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MOSER- NASH KERNEL ESTIMATES FOR
DEGENERATE PARABOLIC EQUATIONS

VERENA BÖGELEIN, FRANCESCO RAGNEDDA, STELLA VERNIER PIRO, AND VINCENZO VESPRI

ABSTRACT. In this paper we deal with the Cauchy problem associated to a class of
nonlinear degenerate parabolic equations, whose prototype is the parabolic p-Laplacian
(2 < p < ∞). In his seminal paper Moser after stated the Harnack estimates, proved al-
most optimal estimates for parabolic kernel by using the so called Harnack chain method.
In the linear case sharp estimates come by using Nash approach. Fabes and Stroock proved
that Gaussian estimate are equivalent to a parabolic Harnack inequality. In this paper, by
using the DiBenedetto-DeGiorgi approach we prove optimal kernel estimates for degen-
erate quasilinear parabolic equations. To get this result we need to prove the finite speed
of the propagation of the support and to establish optimal estimates. Lastly we use these
results to prove existence and sharp pointwise estimates from above and from below for
the fundamental solutions.

AMS Subject Classification (2010): Primary 35K65; Secondary 35B65, 35K92,
35K45.

Keywords: Degenerate Parabolic Equations, Pointwise estimates, Harnack estimates
at large, Finite speed of propagation, Fundamental solutions, Long-term behavior.

1. INTRODUCTION

In his seminal paper Moser [27] after stated the Harnack estimates, in Theorem 2 he
focussed his attention on Harnack estimates at large. More specifically he proved that
there exist two positive constants A and a such that, for any x and y in RN , for any
0 < s < t < T and for any nonnegative solution of

ut =

N∑
,ji=1

Di(aij(x, t)Dju)

in RN × (0;∞), we have

u(t, y) ≥ u(s, y)

(
s

t

)a
e
−A

(
1+
|x−y|2
t−s

)
Let us remark that in the x variable we have the well known exponential behavior of the

fundamental solution, whereas in the t variable we have a power like decay, which is not
the optimal one.

He proved these estimates by using a technique called Harnack chain that consists in
iterating the Harnack estimates. This technique produces non optimal estimates.

By using different techniques many Authors proved sharp estimates from above and
from below. Among them we quote Li and Yau [23] .

They actually proved this Gaussian estimate for the heat kernel pt(x, y) on any complete
Riemannian manifold M with non-negative Ricci curvature:

pt(x, y) ' 1

V (x,
√
t)
exp

(
d2(x, y)

ct

)
Date: June 16, 2015.
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2 V. BÖGELEIN, F. RAGNEDDA, S. VERNIER PIRO, AND V. VESPRI

where d(x, y) is the geodesic distance between points x, y ∈M , V (x, r) is the Riemannian
volume of a geodesic ball B(x, r) of radius r centered at x; the sign ' means that the ratio
of the two quantities is bounded from above and below by two positive constants non
depending upon x, y and t.

We recall that that the Gaussian estimate is equivalent to a parabolic Harnack inequality.
For a proof see the very interesting paper by Fabes and Stroock [18] where they use the
Nash’s ideas [28] to prove sharp estimates on the kernel.

Sharp estimates were proved by several Authors for different linear operators and in
different context. Among them we quote the importan contributions due to Coulhon,
Grigor’yan and Saloff Coste (see for instance [4], [22] and [32]). In the linear context,
also the Harnack chain approach was exploited for subelliptic operators (see the mono-
graph [33] for more details).

For its flexibility the Harnack chain method can be used in the study of degenerate
parabolic equations of p-laplacian or porous medium type.

The first result was proved by Auchmuty and Bao [3]. It was afterwards extended in a
paper by Gianazza and Polidoro [20] and it was fully exploited in the monograph [16].

To find sharp estimates at large for the nonlinear case requires a technique more sophis-
ticated than the Harnack chain. The first pioneering paper in such a direction is [15] where
the De Giorgi techniques [12] are heavily used.

This approach was exploited in two recent papers [31, 9] where sharp pointwise up-
per and lower estimates for nonnegative solutions to singular parabolic p-Laplacian type
equations were proved.

The aim of this paper is to establish similar estimates in the framework of degenerate
parabolic equations. In this context, degenerate equations are more difficult to treat than
singular ones. The extra difficulty relies on the fact that for singular equations, the speed
of propagation of the support is infinite, while, for degenerate equations, it is finite. This
means that solutions have a compact support at any time t > 0, and therefore the size
of the support and the free boundaries need to be controlled. For this reason, one of the
main ingredients in the proof of the pointwise estimates for degenerate parabolic equa-
tions in the present paper are precise estimates for the support of the solution; see §3.This
difficulty appears also from the region where the estimates hold. Quite surprisingly it is
nor the geometry induced by the Barenblatt solution neither a classical p-parabola, but a
combination of these two ”natural” geometries. We prove that this region is optimal. The
reason is that the geometry that rules for such kind of equation is the so called ”intrinsic
geometry”. For more details about the definition of this geometry we refer the reader to
the monographs [13] and [35].

As a consequence, our pointwise estimates imply existence results and sharp estimates
on the fundamental solutions. We are on the one hand able to prove that for any degenerate
parabolic operator of p-Laplacian type there exists a fundamental solution. On the other
hand, given any fundamental solution in this class of degenerate parabolic equations, we
are able to prove estimates, from below and from above, in terms of the explicit Barenblatt
solution of the prototype equation, i.e. the p-Laplacian equation. This means that – apart
from a constant – the pointwise behavior of any fundamental solution is the one of the
Barenbaltt solution.

1.1. Statement of the problem. We now introduce the precise parabolic equations and
the notions of solutions we are dealing with. In the following, we consider degenerate
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parabolic equations of the type

equationequation (1.1) ∂tu− divA(x, t, u,Du) = 0, in RN × (0,∞).

Thereby, the function A = (A1, . . . , AN ) : RN × (0,∞) × R × RN → RN is a
Caratheodory function, i.e. we assume that the mapping RN × (0,∞) 3 (x, t) 7→
A(x, t, u, ξ) is measurable for any u ∈ R and ξ ∈ RN and that R × RN 3 (u, ξ) 7→
A(x, t, u, ξ) is continuous for almost all (x, t) ∈ RN × (0,∞). Moreover, A is assumed
to satisfy the following ellipticity and growth conditions:

ellipticelliptic (1.2)

{
A(x, t, u, ξ) · ξ ≥ ν|ξ|p,

|A(x, t, u, ξ)| ≤ L|ξ|p−1,

for almost all (x, t) ∈ RN × [0,∞), all u ∈ R and ξ ∈ RN , for some constants 0 < ν ≤
L <∞ and with p > 2. Finally, we assume that

monotonemonotone (1.3)

{ (
A(x, t, u, ξ1)−A(x, t, u, ξ2)

)
· (ξ1 − ξ2) ≥ 0,

|A(x, t, u1, ξ)−A(x, t, u2, ξ)| ≤ L|u1 − u2|
(
1 + |ξ|p−1

)
,

holds true for almost all (x, t) ∈ RN × [0,∞) and all u, ui ∈ R and ξ, ξi ∈ RN , i =
1, 2. We note that that hypotheses (1.2) and (1.3) imply a comparison principle for weak
solutions of (1.1), and moreover ensure the existence of weak solutions to the associated
Cauchy problem with L1 intial data; see, for instance, [24, 16].

1.2. Pointwise estimates for weak solutions. The precise notion of weak solution to (1.1)
we shall use in the sequel is given in the following definition.

def:solution Definition 1.1. A function u ∈ C0((0,∞);L2(RN )) ∩ Lploc(0,∞;W 1,p(RN )) is a weak
solution of (1.1) in RN × (0,∞) if

weak-0weak-0 (1.4)
∫
RN

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
RN

[
− u∂tϕ+ A(x, t, u,Du) ·Dϕ

]
dxdt = 0

holds for every subinterval [t1, t2] ⊂ (0,∞) and every test function ϕ ∈
W 1,2(t1, t2;L2(RN )) ∩ Lp(t1, t2;W 1,p(RN )). 2

We note that in the weak formulation it is not necessary to assume that the testing
function ϕ has compact support on the time slices RN×{t}. For a more detailed discussion
of this fact, we refer to Remark 2.1 below.

