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Abstract 

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under 

way, in accordance with the 2015 Paris Agreement. However, most impact research on 

agriculture to date has focused on impacts of warming >2
o
C on mean crop yields, and many 

previous studies did not focus sufficiently on extreme events and yield interannual variability. 

Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis 

and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris 

Agreement range of global warming (1.5
o
C and 2.0

o
C warming above the pre-industrial 

period) on global wheat production and local yield variability. A multi-crop and multi-

climate model ensemble over a global network of sites developed by the Agricultural Model 

Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major 

rainfed and irrigated wheat cropping systems. Results show that projected global wheat 

production will change by -2.3% to 7.0% under the 1.5
 o
C scenario and -2.4% to 10.5% under 

the 2.0
 o
C scenario, compared to a baseline of 1980-2010, when considering changes in local 

temperature, rainfall and global atmospheric CO2 concentration, but no changes in 

management or wheat cultivars. The projected impact on wheat production varies spatially; a 

larger increase is projected for temperate high rainfall regions than for moderate hot low 

rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced 

than in cooler regions. Despite mostly positive impacts on global average grain yields, the 

frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield 

inter-annual variability will increase under both warming scenarios for some of the hot 

growing locations, including locations from the second largest global wheat producer –India, 

which supplies more than 14% of global wheat. The projected global impact of warming 

<2
o
C on wheat production are therefore not evenly distributed and will affect regional food 

security across the globe as well as food prices and trade. 

 

Keywords: Wheat production, Climate change, 1.5
o
C warming, Extreme low yields, Food 

security, Model-ensemble. 

 

Introduction 

The global community agreed with the Paris agreement to limiting global warming to 2.0
o
C, 

with the stated ambition to attempt to cap warming at 1.5
o
C (UNFCCC, 2015). While 

limiting the extent of climate change is critical, the more ambitious 1.5
o
C mitigation strategy 

will likely require considerable mitigation effort in the agricultural land use sector (Fujimori 
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et al., 2018), with some studies suggesting this would actually have more negative 

consequence for food security than climate change impacts of 2.0
o
C (Frank et al., 2017, 

Ruane et al., 2018a, van Meijl et al., 2018). However, these economic land use studies 

generally only consider the average effects of climate change and not the changes in yield 

variability and risk of yield failure, key factors constraining intensification efforts in many 

developing regions (Kalkuhl et al., 2016). Further such studies have generally not considered 

real cultivars nor typical production conditions. 

Agricultural production and food security is one of many sectors already affected by 

climate change (Davidson, 2016, Porter et al., 2014). Wheat is one of the most important 

food crops, providing a substantial portion of calories for about four billion people (Shiferaw 

et al., 2013). Wheat production systems’ response to warming can be substantial (Asseng et 

al., 2015, Liu et al., 2016, Rosenzweig et al., 2014), but restricted warming levels of < 2.0°C 

global warming of above pre-industrial are underrepresented in previous assessments (Porter 

et al., 2014). Thus, assessing the impact of 1.5 and 2.0°C global warming of above pre-

industrial conditions on crop productivity levels, including the potential benefits of associated 

carbon dioxide (CO2) fertilization, and the likelihood of extremely low yielding wheat 

harvests is critical for understanding the challenges of global warming for global food 

security. 

Several simulation studies have assessed the changes of global wheat production due to 

the changes in climate and CO2 concentration (Asseng et al., 2015, Asseng et al., 2018, 

Rosenzweig et al., 2014). However, previous studies have almost all considered more 

extreme warming and most of current studies investigated the impact of global warming 

>2.0
o
C, which means that previous impact assessments lacked details for < 2

o
C of warming. 

Also many previous studies did not focus sufficiently on extreme events and yield interannual 

variability (Challinor et al., 2014, Porter et al., 2014). Therefore, in terms of food security, it 

is important to analyze the effect of the new 1.5
o
C and 2.0

o
C warming scenarios on the 

interannual variability of crop production. In particular, studies on impact of 1.5°C and 2.0
o
C 

global warming on wheat production at a global and regional scale are missing.  

Process-based crop simulation models, as tools to quantify the complexity of crop growth 

as driven by climate, soil, and management practice, have been widely used in climate 

change impact assessments at different spatial scales (Challinor et al., 2014, Chenu et al., 

2017, Ewert et al., 2015a, Porter et al., 2014), including multi-model ensemble approaches 

(Asseng et al., 2015, Asseng et al., 2013, Wang et al., 2017). The multi-model ensemble 

approach has been proven to be a reliable method in reproducing the main effects  anticipated 
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for climate chance when simulations are compared with field-experimental observations 

(including changes in temperature, heat events, rainfall, atmospheric CO2 concentration [CO2] 

and their interactions) (Asseng et al., 2015, Asseng et al., 2013, Asseng et al., 2018, Wallach 

et al., 2018, Wang et al., 2017).  

 

Here, we applied a global network of 60 representative wheat production sites and an 

ensemble of 31 crop models (Asseng et al., 2015; Asseng et al., 2018) developed by the 

Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Team 

(Rosenzweig et al., 2013) with climate scenarios from five Global Climate Models (GCMs) 

from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) 

project (Mitchell et al., 2017, Ruane et al., 2018b) to evaluate the impacts of the 2015 Paris 

Agreement range of global warming (1.5
o
C and 2.0

o
C warming above the pre-industrial 

period, referred hereafter as ‘1.5 scenario’ and ‘2.0 scenario’) on global wheat production and 

yield interannual variability. We hypothesize that the mean impacts of warming may not 

differ greatly between the two scenarios as losses due to accelerated development are 

compensated by gains from elevated CO2. However, we expect that the higher frequency of 

extreme events under 2.0°C (Ruane et al, 2018b) would result in greater damages of heat and 

drought stress, greater inter annual variability and higher risk of yield failures. Such 

information could supply important nuance in understanding the implications of the two 

levels of warming and associated mitigation efforts of the two warming scenarios. 

 

Materials and Methods 

Model inputs for global simulations 

An ensemble of 31 wheat crop models was used to assess climate change impacts for 60 

representative wheat growing locations developed by the AgMIP-Wheat team (Asseng et al., 

2015, Asseng et al., 2018, Wallach et al., 2018). All models in the ensemble were calibrated 

for the phenology of local cultivars and used site-specific soils and crop management. The 

multi-model ensemble used here has been tested against observed field data and showed 

reliable response to changing climate in several previous studies, including responses of 

model ensemble to elevated CO2, post-anthesis chronic warming and different heat shock 

treatments during grain filling (Asseng et al., 2018, Wallach et al., 2018). Ruane et al. (2016) 

and Hoffman et al. (2015) showed that a multi-model ensemble can also reproduce some of 

observed seasonal yield variability. The 60 locations are from key wheat growing regions in 

the world (Table S1). Locations 1 to 30 are high rainfall or irrigated wheat growing locations 
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representing 68% of current global wheat production. These locations were simulated without 

water or nitrogen limitation. Details about these locations can be found in Asseng et al. 

(2015). Locations 31 to 60 are low rainfall locations with average wheat yield < 4 t ha
-1

 and 

represent 32% of current global wheat production (Asseng et al., 2018). 

Thirty-one wheat crop models (Table S2) within AgMIP were used for assessing impacts 

of 1.5
o
C and 2.0

o
C global warming above pre-industrial time on global wheat production 

(Asseng et al., 2018). The 31 wheat crop models considered here have been described in 

publications. All model simulations were executed by the individual modeling groups with 

expertise in using the model they executed. All modeling groups were provided with daily 

weather data, basic physical characteristics of soil, initial soil water and N content by layer 

and crop management information. One representative cultivar, either winter or spring type, 

was selected for each location after consulting with local experts or literature. Different wheat 

types may be used at different locations in one country (e.g. China, Russia and U.S.A), to 

cover some of the possible heterogeneity in cultivar use (Table S1). Observed local mean 

sowing, anthesis, and maturity dates were supplied to modelers with qualitative information 

on vernalization requirements and photoperiod sensitivity for each cultivar. Observed sowing 

dates were used and cultivar parameters calibrated with the observed anthesis and maturity 

dates by considering the qualitative information on vernalization requirements and 

photoperiod sensitivity. More details about model inputs are provided in the supplementary 

methods and in Asseng et al. (2018). 

 

Future climate projections 

Baseline (1980-2010) climate data for each wheat modeling site comes from the 

AgMERRA climate dataset, which combines observations, reanalysis data, and satellite data 

products to provide daily climate forcing data for agricultural modeling (Ruane et al., 2015a). 

Climate scenarios here are consistent with the AgMIP Coordinated Global and Regional 

Assessments (CGRA) 1.5 and 2.0 ºC World study (Rosenzweig et al., 2018; Ruane et al., 

2018a, 2018b), utilizing the methods summarized below and in the supplementary material 

and fully described by Ruane et al. (2018b). Climate changes from large (83-500 member for 

each model) climate model ensemble projections of the +1.5 and +2.0ºC scenarios from the 

Half a Degree Additional Warming, Prognosis and Projected Impacts project (HAPPI) 

(Mitchell et al., 2017) are combined with the local AgMERRA baseline to generate driving 

climate scenarios from five GCMs [MIROC5, NorESM1-M, CanAM4 (HAPPI), CAM4-

2degree (HAPPI), and HadAM3P] for each location (Ruane et al., 2018b). Only five GCMs 
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here were used due to data availability at the time the study was conducted. Specifically, 

HAPPI ensemble changes in monthly mean climate, the number of precipitation days, and the 

standard deviation of daily maximum and minimum temperatures are imposed upon the 

historical AgMERRA daily series using quantile mapping that forces the observed conditions 

to mimic the future distribution of daily events (Ruane et al., 2015b; Ruane et al., 2018b). 

This results in climate scenarios that maintain the characteristics of local climate while also 

capturing major climate changes. As in previous AgMIP assessments, solar radiation changes 

from GCMs introduce uncertainties that can at times overwhelm the impact of temperature 

and rainfall changes, and thus were not considered here other than small radiation effects 

associated with changes in the number of precipitation days (Ruane et al., 2015b).  

HAPPI anticipates atmospheric [CO2] for 1.5 scenario (1.5°C above the 1861-1880 pre-

industrial period = ~0.6°C above current global mean temperature) (Morice et al., 2012) and 

2.0 scenario (2.0°C above pre-industrial = ~1.1°C above current global mean temperature) at 

423 ppm and 487 ppm ([CO2] in the center of the 1980-2010 current period is 360 ppm). 

Uncertainty around these CO2 levels from climate models’ transient and equilibrium climate 

sensitivity is not explored here, although [CO2] for 2.0°C warming may be slightly 

overestimated (Ruane et al., 2018b).  

This large climate × crop model setup enabled a robust multi-model ensemble estimate 

(Martre et al., 2015, Wallach et al., 2018) as well as analysis of spatial heterogeneity (Liu et 

al., 2016) and inter-model uncertainty. There were 11 treatments (baseline, five GCMs for 

1.5, and five GCMs for 2.0 scenario) simulated for 60 locations and 30 years (see additional 

detail on climate scenarios in Supplemental Material and in Ruane et al., [2018b]). 

 

Aggregation of local climate change impacts to global wheat production impacts 

Simulation results were up-scaled using a stratified sampling method, a guided sampling 

method to improve the scaling quality (van Bussel et al. 2016), with several points per wheat 

mega region when necessary (Gbegbelegbe et al. 2017). During the up-scaling process, the 

simulation result of a location was weighted by the production the location represents as 

described below (Asseng et al. 2015). Liu et al. (2016) recently showed that stratified 

sampling with 30 locations across wheat mega regions resulted in similar temperature impact 

and uncertainty as aggregation of simulated grid cells at country and global scale. And Zhao 

et al., 2016 indicated that the uncertainty due to sampling decreases with increasing number 

of sampling points. We therefore doubled the 30 locations from Asseng et al. (2015) to 60 
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locations (Supplementary Table S1) to cover contrasting conditions across all wheat mega 

regions. 

Before aggregating local impacts at 60 locations to global impacts, we determined the 

actual production represented by each location following the procedure described by Asseng 

et al. (2015). The total wheat production for each country came from FAO country wheat 

production statistics for 2014 (www.fao.org). For each country, wheat production was 

classified into three categories (i.e., high rainfall, irrigated, and low rainfall). The ratio for 

each category was quantified based on the Spatial Production Allocation Model (SPAM) 

dataset (https://harvestchoice.org/products/data). For some countries where no data was 

available through the SPAM dataset, we estimated the ratio for each category based on the 

country-level yield from FAO country wheat production statistics. The high rainfall 

production and irrigated production in each country were represented by the nearest high 

rainfall and irrigated locations (locations 1 to 30). Low rainfall production in each country 

was represented by the nearest low rainfall locations (locations 31 to 60).  

