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Tampered images spread nowadays over any visual media influencing our judgement in many aspects of
our life. This is particularly critical for face splicing manipulations, where recognizable identities are put
out of context. To contrast these activities on a large scale, automatic detectors are required.
In this paper, we present a novel method for automatic face splicing detection, based on computer

vision, that exploits inconsistencies in the lighting environment estimated from different faces in the
scene. Differently from previous approaches, we do not rely on an ideal mathematical model of the light-
ing environment. Instead, our solution, built upon the concept of histogram-based features, is able to sta-
tistically represent the current interaction of faces with light, untied from the actual and unknown
reflectance model. Results show the effectiveness of our solution, that outperforms existing approaches
on real-world images, being more robust to face shape inaccuracies.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Manipulated images are becoming ubiquitous in everyday life.
Thanks to the advancement of photo-editing software, highly realis-
tic tampering can be produced even by non-expert users, with deep
social impact and critical consequences in our perception of reality.
In order to detect and contrast the spread of these fake images,
Image Forensics has developed several solutions [1] aimed at deter-
mining if an image is pristine or tampered according to the presence,
absence or inconsistency between the traces left by operations such
as image acquisition, compression and other editing processes.

Face splicing, achieved by inserting into an original image a
human face retrieved from a different photo, is one of the most crit-
ical tampering since it deals with people identity and can be used to
produce images where specific subjects are inserted into an incon-
venient and awkward context. Signal level traces found as invisible
footprints into the signal statistics, such as demosaicing [2] or com-
pression [3,4] artifacts, or noise [5,6], can be employed to detect face
splicing.Unluckily, these solutionshavea limitedapplicability, since
the abovementioned traces may be partially or completely spoiled
by common operations on images, such as resizing, compression,
etc. [7]. More recently, alternative methods based on deep-
learning [8] or exploiting the inconsistencies at the physical level of
the scene represented in the image have arisen, considering shad-
ows [9], perspective [10], or lighting [11,12] incongruities.

In this paper we present a novel technique to detect face splic-
ing based on physical-level analysis of the imaged scene. Previous
works exploiting physical traces in the image try to directly extract
and estimate the lighting parameters (i.e., the light source position,
color and intensity) on each single face in the image, from which to
detect inconsistencies indicating possible tampering. The major
novelties of our approach are:

� Instead of a complex and partially incomplete ideal model char-
acterizing the interaction of light with faces, we propose to
employ histogram-based features. Histograms have proved to
be very effective in many computer vision tasks [13] and, to
the best of our knowledge, were never employed for face splic-
ing detection;

� Novel ad-hoc metrics to compute distances between FISH fea-
tures have also been designed, taking into account pixel satura-
tion and albedo differences, so as to further improve the
accuracy of our face splicing detector;

� Since our face features depend only on some image data statis-
tics, without focusing on a particular mathematical model, on
real images they outperform the state-of-the-art approach of
[14] due to their higher robustness against image noise and face
shape estimation inaccuracies;
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� Finally, our approach is computationally more efficient, since it
relies only on histogram computation, while the state-of-the-
art requires complex face and lighting renderings.

The paper is organized as follows: In the next Section, a brief
overview of the state-of-the-art methods is presented. The pro-
posed histogram-based representation is described in Section 3,
and used as the main building block for the fully automatic pipe-
line of Section 4. An experimental evaluation of our approach is
reported in Section 5, and conclusions are finally drawn in
Section 6.

2. State of the art

Estimating the light source parameters of a real scene is quite a
challenging task [15] which can prove extremely useful for detect-
ing tampered images. In the recent literature on image forensics,
some methods aim to detect image inconsistencies by estimating
the color of the light source (i.e. the illuminant), while others focus
on fitting a parametric model describing the interaction of the light
source with the environment, for which the light source location/
direction is usually the most relevant parameter.

The estimation of the light source color is strictly connected
with the colour constancy problem [16], that requires to subtract
the real light color from the input image in order to make the scene
appear as it was acquired under a white illuminant. In the case of
forensic applications, features related to light color are extracted
on several patches of the images using the Gray-World assumption
[17,18], or physical-based solutions like the Inverse Intensity-
Chromaticity [19] and compared across the image looking for
anomalies. In particular, in [11] a SVM classifier is trained on fea-
tures extracted from an illuminant map (i.e., a super-pixel tessella-
tion of the image, associating each patch to its illuminant color)
computed by solving the color constancy problem.

