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ON THE CHARACTER DEGREE GRAPH OF FINITE GROUPS

ZEINAB AKHLAGHI, CARLO CASOLO, SILVIO DOLFI, EMANUELE PACIFICI,
AND LUCIA SANUS

Abstract. Given a finite group G, let cd(G) denote the set of degrees of
the irreducible complex characters of G. The character degree graph of G is
defined as the simple undirected graph whose vertices are the prime divisors of
the numbers in cd(G), two distinct vertices p and q being adjacent if and only
if pq divides some number in cd(G). In this paper, we consider the complement
of the character degree graph, and we characterize the finite groups for which
this complement graph is not bipartite. This extends the analysis of [1], where
the solvable case was treated.

1. Introduction

Character Theory is a fundamental tool in the study of finite groups; in fact,
it is well known that the set of the irreducible complex characters (the ordinary
character table) of a finite group reflects the structure of the group very deeply.
However, even a much smaller set of data, that can be extracted from the character
table of a finite group G, turns out to be very relevant: this is the degree set cd(G),
whose elements are the degrees (i.e., the values at the identity element) of the
irreducible characters of G.

Starting from the famous Ito-Michler Theorem, which establishes that a given
prime p does not divide any number in cd(G) if and only if G has an abelian normal
Sylow p-subgroup, many results in the literature demonstrate the deep interplay
between the group structure of G and the arithmetical structure of cd(G). The
character degree graph (or degree graph) ∆(G) is a useful tool in order to capture
the arithmetical structure of the degree set: this is the simple undirected graph
whose vertices are the prime divisors of the numbers in cd(G), and two (distinct)
vertices p, q are adjacent if and only if pq divides some number in cd(G). The
main questions in this research area concern the relationships between the group
structure of G and certain graph-theoretical features of ∆(G) (we refer the reader
to the survey [11]).

One of the turning point for the investigation on the character degree graph is
the “Three-Vertex Theorem” by P.P. Pálfy ([17]): if G is a finite solvable group
then, for any choice of three vertices of ∆(G), two of these vertices are adjacent.
Considering the complement ∆(G) of ∆(G) (i.e., the graph having the same vertex
set, where two vertices are adjacent if and only if they are not adjacent in ∆(G)),
Palfy’s theorem can be rephrased by saying that ∆(G) does not contain any triangle
whenever G is a finite solvable group. In a recent paper ([1]) this was extended by
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2 Z. AKHLAGHI ET AL.

showing that, under the same solvability assumption, ∆(G) does not contain any
cycle of odd length, which is equivalent to say that ∆(G) is a bipartite graph.

The present work explores this context without the solvability assumption. In
general, the graph ∆(G) may contain cycles of odd length; this happens, for in-
stance, for any 2-dimensional projective special linear group over a finite field in
characteristic 2 with at least four elements (see Proposition 2.3). The point is that
the existence of such a cycle restricts the structure of the group significantly. The
main result of this paper characterizes this situation.

Theorem A. Let G be a finite group, and let π be a subset of the vertex set of
∆(G) such that |π| is an odd number larger than 1. Then π is the set of vertices of

a cycle in ∆(G) if and only if Oπ′

(G) = S×A, where A is abelian, S ≃ SL2(u
α) or

S ≃ PSL2(u
α) for a prime u ∈ π and a positive integer α, and the primes in π \ {u}

are alternately odd divisors of uα + 1 and uα − 1.

(In the statement above, Oπ′

(G) denotes the smallest normal subgroup of G
whose index in G is a π′-number.) We remark that, in [8], the same class of
groups is characterized by the stronger property that ∆(G) contains a triangle,
that is, ∆(G) violates Palfy’s “three-vertex condition”. Therefore, Theorem A is
an improvement of the main result of that paper, which in turn generalizes several
previously known results concerning the character degree graph (see [8, Corollaries
B,C,D]). Namely, the theorem by A. Moretó and P.H. Tiep ([16]) establishing that,
for any choice of four vertices in ∆(G), two of them are adjacent, is an immediate
consequence of our results. The same holds for the theorem by M.L. Lewis and D.L.
White that characterizes the finite groups whose degree graph has three connected
components ([13, 14]), as well as the bound on the diameter of the degree graph in
the connected case ([12]).

As another application of Theorem A, we mention that it is possible to obtain a
bound on the number of vertices of ∆(G) in terms of the clique number ω(G) (i.e.,
the maximum size of a set of vertices inducing a complete subgraph) of ∆(G). In
particular it is shown in [2] that, for any finite group G, the size of the vertex set
of ∆(G) is bounded above by the largest number among 2ω(G)+ 1 and 3ω(G)− 4,
thus answering a question posed by the first author and H.P. Tong-Viet in [3].

A key tool for our proof of Theorem A is the analysis of certain linear actions
of groups on finite modules, that is carried out in Section 3 (and introduced in
Section 2). Another crucial step is the reduction obtained in Section 4 by means of
a general lemma, that turns out to be very useful when handling statements about
the degree graph by induction on the order of the group. This leads to the study of
two special cases, treated in Section 5, and the proof of Theorem A is then finished
in Section 6.

We conclude this introductory section by mentioning that the following discus-
sion involves the classification of finite simple groups.

2. Preliminaries

Throughout the paper, every group is assumed to be a finite group. As custom-
ary, given a positive integer n, π(n) denotes the set of all prime divisors of n, and,
if G is a group, we write π(G) for π(|G|). For a given group G, we denote by ∆(G)
the character degree graph as defined in the Introduction, and write ∆(G) for the
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complement of ∆(G); the set of vertices of ∆(G) is denoted by V(G), whereas we
denote by E(G) and E(G) the set of edges of ∆(G) and of ∆(G), respectively.

We start by recalling some properties of group actions on finite modules, that
will be very relevant in our discussion. Let H and V be finite groups, and assume
that H acts by automorphisms on V . Given a prime number q, we say that the
pair (H,V ) satisfies Nq if q divides |H : CH(V )| and, for every non-trivial v ∈ V ,
there exists a Sylow q-subgroup Q of H such that Q E CH(v). We refer to [6] for
a thorough analysis of this and related module actions.

If (H,V ) satisfies Nq then, as recalled in the following lemma, V turns out to be
an elementary abelian r-group for a suitable prime r, and V is in fact an irreducible
module for H over the field with r elements GF(r).

Lemma 2.1. Let (H,V ) ∈ Nq. Then V is an elementary abelian r-group for a
suitable prime r, and it is an irreducible H-module. If q 6= 2, then V is a primitive
H-module.

Proof. The first assertion follows from Lemma 4 of [19]. In the same Lemma, V is

also proved to be primitive under the additional assumption that Oq′(G) = G; we
remove this assumption, still using essentially the same argument.

Assume q 6= 2. In order to prove that V is primitive as an H-module, we can
assume (by factoring out CH(V )) that CH(V ) = 1. Working by contradiction, let
V = W1 +W2 + · · · +Wm be an imprimitive decomposition of V , with m ≥ 2,
and let K = ∩m

i=1NH(Wi) be the kernel of the transitive action of H on the set
{W1,W2, . . . ,Wm}.

Let 0 6= w ∈ W1 and let Q be the unique Sylow q-subgroup of H such that
Q ≤ CH(w). For 1 ≤ i ≤ m, let xi ∈ H be such that W xi

1 = Wi. Let v = w + wxi

and let Qi be the Sylow q-subgroup of CH(v). Thus Qi stabilizes the set {W1,Wi}
and hence, as q 6= 2, Qi stabilizes bothW1 andWi. It follows that Qi ≤ CH(w) and
hence Qi = Q. Therefore Q ≤ K and hence (K,V ) ∈ Nq; but V is not irreducible
as K-module, since m ≥ 2, a contradiction.

Let r be a prime number and n a positive integer; we denote by Γ(rn) the
semilinear group on the field GF(rn), and by Γ0(r

n) the subgroup of Γ(rn) induced
by the field multiplications. Given a group G and a faithful G-module V over
GF(r), r a prime, we say that G is a semilinear group on V , and write G ≤ Γ(V ),
if there exists an injective homomorphism φ : G → Γ(rn), where rn = |V |, such
that the additive group GF(rn)+ of GF(rn) (with the G-module structure carried
by φ) and V are isomorphic G-modules.

Theorem 2.2. Let (G, V ) satisfy Nq and assume that either

(a) (|V |, |G|) = 1; or
(b) G has a normal q-complement; or
(c) G is solvable and q 6= 3.

Then G/CG(V ) is a subgroup of Γ(V ).

Proof. (a) is Theorem 2.5 and (b) is Theorem 2.2(a) of [8], while (c) is Corollary 10
of [6].

Next, we gather some facts concerning the character degree graph of non-solvable
groups. The next results are Propositions 2.6, 2.7, (part of) 2.8 and 2.10 of [8],
respectively.
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Proposition 2.3. Let S ≃ PSL2(u
α) or S ≃ SL2(u

α), where u is a prime and
α ≥ 1. Let π+ = π(uα+1) and π− = π(uα−1). For a subset π of vertices of ∆(S),
we denote by ∆π the subgraph of ∆ = ∆(S) induced by the subset π.

