validate

the training by performing the embedding of some test data. Notice that

the scalar products in the Gram matrix are replaced by the Ulhmann fidelity

in the case of the optical data since the quantum tomography-reconstructed

density matrices correspond to mixed (non-pure) states because of the un-

avoidable presence of noise and experimental imperfections.

As an embedding circuit we consider a series of rotations (the number of

rotations can be adjusted) along two non-commuting axes. The first rotation

will be input-dependent and thus must be recomputed for each datapoint

with the range of angles in [−π, π]. The rotations along the second axis

are fixed by the training process but in general the angles will be different

as they depend of different parameters. Of course, the considered ranges

for the trainable parameters can be adjusted to fit the constraints for each

experiment. The resulting sequence is:

{RX(φ), RY (ψ1), RX(φ), RY (ψ2), RX(φ), RY (ψ3), RX(φ)} −→ |φ〉 (5.2)

where the RX(·) and RY (·) are rotations along the respective axis and

ψi are the parameters to be trained. We assumed the initial state to be

|0〉 but we could have opted for any other single qubit state. A graphical

representation of this embedding circuit can be found in Fig.5.4.

5.1.2 Experiments

Here we deployed the quantum embedding scheme (discussed above) with

our trained parameters on different experimental platforms and we compare

the results with our theoretical predictions in order to show whether such

5.1 Quantum Embeddings 83

Figure 5.5: Optical setup: we first generate photon-pairs via SPDC, then

we prepare one photon by applying a rotation dictated by the embedding

parameters and perform its tomography heralded by the other photon [119].

schemes are feasible for practical applications where the presence of environ-

mental noise is almost always unavoidable.

Optics platform

The constraint of the optical setup of M. Barbieri’s group, allows for a slightly

different approach employing only one rotation along an arbitrary axis. In

other terms, for each datapoint we will compute the total resultant rotation

from the sequence in (5.2) and then perform such rotation (which now will

be along an arbitrary axis). This approach requires a bigger controllabil-

ity of the system since we cannot choose the rotation axis in advance but

it is simplified using only a one-shot embedding instead of a step-by-step

approach. Mathematically, our embedding becomes:

Rn̂(φ) = e−iφn̂·σ̂/2 = cos (φ/2)I − i sin (φ/2)(nxσx + nyσy + nzσz), (5.3)

where n̂ = (nx, ny, nz) is a real unit vector. For example the embedding of

one random point (1.68) becomes

R(−0.43,0.87,−0.20)(3.76) −→ |1.68〉 . (5.4)

In our experimental realisation, the embedding is performed into the polar-

ization state of a single photon. The rotation R is achieved by adopting,

as customary, a Quarter (θQ1) - Half (θH2) - Quarter(θQ3) wave plate sys-

tem. As you can see from Fig.5.6 the classification achieved between the test

84 Quantum Machine Learning

(a) (b)

Figure 5.6: Gram matrix obtained by theory, taking 10 validation points

the model has never seen at training time (a). Results of embedding on the

optics setup with the same validation points. We can see that albeit the

experiment introduces some noise results are still close to simulations [119].

points in the Gram matrix is good despite the experimental noise and the

constraints given by our particular platform.

Of course this scenario is sub-optimal because we couldn’t compute the

overlaps with a SWAP test but we had to perform a full state tomograpy.

That being said the fidelity achieved, as one can see in Fig.5.7, is good and

despide the embedding algorithm was trained in a way completely agnostic

to the platform and its specific noise was able to classify correctly our test

set.

Rigetti platform

As another experimental demonstration, we test the quantum embedding

circuit in one of the NISQ devices that are available on-premise nowadays,

again by using the exact same rotation sequence learned for Eq.5.2 already

used for the optics experiment setup. The experiment is performed on the

Aspen-8 Rigetti QPU, sampling each circuit 2000 times for each of the 100

datapoints necessary to build the Gram matrix, using Rigetti’s cloud service.

On this particular platform we ran two set of experiments. First we tried

the embedding algorithm as intended using the SWAP test to compute the

overlap. Indeed the Aspen-8 QPU has 30 qubits that is more than enough

to embed a 3-qubit gate. Unfortunately results, as can be seen in Fig.5.8 are

5.1 Quantum Embeddings 85

2 3 4 5 6 7 8 9 10
State #

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Fi
de

lit
y

Figure 5.7: Fidelity between the predicted state and the one experimentally

reconstructed by quantum state tomography after applying the quantum

embedding circuit, calculated for a set of 10 states [119].

pretty disappointing with the experimental result being pretty indistinguish-

able from noise. This problem emerges due to the connectivity lattice of the

QPU that is quasi-one dimensional. That means that in order to embed

the CSWAP operation required by our SWAP test on the Aspen-8 lattice,

we need a number of operations that far exceeds the coherence time of the

device. We thus had to resort to a trick similar to the optics experiment.

We performed the embedding on 3 qubits and for each one we measured

one component of the (σx, σy, σz) and then computed the overlap with the

other embeddings. In Fig.5.9 we show the corresponding Gram matrix as

compared with our theoretical predictions.

This results exhibit better overlaps in the intra-class elements but are a

little too high on the inter-class ones that we would like to be zero. It is

possible that here the choice of the axis has played a role in this behavior.

Nevertheless, the classification boundary is present and the system can act as

a classifier. The advantage of this experiment is that it could be performed

without the need of an ad-hoc lab but it was carried out remotely by just

reserving some time on the Rigetti system and programming it. The entirety

of the experiments done on this platform took a total of ∼ 5 minutes to run.

86 Quantum Machine Learning

(a) (b)

Figure 5.8: Gram matrix obtained by theory, taking 10 validation points

the model has never seen at training time (a). Results of embedding on the

Rigetti QPU with the SWAP test, the data is almost indistinguishable from

noise even if one could argue that the classification boundary between the

two classes is still somehow present [119].

IBM platform

The same process has been carried out in the IBM quantum platform using

the Valencia QPU made of 5 qubits. Albeit taking a bit longer to run than

Rigetti due to queues on the systems this platform was the only one in which

we could use the SWAP test to compute the overlaps. Now the number of

samples was reduced to 100 samples per point due to the aforementioned

queue problem and the fact that we need to compute 100 overlaps to build

the Gram matrix for our 10 test points. As one can see in Fig.5.10 the

results, even if noisier than the ones of the previous setups are still good and

able to achieve a good classification boundary between the two classes. That

is quite remarkable as in this setup the overlap between the embeddings was

computed by the quantum processor without needing any tomography or

other tricks. Let’s also remind that the error on the overlap depends on the

number of samples we take and it could very much be that our 100 samples

are a sample too small for our case.

These results are useful to prove the fact that Machine Learning algo-

rithms are quite robust to noise, indeed we succesfully implemented the

embedding algorithm across different experimental devices each one having

different constraints and noise profiles. That fact means that ML could be a

5.1 Quantum Embeddings 87

(a) (b)

Figure 5.9: Gram matrix obtained by theory, taking 10 validation points

the model has never seen at training time (a). Results of embedding on the

Rigetti QPU and measuring the state on different axis, now the problem

about the CSWAP overhead has been solved and results are looking good

[119].

good candidate to find some form of quantum advantage using NISQ devices

since it doesn’t require error correction and sometimes it doesn’t even require

a large number of qubits. Indeed as argued by the authors of the original

embedding paper [118] we can map high dimensional data in an n-qubit state

using the same protocol:

|x〉 = Ψ(x, θ) |0...00〉 . (5.5)

And if we could build a circuit of 100 qubits with circuit depth 100 and a

decoherence time of 10−3s, this could be capable to embed O(1010) bits of

classical information, a task which is classically unattainable. In conclusion,

high-dimensional embeddings of large data sets for quantum machine learn-

ing could be accessible in the future on NISQ devices and we proved these

embeddings to be robust to the real-world noise of them.