For each climate change scenario, we calculated the absolute regional production loss by 

multiplying the relative yield loss from the multi-model ensemble median (median across 31 

models and five GCMs) with the production represented at each location. Global wheat 

production loss was determined by adding all regional production losses, and the relative 

impacts on global wheat production was calculated by dividing simulated global production 

loss by historical global production. Similar steps with global impacts were used for 

calculating the impacts on country scale impacts, except that only the local impacts from 

corresponding locations in each country were aggregated to the country impacts. 

We also tested the significance of the differences in the estimated impacts and the 

changes of simulated yield inter-annual variability between the two warming scenarios. More 

detailed steps about impact aggregation and significance tests can be found in the 

supplementary methods. 

 

Environmental clustering of the 60 global locations 

The 60 global wheat growing locations were clustered in order to analyze the results by 

groups of environments with similar climates (Fig. S5). A hierarchical clustering on principal 

components of the 60 locations was performed based on four climate variables for 1981-
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2010: the growing season (sowing to maturity) mean temperature, the growing season 

cumulative evapotranspiration, the growing season cumulative solar radiation, and the 

number of heat stress days (maximum daily temperature > 32°C) during the grain filling 

period. All data were scaled (centered and reduced to make the mean and standard deviation 

of data to be zero and one, respectively) prior to the principal component analysis.  

After determining the wheat yield impacts for each of the 1.5 and 2.0°C scenarios, yield 

variability for both scenarios was assessed, including the extreme low yield probability and 

yield interannual variability. For each location, we determined the yield threshold of the 

bottom 5% from the yield series for the baseline period and calculated the cumulative 

probability series of simulated yields under 1.5 and 2.0 °C scenarios. Next, the probability of 

occurrence for extreme low yield for each scenario was assessed as the corresponding 

cumulative probability of the yield threshold of the bottom 5% from baseline period from the 

cumulative probability series. Interannual yield variability was quantified as the coefficient of 

variation of simulated yields over the 30 year simulation period. In all cases, the multi-model 

median from the 31 models was employed. 

 

Results  

Impacts of 2015 Paris Agreement compliant warming  

Compared with the present baseline period (1980 to 2010; 0.67 ºC above pre-industrial) 

the HAPPI scenarios gave projected temperature increases of 1.1
o
C to 1.4

o
C [25% to 75% 

range of 60 locations] for the 60 wheat-growing locations spread over the globe under the 1.5 

scenario, and 1.6
o
C to 2.0

o
C under the 2.0 scenario (Fig. S1). Temperature increase during 

the wheat growing season (sowing to maturity) typically warm about 0.5°C less than the 

annual mean under both warming scenarios: 0.7
o
C to 1.0

o
C [25% to 75% range of 60 

locations] under the 1.5 scenario, and 1.0
o
C to 1.5

o
C under 2.0 scenario (Fig. S2). In the 

HAPPI scenarios, annual rainfall is projected to increase in most of the 60 locations under 

both warming scenarios (Fig. S3) (Ruane et al., 2018b). 

Based on baseline climate conditions (1980 to 2010), we categorized the 60 wheat 

production sites into three environment types (temperate high rainfall, moderately hot low 

rainfall, and hot irrigated) (Fig. S5). Across these environments, increasing temperatures 

reduce wheat crop duration due to accelerated phenology (Fig.S22a). As a consequence, the 

crop duration declines with future climate change scenarios compared with the baseline. For 

most of the locations from temperate high rainfall and moderately hot low rainfall regions, 

simulated cumulative growing season evapotranspiration (ET) and growing season rainfall 
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decreased slightly under the 1.5 and 2.0 scenario (Fig. S20b an S21b). In hot irrigated 

regions, simulated cumulative evapotranspiration decreased (in average by -16 and -25 mm) 

under both warming scenarios during the crop duration (Fig. S20b), while simulated 

cumulative rainfall increased slightly (usually less than 10 mm) in more than half of the 

locations (Fig. S21b) due to projected increase in annual rainfall (Fig. S3). The decrease in 

cumulative ET was mostly due to shorter crop duration (in average by -4.9 and -7.2 days) due 

to warming, as shown with significant negative relationship between growing season 

cumulative ET and crop duration in all hot irrigated locations (Fig. S23). For example, 

cumulative ET decreased by about 2.2 mm with a shortening of the growing season by one 

day in Aswan, Egypt. Heat stress days (daily maximum air temperature > 32
o
C) (Porter and 

Gawith, 1999) during grain filling already occurs in almost all regions, but their frequency 

increases under both warming scenarios, particularly in moderately hot low rainfall (in 

average by 1.0 and 1.6 days) and hot irrigated locations (in average by 1.8 and 2.5 days; Fig. 

S22b).  

 

Simulated impacts on wheat yields for the 1.5 and 2.0 scenario (Fig.1) are negatively 

correlated with baseline crop season mean temperature (Fig.2a), suggesting that cooler 

regions will benefit more from moderate warming. For example, most locations with crop 

growing season mean temperature (sowing to maturity) < 15
o
C will have mostly positive 

yield changes, while for growing-season mean temperature > 15
o
C, any increase in 

temperature will reduce grain yields (Fig.2a) despite the growth-stimulation from elevated 

[CO2]. Generally, regions which produce the largest proportion of wheat globally are 

projected to have small positive yield changes under both scenarios, but there are exceptions 

such as India, which is currently the world’s second largest wheat producer (Fig. 2).  

The projected changes in growing season climate variables have a significant impact on 

simulated grain yield under the two warming scenarios at most global locations. As shown in 

Table S4, a significant negative relationship between simulated grain yield and growing 

season mean temperature and the number of heat stress days during grain filling were found 

at most locations, especially for hot irrigated locations, while a significant positive 

relationship between simulated grain yields and growing season cumulative ET, solar 

radiation and rainfall (only for rainfed locations) were found in almost all locations. For 

example, wheat grain yield at Griffith, Australia was projected to decrease by 0.44 t ha
-1

 per 

°C increase in growing season mean temperature, and decrease by 0.067 t ha
-1

 per day 

increase in heat stress days, but increase by 0.008 t ha
-1

 per mm increase in growing season 
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cumulative ET. In addition, shortening the growing season duration was also found to 

negatively impact simulated wheat yield significantly. For example, wheat yield was 

projected to decrease by 0.1 t ha
-1

 per day reduction in growing season duration, in Indore, 

India. Growing season rainfall also showed significant positive effects on projected grain 

yield in most rainfed locations (Table S4), however, projected growing season rainfall 

declined in most locations, except for small rainfall increases in a few hot irrigated locations 

(Fig. S21b).  

 

When scaling up from the 60 locations, we found that wheat yields in about 80% of 

wheat production areas will increase under 1.5 scenario, but usually by less than 5% (Fig. 3). 

Largest positive impacts under 1.5 scenario are projected for USA (6.4%), the third largest 

wheat producer in the world. Loss in wheat yields under the 1.5 scenario is projected mostly 

for Central Asia, Africa and South America (Fig. 3), regions with generally high growing 

season temperatures, shorter crop duration, and more heat-stress days during grain filling 

(Fig. S14). Further yield declines in these countries are expected with the 2.0 scenario, 

including in large wheat producing countries like India (-2.9%; Fig. 3). 

Analysis for the three environment types projects a larger yield increase for temperate 

high rainfall regions (3.2% and 5.5% under 1.5 and 2.0 scenario, respectively) than for 

moderately hot low rainfall (2.1% and 2.4%) but a decline in hot irrigated regions (-0.7% and 

0.02%; Fig. S9 and Fig.S10). These positive values contrast with the negative trend found 

across a meta-analysis, with a large uncertainty range, with local temperature change of 1.5 to 

2.0
o
C, despite positive effects from elevated [CO2] (Challinor et al., 2014).  

Up-scaled to the globe, wheat production on current wheat-producing areas is projected 

to increase by 1.9% (-2.3% to 7.0%, 25
th

 percentile to 75
th

 percentile) under the 1.5 and by 

3.3% (-2.4% to 10.5%) under the 2.0 scenario (Fig. 4a and Fig.S8a). The differences in 

estimated ensemble median impacts between the two warming levels may be small, but 

significant, as indicated by a statistical test for the model ensemble median of the global 

impacts (P<0.001). Under the Representative Concentration Pathway 8.5 (RCP8.5) for the 

2050s, with a global mean temperature increase of 2.6
o
C above pre-industrial, global 

production grain yields are suggested to increase by 2.7% (Asseng et al., 2018), highlighting 

the non-linear nature of climate change impact.  
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When up-scaling the impact for different wheat types (Fig.S26), the impact on global 

wheat production of the multi-model medians were 0.76% and 1.26% for spring wheat types 

(planted at 39 global locations) under 1.5 and 2.0 scenario but 3.2% and 5.7% for winter 

wheat types (planted at 21 global locations), respectively. 

 

More variable yields in hot and dry areas  

While the 30-year average yield is projected to increase under the 1.5 and 2.0 scenario 

across many regions, the risk of extremely low yields may increase, especially in some of the 

hot-dry locations. The probability of extreme low yields (yields lower than the bottom 5-

percentile of the 1981-2010 distribution) will increase significantly in more than half of the 

moderately hot low rainfall locations under both scenarios (Fig. 5 and Fig.S19a). For the hot 

irrigated locations, the probability of extreme low yields will increase significantly in about 

half of the locations (Fig.S13 and Fig.S19a). In some hot irrigated locations, the likelihood of 

extreme low yields will increase by up to 5-times, that is from 5% under baseline to 11% and 

22% under 1.5 warming and 2.0 warming scenario, respectively, e.g. in Wad Medani from 

Sudan. But in other hot irrigated locations (e.g. Maricopa in U.S.A., Aswan in Egypt, and 

Balcarce in Argentina) and most of temperate high rainfall locations, the extreme low yield 

probability will decrease or remain unchanged for the two warming scenarios (Fig.S11 and 

Fig.S19a). The likelihood of extreme low yields will increase significantly from 1.5 warming 

to 2.0 warming scenario only at three locations (from 11% to 22% at Wad Medani in Sudan, 

from 14% to 15% at Swift Current in Canada, and from 7% to 11% at Bloemfontein in South 

Africa), and remain to be same at all other locations. 

To determine the reasons for the changes in extreme low yield probability, relationships 

between changes in growing season variables and changes in extreme low yield probability 

were quantified with linear regressions. As shown in Fig. S24, only growing season mean 

temperature, maximum temperature, minimum temperature, heat stress days, and cumulative 

rainfall (only in rainfed locations) were found to be significantly related to changes in 

extreme low yield probability (all P < 0.05), but with relatively poor correlation (r between 

0.26 and 0.61). Among these variables, growing season maximum temperature explained 

most of the changes in extreme low yield probability, with r= 0.54 and 0.61 for the 1.5 and 

2.0 scenarios, respectively (Fig. S24). The probability of extreme low yields was projected to 

increase by 10% and 9% per °C increase in growing season maximum temperature under 1.5 

and 2.0 scenarios, respectively. 
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Under 1.5 warming scenario, the inter-annual variability of simulated grain yields was 

projected to increase significantly in only few locations (mostly in hot irrigated locations, 

Fig.S19b), while moderate warmings of 2.0°C above pre-industrial is projected to increase 

the inter-annual variability of simulated grain yields in about 50% of hot irrigated locations 

and parts of moderately hot low rainfall locations significantly, including Sudan, Bangladesh, 

Egypt, and India (Fig. 6). For example, inter-annual variability of simulated grain yields is 

projected to increase by 23% to 35% in Wad Medani from Sudan under 1.5 and 2.0 scenario, 

respectively. The inter-annual variability of simulated grain yields will increase significantly 

from 1.5 warming to 2.0 warming scenario at five moderately hot low rainfall locations and 

four hot irrigated locations and remain to be same at all other locations. For example, the 

inter-annual variability of simulated grain yields will increase 20% and 27% at Bloemfontein 

in South Africa under 1.5 and 2.0 scenario, respectively. No significant changes in the inter-

annual variability of simulated grain yields were found in most of the temperate high rainfall 

locations under two warming scenarios (Fig. 6 and Fig. S19b).  

The relationship between changes in growing season variables (including growing season 

duration, cumulative ET, cumulative solar radiation, cumulative rainfall, mean temperature, 

maximum temperature, minimum temperature, and heat stress days) and changes in yield 

interannual variability (CV) were also quantified with linear regressions. As shown in Fig. 