(a) If u = 2, then ∆(S) has three connected components, {u}, ∆π+
and ∆π−

, and
each of them is a complete graph.

(b) If u > 2 and uα > 5, then ∆(S) has two connected components, {u} and
∆π+∪π−

; also, both ∆π+
and ∆π−

are complete graphs, no vertex in π+ \ {2}
is adjacent to any vertex in π− \ {2}, and 2 is adjacent to all other vertices in
∆π+∪π−

.

Proposition 2.4. Let G be an almost-simple group with socle S ≃ PSL2(u
α),

where u is a prime. If s is a prime divisor of |G/S|, then s is adjacent in ∆(G) to
every prime in π(u2α − 1).

Proposition 2.5. Let G be an almost-simple group with socle S, and let q and p be
distinct non-adjacent primes of ∆(G). If q does not divide |S|, then S is a simple
group of Lie type in characteristic p.

Proposition 2.6. Let G be a finite group, M a non-abelian minimal normal sub-
group of G and C = CG(M). Then the following conclusions hold.

(a) If q is a prime divisor of |G/MC| and q does not divide |M |, then there exists
θ ∈ Irr(M) such that q divides |G : IG(θ)|.

(b) If q is a prime divisor of |G/C|, then there exists θ ∈ Irr(M) such that q divides
χ(1) for all χ ∈ Irr(G|θ).

(c) If M is not a simple group, then ∆(G/C) is a complete graph.

Finally, we will freely use without references some notation and basic facts
of Character Theory such as Clifford Correspondence, Gallagher’s Theorem, Ito-
Michler’s Theorem, properties of character extensions and coprime actions (see
[10]).

3. About condition Nq

This section contains a series of results concerning condition Nq, that will be
crucial in our proof of Lemma 5.1.

We remark that, if (H,V ) ∈ Nq and N is a normal subgroup of H such that q
divides |N/CN(V )|, then (N, V ) satisfies Nq as well.

Lemma 3.1. Let V be a faithful H-module, |V | = 26 and assume that (H,V ) ∈ Nq.
Then q = 2 and either H ≤ Γ(V ) or H has a normal subgroup isomorphic to SL2(8).

We observe that GL6(2) has a unique conjugacy class of maximal subgroups
(isomorphic to GL2(8) : C3 = (C7 × L2(8)) : C3) having a section isomorphic to
L2(8) and that if H is a subgroup of GL6(2) having a normal subgroup isomorphic
to SL2(8), then (H,V ) ∈ Nq, where V is the natural module of GL6(2).

Proof of Lemma 3.1. As CH(V ) = 1, we can identify H with a subgroup of G :=
GL6(2) and V with the natural module. We recall that |G| = 215 · 34 · 5 · 72 · 31.

We first show that q = 2. Working by contradiction, let H be a subgroup of
L6(2) of minimal order such that (H,V ) ∈ Nq for some q 6= 2. By the remark at the
beginning of the page, H has no proper normal subgroup of order divisible by q.

Let Q be a Sylow q-subgroup of H . Considering that nq = |H : NH(Q)| =
(26−1)/(2b−1) where 2b = |CV (Q)|, we see (as q 6= 2) that the only two possibilities
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are (q, nq) = (5, 21) or (q, nq) = (31, 63). In the second case, N = NH(Q) acts
faithfully on [V,Q] (as V = CV (Q) × [V,Q] and N acts trivially on CV (Q), as
|CV (Q)| = 2). But [V,Q] is an irreducible Q-module (as 31 is a primitive divisor
of 25 − 1) and hence N ≤ Γ(25) by [15, Theorem 2.1]. Therefore, |H | = 63 · |N | is
odd and hence H is solvable. Thus (by [6, Corollary 10]) H ≤ Γ(26), yielding that
q divides 6, a contradiction.

Assume now q = 5 and [H : NH(Q)] = 21. So, Q has order 5 and it is also a
Sylow 5-subgroup of GL6(2). Observe that NGL6(2)(Q) ≃ Γ(24) × S3. Hence |H |
divides 23 · 33 · 5 · 7 and |H | is certainly a multiple of 3 · 5 · 7. Let K be a maximal
normal subgroup of H ; recall that |K| is coprime to 5. If H/K is solvable, then
H is 5-nilpotent and by (b) of Theorem 2.2 again H ≤ Γ(26), a contradiction. So
H/K = S is a non-abelian simple group and 5 divides |S|. Moreover, 7 divides |S|,
as otherwise by the Frattini Argument Q normalizes some Sylow 7-subgroup P of
H and hence Q centralizes P (because |P | divides 72), again a contradiction as 7
divides |H : NH(Q)|.

The non-abelian simple sections (i.e. factor groups of subgroups) of L6(2) are
isomorphic to one of the groups in the following list:

L = {A5,A6,A7,A8,L2(7),L2(8),U3(3),U4(2),L3(4),L5(2), S6(2),L6(2)} .

The only group in L whose order is at most 23 · 33 · 5 · 7 and is divisible by both
5 and 7 is A7. But the normalizer in A7 of a Sylow 5-subgroup has index 2 · 32 · 7,
and this is not possible as the same index divides |H : NH(Q)| = 21.

Assume now q = 2 and, as before, H ≤ G = L6(2). We want to show either that
H ≤ Γ(26) or that H has a normal subgroup isomorphic to L2(8).

As above, (using (c) of Theorem 2.2) we can assume that H is non-solvable. We
can also assume that no proper normal subgroup of H has even order. In fact, by
inspection of the maximal subgroups of L6(2) one checks that if N is a subgroup of
L6(2) and N has a normal subgroup L ≃ L2(8), then L is characteristic in N (as L
is the component subgroup of N).

Write K = O2′(H); by the preceding paragraph we see that H/K = S is non-
abelian simple and that H is perfect. Let Q be a Sylow 2-subgroup of H . Observe
that n2(S) = |Syl2(S)| divides n2(H) = |H : NH(Q)| = (26 − 1)/(2b − 1) ∈
{9, 21, 63}. But for S in the above list of non-abelian simple sections of L6(2), we
check that the only groups S that satisfy the condition |Syl2(S)| divides one among
{9, 21, 63} are L2(7) and L2(8).

We now proceed to show that K is trivial. Let P be a Sylow p-subgroup of
K, for a prime p 6= 2. Then by Frattini Argument, H = KNH(P ) and hence
NH(P )/NK(P ) ≃ H/K = S. If the group AutH(P ) = NH(P )/CH(P ) is solv-
able, then CH(P ) 6≤ NK(P ) and, being NH(P )/NK(P ) simple, it follows that
CH(P )NK(P ) = NH(P ) and hence that CH(P ) has a factor group isomorphic to
S (in fact, CH(P )/CK(P ) ≃ NH(P )/NK(P )). So CH(P ) is a normal subgroup of
even order of H and hence P is central in H . Since the Schur Multiplier of S has
order 1 or 2 and H is perfect, we conclude that P = 1.

Now, AutH(P ) is certainly solvable if p ∈ {5, 7, 31} (observe that 7 divides |S|).
Moreover, a Sylow 3-subgroup Q of G is isomorphic to the wreath product C3 ≀ C3

and for all P ≤ Q one checks that Aut(P ) is a {2, 3}-group, except when P is
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elementary abelian of order 33; but as 13 does not divide |G|, again AutH(P ) is a
{2, 3}-group. Thus, we conclude that K = 1.

Finally, if H ≃ L2(7) and Q ∈ Syl2(H), then NH(Q) = Q and as (H,V ) ∈ N2,
we have that every subgroup of odd order of H acts fixed point freely on V . But
L2(7) has non-cyclic subgroups of order 21, a contradiction (subgroups of order pq
of a Frobenius complement are cyclic). Thus, we conclude that H ≃ L2(8).

Proposition 3.2. If (H,V ) ∈ Nq, CH(V ) = 1 and q does not divide |V |, then the
following conclusions hold.

(a) F(H) is cyclic.
(b) If B is the solvable radical of H and H 6= B (i.e., if H is non-solvable), then

B = F(H).

Proof. We start by proving (a), and we proceed by induction on |H |.
Write |V | = ra and let Q be a Sylow q-subgroup of H . As (H,V ) ∈ Nq and

r 6= q, we have that q 6= 2, a > 2 and that ra 6= 26 by Lemma 3.1. So there exists a
primitive prime divisor t of ra − 1 (note also that a divides t− 1). Observe that H
has a subgroup T of order t, as (|V | − 1)/(|CV (Q)| − 1) = |Sylq(H)| divides |H |.

We can assume that t does not divide the order of F = F(H). In fact, assuming
that F has a non-trivial Sylow t-subgroup T0, we have H ≤ Γ(V ) (by [15, Theorem
2.1]), and F is cyclic by [7, Lemma 3.7].

So, for every prime divisor p of |F |, there is a T -stable Sylow p-subgroup P of
F . By Lemma 6 of [6], if p 6= 2, then we have P ≤ CF (T ); recalling that in GLa(r)
the centralizer of an element of order t is cyclic, we have that P is cyclic. Now,
write E = [O2(F ), T ] and observe that, by coprimality, [E, T ] = E. If E is cyclic,
then E = [E, T ] = 1 (because the automorphism group of E is a 2-group), so F
centralizes T and it is therefore cyclic.