Parametric models describing the interaction between light and
the environment are based on the spherical harmonics representa-
tion [20,21]. In particular, under the assumption of convex Lamber-
tian surfaces with uniform albedo, linear camera response and
distant light sources, for each color channel the light intensity
I xkð Þ measured at pixel xk can be modeled as a linear combination
of the spherical harmonics Yn;m N Xkð Þð Þ� �

. Up to the second order,
these are evaluated as
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In the above formulation, the pixel xk is the projection of a surface
3D point Xk, with normal N Xkð Þ ¼ xk; yk; zk½ �. The coefficients up to
the second order of the spherical harmonics, i.e. ‘n;m with
n ¼ 0;1;2f g and m ¼ �n;nf g, almost uniquely identify the lighting
environment. In order to estimate them, the linear systemM‘ ¼ I, or
explicitly
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is solved, where r0;0 N Xkð Þð Þ ¼ pY0;0 N Xkð Þð Þ, r1;m N Xkð Þð Þ ¼
2p
3 Y1;m N Xkð Þð Þ, r2;m N Xkð Þð Þ ¼ p

4 Y2;m N Xkð Þð Þ, and K P 9 pixel sampling
locations xk are used.

A possible splice is noticed when, in the same image, lighting
coefficients relative to different parts of the scene exhibit relevant
differences. In particular, lighting coefficients are estimated from
occluding boundaries in [12], and from human faces in
[22,23,14], after retrieving their 3D shape. To the best of our
knowledge, the complex model described in [14], enriched to over-
come the strict assumptions behind the spherical harmonics repre-
sentation given above, is the current state-of-the-art in face
splicing based on lighting observations. However, it still shows
the main drawbacks inherent in retrieving the spherical lighting
coefficients. More specifically, light estimation is very sensitive to
the shape accuracy of the object upon which the matrix M is com-
puted, i.e., the normals of the sampled points. This makes the solu-
tion very unstable, as can be noted by the performance degradation
from synthetically rendered faces to real faces [14], for which the
3D shape is usually obtained automatically using morphable mod-
els [24,25] or, more recently, deep learning [26]. Furthermore, still
in the case of faces from real images, the advantages of using com-
plex lighting models over simple ones are quite negligible.

According to these observations, and considering the difficulty
in obtaining more accurate 3D models, in this paper we propose
a different approach to face splicing based on an indirect estima-
tion of the lighting map. In particular, instead of computing analyt-
ically the lighting coefficients, we build histograms relating surface
normals with their intensity values, by statistically modelling the
interaction map between light and the surface. The resulting
descriptor design is inspired by histogram-based keypoint descrip-
tors [13] employed in robust image matching. Indeed, the his-
tograms associated to different faces are stable and robust to
shape variations, and can be successfully used to indirectly mea-
sure lighting inconsistencies between spliced and pristine faces.
3. Face Intensity-Shape Histogram (FISH)

Under the assumption of convex and Lambertian surfaces with
fixed albedo and distant light sources, the image intensity values of
points in the scene only depend on their associated surface nor-
mals. In the case of faces, the resulting channel-wise mapping
function L : R3 ! R from normals n ¼ xyz½ �T ; z > 0 to a color chan-
nel intensity of the image I ¼ L nð Þ can be statistically modelled
using a histogram-based representation, referred to as Face
Intensity-Shape Histogram (FISH), computed as follows.

Given a face in the image and its associated 3D shape model
(see Fig. 1a and b, respectively), we first pre-process the model
so as to remove face regions strongly violating the assumptions
above (see Fig. 1c). These regions include neck and ears (that yield
poorly estimated normals), mouth, eyes and eyebrows (that have a
different albedo and reflectance with respect to face skin), and sat-
urated areas (i.e., pixels with maximum intensity among all chan-
nels out of the range 15;240½ � for 8-bit RGB images).