88 Quantum Machine Learning

(a) (b)

Figure 5.10: Gram matrix obtained by theory, taking 10 validation points

the model has never seen at training time (a). Embedding results on the

IBM Valencia QPU, in this case the SWAP test still gives results that are

pretty consistent with the theory albeit a bit noisier than the other setups.

5.2 Learning on a Quantum Maze

Reinforcement learning has been already extensively studied in closed quan-

tum systems [121]. Yet, the setting of an agent acting on an environment

has a natural analogue in open quantum systems [122]. In this section we

are exploring whether this two paradigms can work together, in particular

we will see how a Stochastic Qantum Walker can benefit from the additional

“noise” introduced into the system by an external agent.

5.2.1 Reinforcement learning

In Reinforcement Learning (RL) [123], the system we are interested in is an

agent in an environment that has some information about the environment

itself and the ability to perform some actions in order to gain some advantage

in the form of a reward. In this setting a Markov Decision Process (MDP)

is a 5-tuple (S,A, P·(·, ·), R·(·, ·), γ) ,where

• S is a finite set of states of the agent,

• A is a finite set of actions (alternatively, As is the finite set of actions

available from state s),

5.2 Learning on a Quantum Maze 89

• Pa(s, s
′) = Pr(st+1 = s′ | st = s, at = a) is the probability that action

a in state s at time t will lead to state s′ at time t+ 1,

• Ra(s, s
′) is the immediate reward (or expected immediate reward) re-

ceived after transitioning from state s to state s′, due to action a

• γ ∈ [0, 1] is the discount factor, which represents the difference in

importance between future rewards and present rewards.

In this MDP setting we can define different kinds of problems, based on

the information we have at disposal:

• Stochastic multi-armed bandits. There is no state, reward is determin-

istic. The only stochastic part is the outcome of an action.

• Contextual multi-armed bandits. There is a state and it follows a

probability distribution. The actions do not have an impact on the

state.

• MDPs. The agent has information on the state and the actions have

an effect on the state itself.

• Partially observable MDPs (POMDPs): The state s is partially ob-

servable or unknown.

Our goal, or we should say the goal of the agent, is to learn a policy (π).

That is a rule according to which the agent selects its actions at each possible

state defined as a mapping from past observations to a distribution over

the set of possible actions. A policy is called Markovian if the distribution

depends only on the last state of the observation sequence. A policy is called

stationary if it does not change over time [124].

Te agent aims at learning the policy that maximizes the expected cu-

mulative reward that is represented by the value function. Given a state s,

the value function is defined as V π(s) = E[
∑∞

t=0 γ
tR(Zt)|Z0 = (s, π(.|s))],

where Zt is a random variable over state-action pairs. The policy π giving

the optimal value function V ∗(s) = supπ V
π(s) would be our intended goal.

We also know [123, 124] that the optimal value function must satisfy the

Bellman equation.

V π(s) = Rπ(s) + γ

∫
S

P π(s′|s)V π(s′)ds′ (5.6)

90 Quantum Machine Learning

In Deep Reinforcement Learning, the policy is learned by a Deep Neural

Nework. The objective function of the NN is the Bellman equation itself.

The network starts by randomly exploring the space of possible actions and

iteratively reinforcing its policy trough the Bellman equation given the re-

ward obtained with each action. A pictorial view of this iterative process

can be found in Fig.5.11.

Figure 5.11: Schematic depiction of a Deep Reinforcement Learning Scheme.

A DNN learns the policy π that the agent uses to perform an action on the

environment. A reward and the information about the new state of the

system are given back to the agent that learns its policy accordingly.

5.2.2 Quantum Maze

We plan to apply RL in the scenario of a Quantum Maze. A Quantum

Maze is a network where each node corresponds to a pure quantum state

in the basis of a Hilbert space. The paths of the maze are defined by links

between pair of nodes, which are described by an adjacency matrix A. The

coefficient Ai,j = 1 indicates the presence of the link, while Ai,j = 0 indicates

its absence.

The entrance to the maze is a node which contains the initial population

of the density matrix. The density matrix evolves in time with its population

spreading across the nodes, i.e., walking along the paths of the maze. The

evolution is given by a Lindblad master equation [125] where the Hamiltonian

of the system corresponds to the adjacency matrix itself, H = A, and with

a set of Lindblad operators acting as noise for the quantum walker, i.e.

ρ̇ = −(1− p) i[H, ρ] + p LCRW (ρ) + Lsink(ρ) (5.7)

5.2 Learning on a Quantum Maze 91

with

LCRW (ρ) =
∑
i,j

LijρL
†
ij −

1

2
{L†ijLij, ρ}. (5.8)

The Lindblad operators are defined as Lij = (Aij/dj) |i〉 〈j|, where {dj} are

the vertex degrees. These Lindblad operators give a noisy evolution (as in a

Classical Random Walk) plus

Lsink(ρ) = Γ [2 |S〉 〈n| ρ |n〉 〈S| − {|n〉 〈n| , ρ}] . (5.9)

is the Lindblad operator that irreversibly transfer the population from the

“exit” node n to the sink S, effectively removing it from the maze.

The parameter p defines the trade-off between Hamiltonian evolution

(p = 0) and the completely noisy (classical) evolution (p = 1) with only

Lindblad operators [126]. The exit of the maze corresponds to the sink S

which traps the population inside of it. Equation 5.7 gives the following

solution for the population of the sink,

psink(t) = 2Γ

∫ t

0

ρn,n(t′) dt′ (5.10)

Ideally, we want all the population to be transferred to the sink, possibly in

the shortest amount of time.

We consider a perfect quantum maze, i.e., a maze with a single entrance

and a single exit. There is a single path to exit the maze, even thought there

may be multiple dead ends. In this scenario, an external control (us or some

other mechanism) is the agent that has some information about the state of

the system, the maze is the environment. The available actions are:

1 – Building walls. During the evolution, at certain periodic instants, the

system can change the adjacency matrix of the environment removing

a link (changing from 1 to 0 an entry Ai,j). This emulates the closing

of a door that lead to a dead end.

2 – Punching holes into the walls. During the evolution, at certain periodic

instants, the system can change the adjacency matrix of the environ-

ment adding a link (changing from 0 to 1 an entry Ai,j). This emulates

the creation of a hole in a wall that creates a shortcut.).

In this setup, the objective is the amount of time required to exit the maze

(to be minimized) or the amount of population that exited in the sink in a

given amount of time (to be maximized).

92 Quantum Machine Learning

If the adjacency matrix can change – either intrinsically by random flips

or as a result of actions taken by the agent – we are in an MDP setting,

which is the canonical scenario for RL. We thus want to learn a policy by

which, dynamically changing the topology of the maze, even by just adding or

removing a small number of walls we can significantly improve the transfer

rate of our walker to the sink. All in all, we could introduce a few more

parameters to be optimized, for instance, the noise parameter p that governs

the “quantumness” of the dynamics. However for this first proof of principle

we wanted to focus only on the topological changes to the maze, in this

way we can imagine the action of modifying the adjacency matrix as a sort

of additional, engineered “noise” that, if carefully tuned, can improve the

performances of our stochastic quantum walker.