Working by contradiction, assume that E is non-cyclic. If A is a characteristic
abelian subgroup of E, then V is an irreducible AT -module (because t is a primitive
prime divisor of ra − 1); moreover, the restriction of V to A is homogeneous, since
otherwise it would have t homogeneous components, yielding the contradiction a ≥
t > a; thus, A is cyclic. As a consequence, T centralizes every characteristic abelian
subgroup of E; since [E, T ] = E, by [4, 24.7] we have that E is an extraspecial 2-
group. Write |E| = 22n+1, and let z be the unique central involution of E.

Observe that, by applying [15, Corollary 2.6] to an irreducible constituent of the
homogeneous module VE , we see that 2n divides the dimension a of V . From this
we get 2n + 1 ≤ a+ 1 ≤ t.

Moreover, T acts faithfully on the symplectic module E/Z(E), so t is a divisor
of 22i − 1 for some i ≤ n. Therefore t ≤ 2n + 1 and hence we conclude that
t = 2n + 1 = a + 1. Thus, in particular, V is an absolutely irreducible E-module
(again by [15, Corollary 2.6]).

Suppose first that n ≥ 2. So there exists a non-central involution x ∈ E and we
set W = CV (x) and X = CH(x).

We claim that |W | = |V |1/2. In fact, if χ is the Brauer character corresponding
to V , then χ is the only non-linear character in Irr(E) (note that r 6= 2, as E acts
faithfully and irreducibly on V ), hence χ(x) = 0. So [χ〈x〉, 1〈x〉] = χ(1)/2 = a/2 is
the dimension of the fixed-point space of 〈x〉 in V , and the claim is proved.

So, by [8, Proposition 2.3(c)], |W | > |CV (Q)| and q divides |H : CH(W )|. Thus,
[8, Lemma 2.4] yields (X,W ) ∈ Nq. By induction, then F(X/CX(W )) is cyclic.
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On the other hand, X∩E = CE(〈x〉) = 〈x〉×E0, where E0 is an extraspecial group
and |E0| = 22(n−1)+1. Note that CE0

(W ) = 1, as CE0
(W ) is a normal subgroup of

E0 and it intersects trivially Z(E0) = Z(E) = 〈z〉 (as z acts as the inversion on V ).
So E0 is isomorphic to a subgroup of (X ∩ E)CX(W )/CX(W ) ≤ F(X/CX(W )),
which is cyclic, a contradiction.

Hence, we have n = 1 and a = 2. Thus, we can identify H with a subgroup of
GL2(r). Let K = H ∩ SL2(r). If (q, |K|) = 1, then H is q-nilpotent, and then for
every non-trivial v ∈ V , Z(CH(v)) contains a Sylow q-subgroup of H . Therefore,
H ≤ Γ(V ) by the Main Theorem of [6]. By [8, Lemma 2.1] it follows q = 2 and
hence by [8, Proposition 2.3(a)] we get r = 2 = q, a contradiction.

Assume now that q divides |K|; then (K,V ) ∈ Nq and hence K is a proper
subgroup of SL2(r) and K 6≃ A5 (as A5 ≃ PSL2(5)) by [6, Proposition 13]. Hence
K and H are solvable and again K and H are subgroups of Γ(V ). Thus, as in the
previous paragraph, we get r = 2 = q, a contradiction.

It remains to prove part (b). Recalling that there exists a primitive prime divisor
t for ra − 1 that divides |H |, we observe that t does not divide |B|. In fact, assume
that B has a non-trivial Sylow t-subgroup T0; then H = NH(T0)B. But NH(T0)
has an abelian normal subgroup (namely, Z(T0)) acting irreducibly on V , hence
NH(T0) is metacyclic by [15, Theorem 2.1], contradicting the fact that H is not
solvable.

Now, by [6, Lemma 6], we have B = CB(T )D, where D ∈ Syl2(B) is normalized
by T .

Let E = [B, T ]. Then E is normal in B, and E = [CB(T )D,T ] = [D,T ] ≤ D;
therefore E is a normal 2-subgroup of B. In particular, E ≤ F(B) = F(H) is cyclic
by part (a). Finally, as the automorphism group of E is a 2-group, T centralizes E
and we get [B, T ] = [E, T ] = 1; thus B ≤ CH(T ) is cyclic, and we get B = F(H),
as claimed.

Next, we extend Proposition 13 of [6] to the case of even characteristic.

Lemma 3.3. Let H = PSL2(u
α), and M an H-module. Then, for any odd prime

q, there does not exist any H-module M such that (H,M) satisfies Nq.

Proof. For a proof by contradiction, assume that M is an H-module and q is an
odd prime such that (H,M) satisfies Nq. Then, by Proposition 13 of [6], we have
u = 2.

Now, let Q be a Sylow q-subgroup of H , and let ra = |M |, rb = |CM (Q)|. Also,
let U be a Sylow 2-subgroup of H consisting of the unipotent matrices and let D
be the subgroup consisting of the diagonal matrices in H . Then UD = NH(U) is
a Frobenius group with complement D and kernel U .

We observe that CM (U) = 1: in fact, if 1 6= v ∈ CM (U), then if CM (v) contains
both U and a Sylow q-subgroup Q1 of H as a normal subgroup; in particular,
U ×Q1 is a subgroup of H , which is impossible.

As CM (U) = 1, then r 6= 2. Thus, by [10, 15.16] we have that CM (D) 6= 1.
Hence D normalizes a Sylow q-subgroup Q of H and, again by the knowledge of
the subgroups of H , we get that Q ≤ D (and that q divides 2α − 1). Hence,
|NH(Q)| = 2(2α − 1) and

|Sylq(H)| = 2α−1(2α + 1) =
ra − 1

rb − 1
= 1 + rb + · · ·+ rb(c−1)
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Since α ≥ 2 (otherwise H ≃ S3 and q = 2) and r is odd, we get that c = a/b is
even.

Set ra0 = |CM (D)|; using again [10, 15.16], we get a = |D|a0 and b = (|D|/|Q|)a0.
Hence c = |Q| and hence q = 2, a contradiction.

Lemma 3.4. Let H = J1, the first Janko’s sporadic simple group. Then, for any
prime q, there does not exist any H-module M such that (H,M) satisfies Nq.

Proof. Let q be a prime divisor of |H |. Then |Sylq(H)| can be deduced from [5],
and it can be checked that the equation

|Sylq(H)| =
ra − 1

rb − 1
= 1 + rb + · · ·+ rb(c−1)

is not satisfied by any choice of a prime r and positive integers a, b with b | a (and
c = a/b).

4. A reduction

This section is devoted to the proof of a technical result, which provides a useful
reduction for Proposition 6.1. Lemma 4.1 is a generalization of [1, Lemma 3.1]: we
extend that result (which deals with solvable groups) to groups whose generalized
Fitting subgroup coincides with the Fitting subgroup.

Lemma 4.1. Let G be a group such that F∗(G) = F(G), and such that for every
proper factor group G of G, we have V(G) 6= V(G). Let M be a minimal normal
subgroup of G, let p ∈ V(G) \ V(G/M) and P ∈ Sylp(G). Also, let πp be the set

of vertices of the connected component of p in ∆(G). Then there exists a normal
subgroup W of G such that πp ⊆ V(W ), and either F(W ) = P with P ′ = M , or
F(W ) =M with M ∩Φ(G) = 1; in particular, F(W ) is complemented in G.

Proof. Let N0 be the set of the minimal normal subgroups of G which are contained
in Φ(G). For N0 ∈ N0, if p ∈ V(G) \ V(G/N0) and P ∈ Sylp(G), then PN0/N0 is
abelian and normal in G/N0, so P is normal in G (as F(G/N0) = F(G)/N0) and
P ′ = N0. Note that p is therefore the unique prime in V(G) \ V(G/N0). In this

situation, we define N#
0 = P ; obviously N#

0 is complemented in G and, setting

F = F(G), there exists K E G such that F = K ×N#
0 . On the other hand, let N1

be the set of the minimal normal subgroups of G that are not contained in Φ(G).

If N1 ∈ N1, we define N#
1 = N1: since N#

1 ∩ Φ(G) = 1, also in this case we have

that N#
1 is complemented in G (see 4.4 in [9, III]) and, as N#

1 ≤ Z(F ), there exists

K E G such that F = K ×N#
1 .

Observe that F is a direct product of subgroups N#, where N varies in N0 and
in a suitable subset of N1. Moreover, if σ is the set of prime divisors of |N0| for
N0 ∈ N0, we have Oσ′(F ) ∩ Φ(G) = 1, and it is easily seen that F itself has a
complement L in G.

Let nowM be a minimal normal subgroup of G. Take again p ∈ V(G)\V(G/M),
P ∈ Sylp(G), and let M# be as above. As mentioned, we can write F = K ×M#

where K is a suitable normal subgroup of G, thus H = LM# is a complement for
K in G.