FISH bins i ¼ 0; . . . ;B are sampled according to the vertices of a
semi-icosphere, that approximates a semi-sphere limited to the
positive z-axis by a simplicial polyhedron at subdivision level 3
(i.e. an icosphere). Since an icosphere has 642 vertexes, of which
only 305 with strictly positive z coordinate, it holds B ¼ 304. Each
bin corresponds to a distinct quantized surface normal ni (see
Fig. 1d). FISH bin values Ii ¼ L nið Þ for each color channel are com-
puted via Gaussian kernel density estimation as explained here-

after. Let n̂k ¼ N Xkð Þ and bIk ¼ I xkð Þ be respectively the 3D shape
normal vector of Xk and the intensity value of a pixel xk, which is
the projection of Xk as in Eq. (2). (Notice that index i refer to bins,
while index k to pixels/normals sampled on the face.) Then



Fig. 1. (a) Detected face; (b) Registered 3D shape (using 3DMM); (c) Masked 3D shape; (d) FISH (best viewed in color). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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The value of sk corresponds to the 2:5th percentile of the distribu-
tion of the zik, for i ¼ 0; . . . ;B½ �. In this way, weights associated to

normals n̂k that are too far from the ith bin representative ni are
forced to zero. The standard deviation r used to define the kernel
bandwidth in Eq. (5) is equal to 3/8 times the average angular dis-
tance between two adjacent vertexes of the icosphere. By concate-
nating the bin values for each channel, i.e.,

I ¼ L nið Þ ¼ LR nið Þ LG nið Þ LB nið Þ½ �T ð7Þ

the final FISH descriptor L is obtained.
FISH descriptors can be used to compare faces in a probe image.

The more two FISH descriptors are similar, the more the corre-
sponding faces are likely to be exposed to the same lighting condi-
tions. A possible definition of the distance D a; bð Þ between two

FISH descriptors La and Lb associated to faces a and b is
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Fig. 2. (b), (c): In the absence of skin tone normalization, the FISH descriptors for two fa
viewed in color.). (For interpretation of the references to colour in this figure legend, th
where Iai ¼ La nið Þ; Ibi ¼ Lb nið Þ; k � k is the Euclidean norm L2—chosen
experimentally, as it gives the best results among L1; L2, Wave
edges, Canberra, Correlation, Bhattacharyya and Kullback Leibler—
and wa

i ;w
b
i are defined as in Eq. (4). Notice that the above definition

of D a; bð Þ takes explicitly into account the presence of empty his-
togram bins.

As shown in Fig. 2, unhandled skin albedo would result in an
incorrect FISH-based face matching.

In order to remove skin color effects when comparing two FISH

descriptors La and Lb, we developed and tested two normalization
strategies. The first strategy consists of simply pre-normalizing L
by the mean RGB value l of the associated masked face, under
the common assumption that albedo is a scale factor, i.e.,

I�i ¼ L �nið Þ ¼ L nið Þ=l ð9Þ
channel-wise, so that

D0 a; bð Þ ¼ D L�a; L�b
	 


: ð10Þ

In the second strategy, color saturation is taken into account. In
detail, the FISH descriptor La is normalized with respect to its

albedo la, then the albedo lb of L
b is applied, clipping saturated val-

ues, i.e.,

Ia!b
i ¼ La!b nið Þ ¼ min 255; La nið Þ lb
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La!b is then compared with Lb. The final distance is made symmetric

by also considering the case in which the la is applied to Lb, so that

D00 a; bð Þ ¼ min D La; Lb!a
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Referring to Fig. 3 we present an example of both normalization
strategies for the faces of the pristine image in Fig. 2. Fig. 3a and

d show the FISHs La and Lb without any normalization: Their com-
parison produces a distance of 65.42. In this case, the effect of the
skin color strongly affects the distance, introducing a bias related
ces in a pristine image (a) look different to each other, while they should not. (Best
e reader is referred to the web version of this article.)



Fig. 3. Normalized descriptor obtained from the pristine image of Fig. 2. While the distance D without any normalizations ((a) and (d)) obtains a score of 65.42, D0 ((b) and
(e)) lowers the score to 25.07. Finally,D00 obtains 7.02 as the minimum between 13.45 (from (a) and (f)) and 7.02 (from (c) and (d)). (Best viewed in color.). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to the face albedo. This can be suppressed by normalizing each
descriptor with its mean RGB value, thus obtaining the FISHs L�a

and L�b, shown in Fig. 3b and e. Comparing these normalized
descriptors yields a distance of 25.07. However, L�a and L�b cannot
take into account saturated values that go outside the range

0;255½ �. In this case, using the FISH descriptors La!b (Fig. 3c) and

Lb!a (Fig. 3f) can handle this saturation side-effects. In particular,

to compute D00 a; bð Þ, we first evaluate the distance between Lb

and La!b (i.e. Fig. 3d and c), and between La and Lb!a (i.e. Fig. 3a
and f), and then we select the minimum among the two distances,
that in this case is 7.02.

