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A partial order structure on interval orders∗

Filippo Disanto† Luca Ferrari‡ Simone Rinaldi§

Abstract

We introduce a partial order structure on the set of interval orders

of a given size, and prove that such a structure is in fact a lattice.

We also provide a way to compute meet and join inside this lattice.

Finally, we show that, if we restrict to series parallel interval order,

what we obtain is the classical Tamari poset.

1 Introduction

Interval orders are an interesting class of partial orders, introduced
by Fishburn in [F1], which are especially important even in non strictly
mathematical contexts, such as experimental psychology, economic theory,
philosophical ontology and computer science [F2]. From a purely combi-
natorial point of view, some remarkable features of interval orders have
been recently exploited in [BMCDK], where their connection with some in-
teresting combinatorial structures, such as pattern avoiding permutations
and chord diagrams, have been shown. Starting from that paper, a num-
ber of articles has been written, trying to go deeper in the combinatorial
knowledge of interval orders.

In our work we will explore the possibility of introducing a suitable
partial order structure on the set of interval orders (having ground set of
fixed size). Our goal is twofold: the resulting poset should be as “natural”
as possible, and it should be compatible with possible (already existing)
partial orders on subsets of its ground set. We have been able to fulfill this
goal, by defining a presumably new partial order structure which is easily
defined in terms of a very natural labelling of the elements of the ground
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set, which has the additional features of being a lattice and of coinciding
with the Tamari order when restricted to series parallel interval orders.

The article is organized as follows. In section 2 we recall those defini-
tions and facts concerning interval orders and poset theory in general that
will be useful throughout the paper. In section 3 we introduce a particular
labelling of an interval order that will be crucial for the definition of our
partial order on interval orders of the same size. Section 4 is the heart of
the paper, and contains the proof that our poset is in fact a lattice. Finally,
section 5 provides an argument to show that our partial order, restricted
to series parallel interval orders, is isomorphic to the well-known Tamari
order.

2 Notations and preliminaries

Let P = (X,≤) be a finite poset. A linear extension of P is a bijection
λ : X → {1, 2, . . . , |X|} such that x < y in P implies λ(x) < λ(y).

Given Y ⊆ X, the up-set of P generated by Y is the set UP (Y ) =
{x ∈ X | ∀y ∈ Y, x > y}. Analogously, the down-set of P generated by Y
is the set DP (Y ) = {x ∈ X | ∀y ∈ Y, x < y}. In particular, we will denote
with DP = {DP ({x}) | x ∈ X} and UP = {UP ({x}) | x ∈ X} the sets
of principal down-sets and principal up-sets of P , respectively. To simplify
notations, we will often write D(x) in place of DP ({x}) and, analogously,
U(x) in place of UP ({x}).

Observe that the above definitions of an up-set and of a down-set
slightly differ from the usual ones which can be found in the literature.
Indeed, in this work an up-set generated by Y does not contain the elements
of Y (and the same convention holds for down-sets). We have preferred to
give definitions in this way since this will help us in stating (and then
proving) our main results.

Given x, y ∈ X, we say that x and y are order equivalent whenever
D(x) = D(y) and U(x) = U(y). In this case, we will use the notation x ∼ y.

We say that a poset P avoids a poset S when P has no subposet
isomorphic to S. Borrowing notations from the theory of pattern avoiding
permutations, we will refer to the class of posets avoiding the poset S using
the symbol AV (S); in particular, when we restrict ourselves to posets of
cardinality n, we will write AVn(S).

An important class of posets is that of interval orders [BMCDK, EZ,
F1, Kh]. A poset P = (X,≤) is called an interval order when there exists
a function J mapping each element x ∈ X into a closed interval J(x) =
[ax, bx] ⊆ R in such a way that, for all x, y ∈ X, x < y in P if and only if
bx < ay in R. We call J an (interval) representation of P . If the interval
order P is finite, then we can obviously find a representation of P such
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that, for every element x, the values ax and bx are integers.
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Figure 1: An interval order and one of its representations.

In [F1] Fishburn gives the following characterization for the class of
interval orders in terms of avoiding subposets. Recall that the poset 2 + 2
is the disjoint union on two chains each having two elements (see Figure
2).

Theorem 2.1 A poset P = (X,≤) is an interval order if and only if P ∈
AV (2 + 2). �

(a) (b)

Figure 2: (a) The poset 2 + 2; (b) The fence of order four.

