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LIPSCHITZ CONTINUITY FOR ENERGY INTEGRALS
WITH VARIABLE EXPONENTS

MICHELA ELEUTERI – PAOLO MARCELLINI – ELVIRA MASCOLO

Abstract. A regularity result for integrals of the Calculus of Variations with variable
exponents is presented. Precisely, we prove that any vector-valued minimizer of an energy
integral over an open set Ω ⊂ Rn, with variable exponent p(x) in the Sobolev class W 1,r

loc (Ω)
for some r > n, is locally Lipschitz continuous in Ω and an a priori estimate holds.

1. Introduction

In the past few years the study of energy integrals with variable exponent received a large
interest. We refer for instance to the integral functional

F (u) =

∫
Ω

a(x)h(|Du|)p(x) dx, (1.1)

where a(x) > 0 and p(x) > 1 are continuous functions in Ω, h is an increasing convex function
and u is a vector-valued map. The variational integral (1.1) exhibits p(x)−growth, which
is a particular case of the so-called nonstandard growth, with an extensive literature on
the subject. While existence of minimizers follows from the direct methods of the Calculus
of Variations, the regularity problem is not yet completely settled. We stress that in the
vector-valued case, as suggested by the well known counterexamples by De Giorgi [10], Giusti-
Miranda [18] and more recently by Sverak-Yan [33], Mooney-Savin [30], some structure
conditions on the integrand are required for everywhere regularity.

Here we consider an open bounded set Ω ⊂ Rn, n ≥ 2, a coefficient a ∈ W 1,r
loc (Ω) and an

exponent p ∈ W 1,r
loc (Ω) for some r > n, an increasing convex function h = h(t), h : [0,∞)→

[0,∞) and a vector-valued map u : Ω ⊂ Rn → RN , with N ≥ 1. We deal with the local
Lipschitz continuity of minimizers, without a prescribed bound on the oscillation of p(x),
assuming instead the summability of the weak derivatives of a and p. Precisely we will prove
the following result.

Theorem 1.1. Let u ∈ W 1,1
loc (Ω;RN) be a local minimizer of the energy integral (1.1). Let

h : [0,+∞) → [0,+∞) be an increasing convex function, not identically zero, such that for
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2 M. ELEUTERI – P. MARCELLINI – E. MASCOLO

some M0 > 0, t0 ≥ 1 and 0 ≤ δ ≤ 1
n
− 1

r

h′(t) ≤ M0 t
δ, h′′(t) ≤ M0

h′(t)

t
, ∀t ≥ t0, (1.2)

with a, p ∈ W 1,r
loc (Ω) for r > n. Then u is a locally Lipschitz continuous map and there exist

constants C > 0 and β > 1 such that, for 0 < ρ < R,

‖Du‖L∞(Bρ;RNn) ≤ C

[(
1 + ‖ax‖Lr(BR) + ‖px‖Lr(BR)

(R− ρ)

) 1
1
n−

1
r

∫
BR

{1 + a(x)h(|Du|)p(x)} dx

]β
.

As usual Bρ and BR are balls in Ω of radii ρ and R with the same center. In particular the
constants C > 0 and β > 1 depend on n, r,M0, t0 and on the infimum and the supremum of
a and p in the ball BR.

Examples of h functions which satisfy the assumptions of Theorem 1.1 are, of course
h(t) = t or

h(t) = t log(1 + t), t ≥ 0,

more generally h(t) = t logβ t for large values of t and for some β > 0 and also

h(t) =

∫ t

1

sδ

log s
ds, t ≥ t0.

As in [9], [16], [23], [34], a different example of a convex function h(t) satisfying the above
conditions is given, for large t, by

h (t) = ta+b sin log log t, (1.3)

when a > 1 and b > 0 is sufficiently small (see Section 3). The function h has p, q−growth,
in the sense that tp ≤ h(t) ≤ tq for large values of t, with p = a− b and q = a+ b.

The proof of Theorem 1.1 will follow through several steps, the main one being a reduction
of the given energy functional in (1.1) to the framework considered by the authors in [13].

The energy variable exponent is nowadays a classical topic in the Calculus of Variations,
PDEs and Nonlinear Analysis. The large number of papers studying energies involving
variable exponents is motivated by the fact that this type of functionals can be considered
as a model in the theory of strongly anisotropic materials (see e.g. Zhikov [35] and Zhikov et
al. [36]) and in the theory of electrorheological fluids (see e.g. Rajagopal-Růžička [31] and
Růžička [32]). More recently, functionals as in (1.1) were considered also in the study of image
denoising (see e.g. Chen et al. [4]) and in some models for growth of heterogeneous sandpiles
(see e.g. Bocea et al. [2]). The regularity of minimizers has been studied by many authors.
For the case h(t) = t we mention: Chiadò-Piat-Coscia [5], Coscia-Mingione [7], Acerbi-
Mingione [1], Esposito-Leonetti-Mingione [15]. The case h(t) ∼ et

m
, m > 0, was considered

by Mascolo-Migliorini [26] and with the x, u dependence by Eleuteri [12]. A further list
of references can be found in Hǎrjulehto-Hǎsto-Nuortio [20] and Diening-Hǎrjulehto-Hǎsto-
Nuortio [11]. Energies with variable exponents are also studied in the framework of the
p, q−growth; indeed if p(x) is a continuous function, on a small ball its minimum and its
maximum values behave as p, q, with q arbitrarily close to p. We refer to Marcellini [21],
[22], [23], [24] and to Mingione [27] for a survey on this subject. Variable exponents were
also considered under different aspects in Nonlinear Analysis, for istance with respect to
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eigenvalue problems and to the multiplicity of solutions (see e.g. Pucci, Radulescu et al. [3],
[28], [29] and, more recently, Colasuonno-Squassina [6]).

2. Proof of Theorem 1.1

The proof of Theorem 1.1 follows in several steps:

2.1. Step 1: localization. For every x0 ∈ Ω, there exists R0 > 0 such that the ball BR0(x0)
is contained in Ω and, if we set

p := inf{p(x) : x ∈ BR0(x0)} > 1 q := sup{p(x) : x ∈ BR0(x0)}(1 + δ) + τ (2.1)

for some

τ <
1

1 + δ

(
1

n
− 1

r
− δ
)
, (2.2)

then
q

p
< 1 +

1

n
− 1

r
. (2.3)

Indeed, for any ε0 there exists R0 > 0 such that

sup{p(x) : x ∈ BR0(x0)} − inf{p(x) : x ∈ BR0(x0)} < ε0.