5.2.3 Implementation and Results

The setting is the one illustrated in Section 5.2.2, with a maze describing

the Hamiltonian for the evolution of the quantum system. Figure 5.12 shows

an example of mazes that we have used. The goal is to transfer the initial

quantum state (localized at the entrance of the maze, node 0) to the exit of

the maze, i.e. to the sink, possibly by modifying some links of the adjacency

matrix.

Figure 5.12: Example of a 6× 6 maze. In white the possible paths, in black

the walls. In the lower left corner, the node in blue is the entrance to the

maze, corresponding to the initial quantum state while the node in red is

the exit, i.e., the node connected to the sink.

We set a time limit T for the overall evolution of the system and define

5.2 Learning on a Quantum Maze 93

the time instants tk = kτ, τ = T/N, k = 0, . . . N − 1 where one of the links

can be changed. The quantum system evolves according to its Lindblad

equation in the time interval between tk and tk+1. From the point of view of

Figure 5.13: Results of learning on a random 6× 6 maze. The black surface

represent the performance of the quantum walker when the policy is added,

while the solid beige surface below is the baseline on the same maze with no

action by the agent. The performance is plotted against both p and τ .

RL in this scenario we are the agent that observes the state configuration and

performs some actions, i.e., change the adjacency matrix. The environment

is the maze and the state is the quantum system that evolves with it. The

possible actions are indexed with the link to modify, so that the action space

is discrete and finite. In the current implementation we do not define any

penalty for changing a link, even though we could put a negative reward

that would force the learning to minimize the number of actions. Instead,

we define the reward as the amount of the population transfer that goes into

the sink in the time interval following the action. The state of the system

that the agent observes in order to inform the policy are the entries of the

density matrix (the off-diagonal ones splitted into real and imaginary part).

We have implemented Deep Reinforcement Learning with ε-greedy algorithm

for the policy improvement, and run it with the following set of parameters:

94 Quantum Machine Learning

maze size 6x6

p {0, 0.2, 0.4, 0.6, 0.8, 1.0}
time samples {350, 700, 1400, 2800}
time steps tk k = 1, . . . 8

training epochs 1000

At each step the agent can choose to modify whatever link in the maze,

albeit we would expect its actions to be localized around the places where it

has the chance to move the most population out of the maze. The ε-greedy

algorithm we used implies that the agent picks the action suggested by the

policy with probability ε or a random action with probability 1 − ε, that

increases the chances of the policy to explore different strategies searching

for the best one instead of just reinforcing a sub-optimal solution. The

value of ε is slowly increased during training so that, at the end, the agent

is just applying the policy without much further exploration. With this

environment set up we would like to observe how the “quantumness” of

the system p and the time τ (which since the number N of actions is fixed

directly influences the total time T) affect the learning and the final amount

of population that ultimately can exit the maze. We can see the results of the

training in Fig.5.13 where the exit probability of the quantum walker psink is

plotted against the parameters p and τ . We can see how the added “noise”

from the agent is able to consistently increase the population transfer to the

sink. The limit case being at low τ where, apart from the case of a perfectly

quantum walker (p = 0), the evolution time of the system is too low to have

a significant signal and the two surfaces are on top of each other.

Also we plotted some training curves to check how our agent explores

the space of the possible actions. This curves in Fig.5.14 show that at the

beginning of the training the agent starts exploring rather at random and

with average performances similar to the baseline. Then as it starts to see

some positive reinforcement it learns to consistently perform better actions

outperforming the baseline. It is also interesting to see how for the quantum

case, where the interference between paths is strong, is easy to do and ac-

tion that completely disrupts the quantum dynamics leading to a very poor

population transfer. Nevertheless the agent is able to learn the from the

successful runs and consistently avoid this scenario.

This setting thus seems, after our preliminary analysis, a promising way

to improve the transfer efficiency of a stochastic quantum walker in a maze

by adding some cleverly engineered topological noise during its dynamics.

5.2 Learning on a Quantum Maze 95

episodes

episode running average

training

training running average

baseline

final trained

(a)

episodes

episode running average

training

training running average

baseline

final trained

(b)

Figure 5.14: Training curves for an agent doing actions at times τ = 2800

and for p = 0.2 (a) and p = 0.8 (b). The curves show the rewards from

the single episodes and their running average over 100 episodes as well as

the training curve of the agent with the running average again over 100

episodes. The two constant lines are the baseline quantum walker with no

actions performed by the agent and the final trained policy.

96 Quantum Machine Learning

5.3 Conclusions

In this final chapter we have explored two cutting-edge applications of ML

in science, namely in the realm of quantum physics, that are generally called

Quantum Machine Learning models. We have seen the implementation of a

simple classification model on different quantum platforms showing a good

robustness to noise. That has a lot of implications on how this model can

be trained in a way that is agnostic to the particular platform on which the

algorithm is implemented and the possibility to have some form of quantum

advantage using NISQ devices. Even without the use of any error mitigation

scheme, which might help improving the results especially on the noisier

superconducting chips, we were able to successfully deploy the model on

three different quantum devices. In the other section we have applied a

Reinforcement Learning model to the stochastic quantum walk in a maze.

We have shown that just by training the agent has been able to use the partial

information that was accessible, to dynamically change the environment and

substantially improve the transfer rate of the walker to the sink. This new

framework also has some potential to be applied in future devices for example

to improve energy or information transfer in the quantum domain.

These two applications are an example of the more theoretical applications

of Machine Learning in science and, albeit useless from a practical point of

view at this stage, could have interesting implications once the hardware and

the technology will allow to scale them up.

Chapter 6

Conclusion

In this thesis we have presented a series of research applications with the aim

of demonstrating the various ways in which Machine Learning can be suc-

cessfully employed in fundamental science and research. Here we summarize

the key results and point to some interesting directions for future research.

After we have gone through the ways in which Machine Learning is used in

scientific research. It is clear that this interest that surged in recent years

is here to stay. We have seen examples of research ranging from the use of

real experimental data to exploratory efforts on toy models, trying to un-

derstand both the power and the limitations of these approaches. We will

recap here the main results presented in this thesis and then we will outline

some interesting developments that could be pursued as future research in

this domain.

We started by showcasing, in chapter 2, one of the most widespread appli-

cation of Machine Learning in fundamental sciences, that is applying ML

algorithms on experimental pipelines. Working on a biology problem we

mapped single cell RNA sequencing data into space using the information of

the public Allen Mouse Brain Atlas. By introducing a deep learning-based

registration and mapping pipeline, we were able to reveal spatial gene ex-

pression patterning beyond the limitations of current technologies. While

our work focused on a specific region in the mouse brain it is applicable to

any brain region, towards its complete atlas, and to any other organ, as well

as disease tissue. To integrate across scales, registration pipeline requires

a CCF and is therefore currently applicable to a few organs. At present,

the mouse brain possesses the most advanced and well-developed CCF, but

efforts are underway to construct analogous reference maps for different or-

97

98 Conclusion

gans. These results obtained open up the way to the possibility of having

single-cell resolution maps of genetic expression with an high throughput of

genes. The fact we were able to achieve this using a Deep Learning based

pipeline is the first example of how existing ML technology can be success-

fully employed in scientific environments.

