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Abstract— In crisis management systems, situational awareness is usually at the basis of guiding the intervention process, and 
it is required to rapidly process data acquired from information sources on the field such as sensors or even humans. Given the 
variety and heterogeneity of sources and the amount of information that can be collected, together with the urgency of taking 
decisions, such information needs to be rapidly collected, filtered and aggregated in a form that can be used in subsequent 
machine-assisted decision support processes. At the same time, uncertainties in the input data or approximations in the 
processing phase may lead to an incorrect interpretation of the real situation in progress, which may generate mismanagements 
and severe consequences. This paper presents an event processor for crisis management systems that combines 
heterogeneous input sources to detect a critical situation. Complex event processing technology is applied for correlating data 
and creating events that describe the critical situation. Anomaly detection techniques are then used to analyze such events and 
detect possible anomalies, i.e. events not pertaining to the identified critical situation. The devised event processor creates 
trusted events that describe a critical situation merging inputs from heterogeneous and potentially untrusted sources. A 
prototype of the solution has been implemented and exercised within the crisis management system developed during the 
Secure! project. The experimental validation activities performed make use of different input sources, such as Twitter and 
sensors deployed on field (a doppler radar for people detection and accelerometers for vibrations detection). The objective of 
the experimental campaign is to show i) the adequacy of the solution to rapidly process the information and describe the critical 
situation, and ii) its capability in detecting anomalous events that could impair the accuracy of the description of the critical 
situation. 

Keywords—Crisis Management System, Complex Event Processing, Event Correlator, Anomaly Detection, Decision Support 
System, Event Trust Analysis 

——————————      —————————— 

1 INTRODUCTION
risis management systems aim to detect, recover or 
prevent critical situations. Depending on the goals of 
the system, such critical situations may span from 

natural crises as environmental phenomena, to technolog-
ical crises caused by the human application of science and 
technology, to criminal or terrorist attacks crises [33], [36].  

The modern experimentation in the context of crisis 
management systems takes into account the crowd-
sourcing and crowd-sensing technologies: crowd-sourcing 
is the process of getting information online, from a crowd 
of people [1], while crowd-sensing is the involvement of a 
large, diffuse group of participants in the task of retrieving 
reliable data from a specific field [2]. Both technologies are 
means for capturing events from the real world in near re-
al-time, exploiting the proliferation of modern mobile de-
vices such as smart-phones and tablets, which can com-
plement the information from response teams and from 
sensors deployed on the field. 

As example, after the earthquake that struck Port-au-

Prince in January 2010 [35] [7], a live crisis map of Haiti 
was launched using the Ushahidi platform. Information 
on the impact of the disaster was initially collected from 
online sources, including social media channels like Face-
book and Twitter, and alerts received by SMS sent from 
citizens that wanted to signal their most urgent needs and 
location. Information coming from all sources was geo-
located to build a crisis map; ten days after the earth-
quake, the Head of the US Federal Emergency Manage-
ment Association (FEMA) recognized the map as the most 
comprehensive and up to date map available to the hu-
manitarian community [13]. 

The ultimate objective of what is usually called Real-
Time Situational Awareness (RTSA [3]) is to timely recog-
nize, or even predict, critical situations, thus taking deci-
sions to face them properly. For doing this it is paramount 
to have some enabling technologies that allow to retrieve 
and integrate information coming from heterogeneous 
sources, like mobile devices, social media and deployed 
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sensors (e.g., surveillance cameras), and to quickly process 
this large amount of data for detecting and monitoring criti-
cal situations and for providing information that supports 
the response process.  

The correct detection of a critical situation strictly de-
pends on the accuracy of the input data. Data collected 
from crowd may contain errors introduced by humans, 
either intentionally or unintentionally. Errors could also 
affect data measured by low quality sensors as for exam-
ple surveillance cameras. In addition, errors may be in-
troduced during the information processing due to the 
inherent coverage limitations of the adopted event detec-
tion algorithms. As a consequence, uncertainties in the 
input data or approximations in the processing phase may 
lead to an incorrect interpretation of the real situation in 
progress [28], and ultimately to mismanagements and se-
vere consequences.  

For these reasons, RTSA systems require mechanisms 
able to detect or even correct, if possible, wrong and unre-
liable information. If no correction is possible, such inac-
curate data should be discarded so to have a more accu-
rate detection of the emergency situations. 

In this paper we present and assess an event processor 
for crisis management systems that i) allows detecting and 
describing a critical situation using data taken from heter-
ogeneous sources, ii) is sufficiently flexible and generic to 
be applied to novel sources or crisis scenarios, iii) is based 
on a novel public ontology and event model described in 
standard languages (respectively, the Web Ontology Lan-
guage OWL and the Unified Modeling Language UML), 
which can be further reused and modified also outside the 
event processor, iv) allows detecting potentially incorrect 
information that may negatively affect the accuracy of the 
critical situation detection process. The event processor is 
based on three pillars: i) an ontology and event model, which 
allows the classification and the integration of information 
coming from heterogeneous sources; ii) a set of detection 
rules implemented in a Complex Event Processor (CEP, 
[8]), which allows an efficient management of the pattern 
detection process for the considered input data stream; iii) 
a set of anomaly detection algorithms, to analyze the events 
produced by the correlator and detect possible anomalous 
events, i.e. events not pertaining to the identified critical 
situation (anomaly detection refers to the problem of find-
ing patterns in data that do not conform to the expected 
behavior [31]). The final objective of the devised event 
processor is to create trusted events that describe a critical 
situation, merging inputs from heterogeneous and poten-
tially unreliable sources. 