We set

ε0 :=
1

1 + δ

(
1

n
− 1

r
− δ
)
− τ.

This is possible due to the smallness assumptions on δ and τ we required. At this point

sup{p(x) : x ∈ BR0(x0)}
inf{p(x) : x ∈ BR0(x0)}

− 1 <
1

1 + δ

(
1

n
− 1

r
− δ
)

1

inf{p(x) : x ∈ BR0(x0)}

− τ

inf{p(x) : x ∈ BR0(x0)}

<
1

1 + δ

(
1

n
− 1

r
− δ
)
− τ

inf{p(x) : x ∈ BR0(x0)}
as long as p(x) > 1. This finally entails, taking into account (2.1)

q

p
<

[sup{p(x) : x ∈ BR0(x0)}+ τ ](1 + δ)

inf{p(x) : x ∈ BR0(x0)}
< 1 + δ +

1

n
− 1

r
− δ = 1 +

1

n
− 1

r
.

It is obvious that sup{p(x) : x ∈ BR0(x0)} < q.

2.2. Step 2: consequences from the assumptions. Before starting, we need the follow-
ing elementary properties of convex functions.

Let h : [0,∞) → [0,∞) be an increasing convex function fulfilling (1.2). The functions
h(t) and h′(t) are not identically equal to zero, thus there exists t0 ≥ 1 such that (1.2) holds
and

h(t0) > 0 h′(t0) > 0.

Let us set

m0 := min

{
h(t0)

t0
, h′(t0)

}
. (2.4)
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Then we have

h′(t) ≥ h′(t0) ≥ m0 ∀t ≥ t0 (2.5)

and moreover by convexity and (2.5)

h(t) ≥ h(t0) + h′(t0)(t− t0) ≥ h(t0) +m0(t− t0) ≥ m0t0 +m0(t− t0) = m0t. (2.6)

On the other hand, we can also show that

1

C̃0

h′(t)t ≤ h(t) ≤ C0h
′(t)t, (2.7)

where

C̃0 := max{M0 + 1, h′(t0)t0} C0 = 1 +
h(t0)

h′(t0)
. (2.8)

Indeed from the Mean Value Theorem and the fact that h is increasing

h(t) ≤ h(0) + h′(t)t ≤ h(t0) + h′(t)t.

But h is convex, so also h′ is increasing; this entails, for all t ≥ t0 ≥ 1

h(t0) = h′(t0)
h(t0)

h′(t0)
≤ h(t0)

h′(t0)
h′(t0)t0 ≤

h(t0)

h′(t0)
h′(t)t, (2.9)

thus we get the desired inequality

h(t) ≤
(

1 +
h(t0)

h′(t0)

)
h′(t)t

(2.8)
= C0 h

′(t)t.

We prove now the other inequality in (2.7). Indeed, by the second inequality in (1.2), we
have ∫ t

t0

h′′(τ)τ dτ ≤ M0

∫ t

t0

h′(τ) dτ

and by integration by parts

h′(t)t− h′(t0)t0 −
∫ t

t0

h′(τ) dτ ≤ M0

∫ t

t0

h′(τ) dτ

that is

h′(t)t ≤ (M0 + 1)(h(t)− h(t0)) + h′(t0)t0 ≤ C̃0h(t).

Observe that (2.6) and (2.7) imply

m0t ≤ h(t) ≤ C0M0t
1+δ ∀t ≥ t0. (2.10)

In the sequel it is not restrictive to assume that

m0 ≤ 1 ≤M0 inf
x∈BR0

a(x) ≥ m0 > 0 sup
x∈BR0

a(x) ≤M0.
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2.3. Step 3: ellipticity and growth assumptions. Let us denote

g(x, |Du|) = a(x)h(|Du|)p(x) g(x, t) = a(x)h(t)p(x).

In this step we show that g(x, t) satisfies the following growth conditions, for all t ≥ t0 and
a.e. x ∈ BR0

λtp(x)−2 ≤ gt(x, t)

t
≤ Λt(1+δ)p(x)−2 (2.11)

λtp(x)−2 ≤ gtt(x, t) ≤ Λ t(1+δ)p(x)−2 (2.12)

|gtx(x, t)| ≤ Λ `(x) t(1+δ)p(x)+τ−1 (2.13)

for λ,Λ defined as

λ := min

{
1,
p− 1

C2
0

}
pmq+1

0 , Λ :=
q(q − 1)

m0

Cq
0 M

q+2
0 C̃2

0 +
2

m0

max{log(C0M0), δ + 1},

(2.14)
with δ and τ as in (1.2) and (2.1) respectively and

`(x) := ax(x) + px(x) for a.e. x ∈ BR0 . (2.15)

Indeed

gt(x, t) = a(x) p(x)h(t)p(x)−1h′(t)

so that

gt(x, t)

t
= a(x)p(x)h(t)p(x)−1h

′(t)

t

(1.2),(2.10)

≤ qM q+1
0 Cq−1

0 t(1+δ)p(x)−2
(2.14)

≤ Λ t(1+δ)p(x)−2.

(2.16)
Consider now

gtt(x, t) = a(x) p(x) (p(x)− 1)h(t)p(x)−2[h′(t)]2 + a(x) p(x)h(t)p(x)−1h′′(t).

We deal first with the second term. We have

a(x)p(x)h(t)p(x)−1h′′(t)
(1.2)

≤ M0 a(x)p(x)h(t)p(x)−1h
′(t)

t
(2.16)

≤ Λ t(1+δ)p(x)−2.

On the other hand

a(x) p(x) (p(x)− 1)h(t)p(x)−2[h′(t)]2
(2.7)

≤ a(x)p(x)(p(x)− 1)
h(t)p(x)

t2
C̃2

0

(2.10)

≤ Cq
0 M

q+1
0 q (q − 1) C̃2

0 t
(1+δ)p(x)−2

(2.14)

≤ Λ t(1+δ)p(x)−2.

We deal now with the lower bounds. First of all we have

gt(x, t)

t
= a(x)p(x)h(t)p(x)−1h

′(t)

t

(2.5),(2.6)

≥ a(x)p(x)[m0t]
p(x)−1m0

t

(2.14)

≥ λtp(x)−2.