In chapter 3, we have proposed a novel approach to the training of deep

neural networks which is bound to the spectral domain. The eigenvectors

and eigenvalues of the adjacency matrices that connects consecutive layers

via directed feed-forward links are trained, instead of adjusting the weights

that bridge each pair of nodes of the collection, as it is customarily done

in the framework of conventional ML approaches. This choice results in a

considerable reduction of the computational costs, while still returning good

results in terms of classification ability. This example shows that ML itself

can benefit from the tools developed by fundamental sciences, in this case

network theory. This area of interplay, albeit promising, is still mainly a

research topic with significantly fewer applications than the one presented

in the above paragraph.

Then, in chapter 4, we have demonstrated the use of quantum annealers

(specifically D-Wave 2000Q) as Boltzmann samplers to estimate the neg-

ative phase of classical RBMs placed in the latent space of deep convolu-

tional variational autoencoders. This setup allows for the construction of

quantum-classical hybrid generative models that can be scaled to large, re-

alistic datasets. The encoding and decoding process is indeed efficiently per-

formed by deep convolutional networks, which are trained to extract relevant

features via stochastic gradient descent. As we have shown, this approach is

particularly flexible, since it naturally adapts to different connectivities and

arbitrary working graphs. By successfully training the same model on three

quantum annealers with different noise profiles, we have shown that our im-

plementation is fairly robust to noise and control errors. This result is at

variance with training quantum samplers directly on the data distribution,

for which weights are typically much larger and regularization is critical to

avoid overfitting. Other than being one of the first hybrid quantum-classical

applications to get state-of-the-art results, our hybrid variational autoen-

coder is also a good example on how new physical hardware can be exploited

to obtain some gains in ML tasks.

Finally in chapter 5 we have explored two cutting-edge applications of ML

in quantum physics, that are generally called Quantum Machine Learning

6.1 Directions for future work 99

models. We have seen the implementation of a simple classification model on

different quantum platforms showing a good robustness to noise. That has a

lot of implications on how this model can be trained in a way that is agnostic

to the particular platform on which the algorithm is implemented and the

possibility to have some form of quantum advantage using NISQ devices. In

the other section we have applied a Reinforcement Learning model to the

stochastic quantum walk in a maze. We have shown that just by training

the agent has been able to use the partial information that was accessible, to

dynamically change the environment and substantially improve the transfer

rate of the walker to the sink. This new framework also has some potential

to be applied in future devices for example to improve energy or information

transfer in the quantum domain.

These two applications are an example of the more theoretical applications

of Machine Learning in science and, albeit useless from a practical point of

view at this stage, could have interesting implications once the hardware and

the technology will allow to scale them up.

All these results are just a set of examples, but they show how deep are

the connections and the possibilities of interplay between Machine Learning

and fundamental science. In the following years these techniques will have

a paramount importance in the frontiers of science. In the next section we

will thus list some of the research directions that are a natural follow-up of

the work described in this manuscript.

6.1 Directions for future work

Some interesting research ideas that could directly stem from the topics

covered in this thesis are worth mentioning to have an understanding of how

the research could progress further at the edge between Machine Learning

and Science. One rather simple, but important work, would be to extend the

experimental results obtained on the mouse brain to other organs, both in

mice and humans. That would open up the way tho a whole spatial genome

map of the human body that is the ultimate goal of the Human Gene Atlas.

Another interesting thing would be to devise some techniques to explore the

“latent space” of the mouse brain to understand the important features and

do some exploration.

From the Network Theory perspective there’s a lot that could be done but

perhaps the two most promising directions are to apply the spectral learning

100 Conclusion

method on CNNs to build bigger and better models than the multilayer

perceptron investigated in this work, and to exploit the eigenvectors and

eigenvalues to have some form of interpretability in the model.

The quantum-classical hybrid models we have considered in this manuscript

employ a large amount of classical computing power performed on modern

GPUs. The computational task that we offloaded to the quantum annealer

(sampling from the latent-space RBMs) can still be performed classically at

a fraction of the overall computational cost. To achieve any form of quantum

advantage in this framework, we need to offload generative capacity to the

prior, by exploiting large RBMs capable of representing complex probabil-

ity distributions from which classical sampling becomes too expensive. We

have provided evidence that this path to quantum advantage is possible by

deploying annealers with denser connectivities and lower noise, engineering

classical neural nets that better exploit physical connectivities and by work-

ing with more complex datasets. All these improvements seem achievable in

the near future, and represent possible interesting lines of research. Also the

extension to a fully quantum model where the encoding and the decoding

networks are implemented on a quantum devices be worth exploring.

As for Quantum Machine Learning, it is definitely necessary to scale up

the embedding algorithms (and all the other models that have been proposed

recently) to the limits of existing devices doing an scaling analysis of perfor-

mances and errors. The prominent question to answer in this field is that

we need to prove if a quantum speedup is theoretically and experimentally

possible with Quantum Machine Learning models on NISQ.

There are also many more applications of Machine Learning to Science

that we could not cover in this manuscript, but we referenced them in the

main text as in following years they will become for sure an important part

of both experimental and theoretical research in many domains of physics,

biology, engineering, chemistry and, of course, computer science.

Appendix A

Implementation: Hybrid VAE

This appendix is related to some implementation details of the hybrid quantum-

classical Variational Autoencoder previously presented in Chapter 4.

A.1 Convolutional VAE

The VAE employed in our experiments is schematically represented in Fig. A.1.

Both approximating posterior q(z|x) (encoder) and marginal p(x|z) (de-

coder) are constructed using deep convolutional networks, see Figs. A.1(a)

and A.1(b). Although not technically necessary, we use (approximately)

mirror implementations for encoder and decoder. In the encoder, down-

sampling is achieved by employing strided convolutions, while in the de-

coder up-sampling is similarly obtained with strided deconvolutions. The

last (first) layer of the encoder (decoder) network is a dense network with

two (one) layers (see Fig. A.1(c)). In the case of the encoder, a hierarchical

(conditional) relationship among variables is implemented as described in

Fig. 4.7(a) in the main text. The convolutional networks are implemented

as a simple sequence of five gated convolutions, whose detailed implemen-

tation is given in Fig. A.1(c). Notice the use of batch normalization and

dropout. The latter was only used in the decoder, to prevent over-fitting,

with a drop-rate of 0.2.

We trained our models using batches of size 100, and the Adam optimizer

with an initial learning rate of 3e−3, exponentially decaying to a minimum

learning rate of 1e−4 after 1800 epochs. The temperature parameter τ defined

in Eq. 4.10 for the Gumbel trick is typically annealed from large to small

101

102 Implementation: Hybrid VAE

x convolutions dense1 q(ζ|x) ζ

(a) Encoder

ζ dense2 deconvolutions p(x|ζ) x

(b) Decoder

convolutions = (16, 4, 1) (32, 3, 2) (32, 4, 1) (64, 3, 2) (128, 4, 1)

deconvolutions = (64, 4, 1) (32, 3, 2) (32, 4, 1) (16, 3, 2) (1, 4, 1)

dense1 = 144 144 dense2 = 128

(c) Convolutional and dense networks

(de)convolution (2f, k, s) batch norm. split

sigmoid

prod ReLU dropout

(d) Gated (de)convolution

Figure A.1: Detailed specification of the networks employed in our experi-

ments.

values. We however did not find a real advantage in doing so, and we fixed

the parameter to the low value τ = 1/7 throughout the training. To improve

training and avoid collapse of the approximating posterior to trivial local

minima, we have linearly annealed the KL term from zero to its full value

within 200 epochs.