The proposed solution has been implemented and in-
tegrated in a crisis management system developed in the 
context of the Secure! project [6]. Experimental results 
show the high efficiency of the event processor to handle a 
huge amount of data and to timely detect the critical situa-
tion in progress.  

A preliminary version of the architecture of the event 
processor was presented in the informal paper [5]. Such 
paper contains: i) a preliminary, short description of the 
event processor, not including the ontology, the event 
model and the anomaly detection; ii) very limited valida-

tion activities not reported in this paper. 
The rest of the paper is organized as follows. Section 2 

provides basic definitions, and Section 3 describes the 
event model and the information fusion process that is 
adopted in the event processor. Section 4 describes the 
logical architecture and the functionalities of the event 
processor, while Section 5 describes the application of the 
event processor in a crisis management system. Section 6 
shows the results of the performed validation activities, 
Section 7 discusses related works and finally conclusions 
are drawn in Section 8. 

2 BASIC TERMINOLOGY 
For the sake of clarity we introduce in this section the 

terminology used throughout the paper. 
The term critical situation has different meanings de-

pending on the context or application domain it refers to. 
In this paper, a critical situation is defined as the occur-
rence of one or more events that might require a reaction. 

As defined in [8], an event is “an occurrence within a 
particular system or domain; it is something that has hap-
pened, or is contemplated as having happened in that 
domain”. This definition places the event concept into two 
different contexts: i) the real world in which events hap-
pen and ii) the realm of computerized event processing, 
where the word event is used to mean a programming en-
tity that represents this occurrence. In this work, we dis-
tinguish between events that happen in the real world, and 
computerized micro-events and macro-events.  

The micro-events concept belongs to an event ontology 
and represents simple real events involving one category 
from such ontology. Sample categories are people detec-
tion, face and logo recognition, recognition of abrupt 
sounds as explosions, guns firing, or detection of objects as 
knifes, guns, shotguns, hummers. Hence, the information 
that constitutes a micro-event is the textual description of 
the generic event, the time when it happened, its location, 
the category involved and the source that generated it. 
Sample sources are social media (e.g., Twitter), surveil-
lance camera, proximity sensors for suspicious people 
movements detection and vibration sensors for detecting 
events such as explosions or earthquakes. In practice, mi-
cro-events are usually generated at the end of the features 
and information extraction process, leveraging on the ac-
quired data processing (e.g., image, video and audio anal-
ysis, text mining, social network analysis) from the con-
sidered sources.  

Macro-events are the aggregation result of the infor-
mation contained in a set of micro-events which are corre-
lated by spatial, temporal and causal relations. A macro-
event contains more detailed and complete information 
than the related micro-events; it aims to describe a critical 
situation at a certain time and in a certain place. For exam-
ple, it can describe the status of a demonstration in a part 
of the city.  

When a critical situation happens, a number of micro-
events are generated from the available heterogeneous 
sources; then, these data can be processed and aggregated 
to produce one or more macro-events, which can describe 
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the critical situation through time. On the basis of the in-
formation contained in the macro-events, response and 
recovery actions can be efficiently and effectively planned 
and actuated.  

For example, let us suppose that a brawl between soc-
cer supporters is happening; the presence of weapons and 
anomalous people behavior, which could be detected by 
sensors or by humans reporting information, are identi-
fied as a set of micro-events. These micro-events can be cor-
related in one or more macro-events that describe the cur-
rent status of the brawl, and the macro-events can be used 
in a crisis management system to support response, e.g., 
to direct police towards the most dangerous supporters.  

Given a set of macro-events referring to the same situ-
ation, we define a macro-event as anomalous if at least one 
of its characteristics/attributes is not consistent with the 
characteristics/attributes of the other macro-events. For 
example, an anomalous event can have different location 
or can happen at a different time w.r.t. to the majority of 
the other macro-events. Non anomalous macro-events are 
called normal macro-events. 

3 FROM MICRO-EVENTS TO MACRO-EVENTS 
This section describes the events ontology, the event 

model, and the information fusion process that is built 
using such model. The event processor reported in Sec-
tion 4 implements such ontology, model and process. 

3.1   The Event Model 
We rely on an ontology to associate one concept to 

each micro-event or macro-event. Such classification is a 
fundamental step in order to define correlations between 
events and consequently detect critical situations. We first 
discuss the ontology in use, and then the event model that 
exploits it. In this paper we define an ontology that is ad-
equate for widely different events that may be of interest 
for a generic crisis management system.  

Our ontology is defined in the Web Ontology Lan-
guage (OWL); it was defined browsing event categories 
from DBPedia [44], a crowd-sourced community effort to 
extract structured information from Wikipedia and Wiki-
data and make this information available on the Web. The 
event categories have been selected taking into account 
the main disaster/crisis risk typologies, natural and man-
made, to be faced. The ontology includes 8 event catego-
ries at the highest level (natural disaster, damage, terror-
ist attack, anomaly, theft, accident, violence, and entity 
recognition). The ontology is then modeled according to 
two further sub-categories, at the second and third level, 
respectively of 37 and 8 elements. Finally, at least one 
Wikipedia item or category was associated to each ontol-
ogy event category, to support classification of the events 
generated from the text mining and processing of the in-
tegrated Web and Social sources. The entire ontology is 
freely accessible from [12] and [46].  