S25, only growing season duration, cumulative ET, and heat stress days were statistically 

significantly related to changes in yield interannual variability (P < 0.05), but with relatively 

poor correlation coefficients (0.24 < r < 0.38). Among these variables, growing season heat 

stress days explains most of the changes in yield interannual variability, with r =0.38 and 

0.34 for the 1.5 and 2.0 scenarios, respectively (Fig. S25). Yield interannual variability was 

projected to increase by 2.6% and 2.0% per day increase in growing season heat stress days 

under the 1.5 and 2.0 scenarios, respectively. 

 

Discussion  

With the latest climate scenarios from the HAPPI project, we used a multi-crop and 

multi-climate model ensemble over a global network of sites to represent major rainfed and 

irrigated systems to assess global wheat production and local yield interannual variability 

under 1.5
o
C and 2.0

o
C warming above preindustrial, which considered changes in local 

temperature, rainfall and global [CO2]. Under the two warming scenarios, climate impact on 

wheat yield can be largely attributed to elevated [CO2], shorter wheat growth duration due to 

increasing growing season temperature and a decrease in cumulative evapotranspiration in 
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most of the 60 locations (Table S4 and Fig. S20-22). In addition, even with restricted 

warming levels, increasing weather variability also negatively impact projected wheat 

production (Table S4 and Fig. S22). However, considering the uncertainty related to [CO2] in 

the 1.5 and 2.0°C scenarios (see below), the small differences in yield impact for the two 

scenarios do not allow concluding on the putative benefits of a limitation of global warming 

to 1.5°C compared with 2.0°C for global wheat yield production. 

 

Changes in atmospheric CO2 concentration drive the impacts of 1.5 and 2.0°C scenarios 

on wheat yield 

Using four independent methods (Liu et al., 2016, Zhao et al., 2017), global wheat yields 

had been previously projected to decline by an average of -5.0% for each increase in 1.0
o
C 

global warming, but in the absence of concomitant atmospheric [CO2] increase. Similar 

findings have been reported for various typical wheat cultivation regions in Europe when 

applying a systematic climate sensitivity analysis (Pirttioja et al., 2015). In a sensitivity 

analysis with the same crop model ensemble for the same 60 representative locations, global 

wheat production could increase by about 15.8% when CO2 increased from 360ppm to 

550ppm. The two HAPPI scenarios include 423 ppm and 487 ppm [CO2] and the impacts 

from CO2 fertilization under the two scenarios are a proportion of the impacts with those for 

550ppm [CO2]. When assuming a linear response of wheat yield to elevated CO2 (Amthor, 

2001), the impacts of elevated CO2 under 1.5 and 2.0 scenarios would be 5.2% and 10.5%, 

respectively, if nitrogen was not limiting. As the overall impacts of climate change under 1.5 

and 2.0 scenarios were 1.9% and 3.3%, thus, we can conclude that most of the projected 

increases in global wheat production under the 1.5 and 2.0 scenario can be attributed to a CO2 

fertilization effect (Fig. 4b and Fig.S8b). This conclusion is consistent with field observations 

in a range of growing environments (Kimball, 2016, O'Leary et al., 2015), and with a rate of 

0.06% yield increase per ppm [CO2] derived from a meta-analysis of simulation results 

(Challinor et al., 2014). The CO2 fertilization effect is often found to dominate model-based 

projections of future global wheat productivity (Rosenzweig et al., 2014, Ruiz-Ramos et al., 

2017, Wheeler and von Braun, 2013), but with substantial uncertainties and regional 

differences (Deryng et al., 2016, Kersebaum and Nendel, 2014, Müller et al., 2015). 

The relatively low warming levels of the HAPPI scenarios (0.6 and 1.1°C above 1980-

2010 global mean temperature) but high increases in [CO2] suggests that CO2 fertilization 

effects also dominate here (Kimball, 2016, O'Leary et al., 2015), but could be less, if nitrogen 

is limiting growth. However, the impacts here could be slightly overoptimistic with estimates 
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of heat stress, as most of crop models do not account for well-established canopy warming 

under elevated CO2 (Kimball et al., 1999, Webber et al., 2018). Also, Schleussner et al. 

(2018) have shown that CO2 uncertainties at 1.5°C and 2.0°C, which is not considered here, 

are comparable to the effect of 0.5°C warming increments. This indicated possible 

differences in impacts on wheat production in the simulated 1.5°C or 2.0°C worlds 

(Seneviratne et al. 2018), as a transient 1.5°C or 2.0°C world may see higher CO2 

concentrations because of the lagged response of the climate system (peak warming around 

10 years after zero CO2 emissions are reached) and differences in aerosol loadings (Wang et 

al., 2017). Ruane et al. (2018b) also noted uncertainties related to CO2 impacts in the 1.5°C 

and 2.0°C worlds, as well as peculiarities in the definition of CO2 concentrations in HAPPI. 

CO2 is also identified as the primary cause of increases between 1.5°C and 2.0°C worlds in 

Rosenzweig et al. (2018). Our study focused on stabilized 1.5 and 2.0°C worlds rather than 

the transient pathways that get us there, which will include gradually increasing CO2 

concentrations even as some scenarios include an overshoot in global mean temperatures. 

Elevated CO2 concentrations are expected to have a particularly strong initial effect, although 

the benefits will saturate as CO2 concentrations increase in RCP8.5 or other higher emission 

pathways. 

 

The interannual yield variability and the risk of extreme low yields will increase in a 1.5 

and 2.0°C world 

Unlike the simulated grain yield impacts, aggregating the simulated yield variability from 

representative locations to regions or globally with a multi-model ensemble approach has not 

been tested with observed data. Different aggregation method may result in different 

characteristics of climate-forced crop yield variance at different spatial scales. Therefore, the 

simulated yield variability at local scale were not aggregated to region or global scale.  

The fraction of yield interannual variability accounted for by weather-forced yield 

variability may vary substantially depending on the region (Ray et al., 2015: Ruane et al., 

2016); therefore, comparing simulated and observed yield interannual yield variability is 

critical to analyze changes in yield variability. However, there are no time series data which 

would allow a scientific model-observation comparison for all the 60 global locations and 

even for regions where historical yield records are available, they usually do not allow an 

evaluation of model performance due to missing information on sowing date, cultivar use, 

crop management of fertilizer N and irrigation, soil characteristics, initial soil conditions and 

bias in the reported yields (Guarin et al., 2018). While for these reasons, it is not possible for 
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us to project meaningfully how interannual yield variability will change at regional or global 

scale, our study supplies important information on how the additional half degree of warming 

will impact on yield variability, considering the parallel changes in mean yield levels 

associated with the combined warming and elevated CO2 levels. This information is urgently 

required by national governments and international policy makers in assessing the relative 

risks and costs of mitigating to 1.5°C warming versus 2.0°C warming. 

Here we compared our simulated interannual yield variability for the 60 global locations 

with the estimated global interannual yield variability from statistic yield data in Ray et al. 

(2015) (Fig. S27) and we found that the spatial patterns of interannual yield variability were 

similar for the two studies. For example, both studies showed interannual yield variability 

and estimated climate-induced yield variability were high at locations in southern Russia, 

Spain and Kazakhstan, and were small at locations in western Europe, India and some 

locations in China. Climate driven yield variability is generally higher in more intensive 

cropping systems, and many regions around the world now actively pursue intensification of 

currently low-yielding smallholder cropping systems. Therefore, our current projections of 

estimates of climate driven yield variability under the two warming scenarios may be 

conservative, if some regions will experience intensification and climate change 

simultaneously. 

Extreme low yielding seasons can impact the livelihood of many farmers (Morton, 2007), 

but also disturb global markets (e.g. Russian heat wave in 2010) (Welton, 2011), or even 

destabilize entire regions of the world (e.g. Arab Spring in 2011) (Gardner et al., 2015). 

Climate scenarios used for this study included monthly mean changes and shifts in the 

distribution of daily events within a season but did not include changes in interannual 

variability; these changes are therefore largely the result of warmer average conditions 

pushing wheat closer to damaging biophysical thresholds. A recent study based on the HAPPI 

1.5 and 2.0 scenarios also identified an increased frequency of interannual drought conditions 

in regions with declining or constant total precipitations (Ruane et al., 2018b), although 

skewness toward drought in the interannual distribution was small and highly geographically 

variable. 

Despite mostly positive impacts on average yields, projections suggest that the frequency 

of extreme low yields will increase under both scenarios for some of the hot growing 

locations (for both low rainfall and irrigated sites), including India, that currently supply 

more than 14% of global wheat (FAO, 2014). Similarly, an increase in the frequency of crop 

failures has been shown with 1.5
o
C global warming above the pre-industrial period for maize, 
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millet and sorghum in West Africa (Parkes et al., 2017). On the other hand, Faye et al. (2018) 

did not detect a change in yield variability for the same three crops in West African between 

the 1.5 and 2.0°C warming scenarios using HAPPI climate data. In our study, the change in 

climate extremes occurs due to projected shifts in mean temperatures (which bring wheat 

cropping systems closer to heat stress thresholds) as well as shifts in the distribution of daily 

temperatures, which can increase or decrease the frequency of future heat waves. Coupled 

changes in projected precipitation may also exacerbate drought and heat stress yield damage. 

 

Impact of 1.5 and 2.0°C scenarios on wheat production and food security 

Wheat yields have been stagnating in many agricultural regions (Brisson et al., 2010, Lin 

and Huybers, 2012, Ray et al., 2012). Shifting agriculture pole-wards has been considered 

elsewhere, but might not be always possible or feasible for adapting to increasing temperature 

due to land use and land suitability constrains. Measures like change in sowing date and 

irrigation management, improved heat- and drought-resistant cultivars, reduced trade barriers, 

and increased storage capacity (Schewe et al., 2017) will be necessary to adapt to changes in 

temperature and precipitation for improving food security. However, since the largest 

estimated yield losses and increased probability of extreme low yields occur in tropical areas 

(that is, in hot environment with low temperature seasonality) and under irrigated systems, 

the above mentioned measures would probably not be sufficient. Therefore, it will be 

challenging to find effective incremental solutions and might need to consider transformation 

of the agricultural systems in some regions (Asseng et al., 2013, Challinor et al., 2014). In 

this study, the extreme low yield probability and inter-annual yield variability of simulated 

yield were projected to increase significantly in parts of hot irrigated locations and 

moderately hot low rainfall locations, and further increase could be expected from 1.5 

scenario to 2.0 scenario, especially for inter-annual yield variability. This indicated that more 

efforts will be needed for adaptation for food security in these locations. 

 

Uncertainties 

Here, we up-scaled the climate warming impacts from 60 representative global locations 

to country and globe scales, following the approach by Asseng et al. (2015). The 60 locations 

were selected with local experts to be representative of each region and high-quality model 

inputs for each location were obtained (Supplementary Table S1). Liu et al. (2016) and Zhao 

et al. (2017) recently showed that up-scaled simulations for representative locations, as 
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suggested by van Bussel et al. (2015), have similar temperature impacts to 0.5
o
 x 0.5

o
 global 

grid simulations or statistical approaches. The projected impact for spring wheat reported 

here is similar to that reported by Iizumi et al. (2017), who reported global spring wheat 

production to increase by 1.43%-1.60% and 1.43%-1.61% under 1.5 and 2.0 scenarios using 

a global gridded simulation approach under different Shared Socioeconomic Pathways.  

To analyze risks for the extreme low yields, we used a well-tested multi-model ensemble 

(Asseng et al., 2013, 2015, Asseng et al., 2018, Ruane et al., 2016, Wallach et al., 2018) 

instead of individual wheat models, as the model ensemble has shown to reproduce observed 

yields and observed yield interannual variability. In Asseng et al. (2015), the multi-model 

ensemble median reproduced observed wheat yield under different warming treatments, with 

wheat growing season temperature ranging from 15
o
C to 32

o
C, including extreme heat 

conditions. Asseng et al. (2018) recently demonstrated that a multi-model ensemble could 

also simulate the impact of heat shocks and extreme drought on wheat yield. 

Global warming will also affect weeds, pests and diseases, which are not considered in 

our analysis, but could significantly impact crop production (Jones et al., 2017, Juroszek and 

von Tiedemann, 2013, Stratonovitch et al., 2012). Possible agricultural land use changes 

were not considered here, which could increase production (Nelson et al., 2014), but also 

accelerate further greenhouse gas emissions (Porter et al., 2017), adding to the uncertainty of 

future impact projections.  