The following proposition, stated in [Kh], gives a characterization for
the class of interval orders in terms of principal down-sets and principal
up-sets.

Proposition 2.2 The following statements are equivalent:

i) P is an interval order;

ii) any two distinct sets in DP are ordered by inclusion;

iii) any two distinct sets in UP are ordered by inclusion. �
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3 The admissible labelling of an interval or-

der

Let P (X,≤) be a poset. The following proposition gives an immediate
characterization of order equivalent elements, whose easy proof is left to
the reader.

Proposition 3.1 Two elements x and y of a poset P are order equivalent if
and only if the map from P to itself exchanging x and y is an automorphism
of P . �

From now on in this section, the poset P will denote an interval order.

A linear extension λ of P is called an admissible labelling of P when-
ever, for all x, y ∈ X, if λ(x) < λ(y) then either D(x) ⊂ D(y), or
D(x) = D(y) and U(x) ⊂ U(y), or x ∼ y.

Such a labelling has been defined in [DPPR], in the context of a recur-
sive construction of interval orders, where it is also shown that each interval
order admits at least one admissible labelling.

A trivial property of an admissible labelling of an interval order (which
will be useful in the next section) is the following.

Proposition 3.2 Let λ be an admissible labelling of P . Given x, y, z ∈ X
such that x < y and λ(y) ≤ λ(z), then x < z.

Proof. From the definition of admissible labelling, λ(y) ≤ λ(z) implies
that D(y) ⊆ D(z). Since x ∈ D(y), we have that x ∈ D(z), that is x < z.�

The rest of this section is devoted showing that an interval order admits
a unique admissible labelling (up to automorphisms).

Lemma 3.3 Suppose that λ1 and λ2 are two admissible labellings of P . If
λ1(x) > λ1(y) and λ2(x) < λ2(y), then x ∼ y.

Proof. This follows immediately from the definition of an admissible la-
belling. �

Proposition 3.4 Suppose that λ1 and λ2 are two admissible labellings of
P . If λ1(x) = λ2(y), then x ∼ y.

Proof. Let ℓ = λ1(x) = λ2(y). Concerning the values of the two labels
λ2(x) and λ1(y) we have essentially two different cases.

4



1. If λ2(x), λ1(y) < ℓ, then we can simply apply the above lemma. The
same argument can be used in the case λ2(x), λ1(y) > ℓ.

2. Suppose, without loss of generality, that λ1(y) < ℓ < λ2(x). We then
claim that there exists z ∈ X such that z ∼ x and z ∼ y (whence the
claim will easily follow by transitivity). Indeed, we observe that

|{z ∈ X \ {x, y} | λ2(z) > ℓ}| < |{z ∈ X \ {x, y} | λ1(z) > ℓ}|

(since, in the labelling λ2, the label of x is greater than ℓ). Thus there
exists an element z ∈ X \ {x, y} such that λ1(z) > ℓ and λ2(z) < ℓ.
Since we are assuming that ℓ < λ2(x), we have that λ1(z) > λ1(x)
and λ2(z) < λ2(x). Therefore we can apply once again Lemma 3.3 to
obtain that z ∼ x. An analogous argument shows that z ∼ y. �

Corollary 3.5 Let λ1, λ2 be two admissible labellings of P . Then there
exists an automorphism f of P such that, for all x ∈ P , λ1(x) = λ2(f(x)).

Proof. Given x ∈ X, let f(x) be the (unique) element y ∈ X such that
λ1(x) = λ2(y). According to Proposition 3.4, we have x ∼ y, and so the map
f is an automorphism of P (since it is the composition of automorphisms,
by Proposition 3.1). �

The last corollary states that there exists a unique admissible labelling
of a given interval order up to order automorphism. This uniqueness result
will be frequently used in the rest of the paper.

4 The poset AVn(2 + 2)

In the present section, which is the heart of our work, we endow each
set AVn(2 + 2) with a partial order structure. We then prove that the
resulting poset is in fact a lattice, which provides a generalization of the
Tamari lattice. This partial order on AVn(2 + 2) is believed to be new.

Before proceeding further, we briefly recall that a lattice is a poset
in which every finite set has least upper bound (called join) and greatest
lower bound (called meet). In particular, for any two elements x and y of
a lattice, their join is denoted by x ∨ y and their meet is denoted by x∧ y.