As example, we report on the category Vandalism. Its 
second level includes Damage of Vehicle, which is further 
organized in Break Window, Break Rearview Mirror, Throw 
Eggs, Throw Stones, Tire Puncturing, Scratch Vehicle. It 

should be noted that the ontology can be further extended 
and tuned, for example to adapt to a specific application 
domain.  

The classification of micro-events and macro-events 
following the ontology is also represented in the event 
model. Micro-events and macro-events are formalized by 
means of an appropriate and extensible set of metadata 
based on the information extracted from the analyzed re-
sources. Figure 1 shows a simplified representation, for 
clarity purposes, of the UML class diagram of the event 
model. The whole event model can be downloaded from 
[46]. Classes represent the basic information of the model, 
while the arches represent the relationships between the 
different classes of the model. The event model is used to 
describe both the micro-events and macro-events. It also 
defines the relations between the different information 
that compose the micro-event or the macro-event. The 
Event is the central class of the model. The connected clas-
ses contain information on the event; they are linked to 
the event with space-time relations i.e., the place where it 
takes place, the date, the start time and the end time. The 
class Category refers to the corresponding classification 
following the earlier mentioned ontology. 

We note the correlations (EventRelationship) and rela-
tions of causal (CausalRelationship), spatial (SpatialRelation-
ship) and temporal (TimeRelationship) kind. The contents 
(Resource), regardless of their type, are extracted from dif-
ferent information sources (Source) and selected by means 
of pre-filtering processes which take place in a continuous 
manner. It should be noted that a reputation score can be 
associated to each Source (the reputation score can be 
used to rate the trustworthiness of a source [73]); conse-
quently, events generated from sources with different 
reputation scores can be managed differently. 

Different resource and source types are possible. Con-
cerning resource types, in the dotted box of Fig. 1 we con-
sider Text, Image, Video, Audio. Concerning sources, we 
consider the web, social media, sensors networks, and 
humans transmitting information through crowd-sensing 
mobile apps (e.g., see the application in [41]). 

An event may involve (relation involved) a set of enti-
ties (Entity). We organize involved entities in: individuals 
(Person), place (Place), groups of people (Group), and ob-
jects (Object) of different types such as weapons (Weapon), 
or vehicles (Vehicle). The Entity is a fundamental compo-
nent to describe an event and it is always present in each 
instance of the event model, including the case that the 
entity is not dangerous. For example, the Person entity 
may be not dangerous, but the one in danger: this distinc-
tion is clarified through the attribute role of Entity.  

The possible entities are identified in the ontology; 
consequently, changing the ontology may lead to a differ-
ent set of specializations of the Entity.  For example, the 
Event Model of Fig. 1 assumes an ontology where only 
vehicles and weapons are the possible objects associated 
to an Entity (see the box on the left bottom corner of Fig. 
1). 

If a different ontology is used (e.g., an ontology in-
tended to describe a specific crisis scenario), the Category 
and the specializations of Entity shall be updated. 
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When modelled using the event model, the micro-
event is an event with only one Entity and only one Re-
source. Micro-events can describe a relevant entity e.g., 
people or objects that can be detected through processing 
of the information acquired from sensors. The macro-
event can have more Entities and Resources. Macro-events 
describe critical situations: macro-events that describe the 
same situation are related in the event model through the 
Situation and the Event classes. 

For explanatory purposes, Table I shows a short sub-
set of the micro-event categories currently supported in the 
event model. 

Two examples of the macro-event category are instead 
shown in Table II, composed respectively of 2 and 3 types 
of micro-events. The vandalism example rule in Table II 
recognizes an act of vandalism when two micro-event types 
happen: i) People With Object Detection that detects a mali-
cious person with an object that may be used to cause 
harm (e.g., explosive, knife, gun) and ii) Abrupt Sound 
Recognition detecting a sound due to critical events e.g., the 
breaking of a window, a car accident or a gunshot. The 
weapon attack rule recognizes a weapon attack through 
three specific micro-event types: i) Abrupt Sound Recogni-
tion to detect  the explosion, ii) Suspicious Crowd Behavior 
Detection to detect people in panic, and iii) People with Ob-
ject Recognition to detect the criminal. In practice, to de-
scribe a situation, the micro-events composing a macro-
event must be collected within a specified temporal dis-

Fig. 1. Overview of the Event Model. 

 

 

Table I. Sample micro-events. 
 

micro-event cate-
gory description 

ASR-  Abrupt 
Sound Recogni-
tion 

Recognition of abrupt sounds related to critical sit-
uations (e.g., explosions, screams, breaking glass, 
intimidation) 

PWOD- People 
With Object De-
tection 

Detection of a person with a relevant object  

SCB - Suspicious 
Crowd Behavior 
Detection 

Identifies a set of suspicious behavior of people (or 
groups of people) in the scene that highlights ab-
normal situations, such as people that begin to run 
or congregate in a place 

 

Table II. Macro- and micro-event types. 
 

Macro-Event Category Micro-event Category 

Vandalism 

PWOD & ASR   
one or more instances of PWOD and ASR 
detected within time interval t1 and spatial 
distance s1 

Weapon Attack 

SCBD  & PWOD & ASR 
one or more instances of SCBD, PWOD 
and ASR within time interval t2 and spatial 
distance s2 
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tance t and spatial distance s, and aggregated following 
specific rules (see Section 3.2). 

3.2   Information Fusion Process 
We describe the information fusion process that allows 

producing macro-events from micro-events in accordance 
to a specific event model. 