Define W = CH(K). We have W E G, W ∩ F =M# and hence F(W ) =M#.
Note also that, as P commutes with K modulo M , we get [P,K] ≤M ∩K = 1; in
particular, W contains the Sylow p-subgroups of H , and p ∈ V(W ).
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Let now q ∈ πp be a vertex of the connected component of p in ∆(G). We prove,
by induction on the distance d = d∆(G)(p, q) that q ∈ V(W ).

We consider first the case d = 1. Given a character λ ∈ Irr(M#) such that
λM 6= 1M , we have that p divides χ(1) for every χ ∈ Irr(G|λ). Observe also
that, both in the case M# = P as also M# = M , λ extends to IG(λ). Hence,
Gallagher’s Theorem and Clifford Correspondence, with the nonadjacency between
q and p in ∆(G), imply that IKL(λ) ≃ IG(λ)/M

# contains a Sylow q-subgroup
Q0 of LK as a normal subgroup, and that Q0 is abelian. Let now Q be a Sylow
q-subgroup of L; by a suitable choice of λ, we can assume that Q = Q0 ∩ L. Since
K centralizes M#, K is a normal subgroup of IKL(λ) as well. Hence Q centralizes
K = (K ∩ Q0) ×Oq′(K), i.e. Q ≤ W and so q ∈ V(W ). Observe that Q 6= 1, as
otherwise (K ∩Q0)×M would contain an abelian normal Sylow q-subgroup of G.

Assume now d ≥ 2 and let t be the vertex adjacent to q in a path of length d from
p to q in ∆(G). Working by induction on d, we have t ∈ V(W ). Let T ∈ Sylt(W ).
Observe that, since t 6= p and M# = F(W ), T is certainly not normal in W . Let
X = TG = TW (the normal closure of T in W ) and U = Ot(X).

Let U/V be a chief factor of G. Write G = G/V and use the bar convention.
So U is a minimal normal subgroup of G. Let C = CG(U). Note that if U is

non-abelian, then we can assume that |U | is coprime to q, as otherwise certainly
q ∈ V(U) ⊆ V(W ). On the other hand, if U is abelian, then CU (T ) = 1 (since

U = CU (T )× [U, T ] and T [U, T ] is the normal closure of T in G). We observe that

there exists a character θ ∈ Irr(U) such that t divides χ(1) for all χ ∈ Irr(G|θ). In
fact, if U is abelian the prime t divides the index |G : IG(θ)| for all 1 6= θ ∈ Irr(U),

while when U is non-abelian this follows from Proposition 2.6(b) (note that t divides
|G/C| because T does not centralize U ; in fact, [U, T ] = 1 would imply X = T ,
whence U would be a t-group, against the fact that U = Ot(X)). So, as KU =
K × U , we see that the Sylow q-subgroup of K is abelian and that K ≃ K ≤ C.

We also remark that U ∩Φ(G) = 1, as otherwise U ≤ Φ(G), so T is normal in G
and [U, T ] = 1, a contradiction. If U is abelian, then U is complemented in G and
θ extends to IG(θ). So, by Gallagher’s Theorem IG(θ)/U contains a unique Sylow

q-subgroup of G.
Assume now that U is non-abelian. So UC = U×C, and then we have that C has

a normal abelian Sylow q-subgroup. If q does not divide |G/C|, then G has a normal
abelian Sylow q-subgroup. If q divides |G/C|, then by Proposition 2.6(c) and by
Proposition 2.5 we deduce that U is a simple group of Lie type in characteristic t.
Let then φ be the Steinberg character of U . So φ is G invariant and it extends to G
(since the corresponding character of the almost simple group G/C does). Hence,
again by Gallagher’s Theorem IG(θ)/U contains a unique Sylow q-subgroup of G.

We have thus proved that, in all cases, there exists a Sylow q-subgroup Q0 of G
such that Q0U/U is the unique Sylow q-subgroup of IG(θ)/U .

For every κ ∈ Irr(K) we have U ≤ IG(κ); let us consider the character ψ =

θ×κ ∈ Irr(U ×K), where θ ∈ Irr(U) is as above. Note that t divides χ(1) for every
χ ∈ Irr(G|ψ) (as χ lies over θ). As t and q are not adjacent in ∆(G), we have that
IG(ψ) = IG(θ)∩IG(κ) contains a Sylow q-subgroup ofG. As U ≤ IG(ψ) andQ0U/U

is the unique Sylow q-subgroup of IG(θ)/U , this yields Q0U ≤ IG(ψ) ≤ IG(κ), and

this holds for every κ ∈ Irr(K). Thus Q0 acts trivially on Irr(K). Now, by a
suitable choice of (a conjugate of) θ, we may assume that Q = Q0 ∩ L ∈ Sylq(L).
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Let Kq and Kq′ be the Sylow q-subgroup and the q-complement of K, respectively,

so that the nilpotent subgroupK decomposes as Kq×Kq′. Since Q acts trivially on

both Irr(Kq′) and Irr(Kq), we get [Q,Kq′ ] = 1 by coprimality, but also [Q,Kq] = 1

by the fact that Kq is abelian. We conclude that Q acts trivially on K. Thus
[Q,K] ≤ K ∩ V = 1 and hence Q ≤W .

Finally, observe that Q 6= 1, as otherwise F = K ×M# contains a full Sylow
q-subgroup Q0 of G and Q0 is abelian because both Q0 ∩ K and Q0 ∩M# are
abelian (in fact, by the definition ofM#, if Q0∩M# 6= 1, then M# is abelian). As
the Fitting subgroup M# of W has trivial intersection with Q ≤ L, we conclude
that q ∈ V(W ), completing the proof.

5. Two special cases

In view of Lemma 4.1, two special situations turn out to be relevant in our
analysis; these are treated in Lemma 5.1 and Lemma 5.3. For the first of these
lemmas, the discussion about condition Nq that we carried out previously turns
out to be critical.

Lemma 5.1. Let G be a group, and let π = {p0, ..., pd−1} be a subset of V(G) such
that d 6= 1 is odd. Assume that F(G) = F∗(G) is a minimal normal subgroup of G,
and that there exists a complement H for F(G) in G. Assume also that π 6⊆ V(H).
Then there is no cycle in ∆(G) whose vertex set is π.

Proof. Let p be a prime number such that Op(H) 6= 1 (note that p ∈ V(G)).
Setting M = F(G), we have CM (Op(H)) 6= M ; but CM (Op(H)) E G and M

is minimal normal in G, thus we get CM (Op(H)) = 1. Denoting by M̂ the dual
group of M , of course we also have C

M̂
(Op(H)) = 1; as a consequence, for every

λ ∈ M̂ \ {1M}, the index of IH(λ) in H is divisible by p. Let now q be a vertex of
∆(G) which is not adjacent to p. As M is abelian and complemented in G, every
irreducible character of M extends to its inertia subgroup in G and so, by Clifford
Theory, IH(λ) contains a unique Sylow q-subgroup of H (which is also abelian and

clearly non-trivial). In other words, (H, M̂) satisfies Nq.
For a proof by contradiction, assume that π is the set of all vertices of a cycle

in ∆(G) (say, {pi, pi+1} is an edge of ∆(G) for every i ∈ {0, ..., d − 2}, as well as
{pd−1, p0}). By our hypotheses, we can assume that p0 is not a vertex of ∆(H),
whence H has an abelian normal Sylow p0-subgroup. Since Op0

(H) 6= 1, the

paragraph above yields that (H, M̂) satisfies Nq for q ∈ {p1, pd−1}; moreover, one
among p1 and pd−1 does not divide |M | and, as M = F∗(G), H acts faithfully on

M̂ . Therefore, denoting by B the solvable radical of H , Proposition 3.2 yields that
B = F(H) is cyclic.

Now, define π0 to be the set of primes in π that are divisors of |B| (note that
p0 ∈ π0), and let π1 = π \ π0. Also, setting H = H/B, adopt the bar convention
for H . We claim that if σ is a subset of π1, with |σ| 6= 1, yielding a path in ∆(G),
then there exists a minimal normal subgroup N of H which is (non-abelian and)
simple, and such that σ ⊆ π(|H : CH(N)|). In fact, let t be in σ; since B is the

solvable radical of H , the generalized Fitting subgroup of H is a direct product of
non-abelian minimal normal subgroups, and the intersection of all the centralizers
of these subgroups is therefore trivial. As a consequence, there exists a non-abelian
minimal normal subgroup N of H such that t | |H : C|, where C = CH(N). Note
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that, by Proposition 2.6(b), there exists θ ∈ Irr(N) such that t divides χ(1) for all
χ ∈ Irr(H |θ). Let now s (s 6= t) be an element of σ which is adjacent to t in ∆(G),
and assume s | |C|; since Os(H) is clearly trivial, there exists φ ∈ Irr(C) whose
degree is divisible by s. Considering θ × φ ∈ Irr(NC), we see that st divides ξ(1)
for every ξ ∈ Irr(H |θ × φ), a contradiction. We conclude that also s is a divisor
of |H : C| and, iterating this process, we get σ ⊆ π(|H : C|). The fact that N is
simple follows by Proposition 2.6(c), and our claim is proved.