 

Projections in this study were designed to be consistent with the AgMIP Coordinated 

Global and Regional Assessments (CGRA) of 1.5 and 2.0°C warming, and therefore add 

additional detail and context to linked analysis of climate, crop, and economic implications 

for agriculture across scales (Ruane et al., 2018a). Here, the mean impact of 1.5
o
C and 2.0

o
C 

warming above preindustrial on global wheat production is projected to be small but positive. 

In addition, the significant differences between estimated ensemble median impacts from the 

two warming scenarios indicate a potential yield benefit from higher global warming level. 

However, in our study the uneven distribution of impacts across regions, including projected 

average yield reductions in locations with rapid population growth (e.g. India), the increased 

probability of extreme low yields and a higher inter-annual yield variability, will be more 

challenging for food security and markets in a 2.0°C world than in 1.5°C world, particularly 

in hot growing locations.  
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Figure captions 

 

Fig.1. Impact of (a) 1.5 and (b) 2.0 scenarios on wheat grain yield for 60 representative 

global wheat growing locations. Relative changes of grain yield were the median across 31 

crop models and five GCMs, calculated with simulated 30-year mean grain yields for 

baseline, 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall, and 

atmospheric [CO2], using region-specific soils, cultivars and crop management.  

 

Fig. 2. Projected Impact of the 1.5 and 2.0 scenarios on wheat grain yield and crop 

duration. Simulated change in grain yield versus (a) growing season mean temperature and 

(b) mean growing season duration (sowing to maturity) for the 1.5 (orange) and 2.0 (dark 

cyan) scenarios (HAPPI). (c) Differences in relative change in grain yield between the 1.5 
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and 2.0 scenario versus growing season mean temperature for 60 representative wheat 

producing global locations. Relative changes of grain yield were the median across 31 crop 

models and five GCMs, calculated with simulated 30-year (1981-2010) mean grain yields for 

baseline, the 1.5 and 2.0 scenarios (including changes in temperature, rainfall and [CO2]) 

using region-specific soils, cultivars and crop management. The size of symbols indicates the 

production represented by each location (using 2014 FAO country wheat production 

statistics). The vertical and horizontal range crosses indicate the median 25-75% uncertainty 

range of relative change in grain yields, growing season mean temperature, crop duration 

across the 31 crop models and five GCMs, respectively. In (a), r
2
 of linear regressions were 

0.32 and 0.33 under 1.5 and 2.0 scenario, respectively (P < 0.001). 

 

Fig. 3. Simulated multi-model ensemble projection of global wheat grain production for 

wheat growing area per country under the 1.5 and 2.0 scenarios (HAPPI). Relative 

climate change impacts on grain production under (a) the 1.5 and (b) 2.0 scenarios (including 

changes in temperature, rainfall and [CO2]) compared with the 1981-2010 baseline. Impacts 

were calculated using the average over 30 years of yields and the medians across 31 models 

and five GCMs, using region-specific soils, current cultivars and crop management. Impacts 

from 60 global locations were aggregated to impacts on country production by weighting the 

irrigated, high rainfall, and low rainfall production, based on FAO wheat production 

statistics. 

 

Fig. 4. Simulated global impacts of climate change scenarios on wheat production. 

Relative impact on global wheat grain production for (a) 1.5 and 2.0 warming scenarios 

(HAPPI) with changes in temperature, rainfall and atmospheric [CO2]. Atmospheric [CO2] 

for the 1.5 and 2.0 scenarios were 423 and 487 ppm, respectively. (b) Local temperature 

increase by +2°C (360 ppm CO2 +2
o
C) and +4°C (360 ppm CO2 +4

o
C) for the baseline 

period with historical [CO2] (360 ppm) and elevated [CO2] (550 ppm) for no temperature 

change (Baseline), +2°C (550 ppm [CO2] +2
o
C) and +4°C (550 ppm [CO2] +4

o
C). Impacts 

were weighted by production area (based on FAO statistics). Relative change in grain yields 

were calculated from the mean of 30 years projected yields and the ensemble medians of 31 

crop models (plus five GCMs for HAPPI scenarios) using region-specific soils, cultivars, and 

crop management. Error bars are the 25
th

 and 75
th

 percentiles across 31 crop models (plus 

five GCMs for HAPPI scenarios). 
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Fig. 5. Projected impacts of the 1.5 and 2.0 scenarios on the probability of extreme low 

wheat yields. (a) Grain yield distribution at three locations representative of the three main 

types of environments (see below) for the 1981-2010 baseline and for the 1.5 and 2.0 

scenarios (HAPPI; including changes in temperature, rainfall and [CO2]). The yield 

distribution at the 60 global sites is given in Fig. S11, Fig. S12, and Fig. S13. The vertical 

dashed lines indicate the value of extreme low yields (defined as the lower 5% of the 

distribution) for the baseline. (b) Probability of extreme low yield (≤ 5% of the baseline 

distribution) for the 2.0 scenario at 60 representative global wheat growing locations for 

clusters of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot 

low rainfall locations (yellow; 20 locations), and hot irrigated locations (red; 14 locations). In 

(b),  and indicates the changes of extreme low yield between warming scenario and 

baseline was significant at P < 0.05 and P < 0.01, respectively. (c) and (d) Probability of 

extreme low yields for each type of environment for the 1.5 and 2.0 scenario, respectively. 

Horizontal dashed lines are the probability of extreme low yield for the baseline (defined as 

the bottom 5% of the baseline distribution). Horizontal thick solid lines are the median 

probability of extreme low yield. The circles are the 60-global locations shown in (c and d), 

their size indicates the production represented at each location (using FAO country wheat 

production statistics) and their color indicated the growing season mean temperature at each 

location for the 1.5 and 2.0 scenarios. Within each environment type, the circles have been 

jiggled along the horizontal axis to make it easier to see locations with similar probability 

values, which means that the horizontal positions of circles in each environment type were 

used to avoid the overlapping of circles and have no meaning. The shaded areas show the 

distribution of the data. Numbers above each box are the mean yields for the baseline period 

and in parenthesis the average yield impacts of the 1.5 and 2.0 scenarios compared with the 

1981-2010 baseline yield. See Supplementary Material and Methods for more details on 

clustering of wheat growing environments. 

 

Fig. 6. Projected impacts of 1.5 and 2.0 scenario on wheat yield interannual variability. 

(a) Relative climate change impacts for the 2.0°C warming scenarios (HAPPI) compared 

with the 1981-2010 baseline on interannual yield variability (coefficient of variation) at 60 

representative global wheat growing locations for clusters of temperate high rainfall or 

irrigated locations (green; 26 locations), moderately hot low rainfall locations (yellow; 20 

locations), and hot irrigated locations (red; 14 locations). In (a),  and indicates the 

changes of interannual yield variability between warming scenario and baseline was 
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significant at P<0.05 and P<0.01, respectively. The circles and triangles showed increased 

and decreased interannual variability, respectively. (b) and (c) Relative climate change 

impacts for the 1.5 and 2.0 scenarios compared with the 1981-2010 baseline on interannual 

yield variability (coefficient of variation) in temperate high rainfall or irrigated (26 locations), 

moderately hot low rainfall (20 locations), and hot irrigated (14 locations) locations. 

Horizontal thick solid lines are the median change of interannual yield variability for each 

environment type. The circles are the 60-global locations shown in (a), their size indicates the 

production represented at each location (using FAO country wheat production statistics) and 

their color indicated the growing season mean temperature at each location under the 1.5 and 

2.0 scenarios. Within each environment type the circles have been jiggled along the 

horizontal axis to make it easier to see locations with similar probability values, which means 

that the horizontal positions of circles in each environment type were used to avoid the 

overlapping of circles, and have no meaning. The shaded areas show the distribution of the 

data. 
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Model inputs for global simulations. Sixty locations from key wheat growing regions in the 18 

world were used for a global impact assessment (Table S1). Locations 1 to 30 are high rainfall or 19 

irrigated wheat growing locations representing 68% of current global wheat production. These 20 

locations were simulated without water or nitrogen limitation. Details about these locations can 21 

be found in Asseng et al. (2015) and in Table S1. Locations 31 to 60 are low rainfall locations 22 

with average wheat yield < 4 t ha-1. These locations represent 32% of current global wheat 23 

production. In contrast to the high-rainfall locations 1 to 30, soil types and N management vary 24 

among the low-rainfall locations 31 to 60 according region-specific practices. 25 

To carry out the global impact assessment and exclusively focus on climate change, region-26 

specific cultivars were used in all 60 locations. Observed local mean sowing, anthesis, and 27 

maturity dates were supplied to modelers with qualitative information on vernalization 28 

requirements and photoperiod sensitivity for each cultivar. Modelers were asked to sow at the 29 
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supplied sowing dates and calibrate their cultivar parameters against the observed anthesis and 30 

maturity dates by considering the qualitative information on vernalization requirements and 31 

photoperiod sensitivity.  32 

For locations 1 to 30 sowing dates were fixed at specific dates. For locations 31 to 60, sowing 33 

windows were defined and a sowing rule was used. The sowing window was based on sowing 34 

dates reported in literature (Table S1). For locations 41, 43, 46, 53, 54, and 59, sowing dates 35 

were not reported in literature and estimates from a global cropping calendar were used 36 

(Portmann et al., 2010). The cropping calendar provided a month (the 15th of the month was used) 37 

in which wheat is usually sown in the region of the location. The start of the sowing window was 38 

the reported sowing date and the end of the sowing window was set two months later. Sowing 39 

dates and windows are listed in Table S1. Sowing was triggered in the simulations on the day 40 

after cumulative rainfall reached or exceeds 10 mm over a 5-day period during the predefined 41 

sowing window. Rainfall from up to 5 days before the start of the sowing window was 42 

considered. If these criteria were not met by the end of the sowing window, wheat was sown on 43 

the last day of the sowing window.  44 

For locations 35, 39, 47, 49, and 55 to 57, anthesis dates were reported in literature. For the 45 

remaining sites, anthesis dates were estimated with the APSIM-Wheat model (Fig.S27). 46 

Maturity dates were estimated from a cropping calendar for sites 31 to 32, 37 to 38, 41 to 46, 47 

49 to 54, and 58 to 59 where no information from literature was available. For locations 31 to 60, 48 

observed grain yields from the literature (Table S1) were provided to modelers with the aim to 49 

set up wheat models to have similar yield levels, as well as similar anthesis and maturity dates. 50 

No yields were reported for sites 49 and 56, so APSIM-Wheat yields were estimated and used as 51 

a guide (Fig.S28). 52 

Locations 1 to 30 (no water or N limitations) were simulated using the same soil information 53 

from Maricopa, USA. Soil information for locations 31 to 60 were obtained from a global soil 54 

database (Romero et al., 2012). The soil closest to a location was used, but for locations 39 and 55 

59, soil carbon was decreased after consulting local experts. Soil profile hydrological parameters 56 

and soil organic carbon used for locations 1 to 60.  57 

Initial soil nitrogen was set to 25 kg N ha NO3 and 5 kg N ha NH4 per meter soil depth and 58 

reset each year for locations 31 to 60. Initial soil water for spring wheat sown after winter at 59 

locations 31 to 60 was set to 100 mm of plant available water, starting from 10 cm depth down to 60 
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100 mm was filled in between permanent welting point and field capacity. The first 10 cm were 61 

kept at permanent welting point and reset each year. If wheat was sown after summer, initial soil 62 

water was set to 50 mm plant available water, starting from 10 cm depth down to 50 mm was 63 

filled in between permanent welting point and field capacity. The first 10 cm were kept at the 64 

permanent welting point and reset each year. 65 

For locations 31 to 60, fertilizer rates were determined from Gbegbelegbe et al. (2017) except 66 

for site 59 (Ethiopia) where N fertilizer was set to 60 kg N ha-1. Fertilizer rates were set low (20 67 

to 50 kg N ha-1) at locations 31 to 32, 48, 51, 53, 60; medium (60 kg N ha-1) at locations 33 to 43, 68 

45 to 47, 49 to 50, 52, 54, 57 to 59; and relatively high (100 to 120 kg N ha-1) at locations 44, 55 69 

to 56. All fertilizer was applied at sowing. 70 

 71 

 72 

Future climate projections. In this assessment, baseline (1980-2010) climate data are from the 73 

AgMERRA climate dataset (Ruane et al., 2015), which combines observations, reanalysis data, 74 

and satellite data products to provide daily maximum and minimum temperatures, solar 75 

radiation, precipitation, wind speed, vapor pressure, dew point temperatures, and relative 76 

humidity corresponding to the maximum temperature time of day for each location. Climate 77 

projections for 1.5 and 2.0oC global warming scenarios were taken from five global climate 78 

models (GCMs) [MIROC5, NorESM1-M, CanAM4 (HAPPI), CAM4-2degree (HAPPI), and 79 

HadAM3P], which were selected from the Half a degree Additional warming, Prognosis and 80 