The information fusion process is composed of three 
phases:  i) syntactic check, ii) micro-event correlation and 
merging, and iii) verification of macro-event. It is de-
scribed below and synthetized in Fig. 2.  All the steps of 
Fig. 2 are executed online. 

 
Syntactic Check 

The first phase consists of an integrity check of the mi-
cro-events to verify their content, and search syntactic er-
rors in their attributes. Examples are out of bounds in GPS 
coordinates, wrong format of date and time, presence of 
event categories not belonging to the particular applica-
tion domain of the crisis management system. If the micro-
events are syntactically correct, they are provided as input 
to the event correlation and merging phase. In the exam-
ple of Fig, 2, all four micro-events pass this check. 

 
Event Correlation and Merging 

In the Event Correlation and Merging phase, rules are 
applied to correlate the micro-events received within a 
specific time frame. One or more micro-events are merged 
to compose one macro-event. In Fig. 2, micro-event 1 
composes macro-event A, while micro-events 2 and 3 
compose macro-event B. Micro-event 4 is not correlated. 

A rule allows characterizing a specific macro-event type. 
A collection of rules detects all macro-event types in the 
particular application domain.  

We still consider the example of Table II to discuss on 
rules. The macro-events of Table II result from the AND 
conjunction of categories extracted from the ontology, 
and of spatio-temporal distances. In order to compose 
macro-events, a rule is required that sets precise spatial 
and temporal conditions for the micro-event types; from 
now on, we will refer to these conditions as delta parame-
ters. For both vandalism and weapon attack, the micro-
events must occur in a specific temporal distance t (e.g., 

less than 120 seconds) and spatial distance s (e.g., less than 
100 meters). The spatial conditions impose that the dis-
tance of the Abrupt Sound Recognition micro-events must be 
less than 1000 meters from the others. The temporal con-
ditions impose that the delay from the Abrupt Sound 
Recognition micro-events to the others micro-events must be 
less than 120 seconds. In Table II, temporal order of the 
micro-events is not considered; in fact, our expectation is 
that micro-events are generated by different sources and 
consequently timeliness requirements on event genera-
tion cannot be set. New rules to compose macro-events 
can be defined, at the only condition that they are ex-
pressed using logical or arithmetical operators on catego-
ries and values. 
 
Verification of Macro-Events 

The identified macro-events could be affected by er-
rors or uncertainties produced by human sources, or by 
correlation rules not sufficiently precise. In order to guar-
antee a consistent construction of the critical situation and 
a proper decision support to human operators, the macro-
events must be checked to verify if they can be trusted. 
When a macro-event is produced, it is analyzed applying 
a trust analysis process (described in Section 4.2). This 
process observes the micro-events associated to the target 
macro-event; such micro-events are verified following dif-
ferent rules depending on the macro-event they are com-
posing. At the end of this verification process, the macro-
event is marked normal if it describes a critical situation, 
and anomalous otherwise.  

In the example of Fig. 2, macro-event A is marked  
normal and macro-event B is marked anomalous. 

4 ARCHITECTURE OF THE EVENT PROCESSOR 
The logical architecture of the event processor is 

shown in Fig. 3, where several components cooperate for 
managing, storing, correlating and aggregating events. 
The event processor is developed entirely in Java with the 
exception of the SQL database. Its components are Java 
RESTful web services running on Apache Tomcat 7.0 and 
their interfaces are described using JavaScript Object No-
tation (JSON). The event model is also implemented fol-
lowing the JSON format. The whole software developed is 
11862 line of code excluding comments, white lines and 
Off-The-Shelf (OTS) libraries. Including OTS libraries, the 
whole size of the software is 302 MB. 

We first describe the whole set of components, then 
we detail the Correlator (based on the CEP Esper [30]) in 
charge of performing the Event Correlation and Merging, 
and the Event Trust Analysis (ETA) component. 

Micro-events come through the Event Bus that connects 
all the available micro-event producers to the event proces-
sor. The micro-events producers output data in a JSON nota-
tion which is compatible to the event model; consequently 
it can be used by the event processor. 

Considering the bottom part of Fig. 3, examples of mi-
cro-events producers are from the left: 
i) sensors network deployed to monitor an  infrastructure. 
For example, in Section 6.3 a doppler radar to detect the 

 
 
  
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The Information Fusion process. 

micro 
event 1

micro 
event 2

micro 
event 3

micro 
event 4

syntactic 
check 

micro 
event 1

micro 
event 2

micro 
event 3

verification of 
macro-events

macro 
event B

event correlation 
and merging

Marked 
normal

X

Marked 
anomalous

macro 
event A

micro 
event 4



6  

 

unexpected presence of aggregation of people and an ac-
celerometer to detect vibration due to mass movements 
are set for surveillance of historical monuments; 
ii) web site reporting online news. For example, in Section 
6.3, news are extracted from websites to collect events re-
garding a football match and a political manifestation; 
iii) mobile devices that send information via a specific ap-
plication e.g., the Secure! App presented in Section 5 and 
applied in Section 6.3; 
iv) social networks: messages extracted from Twitter are 
one of the information sources used in the case studies of 
Section 6.3.  
 

The Event Bus is implemented by the Java Message 
Service (JMS). The Event Bus transmits all micro-events to 
the Event Manager.  