Fig. 4 shows an example face, together with results synthesized
from the inverse mapping of the FISHmodel and from the spherical
harmonics coefficients obtained as described in [27]. Since the FISH
model preserves better shading details than the spherical harmon-
ics model, FISH fits better real data, which also implies an implicit
relaxation of the strict assumptions defining the interaction of light
with the environment.
4. Automatic face splicing detection pipeline

We employed the FISH descriptor to develop a fully automated
pipeline for face splicing detection, that can be divided into the
following three steps (see Fig. 5):
Fig. 4. Examples of inverse synthesized face. (a) Original image; (b) Masked face; (c) F
color.). (For interpretation of the references to colour in this figure legend, the reader is
� Face detection. The method proposed in [28] is used, which
exploits general Deformable Part Models trained to specifically
detect faces. Sub-parts of the object are detected by taking into
account the deformation with respect to a mean shape (detec-
tion threshold is set to 0.3). From each detected face region,
68 face landmarks are successively localized according to the
face alignment algorithm of [29], based on Supervised Descent
Method, used with the default parameters.

� Face shape and normals estimation. Face landmarks com-
puted at the previous step are used to register a 3D Morphable
Model (3DMM) and to obtain an estimate of the face shape. In
particular, we adopted the solution presented in [30], combin-
ing the Basel Face Model[24] and the Face Warehouse model
[25] in order to be able to adapt the model to both identity
and expression. As an alternative approach, we also tested the
recent method proposed in [26] based on convolutional neural
networks.

� FISH descriptors extraction and comparison. See Section 3.

Note that, since our method, as well as [14,27], compares light-
ing estimates to detect discrepancies, at least two faces are
required. Moreover, in the case that only two faces are detected,
the pipeline can detect the occurrence of tampering, but is unable
to indicate which of the two is the tampered face, while, if more
than two faces are found, the spliced face can be localized as the
ISH reverse mapping synthesis; (d) spherical harmonics synthesis. (Best viewed in
referred to the web version of this article.)



Fig. 5. Pipeline for automatic face splicing detection using FISH descriptors.
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one with the greatest distance in terms of FISH descriptors from
the other faces. Notice also that it is assumed that all the subjects
under analysis are subjected to the same lighting environment.

5. Experimental evaluation

In order to gain a deep insight into FISH performance, several
comparative tests were carried out using different datasets
that cover increasing levels of complexity, from a fully syn-
thetic setup (Section 5.1), through a controlled face acquisition
setup with manual 3D model estimation (Section 5.2), to a
real-world, unconstrained scenario (Section 5.3) FISH code is
freely available at https://drive.google.com/drive/folders/1_
JDNnD1fjGDAibfSbTqAp0ZLcxwW2aCL.

5.1. Synthetically generated faces

This evaluation employs the Syn1 and Syn2 datasets, presented
in [14], where two sets of 3D synthetic faces have been rendered
with known random lights. Since FISH does not compute spherical
harmonics, a direct estimation of the error in terms of lighting
coefficients as in [14] cannot be done. Nevertheless, a higher dis-
tance between the related FISH descriptors must be expected as
the discrepancy in two lighting environments increases. Under this
observation, the correlation between the difference of two ground-
truth spherical harmonics vectors, corresponding to the two faces
to be checked, and the distance of the related FISH descriptors, pro-
vides a good indicator of the method accuracy. For this scope, we
created virtually spliced probes by considering two faces with dif-
ferent lighting, and evaluated the correlation between the scores
obtained by FISH and the ground-truth values in terms of Spear-
man’s rank correlation coefficient (SROCC). Additionally, in order
to evaluate the method robustness w.r.t. noise in the images and
in the 3D shape estimates, the evaluation was repeated by injecting
Gaussian noise with zero mean and variable standard deviation r.
In particular, a Gaussian noise with rRGB ¼ 5;7f g was added to
each RGB channel independently, and similarly a Gaussian noise
with rN ¼ 0:1;0:2;0:3;0:4;0:5f g was added to each normal vector
dimension independently.
Table 1
SROCC on Syn1 Syn2 (best results in bold).