Projected Impacts project (HAPPI; Mitchell et al., 2017). Large (83-500 member) ensembles of 81 

each simulation model were analyzed to produce grid cell ensemble mean change information 82 

for each grid cell (Ruane et al., 2018).  Climate scenarios were then created by adjusting the 83 

distribution of observed climate events to mimic projected climate changes for monthly mean 84 

precipitation and minimum and maximum daily temperatures, the standard deviation of daily 85 

maximum and minimum temperatures, and the number of rainy days (Ruane et al., 2018).  86 

Atmospheric carbon dioxide concentrations ([CO2]) of 360, 423, and 487 ppm CO2 were used for 87 

baseline conditions and scenarios where global warming is +1.5 and +2.0 ºC above pre-industrial 88 

conditions to be consistent with HAPPI protocols (Ruane et al., 2018). There were 11 treatments 89 
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(baseline, five GCMs for 1.5, and five GCMs for 2.0 scenario) simulated for 60 locations and 30 90 

years: 91 

1. Baseline (with 360ppm CO2)  92 

2. GCM MIROC5 (1.5oC with 423 ppm CO2)  93 

3. GCM NorESM1-M (1.5oC with 423 ppm CO2)  94 

4. GCM CanAM4 (HAPPI) (1.5oC with 423 ppm CO2)  95 

5. GCM CAM4-2degree (HAPPI) (1.5oC with 423 ppm CO2)  96 

6. GCM HadAM3P (1.5oC with 423 ppm CO2)  97 

7. GCM MIROC5 (2.0oC with 487 ppm CO2)  98 

8. GCM NorESM1-M (2.0oC with 487 ppm CO2)  99 

9. GCM CanAM4 (HAPPI) (2.0oC with 487 ppm CO2)  100 

10. GCM CAM4-2degree (HAPPI) (2.0oC with 487 ppm CO2)  101 

11. GCM HadAM3P (2.0oC with 487 ppm CO2)  102 

Climate response tests. The impacts of temperature and CO2 were further analyzed using a 103 

simple delta method that identifies fundamental biophysical responses. The 60 global locations 104 

were simulated over 30 years of baseline climate (1981-2010) using 6 variations; three 105 

temperature scenarios (with main daily temperature increased by 0, 2, or 4°C), each with two 106 

atmospheric [CO2] (360 for baseline and an elevated 550 ppm). The Baseline+2oC and 107 

Baseline+4°C scenarios were created by adjusting each day’s maximum and minimum 108 

temperatures upward by that amount and then adjusting vapor pressures and related parameters 109 

to maintain the original relative humidity at the maximum temperature time of day given that this 110 

quantity is not expected to change dramatically with climate change (Allen and Ingram, 2002). 111 

 112 

Aggregation of local climate change impacts to global wheat production impacts. Before 113 

aggregating local impacts at 60 locations to global impacts, we determined the actual production 114 

represented by each location following the procedure described by Asseng et al. (2015). The 115 

total wheat production for each country came from FAO country wheat production statistics for 116 

2014 (www.fao.org). For each country, wheat production was classified into three categories 117 

(i.e., high rainfall, irrigated, and low rainfall). The ration for each category was quantified based 118 
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on the Spatial Production Allocation Model (SPAM) dataset 119 

(https://harvestchoice.org/products/data). For some countries where no data was available 120 

through the SPAM dataset, we estimated the ratio for each category based on the country-level 121 

yield from FAO country wheat production statistics. The high rainfall production and irrigated 122 

production in each country were represented by the nearest high rainfall and irrigated locations 123 

(locations 1 to 30). Low rainfall production in each country was represented by the nearest low 124 

rainfall locations (locations 31 to 60). 125 

The global wheat grain production impact was calculated using the following steps:  126 

1) Calculate the relative simulated mean yield impact for climate change scenarios for 30 127 

growing seasons (1981-2010) per single model at each location. 128 

2) Calculate the median across 31 models and five GCMs per location (multi-crop models 129 

[CMs] and GCMs ensemble median). Note that CMs and GCMs simulation results were 130 

kept separate only for calculating the separate CM and GCM uncertainties (expressed as 131 

range between 25th and 75th percentiles).  132 

3) Calculate the absolute regional production loss by multiplying the relative yield loss from 133 

the multi-model ensemble median with the production represented at each location (using 134 

FAO country wheat production statistics of 2014 (FAO, 2014)). Calculate separately for 135 

high rainfall/irrigated and low input rainfed production. This assumes that the selected 136 

simulated location is representative of the entire wheat-growing region surrounding this 137 

location. 138 

4) Add all regional production losses to the total global loss. 139 

5) Calculate the relative change in global production (i.e., global production loss divided by 140 

current global production). 141 

6) Repeat the above steps for the 25th and 75th percentile relative global yield impact from 142 

the 31model ensemble. 143 

Similar steps with global impacts were used for calculating the impacts on country scale 144 

impacts, except that only the local impacts from corresponding locations in each country were 145 

aggregated to the country impacts. The upscaling method used has been shown to give similar 146 

temperature impacts than global-gridded and regression- model based approach (Liu et al., 2016, 147 

Zhao et al., 2017). 148 
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    To test whether the estimated impacts form two warming scenarios is significant different, we 149 

assume that we have a random sample (31 wheat models) from a population of wheat models. As 150 

we use the median as the best estimate of the impacts in this study, so the hypothesis for 151 

statistical test was that whether the median of the differences between two warming scenarios 152 

statistically different than 0. Here, we did not compare the impacts of 1.5°C and 2°C directly, 153 

because the variability in impacts between two warming scenarios came from warming level and 154 

wheat models together, but first calculate the difference for each model and test the significance 155 

of the differences between two scenarios from 31 models. For each wheat model, the difference 156 

can be either >0 or <=0. So we can treat the differences of impacts from each model as a 157 

binomial distribution, with those two categories. Let b be the probability of difference > 0. If 158 

b=0.5, then in expectation there are as many values>0 as values <=0, so the median of delta is 0. 159 

If b>0.5, then the median is >0. Therefore, the hypothesis here is whether b is significantly 160 

different than 0.5.  161 

Let n be the number of crop models. Suppose that n’ is the observed number of differences 162 

between two warming levels >0. The probability of observing n’ if b=0.5, using R, is dbinom (n’, 163 

size=n, prob=0.5). The cumulative probability of n’-1 or fewer values >0 is x=pbinom (n’-1, 164 

size=n, prob=0.5). The p value (for significance) is p=1-x, the probability of getting a value as 165 

large or larger than n’, if in fact the median is 0. 166 

Similar statistical tests were conducted for the changes of extreme low yield probability and 167 

interannual yield variability between warming scenario and baseline for each location. 168 

 169 

Environmental clustering of the 60 global locations. The 60 global wheat growing locations 170 

were clustered in order to analysis the results by group of environments with similar climates. A 171 

hierarchical clustering on principal components of the 60 locations was performed based on four 172 

climate variables for 1981-2010: the growing duration (sowing to maturity) mean temperature, 173 

the growing duration cumulative evapotranspiration, the growing duration cumulative solar 174 

radiation, and the number of heat stress days (maximum daily temperature > 32°C) during the 175 

grain filling period. All data were scaled (centered and reduced) prior to the principal component 176 

analysis. 177 

 178 
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Data analysis. All data were analyzed and plotted using the R language and environment for 179 

statistical analysis version 3.4.1 (R Core Team, 2017). The principal component and hierarchical 180 

clustering analyses were done with the R package FactoMineR (Le et al., 2008). 181 

 182 
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Table S1. Details of the 60 locations used in this study 

Location 

number Country Location 

Latitude / 

longitude 

(decimal) 

Elevation 

(m a.s.l) 

Irrigation 

(Y/N) 

Cultivar 

Sowing date or 

window 

Mean 

50%-

anthesis 

date 

Mean 

maturity 

date 

Reference 
used for 
choosing 
anthesis 
date 

Environ
ment 
type g Name G

ro
w

th
 h

ab
it

 a  

V
e

rn
al

iz
at

io
n

 r
e

q
u

ir
e

m
e

n
t 

b
 

P
h

o
to

p
e

ri
o

d
 s

e
n

si
ti

vi
ty

 b
 

01 USA, AZ Maricopa 33.06 / -112.05 358 Y Yecora Rojo S 2 1 25 Dec. 5 Apr. 15 May - 3 
02 Mexico Obregon 27.33 / -109.9 41 Y Tacupeto C2001 S 2 2 1 Dec. 15 Feb. 30 Apr. - 3 
03 Mexico Toluca 19.40 / -99.68 2,667 Y Tacupeto C2001 S 2 2 10 May 5 Aug. 20 Sep. - 1 
04 Brazil Londrina -23.31 / -51.13 610 Y Atilla S 3 3 20 Apr. 10 Jul. 1 Sep. - 2 
05 Egypt Aswan 24.10 / 32.90 193 Y Seri M 82 S 3 2 20 Nov. 20 Mar. 30 Apr. - 3 
06 The Sudan Wad Medani 14.40 / 33.50 413 Y Debeira S 3 2 20 Nov. 25 Jan. 25 Feb. - 3 
07 India Dharwar 15.43 / 75.12 751 Y Debeira S 3 2 25 Oct. 15 Jan. 25 Feb. - 3 
08 Bangladesh Dinajpur 25.65 / 88.68 40 Y Kanchan S 2 2 1 Dec. 15 Feb. 15 Mar. - 3 
09 The Netherland Wageningen 51.97 / 5.63  12 N Aminda W 6 6 5 Nov. 25 Jun. 5 Aug. - 1 
10 Argentina Balcarce  -37.75 / -58.3  122 N Oasis W 5 5 5 Aug. 25 Nov. 25 Dec. - 3 
11 India Ludhiana 30.90 / 75.85 244 Y HD 2687 S 1 1 15 Nov. 5 Feb. 5 Apr. - 3 
12 India Indore 22.72 / 75.86 58 Y HI 1544 S 0 1 25 Oct. 25 Jan. 25 Mar. - 3 
13 USA, WI Madison 43.03 / -89.4 267 N Brigadier W 6 6 15 Sep. 15 Jun. 30 Jul. - 1 
14 USA, KS Manhattan 39.14 / -96.63 316 N Fuller W 4 4 1 Oct. 15 May 01 Jul. - 1 
15 UK Rothamsted 51.82 / -0.37  128 N Avalon W 3 3 15 Oct. 10 Jun. 20 Aug. - 1 
16 France Estrées-Mons 49.88 / 3.00 87 N Bermude W 6 6 5 Oct. 31 May 15 Jul. - 1 
17 France Orleans 47.83 / 1.91  116 N Apache W 5 4 20 Oct. 25 May 7 Jul. - 1 
18 Germany Schleswig 54.53 / 9.55 13 N Dekan W 5 2 25 Sep. 15 Jun. 25 Jul. - 1 
19 China Nanjing 32.03 / 118.48 13 N NM13 W 4 4 5 Oct. 5 May 5 Jun. - 1 
20 China Luancheng 37.53 / 114.41 54 Y SM15 W 6 4 5 Oct. 5 May 5 Jun. - 1 
21 China Harbin 45.45 / 126.46 118 Y LM26 S 1 5 5 Apr. 15 Jun. 25 Jul. - 3 
22 Australia Kojonup -33.84 / 117.15 324 N Wyallkatchem S 2 4 15 May 5 Oct. 25 Nov. - 3 
23 Australia Griffith -34.17 / 146.03 193 Y Avocet S 2 4 15 Jun. 15 Oct. 25 Nov. - 3 
24 Iran Karaj 35.92 / 50.90 1,312 Y Pishtaz S 2 2 1 Nov. 1 May 20 Jun. - 1 
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Table S1. Continued 

25 Pakistan Faisalabad 31.42 / 73.12 192 Y Faisalabad-2008 S 0 2 15 Nov. 5 Mar. 5 Apr. - 3 
26 Kazakhstan Karagandy 50.17 / 72.74 356 Y Steklov-24 S 2 4 20 May 1 Aug. 15 Sep. - 1 
27 Russia Krasnodar 45.02 / 38.95 30 Y Brigadier W 6 6 15 Sep. 20 May 10 Jul. - 1 
28 Ukraine Poltava 49.37 / 33.17 161 Y Brigadier W 6 6 15 Sep. 20 May 15 Jul. - 1 
29 Turkey Izmir 38.60 / 27.06 14 Y Basri Bey S 4 4 15 Nov. 1 May 1 Jun. - 1 
30 Canada Lethbridge 49.70 / -112.83 904 Y AC Radiant W 6 6 10 Sept. 10 Jun. 25 July.  1 
31 Paraguay Itapúa -27.33 / -55.88 216 N Based on Atilla S 3 3 25 May – 25 Jul. - d 15 Oct. e (Ramirez-