The Event Manager acts as an orchestrator [23] which: 
i) transmits micro-events to the Correlator for the event 
correlation and merging; 
ii) transmits each macro-event and the micro-events that 
compose it to the ETA; 
iii) outputs the macro-events. If the macro-event is marked 
normal, it contributes to depict the critical situation. If it is 
marked anomalous, it should be delivered to an operator 
which may accept, correct or discard it; 
iv) coordinates configuration requests from the Client Re-
quest Manager to the Correlator and the ETA. 
 

The Correlator correlates the micro-events to create a 
macro-event. It can be configured by operators which can 
define or modify correlation rules using the functionali-
ties of the Data Store Manager. The Data Store Manager is 
the interface to access the repository where event model, 
ontology, correlation rules and, optionally, processed data 
are stored. The rules depend on the application domain in 
which the crisis management system is intended to oper-
ate; a different application domain can be selected just de-
fining the specific set of rules. 

The ETA checks anomalies in the macro-events pro-
duced: ETA verifies the consistency of the micro-events 

aggregated in a macro-event. 
The Client Request Manager forwards requests from the 

system operator to the Event Manager or to the Data Store 
Manager. Sample requests are “add correlation rules”, 
“update rules”, “change configurations”. The Client Re-
quest Manager offers to the operator a simple Java inter-
face to define such requests. For example, we show in Fig. 
4 the user interface to configure the Correlator. The left 
side shows the log file on the top, and the correlation rules 
on the bottom. The right side is devoted to the definition 
of new rules, which may be introduced uploading a file, or 
with the support of a menu and boxes to set the spatial 
and temporal parameters. Similar interfaces are available 
to configure the other services of the event processor. In 
general, configurations parameters are stored in the Data 
Store Manager. The interested services load these configu-
rations when they are (re)started. The most significant 
configurations are: i) upload a new ontology or event 
model; ii) define new rules to compose macro-events; iii) 
modify the ETA parameters described in Section 4.2. 

Finally, the Client Request Manager interfaces to the 
default administrator consoles [4], [40] that allow adminis-
tering the REST services, the MySQL database, and the 
Apache Tomcat server. 

4.1 The Correlator (CEP Esper) 
The Correlator is a Complex Event Processor (CEP) 

implemented relying on the Esper [30] engine. Esper is an 
open source component based on Event Stream Processing 
(ESP, [30]) techniques. The Esper engine allows applica-
tions to store queries and run the data through [30]. The 
execution model is thus continuous rather than only 
when a query is submitted.  

Rules are defined via Esper stream queries that pro-
vide the windows, aggregation, joining and analysis func-
tions for use with streams of events. These queries are ex-
pressed through the Event Programming Language (EPL, 
[30]) syntax. Similar to tables in a SQL statement, EPL 
adopts the concept of views, which define the data availa-
ble for querying and filtering. For example, views can 
represent windows over a stream of events. Also, it is rel-
evant to notice that EPL makes possible to implement 
temporal conditions on incoming data. In our implemen-
tation, EPL rules are written in an XML file and stored in 
the Rule and Data Repository. 

Esper was selected for our solution because it offers the 
following benefits: i) EPL rules can be modified at runtime 
without requiring to halt the event processor, and ii) Esper 
is totally developed in Java: for this reason it has been in-
tegrated easily in the event processor component like a Ja-
va library. 

Esper uses listeners to apply the set of rules to the in-
coming micro-events. Each listener implements a specific 
set of rules and continuously applies the queries to all mi-
cro-events incoming from the Event bus. Every time a 
new micro-event reaches the event processor, the listener 
executes the queries. 

In the event correlation and merging phase, the Corre-
lator takes the received micro-events and correlates them 
based on space-time relations and according to the event 

 
Fig. 3. Logical architecture of the event processor. 
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categories of the event model. Esper receives micro-events 
streams, applies EPL rules on them and returns the sets of 
micro-events that satisfy the rules. 

We explain the performed correlation using the exam-
ples in Table III (for the meaning of the acronyms, see Ta-
ble I and Table II), where two macro-events are matched 
to their correlation rules that are implemented in Esper. 

The first rule aims to detect a vandal; the second rule 
aims to detect a weapon attack. The second rule could be 
wrongly activated also in different conditions. We can 
consider a case where the event processor wrongly inter-
prets events as correlated, thus performing an incorrect 
detection (Weapon Attack). Let us consider a scenario of a 
running race in a city, and the simultaneous presence in 
the same area of an attacker accomplishing vandalism 
against a shop by breaking its window. In this case the 
event processor should recognize the act of vandalism 
without being influenced by the presence of people run-
ning. When the person breaks the showcase with a weap-
on, an Abrupt Sound Recognition micro-event and a People 
with Object Recognition micro-event are detected. In addi-
tion, a foot race passing through the interested area caus-
es the detection of a Suspicious Crowd Behaviour Detection 
micro-event.  

In this situation, the vandalism macro-event is correctly 
detected. A Weapon Attack is erroneously detected, be-
cause of people running close to the place where the 
sound is detected (distance is less than 1000 meters). The 
system misunderstands the vandalism for a weapon at-
tack and outputs a false Weapon Attack macro-event.  This 
wrong interpretation can be detected by the ETA, dis-
cussed in Section 4.2, which allows identifying potential 

anomalies in the events set. 
Similar situations could also occur considering cyber at-

tacks towards the crisis management system itself. An at-
tacker could change data in the events transmitted to the 
event processor, causing the detection of a nonexistent 
critical situation, or avoiding the detection of real critical 
situations. In this context the spatial and temporal analy-
sis of the ETA described in Section 4.2 could facilitate dis-
covering cyber attacks in progress and warn the operator 
avoiding severe consequences.  