As the next step, we prove that certain configurations concerning the distribution
of the primes of π in the two parts π0 and π1 are not allowed. Namely:

(a) Two consecutive vertices in π cannot be both in π0. This follows from the fact
that, B being the second Fitting subgroup of G, the prime divisors of |B| induce a
clique in ∆(G) (see Proposition 17.3 in [15]).

(b) A path of consecutive vertices in π, having the two (possibly coincident) extremes
in π0 and all the other vertices in π1, cannot have length three. In fact, arguing by
contradiction, assume that t1, t2, t3, t4 are consecutive vertices of a path in ∆(G),
with {t1, t4} ⊆ π0 and {t2, t3} ⊆ π1 (we allow t1 = t4). Then, as shown in the

first paragraph of this proof, (H, M̂) satisfies Nq for q ∈ {t2, t3}. In other words,

if λ ∈ M̂ \ {1M}, then IH(λ) contains both a Sylow t2-subgroup and a Sylow t3-
subgroup of H as normal subgroups, and these Sylow subgroups are abelian; in
particular, H has abelian Hall {t2, t3}-subgroups, and the same clearly holds for
every normal section of H . Take now a minimal normal subgroup N of H which
is simple and such that {t2, t3} ⊆ π(|H : CH(N)|), as in the third paragraph of

this proof; we have that H/CH(N) is an almost-simple group with abelian Hall

{t2, t3}-subgroups, such that t2 and t3 are nonadjacent vertices of ∆(H/CH(N)).
This contradicts Proposition 2.8(b) of [8], and the desired conclusion follows.

(c) A path of consecutive vertices in π, having the two (possibly coincident) extremes
in π0 and all the other vertices in π1, cannot have length larger than four. For a
proof by contradiction, assume that {ti | i ∈ {1, ..., k}} is a set of consecutive
vertices of a path in ∆(G), with {t1, tk} ⊆ π0, {t2, ..., tk−1} ⊆ π1, and k > 5 (we
allow t1 = tk). As in (b), we consider a minimal normal subgroup N of H which is
simple and such that {t2, ..., tk−1} ⊆ π(|H : CH(N)|). If a prime t ∈ {t3, ..., tk−2}

does not divide |N | then, denoting by r and s the two vertices in {t2, ..., tk−1}
preceding and following t in that sequence, Proposition 2.8(b) of [8] yields that N
is a group of Lie type both in characteristic r and s. It follows that one among r and
s is 2, and t (which is now a prime divisor of |Out(N)|) is 2 as well, a contradiction.
For the same reason, we see that t2 and tk−1 cannot be both coprime with |N |.
We conclude that either {t2, ..., tk−1} ⊆ π(N ), or (say) t2 is the unique element of
{t2, ..., tk−1} not dividing the order of N , which is in this case a group of Lie type
in characteristic t3.

An inspection of the degree graphs of non-abelian simple groups (which are all
described in [18]) yields that both situations imply N ≃ PSL2(u

α) for a suitable
prime u and α ∈ N (with uα ≥ 4), or N ≃ J1, the first sporadic Janko’s group.

Let N be the normal subgroup of G, containing B, such that N/B = N , and
assume for the moment that B has a direct complement T in N . By the first

paragraph in this proof, we have that (T, M̂) satisfies Nq at least for q = tk−1, and

also for q = t2 unless T ≃ N is a group of Lie type in characteristic t3. In the former



12 Z. AKHLAGHI ET AL.

case, since one among t2 and tk−1 is an odd prime, the paragraph above together
with Lemma 3.3 and Lemma 3.4 yield a contradiction. In the latter case, the same
considerations show that we must have T ≃ PSL2(u

α) for a suitable α ∈ N, where
u = t3 is an odd prime and tk−1 = 2; but even in this case we reach a contradiction,
because the prime 2 is adjacent in ∆(PSL2(u

α)) (with u 6= 2) to every prime divisor
of |PSL2(u

α)| except u, against the fact that tk−1 is adjacent to tk−2 in ∆(G).
It remains to consider the case in which B does not have a direct complement

in N . Note that CN (B) is a normal subgroup of N containing B, therefore it is
either B or N ; but if CN (B) = B, then N embeds into the abelian group Aut(B)
(recall that B is cyclic), a contradiction. Therefore we get B = Z(N). Now, we
have N = BN ′, thus N ′∩B 6= 1 as otherwise N ′ would be a direct complement for
B in N ; moreover, N ′ is perfect (see [4, 33.3]), so N ′ ∩B is a non-trivial subgroup
of the Schur multiplier of N ′/(N ′ ∩ B) ≃ N . As a consequence, we immediately
exclude the case N ≃ J1 and N ≃ PSL2(2

α) for α 6= 2, whose Shur multipliers
are trivial. If N ≃ PSL2(u

α) where u is an odd prime and uα 6= 9, then we
get p0 = 2 = |N ′ ∩ B| (hence t1 = tk = 2); but 2 is adjacent in ∆(G) to every
prime divisor of |N |, clearly contradicting our setting. Finally, PSL2(4) ≃ A5 and
PSL2(9) ≃ A6 have order divisible by only three primes, again contradicting our
assumptions, and concluding the proof of (c).

It is straightforward that conditions (a), (b) and (c) are not compatible with the
fact that |π| is an odd number. This contradiction completes the proof.

In order to treat (in Lemma 5.3) the other relevant case arising from Lemma 4.1,
we gather together some facts that were essentially pointed out in [7, Lemma 3.9]
and in [1, Lemma 2.2 and Lemma 3.2], but in a slightly different context (namely,
those results deal with solvable groups). The proof of the following result is similar
to those of the aforementioned lemmas (the main difference is that a key tool here
is Theorem 2.2), but we decided to include it here in full details for the convenience
of the reader.

Lemma 5.2. Let p be a prime, E an elementary abelian p-group, and H a p′-group
acting faithfully on E. Set G = EH, and π0 = π(F(H)). Also, let q ∈ π0 and
s ∈ π(H) be distinct vertices that are not adjacent in ∆(G). Let Q = Oq(H), S ∈
Syls(H) and L = (QS)H (the normal closure of QS in H). Then the following
conclusions hold.

(a) E = A×B, where A = [E,Q] = [E,L] and B = CE(Q) = CE(L).
(b) L = L0S ≤ Γ(A), where L0 = F(L) is a cyclic group acting fixed-point freely

and irreducibly on A.
(c) Setting |A| = pn, there exists a primitive prime divisor t of (p, n) such that t

divides |L0|.
(d) Let r be a prime divisor of |H | such that {s, r} ∈ E(G). Then r ∈ π0. Moreover,

H has both a normal abelian Sylow q-subgroup and Sylow r-subgroup.
(e) Let p1, p2, p3, p4 be distinct prime divisors of |H | such that {pi, pi+1} ∈ E(G)

for i ∈ {1, 2, 3}, and p1 ∈ π0. Then {p1, p4} ∈ E(G).

Proof. Let A = [E,Q] and B = CE(Q). Consider the action of G on Ê = Â × B̂,

where Ê =Irr(E) is the dual group of E. We know that for α ∈ Â \ {1}, q divides
|G : CG(α)| = |H : CH(α)|. Also, the linear character α extends to CG(α),
because A has a complement (namely BCH(α)) in CG(α). Thus, by Gallagher’s
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Theorem and Clifford Correspondence, this forces CH(α) ≃ CG(α)/E to contain

an H-conjugate of S as a normal subgroup (and also, S is abelian). Let α ∈ Â\{1}

be such that S ≤ CH(α) and let β ∈ B̂; then CH(α × β) = CH(α) ∩ CH(β)
and q divides |H : CH(α × β)|. As α × β extends to its inertia subgroup in G,
using as above Clifford Theory and that no irreducible character of G has degree
divisible by qs, we get that the unique Sylow s-subgroup S of CH(α) must also

be contained in CH(β). We conclude that S acts trivially on B̂ and hence that
S ≤ CH(B)✂H . Thus L = (QS)H ≤ CH(B), so that B = CE(L). Moreover, we
get [E,L] = [A × B,L] = [A,L] ≤ A, hence from E = B × [A,L] we deduce that
A = [E,L] and (a) is proved.

Since all Sylow s-subgroups ofH are contained in L, we have thatCL(α) contains

an L-conjugate of S as a normal subgroup for every α ∈ Â\{1}, i.e., (L, Â) satisfies

Ns. Hence, as |L| is coprime to |Â|, an application of Theorem 2.2 yields that
L ≤ Γ(A), as CL(A) = 1. Let L0 = L ∩ Γ0(A). By [8, Lemma 2.1], we have that s
does not divide |L0|, whereas d = |S| divides n, and (pn−1)/(pn/d−1) divides |L0|.
Note that pn − 1 has a primitive prime divisor t. In fact, otherwise, either n = 2 or
pn = 26. In both cases, as s and p are distinct primes, s divides (pn−1)/(pn/d−1),
so s divides |L0|, a contradiction. This proves (c), and Lemma 3.7 in [7], yields
L0 = F(L).