Rodrigues 
et al., 
2014) 2 

32 Argentina Santa Rosa −36.37 / -64.17 177 N Based on Avocet S 2 4 5 Jun. – 5 Aug. - d 15 Dec. e (Asseng et 
al., 2013) 2 

33 USA, GA Watkinsville 34.03 / -83.41 220 N Based on Brigadier W 6 6 25 Nov. – 25 Jan. - d 22 Jun. (Franzlue
bbers and 
Stuedema
nn, 2014) 3 

34 USA, WA Lind 47.00 / -118.56 522 N Based on AC Radient W 4 4 28 Aug. – 28 Oct. - d 31 Jul. (Al-Mulla 
et al., 
2009, 
Donaldso
n et al., 
2001, 
Schillinger 
et al., 
2008) 1 

35 Canada Swift Current 50.28 / -107.78 10 N Based on Steklov-24 S 2 4 18 May. – 18 Jul. 16 Jul. 28 Aug. (Hu et al., 
2015) 2 

36 Canada Josephburg 53.7 / -113.06 631 N Based on Steklov-24 S 2 4 15 May. – 15 Jul. - d 28 Aug. (Izaurrald
e et al., 
1998) 2 

37 Spain Ventas Huelma 37.16 / -3.83 848 N Based on Basri Bey S 4 4 18 Dec. – 18 Feb. - d 15 Jun. e (Royo et 
al., 2006) 2 

38 Italy Policoro 40.2 / 16.66 14 N Based on Basri Bey S 4 4 17 Nov. – 17 Jan. - d 15 May e (Steduto 
et al., 
1995) 2 

39 Italy Libertinia 37.5 / 14.58 267 N Based on Basri Bey S 4 4 26 Nov. – 26 Jan. 4 May 30 May (Pecetti 
and 
Hollington
, 1997) 1 
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40 Greece Thessaloniki 41.08 / 22.15 36 N Based on Basri Bey S 4 4 15 Nov. – 15 Jan. - d 22 Jun. (Lithourgi
dis et al., 
2006) 1 

41 Hungary Martonvásár 47.35 / 18.81 113 N Based on Apache S 5 4 15 Nov. – 15 Jan. c - d 15 Jun. e (Berzsenyi 
et al., 
2000) 1 

42 Romania Alexandria 43.98 / 25.35 73 N Based on Brigadier W 6 6 7 Oct. – 7 Dec. - d 15 Aug. e (Cuculean
u et al., 
1999) 1 

43 Bulgaria Sadovo 42.13 / 24.93 154 N Based on Brigadier W 6 6 15 Oct. – 15 Dec. c - d 15 Jul. e (Islam, 
1991) 1 

44 Finland Jokioinen 60.80 / 23.48 107 N Based on Steklov-24 S 2 2 1 May – 1 Jul. - d 15 Aug. e (Rötter et 
al., 2012) 2 

45 Russia Yershov 51.36 / 48.26 102 N Based on Steklov-24 S 2 4 6 May – 6 Jul. - d 15 Sep. e (Pavlova 
et al., 
2014) 2 

46 Kazakhstan Altbasar 52.33 / 68.58 289 N Based on Steklov-24 S 2 4 15 Mar. – 15 May c - d 15 Sep. e (Pavlova 
et al., 
2014) 2 

47 Uzbekistan Samarkand 39.70 / 66.98 742 N Based on SM15 W 6 4 5 Nov. –  5 Jan. 7 May 5 Jul. (FAO, 
2010) 2 

48 Morocco Sidi El Aydi / 

Jemaa Riah  

33.07 / -7.00 648 N Based on Yecora S 1 1 5 Nov. – 5 Jan. - d 1 Jun. (Heng et 
al., 2007) 2 

49 Tunisia Nabeul / Tunis 36.75 / 10.75 167 N Based on Pishtaz S 2 2 1 Dec. – 1 Feb. 29 Mar. 15 Jun. e (Latiri et 
al., 2010) 2 

50 Syria Tel Hadya / 

Aleppo 

36.01 / 36.56 263 N Based on Pishtaz S 2 2 20 Nov. – 20 Jan. - d 15 Jun. e (Sommer 
et al., 
2012) 2 

51 Iran Maragheh 37.38 / 46.23 1,472 N Based on SM15 W 6 4 13 Oct. – 13 Dec. - d 15 Jun. e (Tavakkoli 
and 
Oweis, 
2004) 1 

52 Turkey Ankara 39.92 / 32.85 895 N Based on Fuller W 4 4 1 Sep. – 1 Nov - d 15 Jul. e (Ilbeyi et 
al., 2006) 1 

53 

 

Iran Ghoochan / 

Quchan 

37.66 / 58.50 1,555 N Based on Pishtaz S 2 2 15 Oct.  – 15 Dec. c - d 15 Jun. e (Bannaya
n et al., 
2010) 1 

54 Pakistan Urmar 34.00 / 71.55 340 N Based on Yecora S 1 1 15 Nov.  – 15 Jan. c - d 15 May (Iqbal et 
al., 2005) 2 

55 China Dingxi 35.46 / 104.73 2,009 N Based on Pishtaz S 2 2 15 Mar. – 15 May. 15 Jun. 2 Aug. (Huang et 
al., 2008) 2 

Table S1. Continued 
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56 China Xuchang 34.01 / 113.51 110 N Based on Wenmai W 4 4 10 Oct.  – 10 Dec. 25 Apr. 1 Jun. f 2 

57 Australia Merredin -31.50 / 118.2 3000 N Based on Wyalkatchem S 2 4 15 May – 25 Jul. 5 Oct. 25 Nov. (Asseng et 
al., 1998) 2 

58 Australia Rupanyup / 

Wimmera 

-37.00 / 143.00 219 N Based on Avocet S 2 4 1 May –  1 Jul. - d 15 Nov. e (van Rees 
et al., 
2014) 2 

59 Ethiopia Adi Gudom 13.25 / 39.51 2,090 N Based on Debeira S 2 4 15 Jun.  – 15 Aug. c - d 15 Dec. e (Araya et 
al., 2015) 1 

60 South Africa Glen / 

Bloemfontein 

-28.95 / 26.33 1,290 N Based on Wyalkatchem S 2 4 15 May – 15 Jul. - d 15 Nov. (Singels 
and De 
Jager, 
1991) 2 

Location, name and characteristics of the cultivars, sowing date (locations 1-30) or sowing window (locations (31-60), and mean anthesis and physiological maturity date for the 30 locations (1-30) from high 

rainfall or irrigated wheat regions and thirty locations from low rainfall (low input) regions (31-60) of the world used in this study. 
a S, spring type; W, winter type. 

b Vernalization requirement and photoperiod sensitivity of the cultivars range from nil (0) to high (6). 

c Sowing date estimated using global cropping calendar. 
d See from Fig.S5 in Asseng et al., 2018. 
e Maturity date estimated using global cropping calendar. 
f Yan Zhu, personal communication, August 4, 2015. 
g 1, 2, 3 in environment type indicated temperate high rainfall, moderately hot low rainfall, and hot irrigated, respectively. 

1 
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Table S2. List of the 31 wheat crop models used in the AgMIP Wheat study 

Code Name (version) Reference Documentation 

AE APSIM-E (Chen et al., 2010, Keating et al., 2003, Wang 

et al., 2002) 

http://www.apsim.info/Wiki 

AF AFRCWHEAT2 (Porter, 1984, Porter, 1993, Weir et al., 1984) Request from John Porter: 

jrp@plen.ku.dk 

AQ AQUACROP (V.4.0) (Steduto et al., 2009) http://www.fao.org/nr/water/aquacrop.

html 

AW APSIM-Wheat (V.7.3) (Keating et al., 2003) http://www.apsim.info/Wiki 

CS CropSyst (V.3.04.08) (Stockle et al., 2003) http://modeling.bsyse.wsu.edu/CS_Suite

_4/CropSyst/index.html 

DC DSSAT-CERES-Wheat 

(V.4.0.1.0) 

(Hoogenboom and White, 2003, Jones et al., 

2003, Ritchie et al., 1985) 

http://dssat.net/ 

DN DSSAT-Nwheat (Asseng, 2004, Kassie et al., 2016) http://dssat.net/ 

DR DSSAT-CROPSIM 

(V4.5.1.013) 

(Hunt and Pararajasingham, 1995, Jones et al., 

2003) 

http://dssat.net/ 

EI EPIC-I (V0810) (Balkovič et al., 2013, Balkovič et al., 2014, 

Kiniry et al., 1995, Williams, 1995, Williams et 

al., 1989) 

http://epicapex.tamu.edu/epic 

EW EPIC-Wheat(V1102) (Izaurralde et al., 2006, Izaurralde et al., 2012, 

Kiniry et al., 1995, Williams, 1995, Williams et 

al., 1989)  

http://epicapex.brc.tamus.edu 

GL GLAM (V.2 updated) (Challinor et al., 2004, Li et al., 2010) https://www.see.leeds.ac.uk/research/ic

as/research-themes/climate-change-and-

impacts/climate-impacts/glam 

HE HERMES (V.4.26) (Kersebaum, 2007, Kersebaum, 2011) http://www.zalf.de/en/forschung/institut

e/lsa/forschung/oekomod/hermes 

IC INFOCROP (V.1) (Aggarwal et al., 2006) http://infocrop.iari.res.in/wheatmodel/U

serInterface/HomeModule/Default.aspx 

LI LINTUL4 (V.1) (Shibu et al., 2010, Spitters and Schapendonk, 

1990) 

http://models.pps.wur.nl/node/950 

L5 SIMPLACE<Lintul-5 
SlimWater3,FAO-56, 

CanopyT,HeatStressHourly 

(Gaiser et al., 2013, Shibu et al., 2010, Spitters 

and Schapendonk, 1990, Webber et al., 2016) 

http://www.simplace.net/Joomla/ 

LP LPJmL (V3.2) (Beringer et al., 2011, Bondeau et al., 2007, 

Fader et al., 2010, Gerten et al., 2004, Müller 

et al., 2007, Rost et al., 2008) 

http://www.pik-

potsdam.de/research/projects/lpjweb 

MC MCWLA-Wheat (V.2.0) (Tao et al., 2009a, Tao and Zhang, 2010, Tao 

and Zhang, 2013, Tao et al., 2009b) 

Request from taofl@igsnrr.ac.cn 

MO MONICA (V.1.0) (Nendel et al., 2011) http://monica.agrosystem-models.com  

NC Expert-N (V3.0.10) – 

CERES (V2.0) 

(Biernath et al., 2011, Priesack et al., 2006, 

Ritchie et al., 1987, Stenger et al., 1999) 

http://www.helmholtz-

muenchen.de/en/iboe/expertn 

NG Expert-N (V3.0.10) – 

GECROS (V1.0) 

(Biernath et al., 2011, Stenger et al., 1999) http://www.helmholtz-

muenchen.de/en/iboe/expertn 

mailto:jrp@plen.ku.dk
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NP Expert-N (V3.0.10) – 

SPASS (2.0) 

(Biernath et al., 2011, Priesack et al., 2006, 

Stenger et al., 1999, Wang and Engel, 2000, 

Yin and van Laar, 2005) 

http://www.helmholtz-

muenchen.de/en/iboe/expertn 

NS Expert-N (V3.0.10) – 

SUCROS (V2) 

(Biernath et al., 2011, Goudriaan and Van Laar, 

1994, Priesack et al., 2006, Stenger et al., 

1999) 

http://www.helmholtz-

muenchen.de/en/iboe/expertn 

OL OLEARY (V.8) (Latta and O'Leary, 2003, OLeary and Connor, 

1996a, OLeary and Connor, 1996b, Oleary et al., 

1985) 

Request from gjoleary@yahoo.com 

S2 Sirius (V2014) (Jamieson and Semenov, 2000, Jamieson et al., 

1998, Lawless et al., 2005, Semenov and 

Shewry, 2011) 

http://www.rothamsted.ac.uk/mas-

models/sirius.php 

SA SALUS (V.1.0) (Basso et al., 2010, Senthilkumar et al., 2009) http://salusmodel.glg.msu.edu 