In general we have trained our models using an importance-weighted esti-

mate of the likelihood. As first described in Ref. [111], a K-sample weighting

estimate of the log-likelihood can be written as:

LK = Eζ1,...,z∼qφ(z|x)

[
log

1

K

K∑
k=1

pθ(z,x)

qφ(z|x)

]
, (A.1)

which is equivalent to the ELBO defined in Eq. 4.3 for K = 1 and converges

to the exact log-likelihood for K → ∞. We also found useful, to reduce

the variance of the gradients of LK , to use a multi sample evaluation of the

gradients per data point x. In other words, we can use the following for

A.2 Sample collection with D-Wave 2000Q 103

training:

LK,D = Ezk,d∼qφ(z|x)

[
log

1

K

K∑
k=1

pz(zk,d,x)

qφ(zk,d|x)

]
, (A.2)

with k = 1, . . . , K and d = 1, . . . , D. Notice that Eq. A.2 requires sampling

KD latent configurations per data-point x. This can be parallelized on GPU

by effectively working, in our case, with batches of size KD × 100. In our

experiments we found it effective to have KD = 8 and to change the relative

values of K and D while keeping their product constant. Every 200 epochs

we changed their value as follows: (K,D) = (1, 8) → (2, 4) → (2, 4) →
(4, 2) → (4, 2) → (8, 1) and kept it constant afterwards. While a larger K

results in a tighter variational lower bound, it also makes harder training the

approximating posterior, the reason being that in the limit of large K the

bound LK does not depend on qφ(ζ|x). We found this K ↔ D anneal to

be more efficient at both training the approximating posterior and training

on a tighter bound to the log-likelihood. We used the same technique, with

K = 1000, D = 1 as the estimate of the log-likelihood.

A.2 Sample collection with D-Wave 2000Q

To estimate the negative phase with D-Wave annealers, we used 1000 samples

obtained with independent annealing runs. For each gradient evaluation, we

performed 5 random spin-reversal transformations and collected 200 samples

each time. We used a forward annealing schedule with a 1µs forward anneal

up to s = 0.5, where we paused for 10 µs. After the pause we performed a

10 ns quench to finish the anneal. After a bit of experimentation, we found

this particular annealing schedule to slightly improve training, although a

simple forward annealing without pause-and-quench also worked well. We

did not perform any post-processing of the samples, which we used as-is to

compute the negative phase.

An important question for future works is whether a more careful choice

of the annealing schedule, possibly with longer pauses, can stabilize the

effective temperature at which samples are drawn from the hardware. We

discuss the importance of this aspect in the next section.

104 Implementation: Hybrid VAE

A.3 Estimating effective temperature during

training

0 250 500 750 1000 1250 1500 1750 2000
Epochs

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Ef
fe

ct
iv

e
Be

ta

D-Wave 2000Q: Chimera
D-Wave 2000Q: Bernoulli

Figure A.2: β∗eff evaluated on two simultaneous runs on a D-Wave 2000Q

(Chimera and Bernoulli priors). The fluctuations of its value on the two

runs are correlated, indicating our evaluation of β∗eff is effectively probing

fluctuations of the physical temperature of the device.

As noticed in Ref. [127], training a BM with a quantum annealer does

not necessarily require the knowledge of the effective sampling temperature

introduced in Eq. 4.14. Indeed, β∗eff can be absorbed into the learning rate

γ:

∂ log p̃b,W (z) = γ
(
−∂Hb,W (z) + Ez̄∼pb,W [∂Hb,W (z̄)]

)
=

= γ′
(
−∂Hh,J(z) + Ez̄∼pb,W [∂Hh,J(z̄)]

)
γ′ = γβ∗eff . (A.3)

While this is still true for the gradients of the parameters of the RBM placed

in the latent space of a VAE, correctly evaluating the gradients of the in-

ference parameters φ requires knowledge of β∗eff . To see this it suffices to

note that the samples in the positive phase depends on the inference param-

eters through the reparameterization trick. During training: z → ζ(φ,ρ).

A.3 Estimating effective temperature during training 105

Tracking where these gradients come from, we have:

γ∂φ(ELBO) = −γ∂φ log qφ(ζ(φ,ρ)|x)− γβ∗eff∂φHh,J(ζ(φ,ρ) ,(A.4)

so that the correct evaluation of the gradients with respect to the inference

parameters requires the (approximate) knowledge of the effective tempera-

ture β∗eff .

In our experiments, we have performed a real-time estimation of β∗eff ,

which we used as in the equation above to correctly estimate the gradients

for the inference parameters. To do so, we employed an auxiliary BM that

we trained in parallel with the VAE on the negative samples obtained by

the quantum annealers. The parameters of the BM are shared according to

Eq. 4.14, with the only trainable parameter being β∗eff . In other words, we

update β∗eff as follows:

β∗eff → β∗eff + γ
(
−Ē̄z∼pHWh,J

[Hh,J(z)] + Ez̄∼pBMb,W
[Hh,J(z̄)]

)
, (A.5)

where the first expectation is evaluated with the hardware samples; the

second, with thermal samples from the auxiliary BM (obtained with PA).

In Fig. A.2 we show the value of β∗eff estimated with the method above

on two simultaneous runs on a D-Wave 2000Q. Its value typically drops while

the KL term is annealed (200 epochs in our experiments), and subsequently

stabilizes. Some fluctuations are correlated among independent runs, and

are related to real fluctuations of the physical temperature of the device.

We have noticed that, due the use of the KL anneal and the presence

of a non-negligible change in β∗eff during training, using a time-dependent

evaluation of the effective temperature is important to stabilize training.

While computing a single gradient as in Eq. A.5 is much more robust than

training all the weights of a comparable BM, the method is not completely

scalable and requires thermal sampling with classical algorithms. It will

be critical, in future works, to implement training procedures with stable

values of β∗eff , which could be kept constant, using values predetermined by

previous experiments or simply treated as a hyper parameter whose value

must be appropriately fixed. Eventually, the use of more advanced annealing

schedules, with longer pauses and more carefully chosen pause-points, should

allow a direct connection between β∗eff and the physical temperature of the

annealer, thus removing the necessity of learning β∗eff from experiments.

106 Implementation: Hybrid VAE

A.4 Chimera and Pegasus connectivities

In Fig. A.3 we show the Chimera and Pegasus connectivities on 288 qubits

used in all the experiments performed. The Chimera graph (Fig. A.3(a)) is

a bipartite, two-dimensional tiling of a unit cell (Fig. A.3(c)) with 8 qubits.

The Pegasus graph (Fig. A.3(b)) is a quadri-partite, two-dimensional tiling

of a unit cell (Fig. A.3(d)) with 8 qubits [112].

(a) Chimera graph with 288 units. (b) Pegasus graph with 288 units.

(c) Chimera cells. (d) Pegasus cells.

Figure A.3: Physical connectivities used in the experiments.

Appendix B

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below. Here, are also present some

works that do not cover topics of Machine Learning. Those come from

research in Quantum Thermodynamics that has been carried out in parallel

(with some occasional intersection) with the main topics discussed in this

thesis. 1

International Peer-reviewed Journals

1. S. Gherardini, L. Buffoni, M.M. Mueller, F. Caruso, M. Campisi, A. Trom-

bettoni, S. Ruffo. “Non-equilibrium quantum-heat statistics under stochas-

tic projective measurements”, Phys. Rev. E 98 (3), 032108 (2018)

2. L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, M. Campisi. “Quantum

Measurement Cooling”, Phys. Rev. Lett. 122 (7), 070603 (2019)

3. A. Solfanelli, L. Buffoni, A. Cuccoli, M. Campisi. “Maximal energy extrac-

tion via quantum measurement”, J. Stat. Mech.: Theory Exp. (9), 094003

(2019)

4. L. Buffoni, M. Campisi. “Thermodynamics of a Quantum Annealer”,

Quantum. Sci. Tech. (2020)

5. V. Cimini, S. Gherardini, M. Barbieri, I. Gianani, M. Sbroscia, L. Buffoni,

M. Paternostro, F. Caruso. “Experimental characterization of the energetics

of quantum logic gates”, npj Quantum Information in press (2020)

1The author’s bibliometric indices are the following: H -index = 4, total number of

citations = 78 (source: Google Scholar on October, 2020).