In the sequel we will consider interval orders endowed with their ad-
missible labelling, and we will identify an element x with its label λ(x) (this
can be done by Corollary 3.5). Moreover, for an interval order P = (X,≤),
we will write x ≤ y to indicate that the element x is less than or equal to y
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with respect to the partial order of P , whereas we will write x ≺ y to mean
that the label of x is less than the label of y. See Figure 4 for an example.

Given two interval orders P1 and P2 on the same ground set X =
[n] = {1, 2, . . . , n}, we declare P1 ≤T P2 whenever P1 ⊇ P2, i.e. the (partial
order) relation P2 is a subset of the (partial order) relation P1.

The following proposition characterizes the order relation ≤T in terms
of both the principal up-sets and the principal down-sets of the elements of
AVn(2 + 2). The proof is an easy consequence of the notations and results
previously recalled, so it is left to the reader.

Proposition 4.1 Let P1, P2 be two interval orders on X = {1, 2, . . . , n}.
The following are equivalent:

i) for each x ∈ X, UP1
(x) ⊇ UP2

(x);

ii) for each x ∈ X, DP1
(x) ⊇ DP2

(x);

iii) P1 ≤T P2. �

Let Γ = {(i, j) ∈ [n] × [n] | i ≤ j}. Then the set of interval orders on
[n] is clearly what is usually called a family of subsets of Γ. We recall here
a classical definition which can be found, for instance, in [DP]. A family of
subsets L of a set Γ is called a closure system on Γ when it is closed under
arbitrary intersections and it contains Γ. Analogously, when L is closed
under arbitrary unions and it contains the empty set, it will be called a
dual closure system on Γ.

The following result (recorded in [DP] as well) gives an important
property of closure systems.

Theorem 4.2 Any closure system L is a complete lattice, in which
∧

i∈I

Ai =
⋂

i∈I

Ai,

∨

i∈I

Ai =
⋂

{B ∈ L | B ⊇
⋃

i∈I

Ai}, (1)

for all {Ai}i∈I ⊆ L.
Analogously, any dual closure system L is a complete lattice, in which

∧

i∈I

Ai =
⋃

i∈I

Ai,

∨

i∈I

Ai =
⋃

{B ∈ L | B ⊆
⋂

i∈I

Ai}, (2)

for all {Ai}i∈I ⊆ L. �
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In view of the above theorem, the following result is trivial, so it is
stated without proof.

Lemma 4.3 Let L be a family of subsets of a set Γ. Suppose that there
exists A ∈ L such that A ⊆ B for all B ∈ L and L is closed under arbitrary
nonempty unions. Then L is a complete lattice, in which the meet and join
operations are computed as in (2). �

The above facts allow us to formulate our main result concerning the
order structure of AVn(2 + 2).

Theorem 4.4 (AVn(2 + 2),≤T ) is a (complete) lattice, in which the meet
and join operations are expressed as follows:

P1 ∧ P2 = P1 ∪ P2,

P1 ∨ P2 =
⋃

{P ∈ AVn(2 + 2) | P ⊆ P1 ∩ P2}.

Proof. We start by observing that D = {(i, i) | i ∈ [n]} is an interval
order on [n] (since it is the discrete poset on [n]) and that any interval
order on [n] clearly contains D. Thus AVn(2 + 2) is a family of subsets of
Γ having D as the minimum. Therefore, since AVn(2 + 2) is finite, in view
of Lemma 4.3 it will be enough to prove that, for any P1, P2 ∈ AVn(2+ 2),
P = P1 ∪ P2 ∈ AVn(2 + 2). In what follows, we will denote by ≤P the
partial order relation on P , and by ≤Pi

the partial order relation on each
Pi, for i = 1, 2.