SP SIMPLACE<Lintul-2 
CC,Heat,CanopyT,Re-

Translocation 

(Angulo et al., 2013) http://www.simplace.net/Joomla/ 

SQ SiriusQuality (V3.0) (Ferrise et al., 2010, He et al., 2010, Maiorano 

et al., 2017, Martre et al., 2006, Wang et al., 

2017) 

http://www1.clermont.inra.fr/siriusqualit

y 

SS SSM-Wheat (Soltani et al., 2013) Request from afshin.soltani@gmail.com 

ST STICS (V.1.1) (Brisson et al., 2003, Brisson et al., 1998) http://www6.paca.inra.fr/stics_eng 

WG WheatGrow (V3.1) (Cao et al., 2002, Cao and Moss, 1997, Hu et 

al., 2004, Li et al., 2002, Pan et al., 2007, Pan 

et al., 2006, Yan et al., 2001) 

Request from yanzhu@njau.edu.cn 

WO WOFOST (V.7.1) (Boogaard and Kroes, 1998) http://www.wofost.wur.nl 

  

http://www.wofost.wur.nl/
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Table S3. Variability of simulated grain yields for different environments under baseline, 1.5°C 
and 2.0°C warming scenarios 
  Coefficient of variation (%) 

Type of environment Scenario Location Year Model GCM 

All locations Baseline 56.1 1.5 22.4  

1.5oC HAPPI 55.4 1.6 22.7 1.1 

2.0oC HAPPI 55.4 1.6 23.3 1.2  
     

Temperate high 
rainfall or irrigated 

Baseline 47.9 1.6 23.7  

1.5oC HAPPI 46.4 1.7 23.3 1.2 

2.0oC HAPPI 46.1 1.7 23.9 1.3  
     

Moderately hot low 
rainfall 

Baseline 37.8 5.3 27.7  

1.5oC HAPPI 37.0 5.4 28.1 1.9 

2.0oC HAPPI 36.9 5.5 28.7 1.9 
      
Hot irrigated Baseline 26.5 2.7 27.8  

1.5oC HAPPI 27.1 2.8 28.5 0.6 

2.0oC HAPPI 27.4 2.9 29.2 0.9 

Variability due to location was calculated as coefficient of variation (CV) of simulated grain yields 
for corresponding locations (mean of 30 years, 31 models, and five global climate models [GCMs]). 
Variability due to year was calculated as CVs of simulated grain yields for 31 years (mean of 
corresponding locations, 31 models, and five GCMs). Variability due to model was calculated as 
CVs of simulated grain yields for 31 locations (mean of 30 years, corresponding locations and five 
GCMs). Variability due to GCM was calculated as CVs of simulated grain yields for five GCMs 
(mean of 30 years, 31 models and corresponding locations). 

 



15 
 

 2 

 3 

Fig. S1. Projected changes in annual mean temperature with the five global climate models (GCMs) for the 60 4 

representative global wheat growing locations under (A) 1.5 and (B) 2.0 scenarios (HAPPI). The locations in each 5 

environment type were ordered by the annual mean temperature for the baseline period. 6 

  7 
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 8 

 9 

Fig. S2. Projected changes in growing season (sowing to maturity) mean temperature with the five global 10 

climate models (GCMs) for the 60 representative global wheat growing locations under (A) 1.5 and (B) 2.0 11 

scenarios (HAPPI). The locations in each environment type were ordered by the growing season mean 12 

temperature for the baseline period. 13 

  14 
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 15 

 16 

Fig. S3. Projected relative changes in annual cumulative rainfall with the five global climate models (GCMs) for 17 

the 60 representative global wheat growing locations under (A) 1.5 and (B) 2.0 scenarios (HAPPI). The locations 18 

in each environment type were ordered by the annual mean temperature for the baseline period. 19 

  20 
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 22 

 23 

Fig. S4. Projected relative changes in growing season (sowing to maturity) cumulative rainfall with the five global 24 

climate models (GCMs) for the 60 representative global wheat growing locations under (A) 1.5 and (B) 2.0 25 

scenarios (HAPPI). The locations in each environment type were ordered by the growing season mean temperature 26 

for the baseline period. 27 

 28 

  29 
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 30 

Fig. S5. Hierarchical clustering on principal components of 60 representative global wheat growing 31 

locations based on climate variables for 1981-2010. (A) Individual factor map with 30-years average 32 

and coefficient of variation for four climate variables (TMN, growing season [sowing to maturity] mean 33 

temperature; ET, growing season cumulative evapotranspiration; SRAD, growing season cumulative 34 

solar radiation; HSD, number of heat stress days [maximum daily temperature > 32°C] during the grain 35 

filling period). Blue, variables (Yield, average yield for the 1981-2010 baseline; Yield.cv, interannual yield 36 

variability [coefficient of variation] of yield for the 1981-2010 baseline; rc1.5 and rc2.0, relative changes 37 

in average yield for the 1.5 and 2.0 scenarios [HAPPI], respectively; rc1.5.CV and rc2.0.CV, relative 38 

changes in interannual yield variability for the 1.5 and 2.0°C warming scenarios, respectively; and 39 

pELY1.5 and pELY2.0, probabilities of extreme low yield [< 5% of baseline yield distribution] under the 40 

1.5 and 2.0 scenarios, respectively) projected onto the same factorial plan but not used to construct the 41 

axes. (B) Location/cluster map of the principal component analysis. The numbers refer to the location ID 42 

given in Table S1.  43 
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 44 

Fig. S6. Weather variables during wheat growing season (sowing to maturity) and crop duration in the 45 

three main types of environments for the 1981-2010 baseline and under 1.5 and 2.0 scenario. (A) 46 

Growing season mean temperature, (B) Number of heat stress days (maximum daily temperature > 47 

32°C) during the post-flowering period. (C) Cumulative growing season evapotranspiration. (D) 48 

Cumulative growing season rainfall. (E) Cumulative growing season solar radiation. (F) Growing season 49 

duration. The width of the boxes is proportional to the percentage of global wheat production of each 50 

type of environment. The 60 global locations where clustered using 30-year means and coefficient of 51 

variability of the weather variables shown in this Figure S5. In each box plot, horizontal lines represent, 52 

from top to bottom, the 10th percentile, 25th percentile, median, 75th percentile and 90th percentile. In 53 

hot irrigated locations, growing season rainfall does not include the irrigation amount.  54 
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Note: Similar with Fig.3 in the main text, but show the means across crop models and GCMs. 55 

 56 

Fig. S8. Simulated global impacts of climate change scenarios on wheat production. Relative impact on global 57 

wheat grain production for (A) 1.5 and 2.0 warming scenarios (HAPPI) with changes in temperature, rainfall and 58 

atmospheric CO2 concentration. Atmospheric CO2 concentration for the 1.5 and 2.0 scenario were 423 and 487 59 

ppm, respectively. (B) +2°C (360 ppm CO2 +2oC) and +4°C (360 ppm CO2 +4oC) temperature increase for the 60 

baseline period with historical atmospheric CO2 concentration (360 ppm CO2) and elevated CO2 (550 ppm CO2) 61 

for no temperature change (Baseline), +2°C (550 ppm CO2 +2oC) and +4°C (550 ppm CO2 +4oC). Impacts were 62 

weighted by production area (based on FAO statistics). Relative change in grain yields were calculated from the 63 

mean of 30 years projected yields and the ensemble means of 31 crop models (plus five GCMs for HAPPI 64 

scenarios) using region-specific soils, cultivars, and crop management. Error bars are the 25th and 75th 65 

percentiles across 31 crop models (plus five GCMs for HAPPI scenarios). 66 

 67 

  68 
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 69 

 70 

Fig. S9. Simulated global impacts of climate change under 1.5 and 2.0 scenario on wheat production from 71 

different environments. (A) All wheat area (60 locations). (B) Temperate high rainfall environment (26 locations). 72 

(C) Moderately hot low rainfall environment (20 locations). (D) Hot irrigated environment (14 locations). Impacts 73 

from the 60 global locations were weighted by FAO production area. Bars are ensemble medians of 31 crop 74 

models and five GCMs for 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall and 75 

atmospheric CO2 concentration, and mean of 30 years using region-specific soils, cultivars, and crop management. 76 

Error bars indicate the 25th and 75th percentiles across 31 crop models and five GCMs. 77 

  78 
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Note: Similar with Fig.S9, but show the means across crop models and GCMs. 79 

 80 

Fig. S10. Simulated global impacts of climate change under 1.5 and 2.0 scenario on wheat production from 81 

different environments. (A) All wheat area (60 locations). (B) Temperate high rainfall environment (26 locations). 82 

(C) Moderately hot low rainfall environment (20 locations). (D) Hot irrigated environment (14 locations). Impacts 83 

from the 60 global locations were weighted by FAO production area. Bars are ensemble means of 31 crop models 84 

and five GCMs for 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall and atmospheric CO2 85 

concentration, and mean of 30 years using region-specific soils, cultivars, and crop management. Error bars 86 

indicate the 25th and 75th percentiles across 31 crop models and five GCMs. 87 

 88 

  89 
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 90 

Fig. S11. Yield distribution for the 26 temperate high rainfall global locations for the 1981-2010 baseline and under 91 

1.5 and 2.0 scenarios (including changes in temperature, rainfall and atmospheric CO2 concentration).   92 
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 93 

Fig. S12. Yield distribution at 20 moderately hot low rainfall global locations for the 1981-2010 baseline and under 94 

1.5 and 2.0 scenarios (including changes in temperature, rainfall and atmospheric CO2 concentration). 95 
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 96 

Fig. S13. Yield distribution at 14 hot irrigated global locations for the 1981-2010 baseline and under 1.5 and 2.0 97 

scenarios (including changes in temperature, rainfall and atmospheric CO2 concentration).  98 
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 100 

 101 

 102 

 103 

Fig. S14. Simulated multi-model ensemble median of growing season (sowing to maturity) variables by country 104 

for the 1981-2010 baseline. (A) Growing season mean temperature. (B) Growing season duration. (C) Heat stress 105 

days from anthesis to maturity (daily maximum temperature > 32oC). (D) Growing season evapotranspiration (ET). 106 

All growing season variables were calculated from simulated growing season variables at the 60 corresponding 107 

locations. 108 
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 109 

 110 

 111 

 112 

 113 

Fig. S15. Simulated multi-model ensemble median of changes in growing season (sowing to maturity) variables 114 

by country under 1.5 scenario. (A) Growing season mean temperature. (B) Growing season duration. (C) Heat 115 

stress days from anthesis to maturity (daily maximum temperature > 32oC). (D) Growing season evapotranspiration 116 

(ET). All growing season variables were calculated from simulated growing season variables at the 60 117 

corresponding locations.  118 
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 120 

 121 

 122 

Fig. S16. Simulated multi-model ensemble median of changes in growing season (sowing to maturity) variables 123 

by country under 2.0 scenario. (A) growing season mean temperature, (B) growing season duration, (C) heat stress 124 

days from anthesis to maturity (daily maximum temperature >32oC), and (D) growing season evapotranspiration 125 

(ET). All growing season variables were calculated from simulated growing season variables at the 60 126 

corresponding locations.  127 
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 128 

 129 

Fig. S17. Coefficient of variation (CV) of simulated wheat grain yields for the 1981-2010 baseline (grey) 130 

and 1.5 and (orange) and 2.0 (blue) scenarios. The distribution of CV for ‘Location’ shows the CVs of 131 

simulated wheat grain yields from the 60 global locations within each combination of crop model, year, 132 

and GCM. The distribution of CV for ‘Year’ shows the CVs of simulated wheat grain yields from the 30 133 

years within each combination of crop model, location, and GCM. The distribution of CV for ‘Model’ 134 

shows the CVs of simulated wheat grain yields from the 31 crop models within each combination of 135 

location, year, and GCM. The distribution of CV for ‘GCM’ shows the CVs of simulated wheat grain yields 136 

from the five GCMs within each combination of location, crop model, and year. In each box plot, 137 

horizontal lines represent, from top to bottom, the 10th percentile, 25th percentile, median, 75th 138 

percentile, and 90th percentile of the simulations. 139 

  140 
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 141 

 142 

Fig. S18. Contribution of national wheat production from 122 wheat producing countries to global wheat 143 

production based on 2014 FAO statistical data. 144 

  145 
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 146 

 147 

Fig. S19. Projected impacts of the 1.5 scenario on the probability of extreme low wheat yields 148 

(A) and wheat yield interannual variability (B) at 60 representative global wheat growing 149 

locations for clusters of temperate high rainfall or irrigated locations (dark green; 26 locations), 150 

moderately hot low rainfall locations (dark yellow; 20 locations), and hot irrigated locations 151 