Our pointwise estimates will be expressed in terms of the Barenblatt solution. There-
fore, before we state our results, we recall the precise definition of the Barenblatt solution
of mass M > 0:

Barenblatt_pBarenblatt_p (1.5) Bp,M (x, t) := t−
N
β

[
Cp,M − γp

( |x|
t1/β

) p
p−1

] p−1
p−2

+

,

where

constantsBarenblatt_pconstantsBarenblatt_p (1.6) β := N(p− 2) + p and γp :=
( 1

β

) 1
p−1
(p− 2

p

)
,

and Cp,M is a positive constant of the form Cp,M = (Md )
1
γ , with γ := (p−1)β

p(p−2) and
a constant d depending only on N, p; see also [5], and [37, §12.3], [38]. Note that
sptBp,M1

⊂ sptBp,M2
whenever M1 < M2. It is well known that Bp,M is the funda-

mental solution of the p-Laplacian equation with mass M in RN × (0,∞), i.e. the explicit
solution of the p-Laplacian equation with Mδ0 as initial datum. We recall that the unique-
ness of the fundamental solution was proved in [25]. Here, and in the following, by δ0 we
denote the delta-function at the origin. In the particular case that M = 1, we abbreviate
Bp := Bp,1.
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Now, we can state our first main result, which provides sharp pointwise estimates from
below for weak solutions, starting only from the value that the solution takes in a cer-
tain point of the domain. These estimates hold in the large, and generalize the Harnack
estimates proved in [14] and [15].

pointwiseestimates from below Theorem 1.2 (estimates from below). Suppose that assumptions (1.2) and (1.3) are in
force. Then, there exist two constants γ = γ(N, p, ν, L) > 0 and γ̃ = γ̃(N, p, ν, L) > 0
such that the following holds true: Let u be a nonnegative weak solution of (1.1) and
Po = (xo, to) ∈ RN × (0,∞) such that u(Po) > 0. Then, there holds

u(x, t) ≥ γ u(Po)Bp

(
x− xo

t
1
p
o u(Po)

p−2
p

,
t

to

)
,

for any point (x, t) ∈ RN × (to,∞) with x ∈ Br(t)(xo), where

r(t) := γ̃u(Po)
p−2
p t

1
p
o min

([ t− to
to

] 1
β ,
[ t− to

to

] 1
p
)
.

Remark 1.3. The explicit solution of the parabolic p-Laplace equation easily shows that,
when t is large, the estimates obtained in the previous theorem are sharp. 2

The estimates from below from Theorem 1.2 imply, in a strightforward way, the esti-
mates from above (for more details, see [9]).

pointwiseestimates from above Corollary 1.4 (estimates from above). Let ε > 0 and suppose that assumptions (1.2) and
(1.3) are in force. Then, there exist two constants γ = γ(N, p, ν, L) > 0 and γ̃ =
γ̃(N, p, ν, L, ε) > 0 such that the following holds true: Let u be a nonnegative weak
solution of (1.1) and Po = (xo, to) ∈ RN × (0,∞) such that u(Po) > 0. Then, for any
point (x1, t1) ∈ RN × (0, to

1+ε ) there holds either

|x1 − xo| ≥ γ̃ t
1
p

1 [ to−t1t1
]
1
β u(P1)

p−2
p ,

or

u(Po) ≥ γu(P1)Bp

 xo − x1
t
1
p

1 u(P1)
p−2
p

,
to
t1

 .

Note that the estimate on u(x1, t1) is not explicit. Nevertheless arguing as in [9] in the
singular case, it is possible to prove that also this estimate is sharp.

1.3. Results for fundamental solutions. By our methods we can also prove existence and
pointwise estimates for fundamental solutions to general degenerate parabolic equations.
As already mentioned above, for the prototype equations the fundamental solution (i.e.
solutions where the initial data is a Dirac mass) is explicitly known to be the Barenblatt
solution. More precisely, in this case, the function Bp defined in (1.5) is the solution of the
following initial-value problem

equationBaequationBa (1.7)

{
∂tu = div(|Du|p−2Du), in RN × (0,∞),

u(·, 0) = δ0, in RN ,

where δ0 denotes the delta-function at the origin. As already noted in [31], when dealing
with the initial-value problem with a measure as initial data, the solution does in general not
belong to the natural parabolic Sobolev space Lp(0, T ;W 1,p(RN )), for T > 0. Instead,

we have for the spatial gradient that |∇u| ∈ M
N(p−1)
N−1 , whereMq is the Marcinkiewicz

space of order q. On the other hand, since N(p−1)
N−1 > p − 1, this implies that |∇u|p−1 ∈

L1(RN × (0, T )). Therefore, the solution of the problem exists in the distributional sense.
For more details on entropy solutions see [6, 7], while for renormalized solutions we refer
to [11, 29].
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Keeping this in mind and following the approach of [25, 30], we define in the following
the notion of fundamental solution to parabolic equations of the type

equationfundamentalequationfundamental (1.8)

{
∂tu = divA(x, t, u,Du), in RN × (0,∞),

u(·, 0) = δ0, in RN ,

where the operator A satisfies assumptions (1.2) and (1.3).

def:fundamental-sol Definition 1.5 (fundamental solution). A nonnegative function u : RN × (0,∞)→ R is a
fundamental solution of (1.8) if the following conditions are satisfied:

i) u ∈ C((0,∞);L1(RN )),
ii) u is a weak solution of (1.8)1 in RN × [s,+∞), for any s > 0,

iii) we have lim
t↓0

∫
B%

u(x, t) dx = 1, for any % > 0, and

iv) we have lim
t↓0

∫
RN\B%

u(x, t) dx = 0, for any % > 0.

2

As a first result we can prove existence of fundamental solutions to general degenerate
parabolic equations.

thm:existence Theorem 1.6 (Existence of fundamental solutions). Let assumptions (1.2) and (1.3) be in
force. Then, there exists at least one nonnegative fundamental solution of (1.8) in the sense
of Definition 1.5.

As a second result, we prove sharp pointwise estimates for fundamental solutions from
below and from above. We are able to show that, up to a constant, any fundamental solution
behaves like the Barenblatt fundamental solution.

thm:Barenblatt Theorem 1.7. Let assumptions (1.2) and (1.3) be in force and u be a fundamental solution
of (1.8). Then there are two positive constants M1 and M2 depending only on N, p, ν, L
such that for any (x, t) ∈ RN × (0,∞) there holds

Bp,M1
(x, t) ≤ u(x, t) ≤ Bp,M2

(x, t),

where Bp,M denotes the Barenblatt solution of mass M defined in (1.5).

In the singular case, it was first proved the result for the fundamental estimates in [31].
Then, in [9], the estimates at large were proved. In the survey paper [17], it is proved that
the estimates proved in [9] imply the estimates proved in [31].

1.4. Plan of the paper. The paper is organized as follows. In §2, we explain the notation
used throughout the paper and collect some known results to be used in the proofs of our
results. Susequently, in §3 we derives sharp estimates for the speed of propagation of the
support. These are essential for the proofs of our results. By using the Barenblatt solution
Bp of the p-Laplacian, the pointwise estimates from below for weak solution of 1.1 as
stated in Theorem 1.2 are established in §4. The estimates from above from Corollary 1.4
are an emmediate consequence. In §5 we prove the existence of fundamental solutions as
stated in Theorem 1.6. The result of Theorem 1.7, i.e. the optimal bounds from below
and from above for the fundamental solutions of (1.1) are proved in §6. Finally, in §7 we
exhibit some miscellaneous results. We remark that estimates obtained for the p-Laplacian
can be extended to the Porous Medium equation, and by a change of variable also to the
Fokker Planck equation.