6 M. ELEUTERI – P. MARCELLINI – E. MASCOLO

We also have, using (2.5)

gtt(x, t) ≥ a(x)p(x)(p(x)− 1)h(t)p(x)−2[h′(t)]2

(2.7)

≥ 1

C2
0

p(p− 1)m0
h(t)p(x)

t2

(2.10)

≥ 1

C2
0

mq+1
0 p (p− 1) tp(x)−2

(2.14)

≥ λtp(x)−2,

where we used the fact that m0 ≤ 1.
Finally

gtx(x, t) = ax(x)p(x)h(t)p(x)−1h′(t) + a(x)px(x)h(t)p(x)−1h′(t)

+a(x)p(x)h(t)p(x)−1h′(t)px(x) log(h(t))

so that

gtx(x, t) ≤
ax(x)

m0

a(x)p(x)h(t)p(x)−1h′(t) +
px(x)

p
a(x)p(x)h(t)p(x)−1h′(t)

+a(x)p(x)h(t)p(x)−1h′(t)px(x) log(h(t))

≤ `(x)

m0

gt(x, t)(1 + log(h(t))),

with ` as in (2.15). At this point we observe that, for t ≥ t0

log(h(t))
(2.10)

≤ log(C0M0t
δ+1) = log(C0M0) + (δ + 1) log t ≤ C tτ

where τ is as in (2.2) and C := max{log(C0M0), δ+ 1} ≥ 1. This allows us to conclude that

|gtx(x, t)| ≤
`(x)

m0

gt(x, t) 2 max{log(C0M0), δ + 1}tτ
(2.14),(2.16)

≤ Λ `(x) t(1+δ)p(x)+τ−1.

2.4. Step 4: Approximation. We construct a sequence of smooth functions gkε(x, t),
related to g(x, |Du|) = a(x)h(|Du|)p(x). We will deal with this approximation procedure in
two steps. First let us define, for a.e. x ∈ BR0

gkt (x, t) :=


a(x)p(x)h(t)p(x)−1h′(t) 0 ≤ t < k

a(x)p(x)h(k)p(x)−1h′(k) +
λ

p− 1
[tp−1 − kp−1] t ≥ k,

(2.17)

and

gk(x, t) :=

∫ t

0

gkt (x, s) ds+ g(x, 0). (2.18)

Arguing in a similar way as in [13], it is possible to show that the sequence of functions
defined by (2.18) satisfies, for k sufficiently large, the conditions

gk(x, t) ≤ g(x, t) (2.19)

gk(x, t) ≤ gk+1(x, t) (2.20)

for all t > 0, a.e. in BR0 .
At this point, let us denote with pεn and aεn the regularization of the functions p and a

respectively

pεn(x) =

∫
B

ρ(y)p(x+ εny) dy aεn(x) =

∫
B

ρ(y)a(x+ εny) dy, (2.21)
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where B denotes the unit ball, ρ is a positive symmetric mollifier such that
∫
ρ = 1 and

where εn is an infinitesimal sequence of positive numbers. With an abuse of notation in the
sequel we denote with ε = εn and with pε = pεn , aε = aεn . It is well known that pε and aε
converge in the strong topology of W 1,r(BR0) and uniformly in BR0 to the functions p and
a respectively. Now let us define

g̃kεt (x, t) :=


aε(x)pε(x)h(t)pε(x)−1h′(t) 0 ≤ t < k

aε(x)pε(x)h(k)pε(x)−1h′(k) +
λ

p− 1
[tp−1 − kp−1] t ≥ k,

(2.22)

and

g̃kε(x, t) :=

∫ t

0

g̃kεt (x, s) ds+ g(x, 0).

Finally consider

gkε(x, t) := g̃kε(x, t) + ε
(
1 + t2

) p
2 , ∀t > 0, a.e. in BR0 . (2.23)

By the properties of function g(x, t) given in the previous step, since p ≤ pε(x) ≤ q in BR0

and by proceeding as in Lemmas 4.2 and Lemma 4.3 of [13], we have that the sequence
gkε(x, t) satisfies the following inequalities a.e. in BR0 and for all t > 0, the lower bound in
(2.25) and (2.26) ensured by (2.23)

gkε(x, t) ≤ C(k) (1 + t2)
p
2 (2.24)

ε(1 + t2)
p−2

2 ≤ gkεt (x, t)

t
≤ C(k)(1 + t2)

p−2
2 (2.25)

min{p− 1, 1} ε(1 + t2)
p−2

2 ≤ gkεtt (x, t) ≤ C(k)(1 + t2)
p−2

2 (2.26)

|gkεtx (x, t)| ≤ C(k, ε, ω0) (1 + t2)
p−1

2 ∀ω0 ⊂⊂ BR0 . (2.27)

Moreover the functions gkε fulfill for a.e. x ∈ BR0 and t ≥ t0

λtp−2 ≤ gkεt (x, t)

t
≤ Λ tq−2 (2.28)

λtp−2 ≤ gkεtt (x, t) ≤ Λ tq−2 (2.29)

|gkεtx (x, t)| ≤ `ε(x)(1 + t2)
q−1

2 , (2.30)

where `ε ∈ C∞(BR0) is the regularized function of ` is defined as in (2.15) and λ,Λ are as in
(2.11), (2.12).

In the sequel, for simplicity of notations, we assume that t0 = 1.

2.5. Step 5: a priori estimates. Let w ∈ W 1,p
loc (Ω;RN) be a local minimizer of the func-

tional (1.1); moreover let us take BR ⊂⊂ BR0 to be a ball of radius R compactly contained
in BR0 . Consider the following variational problem

inf{F kε(v) : v ∈ w +W 1,p
0 (BR;RN)}. (2.31)

where

F kε(v) =

∫
BR0

gkε(x, |Dv|) dx. (2.32)
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Since F kε is lower semicontinuous, there exists vkε ∈ w+W 1,p
0 (BR0 ;RN) solution to Problem

(2.31). The purpose of this Step is to prove an a priori estimate for the L∞-norm of Dvkε

independent of k, ε. We claim that, for 0 < ρ < R < R0

‖Dvkε‖L∞(Bρ;RNn) ≤ C


(

1 + ‖`ε‖2
Lr(BR0

)

) 1
2

(R− ρ)


β

1
n−

1
r [∫

BR

(1 + gkε(x, |Dvkε|)) dx
]β
, (2.33)

with constants C, β independent of k, ε. Once (2.33) is obtained, we observe that, by con-
volution properties

‖`ε‖Lr(BR0
) ≤ ‖`‖Lr(BR0

),

thus we deduce

‖Dvkε‖L∞(Bρ;RNn) ≤ C


(

1 + ‖`‖2
Lr(BR0

)

) 1
2

(R− ρ)


β

1
n−

1
r [∫

BR

(1 + gkε(x, |Dvkε|)) dx
]β
. (2.34)

The proof of estimate (2.33) turns to be quite similar to the proof of Proposition 3.1 of [13];
here, for sake of clarity, we list the main arguments, referring to [13] for more details. For
simplicity of notations, from now on we set

f(x, ξ) = fkε(x, ξ) = gkε(x, |ξ|), vkε := u, `ε := `.