Method Original Image noise

rRGB ¼ 5 rRGB ¼ 7 rN

FISHy with D 0.7639 0.7639 0.7636 0.76

FISHy with D0 0.8625 0.8626 0.8620 0.86

FISHy with D00 0.8544 0.8545 0.8538 0.84

FISH with D 0.7639 0.7639 0.7636 0.76
FISH with D0 0.8627 0.8628 0.8621 0.8
FISH with D00 0.8543 0.8545 0.8539 0.84

Kee & Farid [27] 0.8131 0.8135 0.8137 0.81
Table 1 reports the results obtained by FISH and the baseline
method of [27]. For our pipeline using FISH descriptors, the super-
script ‘y’ (i.e. FISHy) indicates that no mask is applied to the satu-
rated pixels.

As shown in the table, FISH correlation with light coefficients is
high, in particular using the distance normalization schemes D0,
and D00. FISH with distance normalizations has better correlation
than the baseline spherical harmonics estimation method of [27]
also when noise is added. Note that FISH and FISHy obtain very
close results, since for these images no saturated pixels are present
(i.e. there are not highlights or strong shadows). Results with the
method of [14] are not reported in Table 1 since nothing can actu-
ally be said about the behavior of this approach in the presence of
noise. Indeed, this method does not use the normal vectors
directly: It requires to render the face 3D model on 42 images with
different lightings and estimate the optimized transfer coefficients.
This can only be done with the knowledge of additional data,
unavailable to us. If no noise is present, the solution of [14] obtains
a very high correlation value (0.9592), thanks to the availability of
the original true 3D face model for the rendering process, which
actually is an unrealistic scenario in practical situations.
5.2. Real faces in a controlled acquisition setup

For this test, the Yale Face Database B (YaleB) [31] was used,
that includes a set of images obtained from 10 distinct faces cap-
tured in different poses under 49 different lighting conditions. Fol-
lowing [14], we focused on frontal faces, thus reducing the dataset
to 490 test images. Analogously to the previous experimental eval-
uation on Syn1 and Syn2, a virtually spliced dataset was generated
by considering for the negative (pristine) set all the face pairs of
different identities with the same lighting, obtaining
49� 10� 9ð Þ=2 ¼ 2205 pristine images. On the other hand, there
are 49� 10� 48� 9ð Þ=2 ¼ 105;840 tampered probes, from which
the positive (spliced) set was generated by randomly sampling a
number of examples equal to that of the negative class. (A similar
experiment was carried out in [14], where the authors randomly
sampled 10000 probes for both the negative and positive classes,
Shape noise

¼ 0:1 rN ¼ 0:2 rN ¼ 0:3 rN ¼ 0:4 rN ¼ 0:5

70 0.7492 0.7170 0.6738 0.6191

08 0.8457 0.8278 0.8057 0.7941

84 0.8288 0.8077 0.7846 0.7673

71 0.7491 0.7170 0.6738 0.6192
609 0.8459 0.8278 0.8059 0.7940
85 0.8289 0.8078 0.7846 0.7672

83 0.8127 0.7896 0.7557 0.7365

https://drive.google.com/drive/folders/1_JDNnD1fjGDAibfSbTqAp0ZLcxwW2aCL
https://drive.google.com/drive/folders/1_JDNnD1fjGDAibfSbTqAp0ZLcxwW2aCL


Fig. 6. ROC curves for the virtual splicing test on YaleB: (a) FISHy , (b) FISH, where the three distance D;D0;D00 and reported respectively in red, green and blue. In (c) ROCs for
[14,27]. (best viewed in color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Tests on YaleB (best results in bold).