Acknowledgments. The last 3 Authors are member of G.N.A.M.P.A. (I.N.d.A.M.).
The first Author was supported by G.N.A.M.P.A. in her visits to the Math. Departments of
Cagliari and Florence. The work on the paper begun during the first and last Author’s stay
at the Institut Mittag-Leffler during the program “Evolutionary problems”. We acknowl-
edge the warm hospitality there.
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2. PRELIMINARIES
sec:prelim

2.1. Notation. For xo ∈ RN and % > 0 we denote by B%(xo) the Euclidean ball with
center at xo and radius %. If xo is the origin we usually omit the center point in the notation
and write B% := B%(0) for short. By ωN := |B1| we denote the volume of the unit ball.
Finally, γ denotes a generic constant which may change from line to line.

rem:testfn Remark 2.1. As mentioed after Definition 1.1, in the weak formulation it is not necessary
to assume that the testing function ϕ has compact support. This can be seen as follows: for
k > 0 we use ζkϕ as a testing function, where ζk ∈ C1

0 (B2k) satisfies ζk ≡ 1 in Bk and
‖Dζk‖∞ ≤ 2

k . Then, we have∫
RN

ζkϕudx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
RN

ζk
[
− u∂tϕ+ A(x, t, u,Du) ·Dϕ

]
dxdt

= −
∫ t2

t1

∫
RN

ϕA(x, t, u,Du) ·Dζk dxdt.

For the integral on the right-hand side, we get∣∣∣∣ ∫ t2

t1

∫
RN

ϕA(x, t, u,Du) ·Dζk dxdt
∣∣∣∣ ≤ 2L

k

∫ t2

t1

∫
RN
|Du|p−1|ϕ| dxdt

≤ 2L

k

∫ t2

t1

∫
RN

(
|Du|p + |ϕ|p

)
dxdt→ 0

in the limit k →∞. Therefore, letting k →∞, we obtain (1.4).
Moreover, in the definition of weak solution we avoid using the time derivative of

u, since ∂tu might not exist as a function. Indeed, one can only show that ∂tu ∈
Lp
′
(0,∞;W−1,p

′
(RN )). Nevertheless, later on we shall use

weakweak (2.1)
∫ t2

t1

∫
RN

[
ϕ ∂tu+ A(x, t, u,Du) ·Dϕ

]
dxdt = 0

instead of (1.4) as weak form of the equation. Thereby, the use of the time derivative has
to be understood in a formal way. These computations can be made rigorous by the use of
a mollification procedure with respect to time as for instance Steklov averages. 2

2.2. Auxiliary material. We state Gagliardo-Nirenberg’s inequality in the form that will
be suitable for our purposes later.

lem:gag Lemma 2.2. Let 1 ≤ σ, p, q <∞ and ϑ ∈ (0, 1) such that −Nq = ϑ(1− N
p )− (1−ϑ)Nσ .

Then there exists a constant γ = γ(N, p, q, σ) such that for any v ∈ Lσ(RN )∩W 1,p(RN )
there holds: ∫

RN
|v|q dx ≤ γ

(∫
RN
|v|σ dx

) (1−ϑ)q
σ
(∫

RN
|Dv|p dx

)ϑq
p

.

We shall use the well known DeGiorgi iteration lemma, which can for instance be found
in [19, Lemma 7.1].

lem:DeGiorgi Lemma 2.3. Let α > 0 and let (ki)i∈N be a sequence of real positive numbers, satisfying
the recursive inequalities

ki+1 ≤ CBik1+α
i

with C,B > 1. If ko ≤ C−
1
αB−

1
α2 , we have

ki ≤ B−
i
αko

and hence in particular limi→∞ ki = 0.

The following result can be deduced from [21, §3] and [14, §3], adapted to our situation.
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lm:Surnachev Lemma 2.4 (Expansion of positivity). Let the assumptions (1.2) be in force and M > 0.
Then there exist positive constants εo and ko depending only on N, p, ν, L and M such
that the following holds true: let u ∈ C0((0,∞);L2(RN )) ∩ Lploc(0,∞;W 1,p(RN )) be a
continuous nonnegative weak solution of (1.1) in RN × [0,∞) and assume that there exist
δ > 0 and % > 0 such that u(x, 0) ≥ δ for any x ∈ B%. Then, there holds

u
(
x, koδ

2−p%p
)
≥ εoδ, for any x ∈ BM%.

Let us quote the final result of [14] that we adapt to our assumptions (for instance we
take into account the homogeneous structure hypotheses we assumed at the beginning).

Thm:Harnack Theorem 2.5 (Intrinsic Harnack inequality). Let the assumptions (1.2) be in force. Then
there exist positive constants c1 and c2 depending only on N, p, ν and L such that the
following holds: whenever u ∈ C0((0,∞), L2(RN )) ∩ Lploc(0,∞;W 1,p(RN )) is a con-
tinuous nonnegative weak solution of (1.1) in RN × [0,∞) in the sense of Definition 1.1
and (xo, to) ∈ RN × [0,∞) and % > 0, then there holds

HarnackestimatesHarnackestimates (2.2) u(xo, to) ≤ c1 inf
B%(xo)

u(·, to + θ%p), θ :=
( c2
u(xo, to)

)p−2
.

3. ESTIMATES FOR THE SUPPORT OF THE SOLUTION
sec:est-support

In this Section we consider the initial value problem

ini-equationini-equation (3.1)

{
∂tu− divA(x, t, u,Du) = 0, in RN × R≥0,

u(·, 0) = uo, in RN × R≥0,

with initial datum uo ∈ L1(RN ) satisfying

u0u0 (3.2) sptuo ⊂ BRo for some Ro > 0.

In the following, we use a method introduced in [1] and in [2] (see also a recent paper by
Tedeev and Vespri [34]) to control the size of the support of the solution, in terms of Ro,
the L1-norm of uo and the time elapsed. Our first aim is to prove that this assumption
implies that for any finite time, also the solution has bounded support.

lem:bounded-support Lemma 3.1. Let Ro > 0 and uo ∈ L1(RN ) satisfy (3.2) and suppose that A : RN ×
(0,∞) × R × RN → RN satisfies the assumptions (1.2). Then, for any weak solution
u ∈ C0((0,∞);L2(RN )) ∩ Lploc(0,∞;W 1,p(RN )) of the initial value problem (3.1) we
have that sptu ∩ (RN × [0, t]) is bounded for any t > 0.

Proof. We fix t > 0 and let η ∈ C1
0 (RN ) with 0 ≤ η ≤ 1, η ≡ 0 inBRo . In the weak form

(2.1) of equation (3.1) we choose the testing function ϕ = ηpu. For the term containing
the time derivative, we compute∫ t

0

∫
RN

∂τuϕdxdτ =
1

2

∫ t

0

∫
RN

ηp∂τu
2 dxdτ

=
1

2

[ ∫
RN×{t}

ηpu2 dx−
∫
RN

ηpu2o dx

]
=

1

2

∫
RN×{t}

ηpu2 dx,

where in the last line we used that sptuo ⊂ BRo and η ≡ 0 on BRo . Next, we consider
the diffusion part in (2.1). Here, we have∫ t

0

∫
RN

A(x, t, u,Du) ·Dϕdxdτ = I + II,

where

I :=

∫ t

0

∫
RN

ηp A(x, t, u,Du) ·Dudxdτ,



8 V. BÖGELEIN, F. RAGNEDDA, S. VERNIER PIRO, AND V. VESPRI

II :=

∫ t

0

∫
RN

A(x, t, u,Du) ·Dηpu dxdτ.

By (1.2)1, we get

I ≥ ν
∫ t

0

∫
RN

ηp|Du|p dxdτ,

while using the growth assumption (1.2)2 and Young’s inequality, we find for the second
term that

|II| ≤ Lp
∫ t

0

∫
RN

ηp−1|Du|p−1|Dη||u| dxdτ

≤ ν

2

∫ t

0

∫
RN

ηp|Du|p dxdτ + γ

∫ t

0

∫
RN
|Dη|p|u|p dxdτ,

where γ = γ(p, ν, L). Combining the last two estimates yields

I + II ≥ ν

2

∫ t

0

∫
RN

ηp|Du|p dxdτ − γ

∫ t

0

∫
RN
|Dη|p|u|p dxdτ.