Observe that, by (2.28), (2.29), (2.30), we have that, for |ξ| ≥ 1 and a.e. x ∈ BR0

λ |ξ|p−2|µ|2 ≤
∑
i,j,α,β

fξαi ξ
β
j
(x, ξ)µαi µ

β
j , (2.35)

|fξαi ξβj (x, ξ)| ≤ Λ |ξ|q−2, (2.36)

|fξx(x, ξ)| ≤ `(x) |ξ|q−1, (2.37)

hold, where p and q have been introduced in (2.1). The minimizer u satisfies the Euler’s first
variation ∫

BR0

∑
i,α

fξαi (x,Du)ϕαxi(x) dx = 0 ∀ϕ = (ϕα)α=1,...,N ∈ W 1,p
0 (BR0 ;RN),

and, by using the technique of the different quotients (see for example [14], [17], [19]) we
have that

u ∈ W 2,min(2,p)
loc (BR0 ;RN), (1 + |Du|2)

p−2
2 |D2u|2 ∈ L1

loc(BR0) (2.38)

and the second variation∫
BR0

{ ∑
i,j,α,β,s

fξαi ξ
β
j
(x,Du)ϕαxiu

β
xsxj

+
∑
i,α,s

fξαi xs(x,Du)ϕαxi

}
dx = 0 (2.39)

∀s = 1, . . . , n, ∀ϕ = (ϕα)α=1,...,N ∈ W 1,min(2,p)
0 (BR0 ;RN).

Let η ∈ C1
0(BR0). For any fixed s ∈ {1, . . . , n}, we choose

ϕα = η2uαxsΦ((|Du| − 1)+)
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for Φ : [0,+∞)→ [0,+∞) an increasing, locally Lipschitz continuous function, with Φ and
Φ′ bounded on [0,+∞), such that Φ(0) = 0 and satisfying

Φ′(s)s ≤ cΦ Φ(s) (2.40)

for a suitable value of cΦ. In the following (a)+ denotes the positive part of a ∈ R and we
write Φ((|Du| − 1)+) = Φ(|Du| − 1)+. Let us compute

ϕαxi = 2ηηxiu
α
xsΦ(|Du| − 1)+ + η2uαxsxiΦ(|Du| − 1)+ + η2uαxsΦ

′(|Du| − 1)+[(|Du| − 1)+]xi .

Here we used the fact that u ∈ W 1,∞
loc (BR0 ;RN), see Proposition 3.1 of [8]. Plugging this

expression in (2.39) we obtain

0 =

∫
BR0

2ηΦ(|Du| − 1)+

∑
i,j,α,β,s

fξαi ξ
β
j
(x,Du)ηxiu

α
xsu

β
xsxj

dx

+

∫
BR0

η2Φ(|Du| − 1)+

∑
i,j,α,β,s

fξαi ξ
β
j
(x,Du)uαxsxiu

β
xsxj

dx

+

∫
BR0

η2Φ′(|Du| − 1)+

∑
i,j,α,β,s

fξαi ξ
β
j
(x,Du)uαxsu

β
xsxj

[(|Du| − 1)+]xi dx

+

∫
BR0

2ηΦ(|Du| − 1)+

∑
i,α,s

fξαi xs(x,Du)ηxiu
α
xs dx

+

∫
BR0

η2Φ(|Du| − 1)+

∑
i,α,s

fξαi xs(x,Du)uαxsxi dx

+

∫
BR0

η2Φ′(|Du| − 1)+

∑
i,α,s

fξαi xs(x, |Du|)u
α
xs [(|Du| − 1)+]xi dx

=: I1 + I2 + I3 + I4 + I5 + I6. (2.41)

In the following, constants will be denoted by C, regardless of their actual value. We have
that

I1 + I2 + I3 = −(I4 + I5 + I6).

Consider I1; by the Cauchy-Schwartz inequality, the Young inequality and (2.36), we have

|I1| =

∣∣∣∣∣
∫
BR0

2ηΦ(|Du| − 1)+

∑
i,j,s,α,β

fξαi ξ
β
j
(x,Du)ηxiu

α
xsu

β
xsxj

dx

∣∣∣∣∣ (2.42)

≤
∫
BR0

2ηΦ(|Du| − 1)+

{ ∑
i,j,s,α,β

fξαi ξ
β
j
(x,Du)ηxiu

α
xsηxju

β
xs

} 1
2

×

{ ∑
i,j,s,α,β

fξαi ξ
β
j
(x,Du)uαxsxiu

β
xsxj

} 1
2

dx

≤ C

∫
BR0

|Dη|2Φ(|Du| − 1)+ |Du|q dx
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+
1

2

∫
BR0

η2Φ(|Du| − 1)+

∑
i,j,s,α,β

fξαi ξ
β
j
(x,Du)uαxsxiu

β
xsxj

dx.

Therefore

1

2
I2 + I3 ≤ C

∫
BR0

|Dη|2Φ(|Du| − 1)+ |Du|q dx− (I4 + I5 + I6).

By proceding as in [13], (see also Lemma 4.1 of [25]), we have that

I3 ≥
∫
BR0

η2Φ′(|Du| − 1)+
gtt(x, |Du|)
|Du|

∑
α

(∑
i

uαxi [(|Du| − 1)+]xi

)2

dx ≥ 0,

and (2.35) implies

I2 ≥
∫
BR0

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx.

We now deal with |I4|. We have, by (2.30)

|I4| =

∣∣∣∣∣
∫
BR0

2ηΦ(|Du| − 1)+

∑
i,s,α

fξαi xs(x,Du)ηxiu
α
xs dx

∣∣∣∣∣
≤

∫
BR0

2ηΦ(|Du| − 1)+|gtx(x, |Du|)|
∑
i,s,α

|ηxiuαxs| dx

≤
∫
BR0

(η2 + |Dη|2)`(x)Φ(|Du| − 1)+|Du|q dx.