The first thing to prove is that P is a poset. In fact, P is trivially
reflexive (since it contains D). Moreover, suppose that x ≤P y and y ≤P x.
If the two relations hold in the same poset Pi (that is, if x ≤Pi

y and y ≤Pi
x

for i = 1 or i = 2), then trivially x = y. Otherwise, suppose (without loss
of generality) that x ≤P1

y and y ≤P2
x. Since the admissible labelling is

a linear extension of its interval order, then necessarily x � y and y � x,
whence immediately x = y, and so ≤P is antisymmetric. Finally, suppose
that x ≤P y and y ≤P z. Also in this case, the only nontrivial case arises
when (without loss of generality) x <P1

y and y <P2
z. In particular, this

implies that y � z. Thus, by Proposition 3.2, we can conclude that x <P1
z,

whence x <P z, that is ≤P is transitive.
Our next goal is to show that P is an interval order. By Proposition

2.2, we will achieve this by showing that, if x � y, then DP (x) ⊆ DP (y).
Indeed, let z ∈ DP (x), i.e. z <P x. Without loss of generality, this means
that z <P1

x. Together with x � y and Proposition 3.2, this implies that
z <P1

y, and so z <P y, i.e. z ∈ DP (y).
Finally, we observe that the labelling of the elements of P induced by

P1 and P2 is an admissible labelling. Indeed, it is easy to show (and so is
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left to the reader) that such a labelling is a linear extension of P , and that,
for each x, DP (x) = DP1

(x) ∪DP2
(x) and UP (x) = UP1

(x) ∪ UP2
(x). �

5 The Tamari lattice on series parallel inter-

val orders

In this final section we will consider the restriction of the poset
(AVn(2 + 2),≤T ) to the set of series parallel interval orders. This means
that we will focus on the poset (AVn(2 + 2, N),≤T ), where N denotes the
fence having four elements (see Figure 2). In particular we will show that,
for any positive integer n, (AVn(2+2, N),≤T ) is the Tamari lattice of order
n.

We point out that, in the literature, there are several extensions of
the Tamari lattice, see for instance [R, S, T]. However, to the best of our
knowledge, the extension we propose in this paper does not match any of
them.

From now on, we will consider planar rooted trees whose nodes are
labelled according to the preorder visit (with the root labelled 0) and we
will systematically identify a node of a tree with its label (as in the tree
represented in Figure 4). Moreover, we will write x ≺ y to mean that the
label of the node x is less than the label of the node y. Finally, we will depict
trees with their root at the bottom; so, words like left or right will refer
to this representation (in particular, the sons of a node will be canonically
ordered from left to right). Given a planar tree T and one of its nodes k,
let uT (k) be the set of descendants of k in the tree T . Now recall that,
according to [Kn], the Tamari order is defined on the set of planar trees
of the same size by saying that a planar tree T1 is less than or equal to a
planar tree T2 whenever, for every node k, |uT1

(k)| ≤ |uT2
(k)|.

In order to define a lattice structure on series parallel interval orders
which is isomorphic to the Tamari lattice, we make use of a suitable map
sending such partial orders into planar trees, along the lines of what have
been done in [DFPR]. Let T be a planar tree and [n] = {1, 2, . . . , n} the
set of its nodes different from the root. We define a binary relation R on
[n] by setting xRy whenever either x = y or the following two facts hold:
y /∈ u(x) and x ≺ y. Figure 4 shows an instance of such a map. In the above
cited paper, the authors proved a bunch of results concerning this map; we
collect them in the next proposition.

Proposition 5.1 We have the following results:
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Figure 3: The Hasse diagram of the lattice (AV4(2 + 2),≤T ).
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Figure 4: A planar tree with its preorder labelling and the associated series
parallel interval order with its admissible labelling.

1. The structure PT = ([n], R) is a series parallel interval order, and the
labelling of its elements is a linear extension of R.

2. Every series parallel interval order of size n is isomorphic to PT , for
some planar tree T .

3. Set P1 = PT1
and P2 = PT2

, if we define P1 ≤t P2 when, ∀x ∈ [n],
DP1

(x) ⊇ DP2
(x), then (AVn(2 + 2, N),≤t) is the Tamari lattice of

order n. �

Our goal is now to show that, if we restrict the order relation ≤T

defined in the previous section to the set of series parallel interval orders,
we obtain precisely the Tamari poset.

Proposition 5.2 The labelling of the poset PT determined by the preorder
visit on the associated tree T coincides with the admissible labelling of R.

Proof. We start by observing that the labelling of PT determined by the
preorder visit on T is indeed a linear extension of R (due to Proposition
5.1), so the statement of this proposition makes sense.