107

108 Publications

6. W. Vinci, L. Buffoni, H. Sadeghi, A. Khoshaman, E. Andriyash, M.H.

Amin. “A path towards quantum advantage in training deep generative

models with quantum annealers”, Mach. Learn.: Sci. Technol. (2020)

Preprints

1. H. Sadeghi, E. Andriyash, W. Vinci, L. Buffoni, M.H. Amin. “Pixel-

VAE++: Improved PixelVAE with Discrete Prior”, arXiv preprint arXiv:1908.09948

(2019)

2. L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, D. Fanelli. “Machine

Learning in spectral domain”, arXiv preprint arXiv:2005.14436 (2020)

3. T. Biancalani, G. Scalia, L. Buffoni, R. Avasthi, Z. Lu, A. Sanger, N.

Tokcan, C.R. Vanderburg, A. Segerstolpe, M. Zhang, I. Avraham-Davidi,

S. Vickovic, M. Nitzan, S. Ma, J. Buenrostro, N. Bear Brown, D. Fanelli,

X. Zhuang, E. Z Macosko, A. Regev. “Deep learning and alignment of

spatially-resolved whole transcriptomes of single cells in the mouse brain

with Tangram”, biorXiv preprint 2020.08.29.272831 (2020)

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning.

Springer, New York, 1st ed. 2006. corr. 2nd printing 2011 edition edition,

April 2011.

[2] T. M. Cover and Joy A. Thomas. Elements of information theory. Wiley

series in telecommunications. Wiley, New York, 1991.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of

statistical learning: data mining, inference, and prediction. Springer Science

& Business Media, 2009.

[4] Andriy Burkov. The Hundred-Page Machine Learning Book. http://

themlbook.com/, 2019.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[6] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-

nition with deep recurrent neural networks. In 2013 IEEE international con-

ference on acoustics, speech and signal processing, pages 6645–6649. IEEE,

2013.

[7] Nicu Sebe, Ira Cohen, Ashutosh Garg, and Thomas S Huang. Machine

learning in computer vision, volume 29. Springer Science & Business Media,

2005.

[8] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A

survey of deep learning techniques for autonomous driving. Journal of Field

Robotics, 37(3):362–386, 2020.

[9] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile

networks and applications, 19(2):171–209, 2014.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. book

in preparation for mit press. http://www. deeplearningbook.org, 2016.

109

http://themlbook.com/
http://themlbook.com/

110 BIBLIOGRAPHY

[11] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-

zagol. Extracting and composing robust features with denoising autoen-

coders. In Proceedings of the 25th international conference on Machine

learning, pages 1096–1103. ACM, 2008.

[12] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal.

The” wake-sleep” algorithm for unsupervised neural networks. Science,

268(5214):1158, 1995.

[13] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy

layer-wise training of deep networks. In Advances in neural information

processing systems, pages 153–160, 2007.

[14] Johan AK Suykens and Joos Vandewalle. Least squares support vector

machine classifiers. Neural processing letters, 9(3):293–300, 1999.

[15] Yoav Freund and Llew Mason. The alternating decision tree learning algo-

rithm. In icml, volume 99, pages 124–133, 1999.

[16] Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound

algorithm for computing k-nearest neighbors. IEEE transactions on com-

puters, 100(7):750–753, 1975.

[17] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[19] Tommaso Biancalani, Gabriele Scalia, Lorenzo Buffoni, Raghav Avasthi,

Ziqing Lu, Aman Sanger, Neriman Tokcan, Charles R Vanderburg, Asa

Segerstolpe, Meng Zhang, et al. Deep learning and alignment of spatially-

resolved whole transcriptomes of single cells in the mouse brain with tan-

gram. bioRxiv, 2020.

[20] Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik

Shekhar, Melissa Goldman, Itay Tirosh, Allison R Bialas, Nolan Kamitaki,

Emily M Martersteck, et al. Highly parallel genome-wide expression profiling

of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

[21] Laleh Haghverdi, Maren Büttner, F Alexander Wolf, Florian Buettner, and

Fabian J Theis. Diffusion pseudotime robustly reconstructs lineage branch-

ing. Nature methods, 13(10):845, 2016.

BIBLIOGRAPHY 111

[22] Dylan Kotliar, Adrian Veres, M Aurel Nagy, Shervin Tabrizi, Eran Hodis,

Douglas A Melton, and Pardis C Sabeti. Identifying gene expression pro-

grams of cell-type identity and cellular activity with single-cell rna-seq. Elife,

8:e43803, 2019.

[23] Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister,

Efthymia Papalexi, William M Mauck III, Yuhan Hao, Marlon Stoeckius,

Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell

data. Cell, 177(7):1888–1902, 2019.

[24] Mor Nitzan, Nikos Karaiskos, Nir Friedman, and Nikolaus Rajewsky. Gene

expression cartography. Nature, 576(7785):132–137, 2019.

[25] Qian Zhu, Sheel Shah, Ruben Dries, Long Cai, and Guo-Cheng Yuan. Iden-

tification of spatially associated subpopulations by combining scrnaseq and

sequential fluorescence in situ hybridization data. Nature biotechnology,

36(12):1183, 2018.

[26] Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, Carly A Mar-

tin, Evan Murray, Charles R Vanderburg, Joshua Welch, Linlin M Chen, Fei

Chen, and Evan Z Macosko. Slide-seq: A scalable technology for measuring

genome-wide expression at high spatial resolution. Science, 363(6434):1463–

1467, 2019.

[27] Patrik L St̊ahl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark,

José Fernández Navarro, Jens Magnusson, Stefania Giacomello, Michaela

Asp, Jakub O Westholm, Mikael Huss, et al. Visualization and analysis

of gene expression in tissue sections by spatial transcriptomics. Science,

353(6294):78–82, 2016.

[28] Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and

Xiaowei Zhuang. Spatially resolved, highly multiplexed rna profiling in single

cells. Science, 348(6233), 2015.

[29] Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil

Lesnar, Nile Graddis, Maitham Naeemi, Benjamin Facer, Anh Ho, et al.

The allen mouse brain common coordinate framework: A 3d reference atlas.

Cell, 2020.

[30] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural

networks for one-shot image recognition. In ICML deep learning workshop,

volume 2. Lille, 2015.

112 BIBLIOGRAPHY

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference

on Medical image computing and computer-assisted intervention, pages 234–

241. Springer, 2015.

[32] Csaba Erö, Marc-Oliver Gewaltig, Daniel Keller, and Henry Markram. A

cell atlas for the mouse brain. Frontiers in neuroinformatics, 12:84, 2018.

[33] Velina Kozareva, Caroline Martin, Tomas Osorno, Stephanie Rudolph,

Chong Guo, Charles Vanderburg, Naeem M Nadaf, Aviv Regev, Wade

Regehr, and Evan Macosko. A transcriptomic atlas of the mouse cerebellum

reveals regional specializations and novel cell types. bioRxiv, 2020.