Consider now |I5|. We have, again by (2.30)

|I5| =

∣∣∣∣∣
∫
BR0

η2Φ(|Du| − 1)+|gtx(x, |Du|)||D2u| dx

∣∣∣∣∣
≤

∫
BR0

η2Φ(|Du| − 1)+`(x)|Du|q−1|D2u| dx

≤
∫
BR0

[
η2Φ(|Du| − 1)+|Du|p−2|D2u|2

]1/2 [
η2Φ(|Du| − 1)+|`(x)|2|Du|2q−p

]1/2
dx

≤ ε

∫
BR0

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx+ Cε

∫
BR0

η2Φ(|Du| − 1)+|`(x)|2|Du|2q−p dx,

where in the last line we used the Young inequality. The estimate of I6 is more delicate. For
any 0 < δ < 1 (please, excuse the abuse of notation: the δ used here is different from the
one in (1.2))

|I6| =

∣∣∣∣∣
∫
BR0

η2 |gtx(x, |Du|)||Du|Φ′(|Du| − 1)+[(|Du| − 1)+]xi dx

∣∣∣∣∣
≤

∫
BR0

η2Φ′(|Du| − 1)+`(x)|Du|q |D2u| dx
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=

∫
BR0

η2Φ′(|Du| − 1)+`(x)[(|Du| − 1)+ + δ] [(|Du| − 1)+ + δ]−1|Du|q |D2u| dx

≤
∫
BR0

η2

{
1

cΦ

Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2
}1/2

×
{
cΦΦ′(|Du| − 1)+|`(x)|2|Du|2q−p+2[(|Du| − 1)+ + δ]−1

}1/2
dx

≤ ε

cΦ

∫
BR0

η2Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2 dx

+Cε cΦ

∫
BR0

η2Φ′(|Du| − 1)+|`(x)|2|Du|2q−p+2[(|Du| − 1)+ + δ]−1 dx.

To estimate the first term in the last inequality we split BR0 = {x : |Du(x)| ≥ 2} ∪ {x :
|Du(x)| < 2} and we observe that in the set {x : |Du(x)| ≥ 2} we have (|Du| − 1)+ ≥ 1,
since δ < 1

(|Du| − 1)+ + δ ≤ 2(|Du| − 1)+. (2.43)

Therefore we have, using (2.40)∫
|Du|≥2

η2Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2 dx

+

∫
1<|Du|<2

η2Φ′(|Du| − 1)+[(|Du| − 1)+ + δ]|Du|p−2|D2u|2 dx

≤ 2

∫
|Du|≥2

η2Φ′(|Du| − 1)+(|Du| − 1)+|Du|p−2|D2u|2 dx

+

∫
1<|Du|<2

η2Φ′(|Du| − 1)+(|Du| − 1)+|Du|p−2|D2u|2 dx

+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx

≤ 2 cΦ

∫
BR0

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx

+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx.

Now, for ε sufficiently small, by collecting the previous estimates, we deduce∫
BR0

η2Φ(|Du| − 1)+|Du|p−2|D2u|2 dx (2.44)

≤ C cΦ

∫
BR0

(η2 + |Dη|2)(1 + `2(x))|Du|2q−p

×
[
Φ(|Du| − 1)+|Du|2q−p + Φ′(|Du| − 1)+|Du|2[(|Du| − 1)+ + δ]−1

]
dx

+ δ

∫
1<|Du|<2

η2Φ′(|Du| − 1)+|Du|p−2|D2u|2 dx,
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with a constant C depending on n, r, p, q.
Let define the function

Φ(s) := (1 + s)γ−2s2 γ ≥ 0; (2.45)

which satisfies (2.40) with cΦ = 2(1 + γ). We can approximate Φ in (2.45) by a sequence
of functions Φr, each of them being equal to Φ in the interval [0, r], and then extended to
[r,+∞) with the constant value Φ(r). Then we insert Φr in (2.44) and, passing to the limit
as r → +∞ by the Monotone Convergence Theorem, we obtain for every 0 < δ < 1∫

BR0

η2(1 + (|Du| − 1)+)γ−2(|Du| − 1)2
+|Du|p−2|D2u|2 dx

≤ C (1 + γ)2

∫
BR0

(η2 + |Dη|2)(1 + `(x)2)(1 + (|Du| − 1)+)γ+2q−p dx

+δ c(γ)

∫
1<|Du|<2

η2|Du|p−2|D2u|2 dx, (2.46)

as
(|Du| − 1)+

(|Du| − 1)+ + δ
≤ 1 ∀ δ > 0.

By the elementary inequality (for the proof see [13])

C1(1 + |ξ|2)
p−2

2 ≤ |ξ|p−2 ≤ C2(1 + |ξ|2)
p−2

2 , |ξ| ≥ t0,

with C1, C2 depending on t0 (here t0 = 1), we have∫
1<|Du|<2

η2|Du|p−2|D2u|2 dx ≤ C

∫
1<|Du|<2

η2(1 + |Du|2)
p−2

2 |D2u|2 dx < +∞

and, due to (2.38), the last integral is finite. As δ → 0, the last term in (2.46) vanishes.
Now, let us define

m :=
(r

2

)′
=

r

r − 2
. (2.47)

Since ` ∈ Lr(BR0), by the Hölder inequality∫
BR0

η2(1 + (|Du| − 1)+)γ−2(|Du| − 1)2
+|Du|p−2|D((|Du| − 1)+)|2 dx

≤ C (1 + γ)2H

[∫
BR0

(η2 + |Dη|2)m(1 + (|Du| − 1)+)(γ+2q−p)m dx

] 1
m

, (2.48)

where C depends also on r and |BR0| (and so on n) and

H := (1 + ‖`‖2
Lr(BR0

)). (2.49)

Let us introduce

G(t) = 1 +

∫ t

0

√
Φ(s)(1 + s)

p−2
2 ds = 1 +

∫ t

0

(1 + s)
γ
2

+ p
2
−2 s ds; (2.50)

since p ≤ q ≤ 2q − p we get

[G(t)]2 ≤ 4 (1 + t)γ+p ≤ 4 (1 + t)γ+2q−p. (2.51)
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Moreover

Gt(t) =
√

Φ(t) (1 + t)
p−2

2
(2.45)
= (1 + t)

γ
2

+ p
2
−2t. (2.52)

Set w = η G((|Du| − 1)+), we have∫
BR0

|D(ηG((|Du| − 1)+))|2 dx (2.53)

≤ 2

∫
BR0

|Dη|2|G((|Du| − 1)+)|2 dx

+ 2

∫
BR0

η2[Gt((|Du| − 1)+)]2[D((|Du| − 1)+)]2 dx

≤ C (1 + γ)2H

[∫
BR0

(η2 + |Dη|2)m[1 + (|Du| − 1)
(γ+2q−p)m
+ ] dx

] 1
m

.