Finally, we observe that a micro-event waits a time in-
terval inside the Correlator for other micro-events to cre-

Table III. EPL rule to create macro-events. 
 

Macro- 
Event  

Micro-
events EPL rule 

Vandal-
ism 

PWOD 
 
ISR 

select  * from pattern [ every 
(event1=Event(event1.hasCategory(' PWOD’) 
=true) and event2=Event 
(event2.hasCategory(ISR)=true)) where tim-
er:within(320 sec)] where 
(event1.timeDiff(event2)<120 and 
event1.distanceGPS(event2)<100)) 

Weapon 
Attack 

SCBD 
 
PWOR 
 
ISR 

select  * from pattern [ every 
(event1=Event(event1.hasCategory('ISR')=true
) and event2=Event 
(event2.hasCategory('PWOR')=true) and 
event3=Event 
(event3.hasCategory('SCBD')=true)) where 
timer:within(10 min)] 
where(event1.timeDiff(event2)<120 and 
event1.distanceGPS(event2) <1000 and 
event1.timeDiff(event3) <120 and 
event1.distanceGPS (event2)<1000) 

 

 
Fig. 4. User interface of the Correlator. 
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ate a macro-event. Considering as example Vandalism of 
Table II and Table III, the micro-event PWOD may wait 
up to t1 (120 seconds in Table III) for a micro-event ASR; if 
ASR is generated within t1, the macro-event Vandalism is 
created. All pairs of PWOD, ASR generated in a time 
window (320 seconds in Table III) contribute to the same 
macro-event. 

4.2 The Event Trust Analysis (ETA) 
The ETA component analyzes each macro-event creat-

ed by the Correlator. ETA is able to detect the anomaly in 
the produced macro-event analyzing the spatial localiza-
tion of the micro-events which compose it. The input of the 
ETA is the set of micro-events composing a macro-event; 
the output is the indication that the macro-event is anoma-
lous or normal. 

For example, considering the Weapon Attack macro-
event previously discussed, it aggregates the three sepa-
rated micro-events detected (Abrupt Sound Recognition, 
People with Object Recognition and Suspicious Crowd Behav-
iour Detection) including their own time and GPS loca-
tions. The Weapon Attack macro-event is recognized by ETA 
as anomalous because it recognizes two different micro-
events clusters. 

Before further progressing on the description of the in-
ternal algorithms of the ETA, it should be remarked that 
several possible algorithms exist and can be compared 
through benchmarks [24], [25], [31]. It is outside the scope 
of this paper to build a novel algorithm or compare exist-
ing ones to identify the most efficient. Different anomaly 
detection algorithms, not explored in this paper, may be 
selected for the ETA; main requirements that they have to 
meet are that they are able to cope with micro-events and 
they have adequate performance, operating at least at the 
same level of speed of the Correlator. Following these ob-
servations, we consider the work in [13] as a reference 
starting point, because it describes a process and algo-
rithms that are able to meet the above demands. [13] op-
erates on structured events stored in a repository, to iden-
tify relevant groups with similar attributes. We adapt [13] 
to deal with streamed data and to deal with the macro-
event structured as in Figure 1. The process and algo-
rithms we present here are able to provide an adequate 
(although most likely not optimal if compared with novel 
state-of-the-art algorithms) tradeoff between perfor-
mance, false positive and false negative, as it is demon-
strated in Section 6 through four use cases and further 
simulations. 

4.2.1 The Anomaly Detection Algorithms and Process 
Assumptions 

For performing the anomaly detection we assume that 
more than α% of the micro-events in the initial set are 
normal, i.e., the values of all their attributes are close to 
each other in time and location. Therefore we assume that 
for each attribute, their maximum distance from the mean 
value can be a predefined delta value. For example, events 
are normal if they happen within 10 minutes and their 
maximum distance is 1 km from their respective mean 
values. For the sake of simplicity, in our implemented al-

gorithms we set α=50%, thus considering that more than 
half of the set of micro-events must be normal in order to 
compose a normal macro-event. Without loss of generali-
ty in the methodological approach, the algorithms could 
be easily adapted to consider different α values. In prac-
tice, the parameters’ setting should come out from the 
combination of i) the operator’s experience in targeting 
specific crisis scenarios, ii) the expected operator-
perceived trade-off between false positives and false neg-
atives, and iii) the analysis of the available data stored in 
the Rule and Data repository to check the configurations 
used for detecting anomalies in similar situations. 
 
Event filtering algorithm 
The event filtering algorithm (Listing 1) detects sporadic 
events with large magnitude differences in at least one of 
their attributes. Based on the delta value, we search for 
those intervals in which the majority of the events are lo-
cated (for each attribute). Events that are not in these in-
tervals are considered anomalies. This is a rough, but 
very fast algorithm. By selecting large intervals (a large 
delta) we can be sure that normal events will not be de-
tected as anomalies. 
 
Mean value algorithm 

We can detect normal events by computing the mean 
value for all the attributes separately, and checking if the 
distance from this mean value is below the predefined 
delta. If more than half of the events are normal, then the 
remaining events are detected as anomalies, and the 
anomaly detection is complete. This is the mean value al-
gorithm (see Fig. 5, Listing 2).  

 
K-medoids algorithm 

If the anomalies form separate clusters, the mean val-
ue of the set is located far from the normal events and the 
mean value algorithm is not successful. 