(dark red; 14 locations). In (A and B),  and indicates the low yield probability and 152 

interannual yield variability between warming scenario and baseline was significant at p<0.05 153 

and p<0.01, respectively. In (B), the circles and triangles showed increased and decreased 154 

interannual variability, respectively. 155 

 156 

  157 
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 158 

Fig. S20. Projected changes in growing season (sowing to maturity) mean temperature (A) and cumulative ET 159 

(B) for the 60 representative global wheat growing locations under 1.5 and 2.0 scenarios (HAPPI). The locations 160 

in each environment type were ordered by the growing season mean temperature for the baseline period. All the 161 

changes here were the median of 31 crop models and mean of 30 years and the five global climate models (GCMs). 162 

  163 
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164 
Fig. S21. Projected changes in growing season (sowing to maturity) cumulative solar radiation (A) and 165 

cumulative rainfall (B) for the 60 representative global wheat growing locations under 1.5 and 2.0 scenarios 166 

(HAPPI). The locations in each environment type were ordered by the growing season mean temperature for the 167 

baseline period. All the changes here were the median of 31 crop models and mean of 30 years and the five global 168 

climate models (GCMs). 169 

 170 

  171 
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 172 

Fig. S22. Projected changes in growing season (sowing to maturity) duration (A) and heat stress days (B) for the 173 

60 representative global wheat growing locations under 1.5 and 2.0 scenarios (HAPPI). The locations in each 174 

environment type were ordered by the growing season mean temperature for the baseline period. All the changes 175 

here were the median of 31 crop models and mean of 30 years and the five global climate models (GCMs). 176 

  177 
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 178 

Fig.S23. Relationship  between projected growing season (sowing to maturity)  cumulative ET and duration for 179 

the 14 hot irrigated locations for the 30 growing seasons under different climate scenarios. The locations in each 180 

environment type were ordered by the growing season mean temperature for the baseline period. All the 181 

simulated data here were the medians of 31 crop models. 182 

 183 



37 
 

Table S4 Slopes of linear regression between simulated grain yield and growing season (sowing to maturity) climate variables and growing season duration 184 

for the 60 global locations under different climate scenarios. Before conducting the regression, we tested whether there were significant differences between 185 

the responses of simulated grain yield to climate variables and growing season duration under three different climate scenarios. If there were no significant 186 

differences between different climate scenarios, the regressions were conducted with the simulated data from the 30 growing seasons under baseline and two 187 

HAPPI warming scenarios together. And no regressions were conducted when there were significant differences in the responses of simulated grain yield to 188 

climate variables and growing season duration between different climates scenarios, which only happened in few locations, as shown as NA in the table below. 189 

GST: growing season mean temperature, ET: growing season cumulative evapotranspiration, GSD: growing season duration, HSD: heat stress days during grain 190 

filling period, SRAD: growing season cumulative solar radiation, RAIN: growing season cumulative rainfall. All the simulated data used for regressions here were 191 

the medians of 31 crop models. *** indicates p<0.001, ** indicates p<0.01,* indicates p<0.05. 192 

Environmen
t type 

Location City Country 
GST  
(t. ha-1. oC-1) 

ET 
(t. ha-1. mm-1) 

GSD  
(t. ha-1. d-1) 

HSD a 
(t. ha-1. d-1) 

SRAD  
 (t. ha-1./(MJ.m2)) 

RAIN b 
(t. ha-1. mm-1) 

Temperate 
high rainfall 

3 Toluca Mexico -0.321*** 0.01*** na na 0.003***  

9 Wageningen The Netherland -0.047 0.009*** 0.009** -0.124*** 0.001***  

13 Madison USA -0.056* 0.006*** -0.001 -0.004 0.001***  

14 Manhattan USA 0.173*** 0.003** -0.003 -0.024*** 0.001**  

15 Rothamsted UK na 0.004*** na -0.037 na  

16 Estrées-Mons France 0.033 0.007*** 0.01** na 0.001***  

17 Orleans Central France -0.166*** 0.008*** 0.015*** -0.074** 0.001***  

18 Schleswig Germany -0.161*** 0.008*** 0.011*** na 0.001***  

19 Nanjing China 0.081* 0.006*** -0.008* 0.077*** 0.001***  

20 Luancheng China 0.208*** 0.005*** -0.021*** 0.008 0.001***  

24 Karaj Iran  0.374*** -0.006*** -0.015*** -0.075*** -0.0004**  

26 Karagandy Kazakhstan na 0.012*** na -0.138*** 0.002***  

27 Krasnodar Russia -0.01 0.007*** 0.011** -0.034*** 0.001***  

28 Poltava Ukraine 0.243*** 0.012*** 0.013** -0.051*** 0.001***  

29 Izmir Turkey -0.126** 0.005*** 0.013** -0.033*** 0.001***  

30 Lethbridge Canada 0.002 0.008*** 0.003 -0.041*** 0.001***  

34 Lind USA 0.307*** 0.011*** 0.006** -0.081*** 0.0003* 0.007*** 

39 Libertinia Italy 0.348*** 0.01*** 0.005 -0.056 -0.001*** 0.002*** 

40 Thessaloniki Greece 0.162*** 0.008*** -0.001 -0.088*** 0.0002* -0.001*** 
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41 Martonvásár Hungary -0.077** 0.012*** 0.016*** -0.062*** -0.001*** 0.005*** 

42 Alexandria Romania 0.041 0.01*** 0.004 -0.032*** -0.001*** 0.006*** 

43 Sadovo Bulgaria -0.049 0.009*** 0.007*** -0.009* -0.0003* 0.005*** 

51 Maragheh Iran 0.05 0.006*** 0.007*** -0.043*** -0.0002 0.004*** 

52 Ankara Turkey 0.087* 0.009*** 0.0001 -0.037*** -0.0002* 0.007*** 

53 
Ghoochan / 
Quchan 

Iran 0.184*** 0.009*** 0.013*** -0.022 -0.0004* 0.008*** 

59 Adi Gudom Ethiopia -0.043* 0.005*** 0.009** na 0.0003* 0.001*** 

Moderately 
hot low 
rainfall 

4 Londrina Brazil -0.356*** 0.014*** 0.06*** na 0.004***  

31 Itapúa Paraguay -0.104*** 0.008*** 0.019*** -0.022*** 0.001*** 0.001*** 

32 Santa Rosa Argentina -0.116*** 0.008*** 0.01*** -0.049*** 0.0003 0.004*** 

35 Swift Current Canada -0.252*** 0.016*** na -0.065*** 0.003*** 0.009*** 

36 Josephburg Canada -0.164*** 0.012*** na -0.065*** 0.001*** 0.005*** 

37 Ventas Huelma Spain -0.393*** 0.011*** 0.051*** -0.069*** -0.002*** 0.006*** 

38 Policoro Italy -0.058* 0.007*** 0.009*** na -0.0001 0.001*** 

44 Jokioinen Finland -0.189*** 0.016*** na na 0.002*** 0.003*** 

45 Yershov Russia -0.198*** 0.011*** 0.049*** -0.028*** 0.001*** 0.009*** 

46 Altbasar Kazakhstan -0.087*** 0.011*** 0.017*** -0.048*** 0.0004*** 0.008*** 

47 Samarkand Uzbekistan 0.038 0.011*** 0.01** -0.07*** -0.001*** 0.007*** 

48 
Sidi El Aydi / Jemaa 
Riah  

Morocco -0.202*** 0.012*** 0.024*** -0.04** -0.0003* na 

49 Nabeul / Tunis Tunisia -0.244*** 0.013*** 0.042*** -0.107*** -0.0003 0.006*** 

50 Tel Hadya/Aleppo Syria 0.052 0.007*** 0.002 -0.036*** -0.001*** 0.002*** 

54 Urmar Pakistan -0.13*** 0.008*** 0.018*** -0.014*** -0.001*** 0.004*** 

55 Dingxi China -0.189*** 0.011*** 0.03*** -0.1*** 0.001*** 0.008*** 

56 Xuchang China -0.092** 0.011*** 0.001 -0.047*** -0.001*** 0.006*** 

57 Merredin Australia -0.244*** 0.008*** 0.024*** -0.079*** -0.0005* 0.007*** 

58 
Rupanyup / 
Wimmera 

Australia -0.247** 0.011*** 0.026*** -0.111*** -0.00003 0.006*** 

60 Glen/Bloemfontein South Africa -0.033* 0.006*** 0.001 -0.031*** 0.00001 0.004*** 

Hot irrigated 1 Maricopa USA -0.55*** 0.02*** 0.074*** -0.102*** 0.003***  
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2 Obregon Mexico -0.427*** 0.017*** na -0.029*** 0.002***  

5 Aswan Egypt -0.315*** na 0.051*** -0.068*** 0.001***  

6 Wad Medani Sudan -0.53*** 0.02*** na -0.116*** 0.007***  

7 Dharwar India -0.364*** 0.003*** 0.085*** -0.016*** 0.001***  

8 Dinajpur Bangladesh -0.268*** 0.006*** 0.064*** -0.039*** 0.003***  

10 Balcarce  Argentina -0.129** 0.007*** 0.033*** -0.051*** 0.001***  

11 Ludhiana India -0.286*** 0.012*** 0.043*** -0.005 0.002***  

12 Indore India na 0.02*** 0.104*** -0.059*** 0.003***  

21 Harbin China -0.268*** 0.007*** 0.042*** -0.051*** 0.002***  

22 Kojonup Australia -0.29*** 0.004*** 0.025*** na 0.001***  

23 Griffith Australia -0.444*** 0.008*** 0.047*** -0.067*** 0.001***  

25 Faisalabad Pakistan -0.337*** 0.011*** 0.047*** -0.036*** 0.002***  

33 Watkinsville USA 0.076** 0.009*** 0.01** -0.029*** -0.00003  

Notes:  193 

a: na indicate no regression conducted due to no heat stress days during wheat growing season. 194 

b: no data was shown for Loc1-30 as automatic irrigation was applied in all the simulations at these locations. 195 

 196 

 197 

 198 

 199 

 200 
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 201 

Fig.S24. Relationship between changes in extreme low yield probability and changes in growing season variables 202 

under two warming scenarios at 60 representative global wheat growing locations for clusters of temperate high 203 

rainfall or irrigated locations (green; 26 locations), moderately hot low rainfall locations (yellow; 20 locations), 204 

and hot irrigated locations (red; 14 locations). (A) Growing season maximum temperature (oC), (B) Growing 205 

season minimum temperature (oC), (C) Growing season mean temperature (oC), (D) Growing season heat stress 206 

days (d), (E) Growing season cumulative rainfall (mm). Circles and triangles indicate changes under 1.5 scenario 207 

and 2.0 scenario, respectively. In (E), 30 locations (Loc1-30) where automatic irrigation was used in the simulations 208 

were not shown.  209 
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 210 

Fig.S25. Relationship between relative changes in yield interannual variability (CV) and changes in growing 211 

season variables under two warming scenarios at 60 representative global wheat growing locations for clusters 212 

of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot low rainfall locations 213 

(yellow; 20 locations), and hot irrigated locations (red; 14 locations). (A) Growing season duration (days), (B) 214 

Growing season heat stress days (d), (C) Growing season cumulative evapotranspiration (ET, mm). Circles and 215 

triangles indicate changes under 1.5 scenario and 2.0 scenario, respectively.   216 
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 217 

Fig. S26. Simulated global impacts of climate change under 1.5 and 2.0 scenario on wheat production from 218 

different wheat types. (A) Spring type wheat from model ensemble medians (39 locations). (B) Winter type wheat 219 

from model ensemble medians (21 locations). (C) Spring type wheat from model ensemble means. (D) Winter type 220 

wheat from model ensemble means. Impacts from the 60 global locations were weighted by FAO production area. 221 

Bars are ensemble medians or means of 31 crop models and five GCMs for 1.5 and 2.0 scenarios (HAPPI), including 222 

changes in temperature, rainfall and atmospheric CO2 concentration, and mean of 30 years using region-specific 223 

soils, cultivars, and crop management. Error bars indicate the 25th and 75th percentiles across 31 crop models and 224 

five GCMs.225 
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 226 

Fig.S27 Simulated interannual yield variability (coefficient of variation) during the 1981-2010 baseline period at 227 

60 representative global wheat growing locations for clusters of temperate high rainfall or irrigated locations 228 

(green; 26 locations), moderately hot low rainfall locations (yellow; 20 locations), and hot irrigated locations 229 

(red; 14 locations). 230 

 231 

  232 
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