Inserting the preceding estimates into (2.1), we obtain∫
RN×{t}

ηp|u|2 dx+

∫ t

0

∫
RN

ηp|Du|p dxdτ ≤ γ

∫ t

0

∫
RN
|Dη|p|u|p dxdτ,

with a constant γ = γ(p, ν, L). Since t > 0 was arbitrary, we would obtain the same
estimate for any τ ∈ (0, t) instead of t. Therefore, we can take the supremum over τ ∈
(0, t) in the first term on the left-hand side, i.e. we have

testing-1testing-1 (3.3) sup
τ∈(0,t)

∫
RN×{τ}

ηp|u|2 dx+

∫ t

0

∫
RN

ηp|Du|p dxdτ ≤ γ

∫ t

0

∫
RN
|Dη|p|u|p dxdτ,

for a constant γ = γ(p, ν, L).
For k > 0 large enough, we choose a cutoff function ζk ∈ C1

0 (B2k), such that 0 ≤
ζk ≤ 1, and ζk ≡ 1 in Bk, and ‖Dζk‖∞ ≤ 2

k . Moreover, we let r ≥ Ro to be chosen later
and define

ri := 2r − r

2i
and si :=

ri + ri+1

2
,

for i ∈ N0, such that Bri ⊂ Bsi ⊂ Bri+1
. We let ηi ∈ C1(RN ) such that 0 ≤ ηi ≤ 1,

ηi ≡ 0 in Bri , ηi ≡ 1 in RN \ Bsi and ‖Dηi‖∞ ≤ 2i+3/r. Choosing η = ζkηi in (3.3),
we find that

sup
τ∈(0,t)

∫
RN\Bsi×{τ}

ζpk |u|
2 dx+

∫ t

0

∫
RN\Bsi

ζpk |Du|
p dxdτ

≤ γ
(2ip

rp
+

2

kp

)∫ t

0

∫
RN\Bri

|u|p dxdτ.

Letting k →∞ this yields

sup
τ∈(0,t)

∫
RN\Bsi×{τ}

|u|2 dx+

∫ t

0

∫
RN\Bsi

|Du|p dxdτ

≤ γ2ip

rp

∫ t

0

∫
RN\Bri

|u|p dxdτ.

Next, we choose a second cut-off function η̃i ∈ C1(RN ) satisfying 0 ≤ η̃i ≤ 1, η̃i ≡ 0 in
Bsi , η̃i ≡ 1 in RN \Bri+1

and ‖Dη̃i‖∞ ≤ 2i+3/r. Letting

vi := η̃i|u|,
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the preceding inequality yields

sup
τ∈(0,t)

∫
RN×{τ}

v2i dx+

∫ t

0

∫
RN
|Dvi|p dxdτ

≤ sup
τ∈(0,t)

∫
RN×{τ}

η̃2i |u|2 dx+

∫ t

0

∫
RN

[
η̃pi |Du|

p + |Dη̃i|p|u|p
]
dxdτ

≤ sup
τ∈(0,t)

∫
RN\Bsi×{τ}

|u|2 dx+

∫ t

0

∫
RN\Bsi

[
|Du|p + 2ip

rp |u|
p
]
dxdτ

≤ γ2ip

rp

∫ t

0

∫
RN\Bri

|u|p dxdτ.

Taking into account that vi−1 ≡ |u| on RN \Bri × (0, t), this shows that

sup
τ∈(0,t)

∫
RN×{τ}

v2i dx+

∫ t

0

∫
RN
|Dvi|p dxdτ ≤

γ2ip

rp

∫ t

0

∫
RN

vpi−1 dxdτ,est-vi-1est-vi-1 (3.4)

where γ = γ(p, ν, L). Now, we define

ki :=

∫ t

0

∫
RN

vpi dxdτ.

By Gagliardo-Nirenberg’s inequality from Lemma 2.2 applied with q = p and

ϑ :=
N(p− 2)

N(p− 2) + 2p
∈ (0, 1),

and estimate (3.4), we obtain

ki ≤ γ

∫ t

0

(∫
RN
|vi|2 dx

) (1−ϑ)p
2
(∫

RN
|Dvi|p dx

)ϑ
dt

≤ γ sup
τ∈(0,t)

(∫
RN×{τ}

|vi|2 dx
) (1−ϑ)p

2
∫ t

0

(∫
RN
|Dvi|p dx

)ϑ
dt

≤ γ t1−ϑ sup
τ∈(0,t)

(∫
RN×{τ}

|vi|2 dx
) (1−ϑ)p

2
(∫ t

0

∫
RN
|Dvi|p dxdt

)ϑ

≤ γ t1−ϑ
(

2ip

rp
ki−1

)ϑ+ (1−ϑ)p
2

= γ t1−ϑ
(

2ip

rp
ki−1

)1+
(1−ϑ)(p−2)

2

,

where γ = γ(N, p, ν, L). Applying Lemma 2.3 with

α :=
(1− ϑ)(p− 2)

2
and

B = 2p(1+
(1−ϑ)(p−2)

2 ) = 2p(1+α), C = γ t1−ϑr−p(1+
(1−ϑ)(p−2)

2 ) = γ t1−ϑr−p(1+α),

we find that limi→∞ ki = 0, provided that

DG-cond-1DG-cond-1 (3.5) ko ≤ γ−
1
α 2−

p(1+α)

α2 t−
1−ϑ
α r

p(1+α)
α = γ t−

2
p−2 r

p2+Np−2N
p−2 ,

with a constant γ = γ(N, p, ν, L). Since

ko ≤
∫ t

0

∫
RN

η̃p|u|p dxdτ,

this condition is satisfied if we choose r ≥ Ro such that

r
p2+Np−2N

p−2 ≥ γ t
2
p−2

∫ t

0

∫
RN

η̃p|u|p dxdτ.
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As mentioned above, this ensures that (3.5) is satisfied and thus limi→∞ ki = 0. In turn,
this implies that u ≡ 0 on (RN \B2r)× [0, t]. This proves the assertion of the lemma. �

We remark that the initial mass is preserved. This can easily be proved by choosing the
testing function 1 in the weak form (2.1) of equation (3.1)1. Note that this testing function
is admissible in (2.1) since the support of the solution is bounded on finite time intervals
by Lemma 3.1. Therefore we have

Rm:R1 Remark 3.2. Let Ro > 0 and uo ∈ L1(RN ) satisfy (3.2) and suppose that A satisfies the
assumptions (1.2). Then, for any weak solution u of the initial value problem (3.1) there
holds

massmass (3.6) ‖u(t)‖L1(RN ) = ‖uo‖L1(RN ),

for any t > 0.

The following result gives us sharp L∞ estimates.

thm:Linfty Theorem 3.3. Let Ro > 0 and uo ∈ L1(RN ) satisfy (3.2) and suppose that A satisfies
the assumptions (1.2). Then, there exists a constant γ = γ(N, p, ν, L) such that any weak
solution u of the initial value problem (3.1) satisfies

‖u(·, t)‖L∞(RN ) ≤ γ t−
N
β ‖uo‖

p
β

L1(RN )
, with β := N(p− 2) + p,

for any t > 0.

Proof. From Lemma 3.1 we know that sptu ∩ (RN × [0, t]) is bounded for any t > 0.
Therefore, we can apply [13, Chapter V, Theorem 4.3] to infer that there exists a constant
γ = γ(N, p, ν, L) such that for any t > 0 there holds

‖u(·, t)‖L∞(RN ) ≤ γ t−
N
β

(
−
∫ t

0

∫
Rn
u dxdt

) p
β

.

At this point, the result follows from Remark 3.2, since the L1-norm of t 7→ u(·, t) is
invariant in time. �

Now, we have the prerequisites to prove a qualitative bound for the support of u(·, t) at
time t > 0. The strategy to the proof will be a refined version of the proof of Lemma 3.1.
However, to get the optimal exponents in the estimate, we will use Theorem 3.3 and Re-
mark 3.2 in the final part of the proof.

thm:sharpestimatessupport Theorem 3.4. Let Ro > 0 and uo ∈ L1(RN ) satisfy (3.2) and suppose that A satisfies
the assumptions (1.2). Then, there exists a constant γ = γ(N, p, ν, L) such that any weak
solution u of the initial value problem (3.1) satisfies

supp boundsupp bound (3.7) sptu(·, t) ⊂ BR(t) for any t > 0,

where

R(t)R(t) (3.8) R(t) := 2Ro + γ t
1
β ‖uo‖

p−2
β

L1(RN )
, with β := N(p− 2) + p.