Now, let 2∗ = 2n
n−2

for n > 2, while 2∗ equal to any fixed real number larger than 2, if n = 2.
By Sobolev’s inequality there exists a constant C such that{∫

BR0

[ηG((|Du| − 1)+)]2
∗
dx

} 2
2∗

≤ C

∫
BR0

|D(ηG((|Du| − 1)+))|2 dx. (2.54)

Moreover, since r > n, we have

1 ≤ m :=
r

r − 2
<

n

n− 2
=

2∗

2
. (2.55)

Observe that

(2q − p)m = 2(q − p)m+ pm; (2.56)

and in view of the strict inequality in (2.3), we infer the existence of 0 < ε < 1 such that

(q − p) + ε

(
1

n
− 1

r

)
≤ p

(
1

n
− 1

r

)
. (2.57)

Set now

0 < M̃ := 2(q − p)m+ p(m− 1) + ε 0 < Ñ := p− ε. (2.58)

We have

M̃ + Ñ = (2q − p)m and M̃ > (2q − p)m− p. (2.59)

By the assumptions on p, q and the definition of M̃ and Ñ , we claim that

1

(γ + p)2

[∫
BR0

η2∗ [1 + (|Du| − 1)+]

(
γ+ M̃

m

)
2∗
2

+Ñ
dx

] 2
2∗

≤ 4

(∫
BR0

[ηG((|Du| − 1)+)]2
∗

) 2
2∗

.

(2.60)
By the definition of G, if we set t := (|Du| − 1)+, (2.60) is proved once we get

1

γ + p
(1 + t)

(
γ
2

+ M̃
2m

+ Ñ
2∗

)
≤ 2G(t) = 2

(
1 +

∫ t

0

(1 + s)
γ
2

+ p
2
−2 s ds

)
. (2.61)
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If t ≤ 1; (2.61) holds, in fact

1

γ + p
(1 + t)

(
γ
2

+ M̃
2m

+ Ñ
2∗

)
≤ 2

γ + p
≤ 2 ≤ 2

(
1 +

∫ t

0

(1 + s)
γ
2

+ p
2
−2 s ds

)
.

Let now t ≥ 1; then (2.61) becomes, after differentiation

γ
2

+ M̃
2m

+ Ñ
2∗

γ + p
(1 + t)

γ
2

+ M̃
2m

+ Ñ
2∗−1 ≤ 2(1 + t)

γ
2

+ p
2
−2t. (2.62)

Since
1

2m
− 1

2∗
=

1

n
− 1

r
,

we have that
(q − p) +

p

2
− p

2m
+

ε

2m
+

p

2∗
− ε

2∗
≤ p

2
which implies, by the definition of M̃ and Ñ

M̃

2m
+
Ñ

2∗
≤ p

2
. (2.63)

We then have
γ
2

+ M̃
2m

+ Ñ
2∗

γ + p
(1 + t)

M̃
2m

+ Ñ
2∗ ≤ 1

2
(1 + t)

p
2 =

1

2
(1 + t)

p−2
2 (1 + t)

t ≥ 1

≤ (1 + t)
p−2

2 t

and so (2.62) is satisfied.
By collecting (2.53), (2.54) and (2.60), we obtain[∫

BR0

η2∗ [1 + (|Du| − 1)+]

(
γ+ M̃

m

)
2∗
2 [1 + (|Du| − 1)+]Ñ dx

] 2
2∗

≤ C H (γ + 2q − p)4

[∫
BR0

(η2 + |Dη|2)m[1 + (|Du| − 1)+](γ+2q−p)m dx

] 1
m

, (2.64)

where the constant C only depends on n, r, p, q, λ,Λ.
Now, let us choose 0 < ρ < R < R0 and let η to be equal to 1 in Bρ, with supp η ⊂ BR

and such that |Dη| ≤ 1
(R−ρ)

. Let us denote by

κ := γm+ M̃ = (γ + 2q − p)m− Ñ .
From (2.64) it follows{∫

Bρ

[1 + (|Du| − 1)+]κ
2∗
2m [1 + (|Du| − 1)+]Ñ dx

} 2m
2∗

(2.65)

≤ C Hm

(
(κ+ Ñ)2

R− ρ

)2m ∫
BR

[1 + (|Du| − 1)+]κ[1 + (|Du| − 1)+]Ñ dx.

Fixed R̄ and ρ̄, with R̄ > ρ̄, we define the decreasing sequence of radii {ρi}i≥0

ρi = ρ̄+
R̄− ρ̄

2i
, ∀i ≥ 0, R− ρ := ρi − ρi+1 =

R̄− ρ̄
2i+1
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with ρ0 = R̄ > ρi > ρi+1 > ρ̄ and the increasing sequence {κi}i≥0

κ0 := M̃ κi+1 = κi
2∗

2m
i ≥ 0.

We rewrite (2.65) and we obtain for every i ≥ 0

Ai+1 ≤ CiAi, (2.66)

where

Ai :=

(∫
Bρi

[1 + (|Du| − 1)+]κi [1 + (|Du| − 1)+]Ñ dx

) 1
κi

Ci :=

C Hm

(
(κi + Ñ)

3
2 2i+1

R̄− ρ̄

)2m
 1
κi

.

By iteration of (2.66), we deduce{∫
Bρ̄

[1 + (|Du| − 1)+]κ0( 2∗
2m)

i+1

[1 + (|Du| − 1)+]Ñ dx

}( 2m
2∗ )

i+1

≤ C̃

∫
BR̄

[1 + (|Du| − 1)+](2q−p)m dx, (2.67)

where

C̃ ≤
∞∏
k=0

C Hm

(
(κk + Ñ)

3
2 2k+1

R̄− ρ̄

)2m
( 2m

2∗ )
k

≤ C H

1

2( 1
n−

1
r )

(R̄− ρ̄)
2 2∗m
2∗−2m

, (2.68)

with a constant C = C(n, r, p, q). Let us denote

τ :=
2 2∗m

2∗ − 2m
=

1
1
n
− 1

r

; (2.69)

thus (2.67) implies{∫
Bρ̄

[1 + (|Du| − 1)+]κ0( 2∗
2m)

i+1

dx

}( 2m
2∗ )

i+1

≤ C

[ √
H

(R̄− ρ̄)

]τ ∫
BR̄

[1 + (|Du| − 1)+](2q−p)m dx.