[34] Nicholas J Tustison, Philip A Cook, Arno Klein, Gang Song, Sandhitsu R

Das, Jeffrey T Duda, Benjamin M Kandel, Niels van Strien, James R Stone,

James C Gee, et al. Large-scale evaluation of ants and freesurfer cortical

thickness measurements. Neuroimage, 99:166–179, 2014.

[35] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and

Adrian V Dalca. Voxelmorph: a learning framework for deformable medical

image registration. IEEE transactions on medical imaging, 38(8):1788–1800,

2019.

[36] Yuncong Chen, Lauren E McElvain, Alexander S Tolpygo, Daniel Ferrante,

Beth Friedman, Partha P Mitra, Harvey J Karten, Yoav Freund, and David

Kleinfeld. An active texture-based digital atlas enables automated mapping

of structures and markers across brains. Nature methods, 16(4):341–350,

2019.

[37] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4700–

4708, 2017.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[39] https://github.com/broadinstitute/one-shot-atlas.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

https://github.com/broadinstitute/one-shot-atlas

BIBLIOGRAPHY 113

[41] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic

particles in high-energy physics with deep learning. Nature communications,

5(1):1–9, 2014.

[42] Benno S Rem, Niklas Käming, Matthias Tarnowski, Luca Asteria, Nick

Fläschner, Christoph Becker, Klaus Sengstock, and Christof Weitenberg.

Identifying quantum phase transitions using artificial neural networks on

experimental data. Nature Physics, 15(9):917–920, 2019.

[43] Pavlo O Dral. Quantum chemistry in the age of machine learning. The

Journal of Physical Chemistry Letters, 11(6):2336–2347, 2020.

[44] Lorenzo Giambagli, Lorenzo Buffoni, Timoteo Carletti, Walter Nocentini,

and Duccio Fanelli. Machine learning in spectral domain. arXiv preprint

arXiv:2005.14436, 2020.

[45] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. Training batchnorm

and only batchnorm: On the expressive power of random features in cnns,

2020.

[46] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas

Macris, Florent Krzakala, and Lenka Zdeborová. Entropy and mutual infor-

mation in models of deep neural networks. Journal of Statistical Mechanics:

Theory and Experiment, 2019(12):124014, dec 2019.

[47] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[48] Adam Byerly, Tatiana Kalganova, and Ian Dear. A branching and merg-

ing convolutional network with homogeneous filter capsules. arXiv preprint

arXiv:2001.09136, 2020.

[49] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[50] https://github.com/Buffoni/spectral_learning.

[51] Walter Vinci, Lorenzo Buffoni, Hossein Sadeghi, Amir Khoshaman, Evgeny

Andriyash, and Mohammad Amin. A path towards quantum advantage in

training deep generative models with quantum annealers. Machine Learning:

Science and Technology, 2020.

[52] Frank Rosenblatt. The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386, 1958.

https://github.com/Buffoni/spectral_learning

114 BIBLIOGRAPHY

[53] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learn-

ing representations by back-propagating errors. Cognitive modeling, 5(3):1,

1988.

[54] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning

algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[55] Tijmen Tieleman. Training restricted boltzmann machines using approxi-

mations to the likelihood gradient. In Proceedings of the 25th international

conference on Machine learning, pages 1064–1071. ACM, 2008.

[56] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction

to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.

[57] Peter Wittek. Quantum machine learning: what quantum computing means

to data mining. Academic Press, 2014.

[58] Jeremy Adcock, Euan Allen, Matthew Day, Stefan Frick, Janna Hinch-

liff, Mack Johnson, Sam Morley-Short, Sam Pallister, Alasdair Price, and

Stasja Stanisic. Advances in quantum machine learning. arXiv preprint

arXiv:1512.02900, 2015.

[59] Srinivasan Arunachalam and Ronald de Wolf. A survey of quantum learning

theory. arXiv preprint arXiv:1701.06806, 2017.

[60] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan

Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549:195–202,

2017.

[61] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm

for linear systems of equations. Physical review letters, 103(15):150502, 2009.

[62] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data

fitting. Physical review letters, 109(5):050505, 2012.

[63] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum linear

systems algorithm with exponentially improved dependence on precision.

arXiv preprint arXiv:1511.02306, 2015.

[64] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal

component analysis. Nature Physics, 10(9):631–633, 2014.

[65] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information, 2002.

BIBLIOGRAPHY 115

[66] Daniel A Lidar and Todd A Brun. Quantum error correction. Cambridge

University Press, 2013.

[67] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N

Cleland. Surface codes: Towards practical large-scale quantum computation.

Physical Review A, 86(3):032324, 2012.

[68] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, An-

drew Lundgren, and Daniel Preda. A quantum adiabatic evolution algo-

rithm applied to random instances of an np-complete problem. Science,

292(5516):472–475, 2001.

[69] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting,

Firas Hamze, Neil Dickson, R Harris, Andrew J Berkley, Jan Johansson,

Paul Bunyk, et al. Quantum annealing with manufactured spins. Nature,

473(7346):194–198, 2011.

[70] C Neill, P Roushan, K Kechedzhi, S Boixo, SV Isakov, V Smelyanskiy,

R Barends, B Burkett, Y Chen, Z Chen, et al. A blueprint for demon-

strating quantum supremacy with superconducting qubits. arXiv preprint

arXiv:1709.06678, 2017.

[71] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,

Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient

variational quantum eigensolver for small molecules and quantum magnets.

Nature, 549(7671):242, 2017.

[72] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the

transverse ising model. Physical Review E, 58(5):5355, 1998.

[73] Giuseppe E Santoro, Roman Martoňák, Erio Tosatti, and Roberto Car.

Theory of quantum annealing of an ising spin glass. Science, 295(5564):2427–

2430, 2002.

[74] J Brooke, TF Rosenbaum, and G Aeppli. Tunable quantum tunnelling of

magnetic domain walls. Nature, 413(6856):610–613, 2001.

[75] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approxi-

mate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[76] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-

Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A

variational eigenvalue solver on a photonic quantum processor. Nature com-

munications, 5, 2014.

116 BIBLIOGRAPHY

[77] JS Otterbach, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom,

S Caldwell, N Didier, E Schuyler Fried, S Hong, et al. Unsupervised machine

learning on a hybrid quantum computer. arXiv preprint arXiv:1712.05771,

2017.

[78] Hartmut Neven, Vasil S Denchev, Geordie Rose, and William G Macready.

Training a binary classifier with the quantum adiabatic algorithm. arXiv

preprint arXiv:0811.0416, 2008.

[79] Vasil S Denchev, Nan Ding, SVN Vishwanathan, and Hartmut Neven. Ro-

bust classification with adiabatic quantum optimization. arXiv preprint

arXiv:1205.1148, 2012.

[80] Kristen L Pudenz and Daniel A Lidar. Quantum adiabatic machine learning.

Quantum information processing, 12(5):2027–2070, 2013.

[81] Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spirop-

ulu. Solving a higgs optimization problem with quantum annealing for ma-

chine learning. Nature, 550(7676):375, 2017.

[82] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative Adversarial Networks. arXiv:1406.2661 [cs, stat], June 2014. arXiv:

1406.2661.

[83] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[84] Rob Fergus, Yair Weiss, and Antonio Torralba. Semi-supervised learning

in gigantic image collections. In Advances in neural information processing

systems, pages 522–530, 2009.