Proof. Let t > 0. From Lemma 3.1 we know that sptu ∩ (RN × [0, t]) is bounded and
therefore, we can choose k > Ro so large that sptu ∩ (RN × [0, t]) ⊂ Bk × [0, t]. We let
θ ∈ (0,min{1, pN }) to be chosen later. In the weak form (2.1) we choose the admissible
testing function ϕ = ϕε := ηp(u2 + ε2)

θ−1
2 u, with η ∈ C1(RN ), η ≡ 0 in BRo and

ε ∈ (0, 1). For the term containing the time derivative, we compute∫ t

0

∫
RN

∂τuϕε dxdτ =

∫ t

0

∫
Bk

∂τuϕε dxdτ

=
1

2

∫ t

0

∫
Bk

ηp∂τu
2(u2 + ε2)

θ−1
2 dxdτ
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=
1

1 + θ

∫ t

0

∫
Bk

ηp∂τ |u2 + ε2|
1+θ
2 dxdτ

=
1

1 + θ

[ ∫
Bk×{t}

ηp|u2 + ε2|
1+θ
2 dx−

∫
Bk

ηp|u2o + ε2|
1+θ
2 dx

]
=

1

1 + θ

[ ∫
Bk×{t}

ηp|u2 + ε2|
1+θ
2 dx− ε1+θ

∫
Bk

ηp dx

]
,

where in the last line we used that sptuo ⊂ BRo and η ≡ 0 in BRo . Letting ε ↓ 0, we find
that

lim
ε↓0

∫ t

0

∫
RN

∂τuϕε dxdτ =
1

1 + θ

∫
Bk×{t}

ηp|u|1+θ dx =
1

1 + θ

∫
RN×{t}

ηp|u|1+θ dx.

Next, we consider the diffusion part in (2.1). Here, we have∫ t

0

∫
RN

A(x, t, u,Du) ·Dϕε dxdτ = Iε + IIε,

where

Iε :=

∫ t

0

∫
RN

ηpA(x, t, u,Du) ·D
[
(u2 + ε2)

θ−1
2 u
]
dxdτ,

IIε :=

∫ t

0

∫
RN

A(x, t, u,Du) ·Dηp
[
(u2 + ε2)

θ−1
2 u
]
dxdτ.

For the term Iε, we first compute

D
[
(u2 + ε2)

θ−1
2 u
]

= (u2 + ε2)
θ−1
2 Du− (1− θ)(u2 + ε2)

θ−3
2 u2Du

= (u2 + ε2)
θ−3
2 (θu2 + ε2)Du.

Hence, by (1.2)1, we get

Iε ≥ ν
∫ t

0

∫
RN

ηp(u2 + ε2)
θ−3
2 (θu2 + ε2)|Du|p dxdτ

≥ νθ
∫ t

0

∫
RN

ηp(u2 + ε2)
θ−1
2 |Du|p dxdτ

≥ νθ

2

∫ t

0

∫
RN

ηp(|u|+ ε)θ−1|Du|p dxdτ

=
νθ

2

( p

p+ θ − 1

)p ∫ t

0

∫
RN

ηp
∣∣D(|u|+ ε)

p+θ−1
p

∣∣p dxdτ.
Using the growth assumption (1.2)2 and Young’s inequality, we find for the second term
that

|IIε| ≤ Lp
∫ t

0

∫
Bk

ηp−1|Dη||Du|p−1(u2 + ε2)
θ−1
2 |u| dxdτ

≤ Lp
∫ t

0

∫
Bk

ηp−1|Dη||Du|p−1(|u|+ ε)θ dxdτ

= Lp
( p

p+ θ − 1

)p−1 ∫ t

0

∫
Bk

ηp−1|Dη|
∣∣D(|u|+ ε)

p+θ−1
p

∣∣p−1(|u|+ ε)
p+θ−1
p dxdτ

≤ νθ

4

( p

p+ θ − 1

)p ∫ t

0

∫
Bk

ηp
∣∣D(|u|+ ε)

p+θ−1
p

∣∣p dxdτ
+ γ

∫ t

0

∫
Bk

|Dη|p(|u|+ ε)p+θ−1 dxdτ,
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where γ = γ(p, ν, L, θ). Combining the last two estimates yields

Iε + IIε ≥
νθ

4

( p

p+ θ − 1

)p ∫ t

0

∫
RN

ηp
∣∣D(|u|+ ε)

p+θ−1
p

∣∣p dxdτ
− γ

∫ t

0

∫
Bk

|Dη|p(|u|+ ε)p+θ−1 dxdτ.

Therefore, by Fatou’s Lemma we find that

lim inf
ε↓0

(
Iε + IIε

)
≥ νθ

4

( p

p+ θ − 1

)p ∫ t

0

∫
RN

ηp
∣∣D|u| p+θ−1

p

∣∣p dxdτ
− γ

∫ t

0

∫
RN
|Dη|p|u|p+θ−1 dxdτ.

Inserting the preceding estimates into (2.1), and passing to the limit ε ↓ 0, we obtain∫
RN×{t}

ηp|u|1+θ dx+

∫ t

0

∫
RN

ηp
∣∣D|u| p+θ−1

p

∣∣p dxdτ
≤ γ

∫ t

0

∫
RN
|Dη|p|u|p+θ−1 dxdτ.

Since t > 0 was arbitrary, we would obtain the same estimate for any τ ∈ (0, t) instead of
t. Therefore, we can take the supremum over τ ∈ (0, t) in the first term on the left-hand
side, i.e. we have

sup
τ∈(0,t)

∫
RN×{τ}

ηp|u|1+θ dx+

∫ t

0

∫
RN

ηp
∣∣D|u| p+θ−1

p

∣∣p dxdτ
≤ γ

∫ t

0

∫
RN
|Dη|p|u|p+θ−1 dxdτ,testingtesting (3.9)

for a constant γ = γ(p, ν, L, θ).
Now, we let r ≥ Ro to be chosen later and define

ri := 2r − r

2i
and si :=

ri + ri+1

2

for i ∈ N0 and choose ηi ∈ C1(RN ) such that 0 ≤ ηi ≤ 1, ηi ≡ 0 in Bri , ηi ≡ 1 in
RN \Bsi and ‖Dηi‖∞ ≤ 2i+3/r. Choosing η = ηi in (3.9) we find that

sup
τ∈(0,t)

∫
RN\Bsi×{τ}

|u|1+θ dx+

∫ t

0

∫
RN\Bsi

∣∣D|u| p+θ−1
p

∣∣p dxdτ
≤ γ2ip

rp

∫ t

0

∫
RN\Bri

|u|p+θ−1 dxdτ.est-3est-3 (3.10)

Next, we choose a second cut-off function η̃i ∈ C1(RN ) satisfying 0 ≤ η̃i ≤ 1, η̃i ≡ 0 in
Bsi , η̃i ≡ 1 in RN \Bri+1

and ‖Dη̃i‖∞ ≤ 2i+3/r. Setting

vi := η̃i|u|
p+θ−1
p and σ :=

p(1 + θ)

p+ θ − 1
∈ (1, p),

and by using (3.10) we get

sup
τ∈(0,t)

∫
RN×{τ}

vσi dx+

∫ t

0

∫
RN
|Dvi|p dxdτ

≤ sup
τ∈(0,t)

∫
RN×{τ}

η̃σi |u|1+θ dx

+

∫ t

0

∫
RN

[
η̃pi
∣∣D|u| p+θ−1

p

∣∣p + |Dη̃i|p|u|p+θ−1
]
dxdτ
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≤ sup
τ∈(0,t)

∫
RN\Bsi×{τ}

|u|1+θ dx

+

∫ t

0

∫
RN\Bsi

[∣∣D|u| p+θ−1
p

∣∣p + 2ip

rp |u|
p+θ−1

]
dxdτ

≤ γ2ip

rp

∫ t

0

∫
RN\Bri

|u|p+θ−1 dxdτ,

where in the last inequality we used (3.10). Taking into account that vi−1 ≡ |u|
p+θ−1
p on

RN \Bri × (0, t), this shows that

sup
τ∈(0,t)

∫
RN×{τ}

vσi dx+

∫ t

0

∫
RN
|Dvi|p dxdτ ≤

γ2ip

rp

∫ t

0

∫
RN

vpi−1 dxdτ,est-viest-vi (3.11)

where γ = γ(p, ν, L, θ). Now, we define

ki :=

∫ t

0

∫
RN

vpi dxdτ.