(2.70)
At this point we pass to the limit as i→ +∞, obtaining

sup
x∈Bρ̄

[1 + (|Du|(x)− 1)+]M̃ = lim
i→+∞

{∫
Bρ̄

[1 + (|Du| − 1)+]M̃ ( 2∗
2m)

i+1

}( 2m
2∗ )

i+1

≤ C

[ √
H

(R̄− ρ̄)

]τ ∫
BR̄

[1 + (|Du| − 1)+](2q−p)m dx. (2.71)
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Set

V (x) := 1 + (|Du|(x)− 1)+ and s := (2q − p)m; (2.72)

the estimate (2.71) becomes, for any ρ < R < R0

sup
x∈Bρ
|V (x)| ≤ C

[ √H
(R− ρ)

] τ
s

‖V ‖Ls(BR)

 s
M̃

. (2.73)

Our aim is to estimate the essential supremum of |Du| in terms of its Lp−norm. By classical
interpolation inequalities

‖V ‖Ls(Bρ) ≤ ‖V ‖
p
s

Lp(Bρ)‖V ‖
1− p

s

L∞(Bρ), (2.74)

and (2.73) and (2.74) give

‖V ‖Ls(Bρ) ≤ C1− p
s ‖V ‖

p
s

Lp(Bρ)

[ √H
(R̄− ρ̄)

] τ
s

‖V ‖Ls(BR)

θ

(2.75)

where

θ :=
s

M̃

(
1− p

s

)
=

1

M̃
(s− p) =

1

M̃
[(2q − p)m− p] < 1. (2.76)

For 0 < ρ̄ < R̄ and for every k ≥ 0, let us define

ρk := R̄− (R̄− ρ̄)2−k Bk := ‖V ‖Ls(Bρk ).

By inserting in (2.75) ρ = ρk and R = ρk+1, (so that R − ρ = (R̄ − ρ̄)2−(k+1)), we have for
every k ≥ 0

Bk ≤ C1− p
s ‖V ‖

p
s

Lp(BR̄)

2
τ
s

(k+1)

[ √
H

(R̄− ρ̄)

] τ
s

Bk+1

θ

. (2.77)

By iteration of (2.77), we deduce for k ≥ 0

B0 ≤

C1− p
s

[ √
H

(R̄− ρ̄)

] τ
s
θ

‖V ‖
p
s

Lp(BR̄)


∑k
i=0 θ

i

2
τ
s

∑k+1
i=0 iθ

i

(Bk+1)θ
k+1

. (2.78)

By (2.76), the series appearing in (2.78) are convergent. Since Bk is bounded independently
of k, i.e.

Bk+1 ≤ ‖V ‖Ls(BR̄),

we can pass to the limit as k → +∞ and we obtain for every 0 < ρ < R with a constant
C = C(n, r, p, q) independent of k

‖V ‖Ls(Bρ) ≤ C

[ √H
(R− ρ)

] τ
s
θ

‖V ‖
p
s

Lp(BR)

 1
1−θ

. (2.79)
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Combining (2.73) and (2.79), by setting ρ′ = (R+ρ)
2

we have

‖V ‖L∞(Bρ) ≤ C

[ √H
(ρ′ − ρ)

] τ
s

(1−θ) [ √
H

(R− ρ′)

] τ
s
θ

‖V ‖
p
s

Lp(BR)

 s
M̃

1
1−θ

, (2.80)

which implies

‖Du‖L∞(Bρ;RNn) ≤ ‖V ‖L∞(Bρ) ≤ C

[ √
H

(R− ρ)

]β̃ (∫
BR

(1 + |Du|p) dx
)β

,

with

β =
1

M̃ − s+ p
=

1

ε
> 1, β̃ =

1
1
n
− 1

r

1

ε
=

1
1
n
− 1

r

β. (2.81)

Since
λ

p− 1
tp ≤ gkε(x, t) = aε(x)h(t)pε(x) ∀t ≥ 1 a.e. in BR0 ,

the estimate (2.33) follows.

2.6. Step 6: comparison and conclusion. We go back to Problem (2.31) and we observe
that, since

tp ≤ C(1 + gkε(x, t)) ∀t > 0, for a.e. x ∈ BR0 ,

by the minimality of vkε, we have∫
BR

|Dvkε|p dx ≤ C

∫
BR

[1 + gkε(x, |Dvkε|)] dx ≤ C

∫
BR

[1 + gkε(x, |Dw|)] dx. (2.82)

Moreover, by the convolution properties, as ε→ 0

gkε(x, |Dw|)→ gk(x, |Dw|) a.e. in BR0 ,

and

gkε(x, |Dw|) ≤ C(k)(1 + |Dw|2)
p
2 ∈ L1(BR0).

The Lebesgue Dominated Convergence Theorem and (2.19) imply

lim
ε

∫
BR

gkε(x, |Dw|) dx =

∫
BR

gk(x, |Dw|) dx
(2.19)

≤
∫
BR

a(x)h(|Dw|)p(x) dx. (2.83)

By collecting (2.82) and (2.83)

sup
ε

∫
BR

|Dvkε|p dx ≤ C

∫
BR

[1 + a(x)h(|Dw|)p(x)] dx. (2.84)

Therefore there exists vk ∈ w +W 1,p
0 (BR;RN) such that

vkε ⇀ vk weakly in W 1,p(BR;RN).

Moreover, by (2.82) and (2.83) we get, for all Bρ ⊂⊂ BR

vkε
∗
⇀ vk weakly star in W 1,∞(Bρ;RN).
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By the semicontinuity of the norm and (2.84), we obtain∫
BR

|Dvk|p dx ≤ lim inf
ε

∫
BR

|Dvkε|p dx ≤ C

∫
BR

[1 + a(x)h(|Dw|)p(x)] dx. (2.85)

On the other hand, (2.34) and (2.83) imply

‖Dvk‖L∞(Bρ;RNn) ≤ lim inf
ε
‖Dvkε‖L∞(Bρ;RNn) ≤ Ĉ

[∫
BR

[1 + a(x)h(|Dw|)p(x)] dx

]β
=: M,

(2.86)
where we set for brevity

Ĉ := C


(

1 + ‖`‖2
Lr(BR0

)

) 1
2

(R− ρ)


β

1
n−

1
r

.

Thus we can deduce that, up to subsequences, there exist v ∈ w +W 1,p
0 (BR;RN) such that

vk ⇀ v weakly in W 1,p(BR;RN)

vk
∗
⇀ v weakly star in W 1,∞(Bρ;RN) for all Bρ ⊂⊂ BR.