Consider x, y ∈ [n], with x � y. We first observe that, in PT , D(x) ⊆
D(y), that is, for all z ∈ [n], zRx implies zRy (the proof of this assertion
is very easy, so we leave it to the reader). Now suppose that x ≺ y and
D(x) = D(y). This implies that y ∈ u(x), since otherwise we would have
xRy, i.e. x ∈ D(y), which is not possible (recall that x /∈ D(x)). If xRz, then
necessarily z /∈ u(x), and so a fortiori z /∈ u(y); moreover, it is immediate
to see that y ≺ z. Therefore we have yRz, thus proving that U(x) ⊆ U(y).
�
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The above proposition shows that the notion of admissible labelling,
when restricted to series parallel interval orders, coincides with the no-
tion of preorder linear extension introduced in [DFPR]. Thus, using 3 of
Proposition 5.1, we can finally state the main theorem of this section.

Theorem 5.3 The Tamari lattice of order n is the restriction of the lattice
(AVn(2+2),≤T ) to the set of series parallel interval orders AVn(2+2, N).
�

6 Further work

The main aim of the present work has been the definition of a (pre-
sumably new) lattice structure on interval orders which, restricted to series
parallel interval orders, turns out to be isomorphic to the classical Tamari
lattice structure. However, concerning the general (order-theoretic) proper-
ties of such a structure, we have only scratched the surface, and we believe
that it would be very interesting to go deeper into the knowledge of these
lattices. As an example of what could be done, we close our paper with a
structural result which gives some insight on the relationship between the
poset of interval orders and its subposet of series parallel interval orders.

Proposition 6.1 For every n ∈ N, AVn(2+2, N) is a meet subsemilattice
(but not in general a join subsemilattice) of AVn(2 + 2).

Proof. The fact that AVn(2+ 2, N) is not in general a join subsemilattice
of AVn(2 + 2) can be easily verified, for instance, by inspecting Figure 3
(and by noticing that the fence of order four can be obtained as the join of
two series parallel interval orders).

In order to prove that AVn(2+2, N) is a meet subsemilattice of AVn(2+
2), we argue by contradiction and suppose that, given P = P1 ∧ P2, with
P1, P2 ∈ AVn(2 + 2, N), there exists a subposet of P isomorhpic to N
(P cannot contain any subposet isomorphic to 2 + 2, of course). To fix
notations, suppose that {a, b, c, d} is an occurrence of the poset N inside
P , with a ≤P c, b ≤P c and b ≤P d. It is clear that there cannot exist
i ∈ {1, 2} such that the above listed inequalities hold in Pi. Thus we have
three essentially distinct cases.

a) a ≤P1
c, b ≤P2

c and b ≤P1
d. This case is plainly impossible, other-

wise {a, b, c, d} would be an occurrence of 2 + 2 inside P1.

b) a ≤P1
c, b ≤P1

c and b ≤P2
d. In this case, in P1 d is incomparable

with any of the remaining three elements (otherwise there would be
an occurrence ofN in P1). We claim that, in P1,D(d) ⊆ D(b). Indeed,
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if we had x ∈ D(d) and x /∈ D(b), then there would exist x such that
x < d and x ≮ b. A simple argument then shows that {b, c, x, d} would
constitute an occurrence of either N or 2 + 2 in P1 (depending on
whether x < c or not), which is not possible. From D(d) ⊆ D(b) and
U(b) * U(d) we deduce that d ≺ b, but this leads to a contradiction,
since we are assuming that b ≤P2

d (which implies that b ≺ d).

c) a ≤P1
c, b ≤P2

c and b ≤P2
d. In this case, we can assume that both

b and d are incomparable with any of the three remaining elements
in P1 (otherwise one of the above cases would occur). We claim that,
in P1, D(b) ⊆ D(a). Indeed, if we had x ∈ D(b) and x /∈ D(a), then
there would exist x such that x < b and x ≮ a. A simple argument
then shows that {a, b, c, x} would constitute an occurrence of either
N or 2 + 2 in P1 (depending on whether x < c or not), which is
not possible. From D(b) ⊆ D(a) we deduce that b ≺ a. Moreover,
in P2, a is easily seen to be incomparable with the remaining three
elements; from this fact, using an argument similar to the previous
ones (and whose details are then left to the reader), we deduce that
D(a) ⊆ D(b), whence we get a ≺ b (since also U(b) * U(a)), which
contradicts to what was previously shown.

Thus we have shown that in all cases, P cannot contain any occurrence
of the subposet N , which completes our proof. �
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