[85] Yuzong Liu and Katrin Kirchhoff. Graph-based semi-supervised learning

for phone and segment classification. In INTERSPEECH, pages 1840–1843,

2013.

[86] Mingguang Shi and Bing Zhang. Semi-supervised learning improves

gene expression-based prediction of cancer recurrence. Bioinformatics,

27(21):3017–3023, 2011.

[87] Hailin Chen and Zuping Zhang. A semi-supervised method for drug-target

interaction prediction with consistency in networks. PloS one, 8(5):e62975,

2013.

BIBLIOGRAPHY 117

[88] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max

Welling. Semi-supervised learning with deep generative models. In Advances

in Neural Information Processing Systems, pages 3581–3589, 2014.

[89] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley.

Stochastic variational inference. The Journal of Machine Learning Research,

14(1):1303–1347, 2013.

[90] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[91] Andriy Mnih and Karol Gregor. Neural variational inference and learning

in belief networks. arXiv preprint arXiv:1402.0030, 2014.

[92] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[93] Lars Maaløe, Marco Fraccaro, and Ole Winther. Semi-supervised genera-

tion with cluster-aware generative models. arXiv preprint arXiv:1704.00637,

2017.

[94] Alireza Makhzani and Brendan Frey. Pixelgan autoencoders. arXiv preprint

arXiv:1706.00531, 2017.

[95] John Paisley, David Blei, and Michael Jordan. Variational bayesian inference

with stochastic search. arXiv preprint arXiv:1206.6430, 2012.

[96] Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop:

Unbiased backpropagation for stochastic neural networks. arXiv preprint

arXiv:1511.05176, 2015.

[97] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional computation.

arXiv preprint arXiv:1308.3432, 2013.

[98] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-

tion: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

[99] Amir H Khoshaman and Mohammad H Amin. Gumbolt: Extending gumbel

trick to boltzmann priors. arXiv preprint arXiv:1805.07349, 2018.

[100] Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint

arXiv:1609.02200, 2016.

118 BIBLIOGRAPHY

[101] Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, and

Mohammad H Amin. Quantum variational autoencoder. Quantum Science

and Technology, 4(1):014001, 2019.

[102] Mohammad H Amin. Searching for quantum speedup in quasistatic quantum

annealers. Physical Review A, 92(5):052323, 2015.

[103] Jeffrey Marshall, Eleanor G Rieffel, and Itay Hen. Thermalization, freeze-

out, and noise: Deciphering experimental quantum annealers. Physical Re-

view Applied, 8(6):064025, 2017.

[104] Jeffrey Marshall, Davide Venturelli, Itay Hen, and Eleanor G Rieffel. Power

of pausing: Advancing understanding of thermalization in experimental

quantum annealers. Physical Review Applied, 11(4):044083, 2019.

[105] Jack Raymond, Sheir Yarkoni, and Evgeny Andriyash. Global warming:

Temperature estimation in annealers. arXiv preprint arXiv:1606.00919,

2016.

[106] D-wave system documentation. https://docs.dwavesys.com/docs/

latest/index.html.

[107] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchyt-

skyy, and Roger Melko. Quantum boltzmann machine. Physical Review X,

8(2):021050, 2018.

[108] R Harris, Y Sato, AJ Berkley, M Reis, F Altomare, MH Amin, K Boothby,

P Bunyk, C Deng, C Enderud, et al. Phase transitions in a programmable

quantum spin glass simulator. Science, 361(6398):162–165, 2018.

[109] Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny

Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Har-

ris, Fabio Altomare, et al. Observation of topological phenomena in a pro-

grammable lattice of 1,800 qubits. Nature, 560(7719):456, 2018.

[110] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the

evaluation of generative models. arXiv preprint arXiv:1511.01844, 2015.

[111] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted

autoencoders. arXiv preprint arXiv:1509.00519, 2015.

[112] Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-

generation topology of d-wave quantum processors. Technical report, Tech-

nical report, 2019.

https://docs.dwavesys.com/docs/latest/index.html
https://docs.dwavesys.com/docs/latest/index.html

BIBLIOGRAPHY 119

[113] Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the

parameter setting problem. Quantum Information Processing, 7(5):193–209,

2008.

[114] Vicky Choi. Minor-embedding in adiabatic quantum computation: Ii. minor-

universal graph design. Quantum Information Processing, 10(3):343–353,

2011.

[115] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel

recurrent neural networks. arXiv preprint arXiv:1601.06759, 2016.

[116] Hossein Sadeghi, Evgeny Andriyash, Walter Vinci, Lorenzo Buffoni, and

Mohammad H Amin. Pixelvae++: Improved pixelvae with discrete prior.

arXiv preprint arXiv:1908.09948, 2019.

[117] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear inde-

pendent components estimation. arXiv preprint arXiv:1410.8516, 2014.

[118] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Kil-

loran. Quantum embeddings for machine learning. arXiv preprint

arXiv:2001.03622, 2020.

[119] Lorenzo Buffoni, Ilaria Gianani, Marco Barbieri, and Filippo Caruso. Ex-

perimental platforms for quantum embedding. in preparation, 2020.

[120] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten

Blank, Keri McKiernan, and Nathan Killoran. Pennylane: Automatic

differentiation of hybrid quantum-classical computations. arXiv preprint

arXiv:1811.04968, 2018.

[121] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-enhanced

machine learning. Physical Review Letters, 117(13):130501, September 2016.

[122] Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum

systems. Oxford University Press, 2002.

[123] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, 1998.

[124] Mohammed Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar.

Bayesian reinforcement learning: A survey. Foundations and Trends® in

Machine Learning, 8(5-6):359–483, 2015.

[125] Goran Lindblad. On the generators of quantum dynamical semigroups.

Communications in Mathematical Physics, 48(2):119–130, 1976.

120 BIBLIOGRAPHY

[126] Filippo Caruso. Universally optimal noisy quantum walks on complex net-

works. New Journal of Physics, 16(5):055015, May 2014.

[127] Marcello Benedetti, John Realpe-Gómez, Rupak Biswas, and Alejandro

Perdomo-Ortiz. Estimation of effective temperatures in quantum anneal-

ers for sampling applications: A case study with possible applications in

deep learning. Physical Review A, 94(2):022308, 2016.

	Contents
	Introduction
	Learning on experimental data
	Mapping sequencing data into space
	Computational pipeline
	Implementation details
	Siamese Network for anatomical registration
	Semantic segmentation
	Tangram mapping algorithm

	Conclusions

	Network theory for Machine Learning
	Linear and non-linear spectral learning
	Single-layer spectral learning
	Multi-layer networks in the spectral domain

	Results
	Conclusions

	Hybrid Variational Autoencoders
	Variational Autoencoders
	VAE with discrete latent variables

	Sampling with Quantum Annealers
	VAE hybridization with quantum prior

	Training VAE with quantum annealers
	Validation of training

	A path towards quantum advantage with VAE
	Exploit large latent-space RBMs
	Multi-modality of latent-space RBMs
	Robustness to noise and control errors

	Conclusions

	Quantum Machine Learning
	Quantum Embeddings
	Theory
	Experiments

	Learning on a Quantum Maze
	Reinforcement learning
	Quantum Maze
	Implementation and Results

	Conclusions

	Conclusion
	Directions for future work

	Implementation: Hybrid VAE
	Convolutional VAE
	Sample collection with D-Wave 2000Q
	Estimating effective temperature during training
	Chimera and Pegasus connectivities

	Publications
	Bibliography