We use the k-medoids algorithm to detect the clusters, 
and then check the largest cluster with the mean value 
algorithm. The algorithm partitions the events into k clus-
ters by selecting k events as medoids and assigning all the 
other events to the closest medoid. For a detailed descrip-
tion, see [14]. 

algorithm eventFiltering 
 

normalize the attribute values based on delta 
for every attribute do 
    divide the events into sets:  
      width of each set is two*delta 
       
    count the events in every two neighbouring set 
        if numberOfEvents ≥ halfOfEvents  
            then do nothing 
        if numberOfEvents < halfOfEvents  
            then mark events as anomalies 
    end for 
 

Listing 1. Pseudocode of the event filtering algorithm 
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The resulting process 
The logical information workflow of ETA is depicted 

in Fig. 6. It contains three main modules: the event filter-
ing algorithm, the mean value algorithm and the k-
medoids algorithm. These three modules are of incremen-
tal computational cost.  

The algorithms run in a specific order. First, the event 
filtering algorithm is executed with a large magnitude dif-
ference. Then the mean value algorithm executes to see if 
more than half of the events are normal. If this is the case, 
the algorithm stops, and lists the other events as anoma-
lies. Otherwise, clusters are searched using the k-medoids 
algorithm until a limit value kmax. After the identification 
of clusters, the largest cluster containing more than half of 
the events is checked using the mean value algorithm, 
stopping the analysis when the normal (and then anoma-
lous) events are found. The clustering can be repeated for 
different k as the number of clusters, until k reaches kmax. 

This order guarantees that only the necessary tasks are 
performed to reach the goal. The event filtering is very 
fast, especially if the events are close to each other. By 
running event filtering in the beginning, we can improve 
the success rate of the simple mean value algorithm, 
which can be negatively affected by the presence of spo-
radic events. The mean value algorithm should produce a 
result in most of the cases, leaving the k-medoids algo-
rithm for special and rare cases (high computational cost).  

If the percentage of micro-events detected as anoma-
lous is above a determined threshold, the macro-event is 
labeled as anomalous, otherwise as normal. The maxi-
mum value for the threshold is 50% i.e., if more than half 
of the events are anomalous, the macro-event is always 
marked anomalous.  

At the end of its execution, the ETA rates the macro-
event as anomalous if the percentage of anomalous mi-
cro-events is above a determined threshold, and normal 
otherwise. The anomalous micro-events do not contribute 
to compose the normal macro-event. 

From the perspective of the operator, the ETA work-
flow is considered as a black box. The intermediary steps 
are hidden to the operator, which has at his disposal only 
the final outputs. This is a necessary design choice, be-
cause the continuous execution of the event processor and 
the ETA is independent from the responsiveness of the 
operator. 

5 APPLICATION IN A CRISIS MANAGEMENT SYSTEM  
The Secure! framework was developed in the context 

of the recently concluded Secure! project [6]. It is a Deci-
sion Support System (DSS) for crisis and emergency man-
agement. It exploits information retrieved from different 
types of sensors deployed in the area of interest in order 
to detect critical situations and determine the correspond-
ing reaction. Users have the opportunity to directly inter-
act with the Secure! framework using their mobile devices: 
they can provide information about real events and re-
ceive information about critical situation in which they 
could be involved. The Secure! framework is also intend-
ed to detect critical situations before they happen: it ana-
lyzes real events provided by the social media and corre-
lates them with historical data and events incoming from 
other sources. For example, threats to people or things 
may be detected making a syntactic analysis of the text 
content provided by social media; searching for particular 
keywords, it is possible to recognize the intentions of a 
spiteful person. 

Input data may come from several sources, for exam-
ple: i) social media, ii) web sites, especially those which 
report news, iii) mobile devices, via a Secure! App that is 
available to users, iv) sensor networks deployed in build-
ings or critical infrastructures. 

The logical architecture of the Secure! framework is 
organized in four distinct levels, each of which comprises 

 

Fig. 6. Information workflow for ETA. 

anomalies

normal events

mean

delta

 

Fig. 5. Graphical representation of the mean value algorithm. 

algorithm meanValue  
for every attribute do 
    compute mean value of the attribute 
    for every event 
        if (current attribute value > (mean value + delta)  
        or current attribute value < (mean value – delta) 
            then mark event as anomaly 
    end for 
end for 
 

Listing  2. Pseudocode of the mean value algorithm 



10  

 

logical components and services. Starting from the bottom 
layer, they are: 
(i) Source Data Collector and Media Integration. It collects 
heterogeneous micro-events from multimodal sources 
connected to the system, and it extracts information from 
the collected data. The possible approaches to extract the 
data from sources and convert them in micro-events are 
not debated in this paper. More information on the tech-
nologies applied in Secure! can be found in [45]. 
(ii) Event Extraction and Integration. It generates events that 
describe the critical situations.  
(iii) Situation Extraction and Awareness. It is a human-
assisted process where macro-events and historical data 
are presented to support coordinating the crisis manage-
ment.  
 (iv) Secure! Apps and Services. These represent the interface 
between the Secure! framework and the Secure! users. 
Sample users are operators in operative centers, and oper-
ators on field equipped with ad-hoc devices. Also, regis-
tered users (including civilians) can install and use the Se-
cure! App on their mobile devices to notify events to the 
Secure! framework. 

Our work has been instantiated in the Event Extraction 
and Integration level of the Secure! logical architecture 
where correlated events are used to build the critical situ-
ation.  