Clearly t divides (pn − 1)/(pn/d − 1), hence it divides |L0|. Denoting by T0 the
subgroup of L0 with |T0| = t, by Lemma 3.7 in [7], it follows that CL(T0) = L0.
Note that t is larger than n and hence, as |L/L0| divides n, we get that a Sylow t-
subgroup of L is contained in L0. This implies that Q ≤ L0, since Q✂H centralizes
T0. But now both Q and S lie in L0S; moreover, as L/L0 is cyclic, L0S is normal

in H . So L = L0S. As L0 is cyclic and acts fixed point freely on Â, the proof of
(b) is complete.

Set K = CH(A), and observe that A is a faithful H/K-module over GF(p). As
clearly L ∩ K = 1, claims (b) and (c) ensure that F(LK/K) has a characteristic
subgroup T/K of order t, which is therefore characteristic in LK/K and hence
normal in H/K. Since t is a primitive prime divisor of (p, n), the action of T/K
on A is easily seen to be irreducible, and therefore H/K embeds in Γ(A) (see
Theorem 2.1 in [15], for instance). As a consequence, denoting by X/K the Fitting
subgroup of H/K, by [7, Lemma 2.1] the prime divisors of H/X constitute a clique
in ∆(H/K), which is a subgraph of ∆(G); moreover, Lemma 3.7 in [7] yields that
X/K is cyclic.

As (L, Â) satisfiesNs, it follows that (H/K, Â) satisfiesNs and henceOs(H/K) =
1. In particular, s is a divisor of H/X . Now, taking into account the conclusion
of the paragraph above, if r ∈ π(H) is nonadjacent to s in ∆(G), then r ∤ |H/X |.
As a consequence, H/K has a cyclic normal Sylow r-subgroup, thus r 6∈ V(H/K).
Observe also that r 6∈ V(K) as well. In fact, certainly there exists θ ∈ Irr(L) such
that θ(1) is divisible by s; thus, if φ ∈ Irr(K) has a degree divisible by r, then, for
any ξ ∈ Irr(H) such that θ × φ ∈ Irr(LK) is a constituent of ξLK , we would have
r · s | ξ(1), against the nonadjacency between r and s in ∆(G). Now, let χ be in
Irr(H), and let β be an irreducible constituent of χK : we have

χ(1) = e · β(1) · |H : IH(β)|,

where e is the degree of an irreducible projective representation of IH(β)/K. If r
divides |H : IH(β)|, then it also divides |H : IH(θ × β)| (where θ ∈ Irr(L) is as
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above), and therefore any ξ ∈ Irr(H | θ × β) would have a degree divisible by r · s,
again a contradiction. Also, e is the degree of an irreducible ordinary representation
of a Schur covering Γ of IH(β)/K; but, since IH(β)/K has a cyclic normal Sylow
r-subgroup, we have that Γ has an abelian normal Sylow r-subgroup, therefore r
does not divide e as well. Since we observed that β(1) is not divisible by r, we
conclude that r ∤ χ(1); as this holds for every χ ∈ Irr(H), we get that H has an
abelian normal Sylow r-subgroup, and the proof of (d) is complete.

Let p1, p2, p3, p4 be as in the assumptions of part (e). Then (d) yields {p1, p3} ⊆
π0 ; actually, setting Pi ∈ Sylpi

(H) for i = 1, 2, 3, 4, we have that P1 and P3 are
abelian and normal in H . Moreover, Lemma 2.1 of [7] yields that {p2, p4}∩π0 = ∅.
Write L1 = (P1P2)

H , L3 = (P3P4)
H , L = L1L3, M = CE(L) and V = E/M . Also,

let U1 = [V, P1] and U3 = [V, P3]. Then, clearly, V = U1U3, and, again by (b) and
(a), we have that U1 = [V, L1] and U3 = [V, L3] are irreducible L-modules, hence
irreducible H-modules.

Let us assume U1 6= U3; then V = U1 × U3, U1 = CV (L3) and U3 = CV (L1).
Thus we get L1 ∩ L3 = 1, whence L = L1 × L3 and V L = U1L1 × U3L3. As
p2 and p3 divide, respectively, the degree of a character of U1L1 and of U3L3,
we get that p2 and p3 are adjacent in the graph ∆(V L), which is a subgraph of
∆(G), a contradiction. Thus we have U1 = U3. Setting U = [E,P1], we now have
E = U ×M . So, [E,P1] = [E,P3] and p1 · p3 divides |H : IH(λ)| for every non-
principal λ ∈ Irr(U). Observe also that U is complemented in G by MH . Let χ
be an irreducible character of G whose degree is divisible by p1. Since P1 is an
abelian normal Sylow subgroup of H , then MP1 is an abelian normal subgroup of
MH ≃ G/U , and hence the kernel of χ cannot contain U . Therefore, denoting
by λ a (non-principal) irreducible constituent of χU , the degree of χ is divisible by
|G : IG(λ)| = |H : IH(λ)|, thus by p1 · p3. As p4 is not adjacent to p3 in ∆(G),
we conclude that p4 does not divide χ(1). But this holds for every χ ∈ Irr(G) such
that p1 | χ(1), hence {p1, p4} ∈ E(G), as desired.

We are now ready to prove the following lemma.

Lemma 5.3. Let G be a group, and let π = {p0, ..., pd−1} be a subset of V(G) such
that d 6= 1 is odd. Assume that F∗(G) = P , where P is a Sylow p0-subgroup of G
such that P ′ is a minimal normal subgroup of G. Then π is not the vertex set of a
cycle in ∆(G).

Proof. For a proof by contradiction, assume that the elements of π are the vertices
of a cycle in ∆(G) (i.e., pi is adjacent to pi+1 for every i ∈ {0, . . . , d− 1} and also
p0 is adjacent to pd−1); replacing π with a suitable subset, we can assume that no
proper subset of π, having odd size larger than 1, is the set of vertices of a cycle in
∆(G) as well. Let H be a complement of P = F∗(G) in G. Write p = p0.

We can assume d ≥ 5, by looking at the main result in [8]. We claim that one
among p1 and p2 lies in π0 = π(F(H)), where H is a p-complement of G. Assuming
that p1 is not in π0, we will show p2 ∈ π0.

Setting M = P ′, let M̂ denote the dual group Irr(M), and let λ be a non-

trivial element in M̂ . For any τ ∈ Irr(P | λ) we get IH(τ) ≤ IH(λ), because
M ≤ Z(P ) and so τM is a multiple of λ; but we know that, by coprimality, there
exists θ ∈ Irr(P | λ) for which in fact equality holds. Now,

cd(G | θ) = {|H : IH(λ)| · θ(1) · ξ(1) : ξ ∈ Irr(IG(λ)/P )},
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thus, the nonadjacency between p and p1 forces IH(λ) ≃ IG(λ)/P to contain a
unique abelian Sylow p1-subgroup of H .

Set K = CH(M) and note that, for λ ∈ M̂ \ {1M}, K is a normal subgroup
of IH(λ). Denoting by P1 the unique Sylow p1-subgroup of H contained in IH(λ),
we have that P1 ∩K is a normal Sylow p1-subgroup of K, whence it lies in F(H);
but we are assuming p1 6∈ π0, thus p1 ∤ |K| and P1 ≤ CH(K). As then p1 divides
|H/K|, an application of Theorem 2.2 yields that H/K can be identified with a

subgroup of the semilinear group Γ(M̂). Finally, setting X/K = F(H/K), the
prime p1 divides the order of the cyclic group |H/X |; in fact, if we assume the
contrary, then P1K = P1 × K is normal in H , and therefore P1 ≤ F(H) against
our assumptions. Observe that the prime divisors of |H/X | constitute a clique in
∆(G); in particular, p2 ∤ |H/X |.

Assume now that p2 is a divisor of |X/K|. Hence, if P2 is a Sylow p2-subgroup of

H , we getK < P2K✂H and [M,P2K] =M . It follows that, for every λ ∈ M̂\{1M},
p2 divides |H : IH(λ)|. In particular, p2 divides the degree of every irreducible
character of G whose kernel does not containM . Now, there exists χ ∈ Irr(G) such
that {p, p3} ⊆ π(χ(1)), and the kernel of such a χ clearly does not contain M . As
a consequence, p2 · p3 divides χ(1), a contradiction. Our conclusion so far is that
P2 ≤ K.

Consider now the normal closure PH
1 of P1 in H , set Z = Z(K) and L =

PH
1 Z ✂ H . Recalling that P1 ≤ CH(K) ✂ H , we get L ≤ CH(K) as well, and

so K ∩ L = Z. In other words, KL/Z = (K/Z) × (L/Z). Observe that p1 lies
in V(L/Z), as otherwise we would have P1Z = P1 × Z ✂ L, whence P1 ≤ F(H)
against our assumptions. Now, the nonadjacency between p1 and p2 in ∆(G) forces
p2 6∈ V(K/Z). Therefore we get P2Z/Z ✂ H/Z. But P2Z is nilpotent, and we
conclude that P2 ≤ F(H), as we desired. So either p1 or p2 lies in π0.