By Gagliardo-Nirenberg’s inequality from Lemma 2.2 applied with q = p and

ϑ :=
N(p− 2)

N(p− 2) + p(1 + θ)
∈ (0, 1)

and estimate (3.11), we obtain

ki ≤ γ

∫ t

0

(∫
RN
|vi|σ dx

) (1−ϑ)p
σ
(∫

RN
|Dvi|p dx

)ϑ
dt

≤ γ sup
τ∈(0,t)

(∫
RN×{τ}

|vi|σ dx
) (1−ϑ)p

σ
∫ t

0

(∫
RN
|Dvi|p dx

)ϑ
dt

≤ γ t1−ϑ sup
τ∈(0,t)

(∫
RN×{τ}

|vi|σ dx
) (1−ϑ)p

σ
(∫ t

0

∫
RN
|Dvi|p dxdt

)ϑ

≤ γ t1−ϑ
(

2ip

rp
ki−1

)ϑ+ (1−ϑ)p
σ

= γ t1−ϑ
(

2ip

rp
ki−1

)1+
(1−ϑ)(p−σ)

σ

,

where γ = γ(N, p, ν, L, θ). Applying Lemma 2.3 with

α :=
(1− ϑ)(p− σ)

σ
and

B = 2p(1+
(1−ϑ)(p−σ)

σ ) = 2p(1+α),

and
C = γ t1−ϑr−p(1+

(1−ϑ)(p−σ)
σ ) = γ t1−ϑr−p(1+α),

we find that limi→∞ ki = 0, provided that

DG-condDG-cond (3.12) ko ≤ γ−
1
α 2−

p(1+α)

α2 t−
1−ϑ
α r

p(1+α)
α =: γ1t

− 1−ϑ
α r

p(1+α)
α ,

with a constant γ1 = γ1(N, p, ν, L, θ). On the other hand, by Remark 3.2 and Theorem 3.3
we have

ko ≤
∫ t

0

∫
RN
|u|p+θ−1 dxdτ

≤
∫ t

0

‖u(·, τ)‖p+θ−2
L∞(RN )

∫
RN
|u(·, τ)| dxdτ

= ‖uo‖L1(RN )

∫ t

0

‖u(·, τ)‖p+θ−2
L∞(RN )

dτ
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≤ γ‖uo‖
1+

p(p+θ−2)
β

L1(RN )

∫ t

0

τ−
N(p+θ−2)

β dτ

≤ γ2‖uo‖
1+

p(p+θ−2)
β

L1(RN )
t1−

N(p+θ−2)
β .

Note that N(p+θ−2)
β < 1, since θ < p

N . Moreover γ2 is a constant depending only on
N, p, ν, L. Therefore, condition (3.12) is implied by

γ2‖uo‖
1+

p(p+θ−2)
β

L1(RN )
t1−

N(p+θ−2)
β ≤ γ1t

− 1−ϑ
α r

p(1+α)
α ,

which is the same as

r
p(1+α)
α ≥ γ2

γ1

‖uo‖
1+

p(p+θ−2)
β

L1(RN )
t1+

1−ϑ
α −

N(p+θ−2)
β .

At this point we compute that

α

p(1 + α)

[
1 +

p(p+ θ − 2)

β

]
=
p− 2

β

and
α

p(1 + α)

[
1 +

1− ϑ
α
− N(p+ θ − 2)

β

]
=

1

β
.

Therefore, the last inequality turns into

r ≥ γ t
1
β ‖uo‖

p−2
β

L1(RN )
,rr (3.13)

for a constant γ = (γ2

γ1
)

α
p(1+α) depending only on N, p, ν, L, θ. We now fix θ ∈

(0,min{1, Np }); for instance, we can take θ = min{ 12 ,
N
2p}. This fixes γ in dependence on

N, p, ν, L. Since r ≥ Ro was arbitrary, we now choose

r = Ro + γ t
1
β ‖uo‖

p−2
β

L1(RN )
.

By the preceding arguments, this ensures that (3.12) is satisfied. Therefore, we have that
limi→∞ ki = 0. In turn, this implies that u ≡ 0 on (RN \ B2r) × [0, t]. This finishes the
proof of the theorem. �

Remark 3.5. The explicit solution of the p-Laplace equation shows that the estimates
obtained in this section are sharp. 2

4. ESTIMATES FROM BELOW
sec:est-below

In this section we derive estimates from below as stated in Theorem 1.2 to the solution
of (1.1) under the assumptions (1.2) and (1.3), by using the Barenblatt solution Bp of the
p-Laplacian.

Proof of Theorem 1.2. Throughout this proof we denote by c1 and c2 the corresponding
constants from Theorem 2.5 depending only on N, p, ν, L. Let Po = (xo, to) ∈ RN ×
(0,∞) such that u(Po) > 0. By a change of variable we define the function w : RN ×
(−1,∞)→ R by

w(x, t) :=
u
(
xo + t

1
p
o u(Po)

p−2
p x, to(t+ 1)

)
u(Po)

.

Straightforward computations show that w is nonnegative, w(0, 0) = 1, w ∈
C0((−1,∞);L2(RN ))∩Lploc(−1,∞;W 1,p(RN )) and thatw is a solution of the following
parabolic equation

∂tw = div Ã(x, t, w,Dw), in RN × [−1,∞),
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where Ã is defined by

Ã(x, t, w, ξ) :=
( to
u(Po)2

) p−1
p

A

(
xo+ t

1
p
o u(Po)

p−2
p x, to(t+1), u(Po)w,

(u(Po)
2

to

) 1
p

ξ

)
for (x, t) ∈ RN × (−1,∞), w ∈ R and ξ ∈ RN . It can be easily verified that Ã sat-
isfies assumptions (1.2) with the same parameters ν and L, while (1.3) is satisfied with
Lu(Po) max{(to/u(Po)

2)(p−1)/p, 1} instead of L.
Applying the intrinsic Harnack inequality from Theorem 2.5 to the function w in the

point (0, 0) and taking into account w(0, 0) = 1 we infer that

Harnack-1Harnack-1 (4.1) inf
B%
w
(
·, cp−22 %p

)
≥ 1

c1
, for any % > 0.

In particular, for Ro = Ro(N, p, ν, L) := (1
2c

2−p
2 )

1
p this implies

w(x, 12 ) > 1
c1
, for any x ∈ BRo .

We now let

vo :=

{
1
c1

in BRo ,

0 in RN \BRo .

and consider the initial value problem

equation-vequation-v (4.2)

{
∂tv = div Ã(x, t, v,Dv), in RN × [ 12 ,∞),

v(·, 12 ) = vo in RN .

Due to assumptions (1.2) and (1.3) there exists a nonnegative solution v ∈
C0([ 12 ,∞);L2(RN )) ∩ Lploc(

1
2 ,∞;W 1,p(RN )) to (4.2) with v ≤ w in RN × [ 12 ,∞).

By virtue of Remark 3.2 the initial mass is preserved, i.e. for any t ≥ 1
2 we have that

‖v(t)‖L1(RN ) = ‖vo‖L1(RN ) =
ωNR

N
o

c1
.

Moreover, from Theorem 3.4 we know that for any t ≥ 1
2 there holds

spt v(·, t) ⊂ BR(t) with R(t) := 2Ro + γ1(t− 1
2 )

1
β
(ωNRNo

c1

) p−2
β ,

for a constant γ1 = γ1(N, p, ν, L) and β := N(p− 2) + p. Therefore, for any t ≥ 1
2 there

exists at least one point xt ∈ BR(t), such that

v(xt, t) ≥
1

c1

( Ro
R(t)

)N
≥ γt−

N
β ,

with a constant γ = γ(N, p, ν, L) > 0. Since w ≥ v we also have that

w(xt, t) ≥ γt−
N
β , for any t ≥ 1

2 .

For t ≥ 1
2 we now apply the Harnack inequality from Theorem 2.5 to the function w in the

point (xt, t) to get

low-pointlow-point (4.3) γt−
N
β ≤ w(xt, t) ≤ c1 inf

B%(xt)
w
(
·, t+

(
c2

w(xt,t)

)p−2
%p
)
, for any % > 0.