Let us show that v is a solution to the problem

inf

{∫
BR

a(x)h(|Dv|)p(x) dx : v ∈ w +W 1,p
0 (BR,RN)

}
. (2.87)

To this end, using the semicontinuity of the functional
∫
Bρ
gk0(x, |Dw|) dx and (see (2.20))

gk0(x, t) ≤ gk(x, t) ∀k ≥ k0,

we get∫
Bρ

gk0(x, |Dvk|) dx ≤ lim inf
ε

∫
Bρ

gk0(x, |Dvkε|) dx ≤ lim inf
ε

∫
Bρ

gk(x, |Dvkε|) dx. (2.88)

Since, up to subsequences, gkε(x, t) converges as ε→ 0, a.e. in BR0 × [0,+∞) to gk(x, t), by
Egorov theorem, fixed K = {ξ ∈ RNn : |ξ| ≤ M + 1}, for every δ > 0 there exists Aδ with
|Aδ| < δ such that gkε converges to gk uniformly in (Bρ \ Aδ)×K. Thus

lim sup
ε

∫
Bρ\Aδ

gk(x, |Dvkε|) dx = lim sup
ε

∫
Bρ\Aδ

gkε(x, |Dvkε|) dx

and due to (2.86)

lim sup
ε

∫
Bρ∩Aδ

gk(x, |Dvkε|) dx ≤ C(k) |Aδ| (1 +M q),

with C(k) independent of δ. Thus, putting together the previous inequalities, (2.88) gives∫
Bρ

gk0(x, |Dvk|) dx ≤ lim sup
ε

∫
BR

gkε(x, |Dvkε|) dx+ C(k) |Aδ| (1 +M q)
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so that, letting δ → 0, by (2.83)∫
Bρ

gk0(x, |Dvk|) dx ≤ lim sup
ε

∫
BR

gkε(x, |Dw|) dx =

∫
BR

gk(x, |Dw|) dx.

At this point, by the lower semicontinuity of the functional
∫
Bρ
gk0(x, |Dw|) dx, and the

Lebesgue Dominated Convergence Theorem applied to the sequence of functions gk(x, |Dw|),
we obtain ∫

Bρ

gk0(x, |Dv|) dx ≤ lim inf
k

∫
Bρ

gk0(x, |Dvk|) dx ≤
∫
BR

g(x, |Dw|) dx.

Finally, letting k0 → +∞ and ρ→ R∫
BR

a(x)h(|Dv|)p(x) dx ≤
∫
BR

a(x)h(|Dw|)p(x) dx, (2.89)

and passing to the limit in (2.86), we get

‖Dv‖L∞(Bρ;RNn) ≤ Ĉ

[∫
BR

[1 + a(x)h(|Dw|)p(x)] dx

]β
. (2.90)

Then w and v are two solutions to Problem (2.87), but since g is not strictly convex for all
t > 0, we may not conclude that w = v in BR. Let us define

E0 :=

{
x ∈ BR :

∣∣∣∣Dw(x) +Dv(x)

2

∣∣∣∣ > 1

}
and w̄ :=

w + v

2
.

If E0 has positive measure, then from the convexity of g(x, ·) we have∫
BR\E0

g(x, |Dw̄|) dx ≤ 1

2

∫
BR\E0

g(x, |Dw|) dx+
1

2

∫
BR\E0

g(x, |Dv|) dx. (2.91)

Now, by the strict convexity of g(x, t) for t ≥ 1, we have∫
BR∩E0

g(x, |Dw̄|) dx < 1

2

∫
BR∩E0

g(x, |Dw|) dx+
1

2

∫
BR∩E0

g(x, |Dv|) dx. (2.92)

Adding (2.91) and (2.92), we get a contradiction with the minimality of w and v. Therefore
the set E0 has zero measure, which implies that

sup
Bρ

|Dw(x)| ≤ sup
Bρ

|Dw(x) +Dv(x)|+ sup
Bρ

|Dv(x)| ≤ 2 + sup
Bρ

|Dv(x)|

and the main estimate follows by (2.90).

�

3. An example

In this section we show that h(t), defined in (1.3) with t0 to be chosen later,

h (t) = ta+b sin log log t = e(a+b sin log log t) log t, ∀t ≥ t0, (3.1)

satisfies the assumptions of Theorem 1.1. First let us notice that h satisfies, for large t, the
growth condition

tp ≤ h(t) ≤ tq, t ≥ t0
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with p = a− b and q = a+ b.
Moreover, the first derivative, when t ≥ t0, is

h′ (t) = ta+b sin log log t

[
b cos log log t · 1

log t
· 1

t
· log t+ (a+ b sin log log t) · 1

t

]
= ta−1+b sin log log t [b cos log log t+ (a+ b sin log log t)] .

Then h′ (t) ≥ 0 for t ≥ t0 if a ≥
√

2b (since sinα + cosα ≥ −
√

2 for all α ∈ R).
The second derivative, when t ≥ t0, similarly is

h′′ (t) = ta−2+b sin log log t ·
· [b cos log log t+ (a− 1 + b sin log log t)] · [b cos log log t+ (a+ b sin log log t)]

+ta−1+b sin log log t

[
b (cos log log t− sin log log t) · 1

log t
· 1

t

]
= ta−2+b sin log log t ·

·

{
[b cos log log t+ (a− 1 + b sin log log t)] · [b cos log log t+ (a+ b sin log log t)]

+b (cos log log t− sin log log t) · 1

log t

}
;

since the last addendum converges to zero at t→ +∞, if a− 1 >
√

2b, for large values of t
h′′ (t) > 0 and we also have

0 <
h′′ (t) · t
h′ (t)

≤ a− 1 +
√

2b

a−
√

2b
.

Therefore the function h (t) satisfies (1.2) for a given δ > 0, with a, b > 0 such that

1 +
√

2b < a < a+ b < 1 + δ,

with t0 > 0 large in dependence of a, b. This is possible if 1 < a < 1 + δ and b is sufficiently

small, say b < min
{
a−1√

2
, 1 + δ − a

}
.

References

[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth, Arch.
Rat. Mech. Anal., 156 (2001), 121-140.
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[7] A. Coscia, G. Mingione: Hölder continuity of the gradient of p(x)−harmonic mappings, C.R. Acad.

Sci. Paris, 328 (1999), 363-368.



LIPSCHITZ CONTINUITY FOR ENERGY INTEGRALS WITH VARIABLE EXPONENTS 21

[8] G. Cupini, M. Guidorzi, E. Mascolo: Regularity of minimizers of vectorial integrand with p − q
growth, Non Linear Analysis TMA 4 (2003) 591-616.

[9] A. Dall’Aglio, E. Mascolo, G. Papi: Local boundedness for minima of functionals with nonstan-
dard growth conditions, Rend. Mat., Serie VII, 18 (1998), 305-326.

[10] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll.
Un. Mat. Ital., (4) 1 (1968), 135-137.
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