Now, adopting the bar convention forG = G/Φ(G), we have that P is an elemen-
tary abelian p-group, and H ≃ H is a p′-group acting faithfully (by conjugation)
on P .

If p1 ∈ π0, then Lemma 5.2(e) yields that {p1, p4} ∈ E(G), so we would have
a shorter cycle in ∆(G), a contradiction. On the other hand, if p1 does not lie in
π0, then we have seen that p2 does, and so does pd−1 by an iterated application
of Lemma 5.2(d). But again Lemma 5.2(e) yields now {pd−4, pd−1} ∈ E(G), which
again gives a contradiction.

6. Proof of Theorem A

In this section we provide a proof for Theorem A, the main result of this paper.
A crucial step in this direction will be to show the following: if the complement of
the degree graph of a group G contains a cycle of odd length larger than 1, then
G has a composition factor isomorphic to PSL2(u

α), where uα is a suitable prime
power. We start by proving this intermediate statement as a separate lemma.

Proposition 6.1. Let G be a group, and π a subset of V(G) such that |π| > 1 is
an odd number. If π is the set of vertices of a cycle in the complement graph ∆(G),
then there exist two subnormal subgroups H and K of G, with K E H, such that
H/K is isomorphic to PSL2(u

α) for a suitable prime u and positive integer α with
uα ≥ 4. Moreover, we have π ⊆ π(H/K).
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Proof. Let G be a counterexample to the statement, having minimal order. We
proceed through a number of steps.

(a) G has no non-abelian minimal normal subgroups.

For a proof by contradiction, let us assume that M is a non-abelian minimal
normal subgroup of G. Observe that, by our minimality assumption on G, there
exists p ∈ π which is not in V(G/M). Moreover, setting C = CG(M), we have
p ∈ π(G/C), as otherwise C would contain a Sylow p-subgroup P of G; but PM/M
is an abelian normal subgroup of G/M , hence P (which now intersectsM trivially)
would be an abelian normal subgroup of G, against the fact that p is in V(G).

Next we claim that, for every r ∈ π(G/C), the prime r is adjacent in ∆(G) to
every vertex not lying in π(G/C). In fact, let t be in V(G) \ π(G/C) and let T be
a Sylow t-subgroup of G, which lies in C. Since T cannot be abelian and normal in
C, there exists an irreducible character ψ of C whose degree is divisible by t. Also,
by Proposition 2.6(b), we can choose φ ∈ Irr(M) such that r is a divisor of χ(1)
for every χ ∈ Irr(G | φ). If we consider an irreducible character χ of G lying over
φ× ψ ∈ Irr(M × C), we get rt | χ(1), as wanted.

Now, IfM is not a simple group, then Proposition 2.6(c) yields that p is adjacent
in ∆(G) to every element of π(G/C) (note that, as F(G/C) is trivial, we have
V(G/C) = π(G/C)). Therefore, as p lies in π(G/C) and in view of the previous
paragraph, p is in fact a complete vertex of ∆(G), clearly against our assumptions.
As a consequence, M must be simple, and G = G/C is an almost simple group
with socle M .

Recall that, by the hypothesis, there exist q, s in π that are not adjacent to p in
∆(G) and, again by the claim proved in the second paragraph, both q and s are
divisors of G; it is then easy to verify that an iterated application of that claim
yields π ⊆ π(G), and our minimality assumption forces now C = 1. Furthermore,
assume that an element r ∈ π does not divide |M |, and consider two elements r−, r+

in π that are not adjacent to r in ∆(G); then, by [8, Proposition 2.8(b)], M is a
group of Lie type both in characteristic r− and r+. On the other hand, for every
such group S (recall that here S is isomorphic to one among PSL2(4) ≃ PSL2(5),
PSL2(7) ≃ PSL3(2), and PSU4(2) ≃ PSp4(3)), we have |Out(S)| = 2, whence
r = 2 divides |M |, a contradiction. The conclusion so far is that π ⊆ π(M), and
our minimality assumption on G yields that G = M is a simple group. But a
recognition of the graphs ∆(S) where S is a non-abelian simple group (see [18])
shows that the hypothesis of this theorem is satisfied if and only if M is isomorphic
to PSL2(u

α) for some prime u and positive integer α. In other words, G is not
a counterexample, and this is the final contradiction which completes the proof of
Step (a).

(b) We have F∗(G) = F(G).
Let E(G) denote (as customary) the subgroup generated by the components of

G and, setting Z = Z(E(G)), assume Z 6= 1. By the minimality of G, there exists
p ∈ π such that p is not a vertex of ∆(G/Z); as a consequence, if P ∈ Sylp(G),
then PZ is a normal subgroup of G and PZ/Z is abelian. Since PZ is solvable, it
centralizes E(G), and therefore Z is central in PZ. We conclude that P is normal
in G, and now we must have P ∩ Z 6= 1, as otherwise P ≃ PZ/Z would be an
abelian normal Sylow p-subgroup of G. Taking into account that Z is the product
of the centres of all the components of G, we deduce that for some component
K of G we have P ∩ Z(K) 6= 1. On the other hand, as P is normal in G and
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K/Z(K) is a simple group, p cannot be a divisor of |K/Z(K)|; therefore we get
K = (P ∩ Z(K)) ×K0 (where K0 is a p-complement of K), against the fact that
K = K ′. This contradiction shows that in fact Z=1, whence E(G) is a product of
non-abelian minimal normal subgroups of G. Step (a) implies of course E(G) = 1,
and the claim follows.

Let M be a minimal normal subgroup of G. We know that there exists p ∈
π \ V(G/M), and we consider a Sylow p-subgroup P of G. Then the following
holds.

(c) Either F(G) =M with M ∩Φ(G) = 1, or F(G) = P with P ′ =M .

This follows by the minimality of G, together with Lemma 4.1.

The final contradiction which concludes this proof is now achieved by means of
Lemma 5.1 and Lemma 5.3, which exclude respectively the first and the second
possibility of (c).

Another important intermediate step in our proof of Theorem A is provided by
the following lemma.

Lemma 6.2. Let G be a group. Assume that K is an abelian minimal normal
subgroup of G such that G/K is isomorphic either to PSL2(u

α) or to SL2(u
α) for

a suitable prime u and positive integer α with uα ≥ 4. If K does not lie in Z(G),
then there exists χ ∈ Irr(G) such that one of the following conclusions hold.

(a) χ(1) is divisible by u, and by either all the odd primes in π(uα + 1) or all the
odd primes in π(uα − 1).

(b) χ(1) is divisible by all the primes in π(u2α − 1).

Proof. Set Z/K = Z(G/K) (so, |Z/K| ≤ 2). We start by observing that, in the
case when Z/K is non-trivial, i.e., when G/K is isomorphic to SL2(u

α) with u 6= 2,
every irreducible character of K has an extension to its inertia subgroup in G. In
fact, this is certainly true if K has a complement in G. On the other hand, if
K is not complemented in G, then K ≤ Φ(G), so Z is nilpotent; now, if K is
not a 2-group, then Z = K × Z0 where Z0 is a normal subgroup of order 2 of G,
and we conclude the proof applying induction to the factor group G/Z0. Thus, to
prove of our claim, we can assume that K is a 2-group. Recall that G/K ≃ SL2(u

a)
contains just one involution and that a Sylow 2-subgroup Q of G/K is a generalized
quaternion group. An application of [9, V.25.3] yields that the Schur representation
group of Q is Q itself; as a consequence, for each λ ∈ Irr(K), the group IG(λ)/ker(λ)
splits over its central subgroup K/ker(λ), and again λ extends to IG(λ), as claimed.

Next, as we are assuming K 6≤ Z(G), there exists λ ∈ Irr(K) such that IG(λ) is a
proper subgroup of G; observe that, setting I = IG(λ)Z, this I is a proper subgroup
of G as well, because G/K is perfect. As a consequence, I/Z is isomorphic to a
proper subgroup of PSL2(u

α). Recall that the subgroups of PSL2(u
α) are of the

following types (see [9, II.8.27]), where d = (2, uα − 1): (i) dihedral groups of order
(2(uα ± 1))/d and their subgroups; (ii) semidirect products of elementary abelian
groups of order uα by cyclic groups of order (uα−1)/d and their subgroups; (iii) A4

(unless u = 2 and α is odd); S4 (when u
2α ≡ 1 (mod 16)); A5 (when u

α(u2α−1) ≡ 0
(mod 5)); (iv) PSL2(u

β) or PGL(uβ), where β divides α (for u 6= 2, PSL2(u
α) has

a subgroup isomorphic to PGL(uβ) if and only if α/β is even).
If I/Z is of type (i), then π(|G : I|) contains either {u} ∪ π(uα + 1) or {u} ∪

π(uα − 1), and conclusion (a) of our statement is satisfied by any χ ∈ Irr(G | λ).
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As for type (iii), if I/Z ≃ A4 or I/Z ≃ S4, then the same argument as in the
paragraph above yields conclusion (a), except possibly when u = 2 and u does not
divide |G : I|.