Method AUCs TPR @ 0.01
FPR

TPR @ 0.05
FPR

TPR @ 0.10 FPR

FISHy with D 0.9360 0.5066 0.7315 0.8295

FISHy with D0 0.9439 0.6390 0.7864 0.8671

FISHy with D00 0.9653 0.7950 0.8739 0.9161

FISH with D 0.9049 0.1887 0.5633 0.7592
FISH with D0 0.9719 0.8127 0.9034 0.9356
FISH with D00 0.9611 0.7923 0.8739 0.9120

Peng et al. [14] 0.9754 0.8345 0.8961 0.9311
Kee & Farid [27] 0.9531 0.7120 0.8082 0.8680

6 M. Fanfani et al. / J. Vis. Commun. Image R. 63 (2019) 102586
thus introducing repetitions in the negative class. Hence the slight
discrepancies between our results and theirs.)

Fig. 6 reports the Receiver Operating Characteristic (ROC) plots
for our FISH and FISHy, using all the distances D;D0, and D00,
together with results from [14,27], obtained by using the code
available online. The Area Under the Curve (AUC) is reported in
Table 2 for completeness, together with the True Positive Rate
(TPR) at 0.01, 0.05, and 0.10 False Positive Rate (FPR). For this con-
trolled acquisition setup on real face images, all the methods
obtained comparable results. Notice that for this test, high-
quality 3D face shapes were computed using Face Gen,1 which
requires several input images from different views for face, and man-
ually annotated landmarks. It is worth remarking that this is still an
unrealistic application scenario for us, as we target to work with real
and noisy images on an automatic pipeline.
Table 3
Face splicing detection in terms of AUC on the
DSO-1 dataset (best results in bold). Results for the
state-of-the-art methods have been retrieved from
[14].

Method AUC

FISHy with D 0.5454

FISHy with D0 0.5462

FISHy with D00 0.5962

FISH with D 0.5374
FISH with D0 0.5588
FISH with D00 0.6135

FISHI with D 0.5376

FISHI with D0 0.5672

FISHI with D00 0.6169

Peng et al. [14] 0.5795
Kee & Farid [27] 0.5715
Fan et al. [32] 0.5633
5.3. Real faces in the wild

Tests with a fully unconstrained scenario were carried out by
evaluating our automated pipeline on the DSO-1 dataset [11] con-
taining real images. The DSO-1 dataset includes 100 pristine and
100 spliced images, with challenging manipulations. The dataset
shows high variation of people poses and expressions, captured
in indoor and outdoor scenarios under uncontrolled lighting condi-
tions. Occlusions caused by other faces or objects (like glasses or
hair) are also present. To the best of our knowledge, DSO-1 is the
only freely available real-world face splicing database.

In order to compare our results with those reported in [14], we
strictly followed their protocol,2 by excluding some DSO-1 images
and by limiting the comparison to face pairs.

Table 3 reports the AUC of the ROC curve for different versions
of our method and the current state-of-the-art methods. For our
pipeline using FISH descriptors, the superscript ‘I’ is applied when
the recent CCN method described in [26] is employed to compute
the 3D face model instead of the standard 3DMM. Fig. 7 also
reports ROC curves for our pipelines.

Results show that all the methods based on FISH obtain a better
AUC with respect to the state-of-the-art in combination with the
D00 distance, demonstrating the effectiveness of the proposed solu-
tion. Exclusion of saturated pixels produce an additional improve-
ment, while the albedo handling mechanism is very critical, as
shown by the changes of performance when employing D;D0

and D00. Moreover, while FISHq does not considerably improve
the results with respect to the other FISH variants, as it lowers
the False Positive Rate (FPR) but also slightly decreases the True
1 https://facegen.com/modeller.htm.
2 https://github.com/bomb2peng/CASIA_3Dlighting/tree/master/datasets/DSO-1.
Positive Rate (TPR), nevertheless it benefits from a minor computa-
tional complexity and code management over FISH. In addition, the
FISH descriptor can better handle errors on the 3D shape clustering
and in weighting the contributions of similar normal vectors, thus
reducing the impact of incorrectly estimated normals. For this rea-
son, FISH can be more reliable in a fully automatic scenario, where
the accuracy of the 3D face model is lower than in a synthetic
scenario.

5.4. Distance normalization on FISH

As it can be noticed from experiments reported in Sections 5.1
and 5.2, in all the tests on the Syn1 and Syn2 and using FISHy on
the Yale database, the best results are achieved with the D0 dis-

https://facegen.com/modeller.htm
https://github.com/bomb2peng/CASIA_3Dlighting/tree/master/datasets/DSO-1


Fig. 7. ROC curves on DSO-1 with respectively (a) FISHy , (b) FISH, and (c) FISHI . For each version, the three distanceD;D0;D00 and reported respectively in red, green and blue
(best viewed in color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Standard deviation of the average RGB color of the faces. Note that for YaleB only
gray-scale images are provided.