In particular, for %̃(t) := [ 12 t
(w(xt,t)

c2

)p−2
]
1
p this implies

γt−
N
β ≤ c1 inf

B%̃(t)(xt)
w(·, 32 t).

In virtue of (4.3) we have %̃(t) ≥ %(t) := γ2t
1
β , for a constant γ2 depending only on

N, p, ν, L. Thus, the last inequality implies

w(x, 32 t) ≥ γ3t
−Nβ , for any t ≥ 1

2 and x ∈ B%(t)(xt),
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with a constant γ3 = γ3(N, p, ν, L) > 0. Letting

M :=
8Ro + 2γ1

(ωNRNo
c1

) p−2
β

γ2

,

we observe from the definitions of R(t) and %(t) that M%(t) ≥ 2R(t) for any t ≥ 1
2 , so

that B%(t)(xt) ⊃ BR(t). Applying Lemma 2.4 to the function (x, τ) 7→ w(x− xt, 32 t+ τ)

with (%, δ,M) replaced by (%(t),γ3t
−Nβ ,M), we infer that

w
(
x, 32 t+ koγ

p
2γ

2−p
3 t

)
≥ εoγ3t

−Nβ , for any t ≥ 1
2 and x ∈ BR(t),

where ko and εo denote the constants from Lemma 2.4 depending only onN, p, ν, L. After
a change of variable we can thus deduce the following result: there exist constants γ4,γ5 >
0 and γ6 ≥ 3

4 depending only on N, p, ν, L such that

w(x, t) ≥ γ4t
−Nβ , for any t ≥ γ6 and x ∈ BR̃(t),

where R̃(t) := γ5t
1
β . This proves the lower estimate for w we were looking for, for any

t ≥ γ6.
Our next aim is to obtain a similar estimate for times t < γ6 which are not too close to

0. First, we observe that (4.1) can be rewritten in the form

w(x, t) ≥ 1
c1
, for any t > 0 and x ∈ B(c2−p2 t)1/p .

Therefore, for fixed ε > 0, we get

w(x, t) ≥ 1
c1

(t+ 1)−
N
β , for any t ∈ [ε,γ6) and x ∈ BR̂(t).

where R̂(t) := c
(2−p)/p
2 ε

1
p−

1
β t

1
β .

Together, we have proved that for any ε > 0 there exist constants γ7 = γ7(N, p, ν,
L) > 0 and γ8 = γ8(N, p, ν, L, ε) > 0 such that

w(x, t) ≥ γ7Bp(x, t+ 1), for any t ≥ ε and x ∈ Br̃(t),

where r̃(t) = γ8t
1
β and Bp(x, t) is the Barenblatt solution of the p-Laplacian defined in

(1.5). Rescaling back from w to u, we find that

u(x, t) = u(Po)w

(
x− xo

t
1
p
o u(Po)

p−2
p

,
t− to
to

)
≥ γ7u(Po)Bp

(
x− xo

t
1
p
o u(Po)

p−2
p

,
t

to

)

holds true for any t ≥ to(1 + ε) and x ∈ Br(t)(xo) with r(t) := γ8u(Po)
p−2
p t

1
p
o [ t−toto ]

1
β .

This finishes the proof of Theorem 1.2. �

5. EXISTENCE OF FUNDAMENTAL SOLUTIONS
sec:existence

In this section we will use the L∞-estimates and the estimates on the support of the
solution in order to prove the existence of fundamental solutions claimed in Theorem 1.6.
However, the uniquesness of such a fundamental solution is an extremely more delicate
question and we will not go into this issue here (see, for instance [31] for a deeper discus-
sion on this topic).

Proof of Theorem 1.6. For k ∈ N we define the function ψk : RN → R by

ψk(x) :=

{
kN

ωN
, if |x| ≤ 1

k ,

0, if |x| > 1
k ,
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and note that ‖ψk‖L1(RN ) = 1 and ψk → δ0 as k → ∞ in the sense of measures. By
uk ∈ C0([0,∞);L2(RN )) ∩ Lploc(0,∞;W 1,p(RN )) we denote the solution of the initial
value problem

equationapp-equationapp- (5.1)

{
∂tuk = divA

(
x, t, uk, Duk

)
, in RN × (0,∞),

uk(·, 0) = ψk, in RN .

Note that the existence of uk is ensured by assumptions (1.2) and (1.3) and that uk is non-
negative. By the conservation of mass from Remark 3.2, we know that ‖uk(t)‖L1(RN ) =
‖ψk‖L1(RN ) = 1 for any t > 0. Moreover, Theorem 3.3 ensures that

exist-boundexist-bound (5.2) ‖uk(·, t)‖L∞(RN ) ≤ γt−
N
β , for any t > 0,

with β = N(p−2) +p and a constant γ = γ(N, p, ν, L). Furthermore, from Theorem 3.4
we obtain the following bound for the support of uk:

sptuk(t) ⊂ BRk(t), with Rk(t) := 1
k + γ1t

1
β ,

for any t > 0 and a constant γ1 = γ1(N, p, ν, L). Using uk as testing function in the weak
form (2.1) of (5.1)1 we infer the following energy estimate for uk:

energyenergy (5.3)
1

2

∫
RN×{t2}

|uk|2 dx+ ν

∫ t2

t1

∫
RN
|Duk|p dxdt ≤

1

2

∫
RN×{t1}

|uk|2 dx,

for any 0 < t1 < t2 <∞.
We now let 0 < ε < T < ∞ and consider the sequence {uk}∞k≥ko , where ko ∈ N

is chosen such that ko > 1
ε . By (5.2), the sequence {uk}∞k≥ko is uniformly bounded on

RN × [ε, T ]. Moreover, classical regularity results, cf. [13, §III.1, Theorem 1.1] ensure
that the sequence {uk}∞k≥k0 is also equi-Hölder continuous on RN × [ε, T ]. By Ascoli-
Arzelá’s theorem there exists a subsequence {uki}∞ki≥k0 converging uniformly to a Hölder-
continuous function u : RN × [ε, T ] → R with ‖u(t)‖L1(RN ) = 1 and sptu(t) ⊂ BR(t)

for any t ∈ [ε, T ], where R(t) := γ1t
1
β . By (5.3), the sequence {uk}∞k≥ko is bounded in

Lp(ε, T ;W 1,p(RN )) and therefore we also have u ∈ Lp(ε, T ;W 1,p(RN )) and Duk ⇀
Du weakly in Lp(RN × (ε, T )). Since ε and T were arbitrary, we conclude the existence
of a Hölder-continuous function u : RN × (0,∞) → R with u ∈ Lploc(0,∞;W 1,p(RN )),
‖u(t)‖L1(RN ) = 1 and sptu(t) ⊂ BR(t) for any t ∈ (0,∞). This ensures that u satisfies
properties i), iii) and iv) of Definition 1.5. It remains to prove that u satisfies propertiy ii).
Therefore, we have to pass to the limit k →∞ in the weak form of equation (5.1)1. Since
the mapping (u, ξ) 7→ A(x, t, u, ξ) is continuous for a.e. (x, t) ∈ RN × (0,∞) and the
vector field A satisfies assumptions (1.3), this can be achieved with the help of Minty’s
Lemma [26] (see also [8, Lemma 2.7] for a parabolic version). This proves that u is the
desired fundamental solution to (1.8) in the sense of Definition 1.5. �

6. POTENTIAL ESTIMATES
sec:pot-est

The aim of this section is to prove the estimates from above and from below for solutions
of (1.1) with the Dirac mass in RN as initial condition as claimed in Theorem 1.7, in the
same spirit as the estimates proved in [31] for singular parabolic equations.

Proof of Theorem 1.7. Let u be a fundamental solution of (1.8). The proof of the upper
and lower estimates is now divided into three steps.

Step 1. Estimates on the support of the fundamental solution. For % > 0 and n ∈ N we
define the function ψn,% : RN → R by

ψn,%(x) :=

{
u(x, 1

n ), if |x| ≤ %,

0, if |x| > %.
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By un,% ∈ C0([ 1n ,∞);L2(RN )) ∩ Lploc(
1
n ,∞;W 1,p(RN )) we denote the solution of the

initial value problem

equationappequationapp (6.1)

{
∂tun,% = divA

(
x, t, un,%, Dun,%

)
, in RN × ( 1

n ,∞),

un,%(·, 1
n ) = ψn,%, in RN .