In the case I/Z ≃ S4, this means G/K ≃ PSL2(2
3), but PSL2(2

3) does not have
any subgroup isomorphic to S4. On the other hand, if I/Z ≃ A4, then we have to
consider the case G/Z ≃ PSL2(2

2); observe that here, since u = 2, we have Z = K
and I = IG(λ), and we have π(u2α − 1) = {3, 5}. Now, the Schur representation
group of I/Z is a {2, 3}-group. If Irr(I | λ) contains a linear character, then
Gallagher’s Theorem yields that there exists ψ ∈ Irr(I | λ) such that ψ(1) = 3;
moreover, any non-linear character in Irr(I | λ) has a degree divisible by 2 or 3. In
any case, there exists χ ∈ Irr(G | λ) whose degree is divisible by either 2 · 5 or by
3 · 5, and conclusion (a) (resp. (b)) is satisfied.

In order to rule out type (iii), it remains to consider the case I/Z ≃ A5. In this
situation, certainly u divides |G : I|, and conclusion (a) holds unless possibly when
the 3-part of uα + 1 or uα − 1 is precisely 3. Therefore, as can be easily seen, it is
enough to show that Irr(IG(λ) | λ) contains a character of degree divisible by 3; to
this end, we can assume that λ does not extend to IG(λ), so (by the first paragraph
of this proof) we are dealing with a situation in which Z = K and I = IG(λ). Set
K0 = ker(λ), and observe that I/K0 does not split overK/K0, as otherwise λ would
have an extension to I; moreover, K/K0 is central in I/K0. As a consequence, we
get I/K0 ≃ SL2(5). Now, the characters in Irr(I | λ) are precisely the faithful
characters of I/K0; among those, there is a character of degree 6, as wanted.

Consider now type (iv): I/Z ≃ PSL2(u
β) or PGL2(u

β), where β divides α
(note that we already considered the case uβ ∈ {4, 5}, i.e., I/Z ≃ A5). Clearly
we have that u divides |G : I|. If uβ = 9, then I/Z ≃ PSL2(9) ≃ A6 or I/Z ≃
PGL2(9), and we have u = 3; but since only one odd prime (namely 5) appears in
π(32 + 1) ∪ π(32 − 1), certainly conclusion (a) is satisfied in this case. So we can
assume uβ 6= 9. Now, IG(λ)/K has a normal section isomorphic to PSL2(u

β), so
it has irreducible characters whose degrees are divisible by uβ + 1 or by uβ − 1.
If λ has an extension to IG(λ), then conclusion (a) easily follows by Gallagher’s
Theorem. As a consequence, again we can assume Z = K. Let I0 be the normal
subgroup of I = IG(λ) (with |I : I0| ∈ {1, 2}) such that I0/Z ≃ PSL2(u

β) and let
K0 = ker(λ). If I0/K0 does not split over K/K0, then K/K0 ≤ (I0/K0)

′ and, as
K/K0 ≤ Z(I0/K0) as well, we deduce that I0/K0 ≃ SL2(u

β), the representation
group of I0/K. But SL2(u

β) has faithful characters of degree uβ + 1 (as well as
uβ − 1), and hence there exists θ ∈ Irr(I0|λ) such that uβ + 1 (or uβ − 1) divides
θ(1). If I0/K0 splits over K/K0, then one gets the same conclusion by Gallagher’s
Theorem, and also in this case conclusion (a) follows.

Finally, assume that I/Z is of type (ii), so uα + 1 divides |G : I|. Let us assume
that conclusion (b) is not satisfied; then there exists s ∈ π(uα− 1) such that s does
not divide |G : I|. Now, IG(λ)/K has a normal section isomorphic to I/Z, which
is a Frobenius group whose kernel is an elementary abelian u-group, and whose
complements have order necessarily divisible by s (note that we can assume the
Frobenius kernel to have order divisible by uα, as otherwise conclusion (a) holds).
Since I/Z has irreducible characters of degree divisible by s, we get that λ does not
extend to IG(λ), so Z = K and IG(λ) = I. Therefore, as every Sylow subgroup
of I/K other than the Sylow u-subgroup U/K is cyclic, [10, (11.31)] yields that λ
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does not extend to U . As a consequence, if β ∈ Irr(I | λ), then u divides β(1) and
conclusion (a) follows.

We are now in a position to conclude the proof of the theorem, which we state
again.

Theorem A. Let G be a group, and let π ⊆ V(G) be such that |π| is an odd
number larger than 1. Then π is the set of vertices of a cycle in ∆(G) if and only

if Oπ′

(G) = S ×A, where A is abelian, S ≃ SL2(u
α) or S ≃ PSL2(u

α) for a prime
u ∈ π and a positive integer α, and the primes in π\{u} are alternately odd divisors
of uα + 1 and uα − 1.

Proof. We first observe that, by [10, Corollary (11.29)], the π-parts of the irre-

ducible character degrees of G and of Oπ′

(G) are the same. Thus, we can hence-

forth assume that G = Oπ′

(G); as the “if part” of our claim easily follows by the
structure of ∆(PSL2(u

α)) for uα > 3 (see Proposition 2.3), we will focus on the
“only if part”.

By Proposition 6.1, we know that G has a composition factor H/K (which is
indeed, clearly, a chief factor) such that H/K ≃ PSL2(u

α) for a suitable prime
power uα > 3, with π ⊆ π(H/K). Note that, in view of the structure of ∆(H/K),
our assumptions imply that u lies in π and, if q, s are the two “neighbors” of u in
π, then (say) q divides uα + 1, s divides uα − 1, and q, s are both odd (in fact, if
u 6= 2, then all the primes in π are necessarily odd); moreover, the primes in π \{u}
along the cycle are alternately odd divisors of uα + 1 and uα − 1, so the last claim
is already proved.

As a consequence, G does not have any irreducible character χ as in conclu-
sion (a) or conclusion (b) of Lemma 6.2.

Our next claim is that every chief series of G has precisely one non-abelian chief
factor whose order is divisible by some prime in π; as a consequence, we will get
that both K and G/H are π-solvable groups.

Arguing by contradiction assume that, in a chief series containing H and K,
there is another non-abelian chief factor U/V of G with π ∩ π(U/V ) 6= ∅, and let
t be a prime in π ∩ π(U/V ). If H ≤ V , then CG/K(H/K) has a normal section
isomorphic to U/V (since Out(H/K) is solvable) and hence we get an edge between
t and any primes in π \ {t} in the subgraph ∆(H/K × CG/K(H/K)) of ∆(G), a
contradiction. If U ≤ K, then similarly (using also Proposition 2.6(c)) we get that
CG/V (U/V ) has a normal section isomorphic to H/K and we get a contradiction
in a similar way.

Observe that, replacing H with a suitable term of its derived series, we can
assume H = H ′.

Let C = CG(H/K); so G/C is an almost-simple group with socle isomorphic to
H/K and, by Proposition 2.4, every prime divisor of |G/CH | is adjacent in ∆(G) to
all the primes in both π(uα−1) and π(uα+1). Therefore, G/CH is a π′-group. As

Oπ′

(G) = G, we get CH = G. Thus we have G/K = H/K ×C/K, and this forces
π ∩ V(C/K) = ∅; as a consequence, C/K has a normal abelian Hall π-subgroup

D/K, and again the assumption Oπ′

(G) = G yields C = D.
In order to complete the proof, we can assume that G = H is perfect. In

fact, H certainly satisfies our hypothesis, so, if H < G, induction yields that H is
isomorphic either to PSL2(u

α) or to SL2(u
α). Now, if 2 ∈ π (which implies 2 = u),

then K = 1, and we get G = H × D; on the other hand, if 2 6∈ π and D0 is the
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Hall 2′-subgroup of D, it can be easily checked that G = H ×D0. In any case, the
desired conclusion is satisfied by G and we are done.

Note that we can also assume K > 1, as G/K ≃ PSL2(u
α). We will show that

then G ≃ SL2(u
α), with u 6= 2. Let M < K be such that K/M is a chief factor of

G.
Assume first M = 1, thus K is a minimal normal subgroup of G. As G is

perfect, it will be enough to show that K ⊆ Z(G): in this case, G will be the
Schur representation group of G/K, whence G ≃ SL2(u

a). We observe that, in
this situation, K is abelian. In fact, if K is non-abelian, then we know that K is
a π′-group (see the third paragraph of this proof); therefore, as Oπ′

(G) = G, we
cannot have G = KCG(K), and this forces CG(K) = 1. Now, K must be a simple
group by Proposition 2.6(c) and so G/K ≤ Out(K) would be solvable, which is not
the case. Thus K is (elementary) abelian, as claimed, and we are in a position to
apply Lemma 6.2 in order to get the desired conclusion.

Assume finally that M > 1: then induction yields that G/M ≃ SL2(u
a) with

u 6= 2, and thatM is minimal normal in G. Again, essentially by the same argument
as in the paragraph above, M is abelian. Observe that M is certainly not central
in G, as the Schur multiplier of G/M is trivial, and now another application of
Lemma 6.2 (with M in the role of K) yields the contradiction that completes the
proof.
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