Dataset STD

R G B

With saturated pixels
Syn1 12.99 9.91 8.92
Syn2 12.99 9.91 8.92
YaleB 23.93
DSO-1 29.99 29.54 28.58

Without saturated pixels
Syn1 12.99 9.91 8.92
Syn2 12.99 9.91 8.92
YaleB 16.02
DSO-1 25.21 23.79 23.13
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tance, while using FISH on Yale and in all cases on the DSO-1 data-
set, it isD00 that obtains the best scores. This behavior is reasonably
due to the different ranges of RGB values that can be found in the
images. Table 4 reports for each dataset the standard deviation of
the average RGB color of the related faces with and without satu-
rated values. The standard deviation values are computed over
the mean RGB value of each face, considering all the pixels
exploited to compute the FISH descriptor (i.e. all pixels that are
projection of a 3D vertex of the face model).

According to the table, D0 gives better results in the case of low
variance (e.g. inferior to 20), while D00 obtains better results for
data with higher variance. Notice also that no saturated pixels
are found in the synthetic datasets, which confirms their limits
in simulating a real scenario.
5.5. Computational complexity

Both FISH and the methods of [14,27] share the initial steps of
the pipeline (i.e., face detection and alignment, and 3D shape esti-
mation). These steps take most of the time spent in computation,
that in our Matlab implementation correspond respectively on
about 9 s for face detection on each image, plus 0.15 and 0.08 s
for face alignment and 3DMM fitting for each single face detected.

Additionally, FISH and [27] just require to estimate the normal
vectors of the face shape, which takes about 10 s on average on our
Matlab non optimized implementation, while [14] exploits 3D
information to synthesize 42 images of the face under different
known illuminations in order to estimate the transfer coefficients
that are exploited to retrieve the lighting vector. Although we can-
not effectively verify the computational time spent by [14] as we
lack data to replicate this step, it would reasonably be equal or sur-
pass the time spent by FISH, since rendering software typically has
to estimate the shape normal vectors in addition to other steps.
Moreover, [14] also requires to solve N 42x9 linear systems (i.e.,
42 images per 9 lighting transfer functions, for each of the sam-
pling points).

For the final step, both methods in [27,14] solve a linear system
with N equations, that in our implementation takes about 5 ms. On
the other hand, the FISH histogram has a computational complex-
ity of O NBð Þ, that in our non-optimized implementation takes
about 80 ms.

Considering the whole pipeline, FISH running times are compa-
rable to those of [27], since most of the time is spent in the first
step of the pipeline, while [14] should spend more time for the
computation of the transfer coefficients.

Notice that the distance computation is slightly slower for our
solution, due to the higher dimension of the histogram w.r.t. the
lighting vector, but this has a negligible impact over the computa-
tion time for the whole pipeline.

5.6. Limitations

FISH splicing detection, similarly to [14,27], relies on the com-
parison of physical lighting environments from distinct faces, and
requires at least two faces in a probe image. Additionally, this kind
of approach would not work if the scene strongly violates the
assumption of Lambertian surfaces illuminated by distant lights,
such in the case when objects in the scene cast strong shadows
over one of the faces under inspection. Finally, image resolution
should be sufficiently high to allow accurate face alignment and
sampling of light color intensity data.
6. Conclusion

This paper presented a novel approach to face splicing detection
based on light analysis. The proposed FISH descriptor is designed
according to a statistical representation based on histograms,
implicitly estimating the mapping between image intensities and
3D normal vectors. FISH can alleviate the impact of the low accu-
racy of the 3D face model, which typically strongly affects the
methods based on spherical harmonics. The effectiveness and
robustness of our solution has been demonstrated on three differ-
ent datasets: While in the controlled scenarios of Syn1/Syn2 and
YaleB FISH obtains results comparable to the state-of-the-art, on
images acquired on real scenarios with unconstrained lighting con-
ditions, such those of the DSO-1 dataset, it outperform all the exist-
ing face splicing detectors based on lighting analysis.
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