Note that the existence of the solution un,% is ensured by assumptions (1.2) and (1.3).
Moreover, un,% is nonnegative, and un,% ≤ u in RN × ( 1

n ,∞) by the maximum principle.
By the conservation of the mass from Remark 3.2 we know that for any t ≥ 1

n there holds
‖un,%(t)‖L1(RN ) = ‖ψn,%‖L1(RN ). Hence, by iii) in Definition 1.5 we conclude that

L1=1L1=1 (6.2) lim
n→∞

‖un,%(t)‖L1(RN ) = 1, for any t > 0.

From Theorem 3.3 we know that

fund-boundfund-bound (6.3) ‖un,%(·, t)‖L∞(RN ) ≤ γ(t− 1
n )−

N
β ‖ψn,%‖

p
β

L1(RN )
≤ γ(t− 1

n )−
N
β

holds true for any t > 1
n with β = N(p − 2) + p and a constant γ = γ(N, p, ν, L).

Moreover, Theorem 3.4 ensures that for any t > 1
n we have

sptun,%(t) ⊂ BRn,%(t), with Rn,%(t) := 2%+ γ1t
1
β ‖ψn,%‖

p−2
β

L1(RN )
,

and a constant γ1 = γ1(N, p, ν, L). We note that, again by iii) in Definition 1.5, we have

Rn,%(t)→ R%(t) as n→∞, where R%(t) := 2%+ γ1t
1
β .

Now, let 0 < ε < T < ∞ and consider the sequence {un,%}∞n≥no , for % > 0 fixed,
where no ∈ N is chosen such that no > 1

ε . Then, by (6.3) the sequence {un,%}∞n≥no is
uniformly bounded on RN×[ε, T ]. Moreover, by classical regularity results, cf. [13, §III.1,
Theorem 1.1], the sequence {un,%}∞n≥no is also equi-Hölder continuous on RN×[ε, T ]. By
Ascoli-Arzelá’s theorem there exists a subsequence {unk,%}∞nk≥no converging uniformly to
a Hölder-continuous function w : RN × [ε, T ]→ R with w ≤ u and sptw(t) ⊂ BR(t) for
any t ∈ [ε, T ]. Moreover, from (6.2) we know that ‖w(t)‖L1(RN ) = 1 for any t ∈ [ε, T ].
Since also u is Hölder-continuous on RN×[ε, T ] with ‖u(t)‖L1(RN ) = 1 for any t ∈ [ε, T ],
we conclude that u = w in RN × [ε, T ), and hence sptu(t) ⊂ BR(t) for any t ∈ [ε, T ]. As
this estimate holds for any choice of ε and T , we get that sptu(t) ⊂ BR%(t) for any t > 0.
Finally, since the previous inclusion holds for any % > 0, we conclude that

sptusptu (6.4) sptu ⊂ Br(t), for any t > 0, where r(t) := γ1 t
1
β .

Step 2. Estimates from above. By the estimate on the support of u from Step 1 and by
Theorem 3.3, we find that

‖u(·, t)‖L∞(RN ) ≤ γ t−
N
β , for any t > 0,

and a constant γ = γ(N, p, ν, L). This proves the upper estimate u ≤ Bp,M2
for some

constant M2 > 0 depending only on N, p, ν, L.
Step 3. Estimates from below. Our aim in this final step is to prove a reverse type

inequality. Therefore, let t > 0 and a ∈ (0, 1) be a constant to be fixed later. From (6.4)
and the fact that

∫
RN u(x, at) dx = 1 we conclude that there exists a point xo ∈ Br(t) such

that

pot-lowerpot-lower (6.5) u(xo, at) ≥ ωNγN (at)−
N
β ,

where γ is the same constant as in (6.4). Now, we apply the Harnack estimates from
Theorem 2.5 with θ = c2

u(xo,at)
and %̃ = ( at

2θp−2 )1/p to get that

ωNγN (at)−
N
β ≤ c1 inf

B%̃(xo)
u
(
x, 32at

)
,
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where c1 and c2 denote the constants from Theorem 2.5 depending only on N, p, ν, L.
In particular, the choice of %̃ and (6.5) impliy that %̃ ≥ % := γ2(at)

1
β for a constant

γ2 = γ2(N, p, ν, L). Next, we let M := 2γ1

γ2
, ensuring that M% ≥ 2r(at) and hence

Br(at) ⊂ BM%(xo). We note that M depends only on N, p, ν, L. By εo and ko we de-
note the corresponding constants from Lemma 2.4 depending on N, p, ν, L,M and by the
dependencies of M mentioned before, εo and ko depend only on the data N, p, ν, L. The
application of Lemma 2.4 with this choice of M and δ := c−11 αnγ

N (at)−
N
β yields that

u
(
x, 32at+ koδ

2−p%p
)
≥ εoδ, for any x ∈ Br(at).

We compute
3
2at+ koδ

2−p%p =

[
3
2 + koγ

p
2

(αnγN
c1

)2−p]
at.

Therefore, choosing

a :=

[
3
2 + koγ

p
2

(αnγN
c1

)2−p]−1
∈ (0, 1),

depending on N, p, ν, L, we find that

u(x, t) ≥ γt−
N
β , for any x ∈ Br(at),

with a constant γ = γ(N, p, ν, L). Noting that Br(at) = γ1a
1
β t

1
β , this proves the lower

bound u ≥ Bp,M1 for some constant M1 > 0, depending only on N, p, ν, L. �

Remark 6.1. The previous estimates should be very useful to study the asymptotic behav-
ior of the fundamental solution. For the prototype equation see [25, 36, 37, 38]. 2

7. FINAL CONSIDERATIONS
sec:final

We point out that the estimates derived for the p-Laplacian type equations hold also
for the porous medium type equations. Let us consider the quasilinear degenerate porous
medium type problem

porousmediumporousmedium (7.1)

{
∂tu = divA(x, t, u,Dum), in RN × (0,∞),

w(·, 0) = δ0, in RN ,

where the the vector field A : RN × (0,∞)× R× RN → RN is a Caratheodory function
satisfies the following growth and ellipticity conditions:

ellipticporousellipticporous (7.2)

{
A(x, t, u, ξ) · ξ ≥ mν|u|m−1|ξ|2,

|A(x, t, u, ξ)| ≤ mL|u|m−1|ξ|,

for almost all (x, t) ∈ RN × (0,∞), all u ∈ R and ξ ∈ RN , for some constants 0 < ν ≤
L < ∞ and with m > 1. Moreover, A is required to be monotone in the variable ξ and
Lipschitz continuous in the variable |u|m−1u, in the sense that

monotoneporousmonotoneporous (7.3)

{ (
A(x, t, u, ξ1)−A(x, t, u, ξ2)

)
· (ξ1 − ξ2) ≥ 0,

|A(x, t, u1, ξ)−A(x, t, u2, ξ)| ≤ Λ
∣∣|u1|m−1u1 − |u2|m−1u2∣∣(1 + |ξ|),

for some Λ > 0 and for almost all (x, t) ∈ RN × (0,∞) and all u, ui ∈ R and ξ, ξi ∈
RN , i = 1, 2. The estimates derived in Theorems 1.2, 1.4, and 1.7, can be extended to
the solutions of (7.1) under the assumptions (7.2) and (7.3), since solutions to (7.1) satisfy
the main ingredients for our estimates, i.e. the expansion of positivity and the Harnack
inequality; see [25] and the references therein.

Moreover, these estimates hold also for the Fokker-Planck equation. Actually, let us
consider the following equation

EqFokkerPlanckEqFokkerPlanck (7.4) ∂tu = divA(x, t, u,Du) + div(x · u), in RN × (0,∞),
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where the operator A satisfies conditions (1.2) and (1.3). As proved by Carrillo-Toscani
[10] (see also [37] and references therein), equation (7.4) can be transformed to equation
(7.1) by the change of variables

w(x, t) = α(t)Nu(α(t)x, β(t)),

where α(t) = et and β(t) = 1
k (ekt − 1).
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