The event model  (Fig. 1) is applied in Secure! to rep-
resent micro-events and macro-events. Once micro-events 
are received from the Source Data Collector and Media 
Integration layer, the event processor processes and ag-
gregates the input data to create macro-events. After-
wards macro-events are checked by ETA; anomalous ones 
are identified. 

In the layer Situation Extraction and Awareness, the 
normal macro-events are directly used to support the 
analysis. The anomalous events are maintained separate, 
until the human operator decides to manually accept, cor-
rect or eliminate them. This approach exploits the synergy 
between the power of the automatic anomaly detection 
and the human cognitive ability to recognize errors or in-
consistencies in the events.  

6 TESTS AND VALIDATION 
This section presents the validation of our event pro-

cessor, using reference scenarios and dataset defined dur-
ing the validation process of the Secure! framework. 

The event processor is installed on 2 virtual machines 
(VMs), one entirely devoted to the ETA, and one to the 
remaining components of the event processor. The reason 
of this setting was to separate the ETA and the Correlator 
in order to easily measure their individual performance. 
The two VMs are configured with 2 GB RAM running 
under a physical machine with an Intel Xeon E5-2620 (6 
Cores) CPU 2.00GHz processor with 48 GB of RAM. The 
remaining services of the Secure! framework are connect-
ed via RESTful web services and instantiated on separate 
machines not described here. 

The event processor has been tested and validated ex-
perimenting it with a set of correlation rules and a set of 

input events conforming to the Secure! domain. 
A large set of functional tests have been performed on 

the event processor. These tests were performed with 
specific inputs that allowed to stimulate the different 
functions of the event processor and to exploit the appli-
cation of the different rules. The objective of these tests 
was to verify the functional behavior of the event proces-
sor and detect possible software bugs. 

The rest of our activities consisted in the following 
tests to validate the event processor and the ETA in simu-
lative and real settings. Performance tests in Section 6.1 
show the computational time of the event processor. They 
use a synthetic input dataset comprising micro-events cre-
ated with a micro-events generator. The ETA was also 
tested to verify the accuracy of the detection: these tests 
are reported in Section 6.2. Section 6.2 relies on a synthetic 
input dataset comprising micro-events from Table I creat-
ed using a micro-event generator. These micro-events al-
low the generation of the macro-events in Table II. Finally, 
the whole event processor was exercised within the Se-
cure! framework in realistic scenarios. This included i) 
feeding the event processor with data collected during 
past emergencies, and also ii) feeding it with data collected 
on the field at runtime, by dispatched sensors. These tests 
exercise the event processor on real data collected from the 
field. Micro-events are generated from web sites, sensors, 
tweets, Secure! app,  and local civil protection. The outcome 
of this test is reported in Section 6.3.  

The dataset is publicly available for download at [46], 
together with the adopted ontology, the event model and 
correlation rules, and the simulation tool developed for 
Section 6.2. 

6.1 Performance tests 
The purpose of these tests is to measure the perfor-

mance and the scalability of the event processor (without 
ETA) and of the ETA. A large number of input events 
(micro-events) are generated for every test case using a 
micro-event generator module. This module generates 
micro-events randomizing, within a preset range, the at-
tributes latitude, longitude. They obviously have other at-
tributes, for example the category and the generation 
time. For the performance testing considered in this sec-
tion, sets of 100, 500, 1000, 3000, 7000 and 10.000 events 
were generated, once without clusters, and once with two 
clusters. The events set with two clusters contain one 
cluster with approximately 55% of the events and one 
cluster with approximately 45% of the events.  

After the generation of micro-events, the second step 
is to run the correlator and create the macro-events based 
on spatio-temporal distance and their category.  

The third and final step is to run the ETA to detect the 
anomalies. The performance of this component depends 
on the necessary algorithms, meaning that for test cases 
containing clusters we presume that the component will 
need more time to complete the analysis. The distance be-
tween the two clusters is not measured by the event pro-
cessor, because the correlation rule is satisfied by pair of 
events. 

We measured the processing time of the event proces-
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sor (without ETA) and the ETA. For ETA the timer started 
after loading all the macro-events from the files. For every 
test case the processing time is calculated as the average 
of three separate runs. 

The processing time of the event processor resulted 
independent of the clusters, and close to linear for the 
number of events (see Fig. 7). 

The processing time of the ETA highly depends on the 
presence of clusters, especially for large number of events 
(see Fig. 8). The time difference is completely justified by 
the running of the k-medoids algorithm (together with 
the building of the distance matrix). Another result is that 
the anomaly detection (if the mean value algorithm is 
successful) is significantly faster than the rest of the event 
processor, and especially the Correlator, for large number 
of events. In general, the ETA is significantly quicker than 
the Correlator, which is a fundamental requirement to 
successfully use the ETA. The performances of the ETA 
fall behind those of the Correlator only when the cluster-
ing is applied to a high number of micro-events (approx-
imately above 7000). We believe this is a limit condition 
which is expected to happen rarely. 

The individual micro-events [46] provided as input are 
representative of potential micro-events generated in a re-
al deployment. The stream of micro-events, instead, is in-
tended to investigate the computational performance of 
the event processor: consequently, depending on the con-
sidered scenario the number and the frequency of arrival 
of micro-events may be unrealistic. For example, in Sec-
tion 6.3 the event processor is exercised to observe local 
areas, and the number of input micro-events is in the or-
der of hundreds per hour. Compared to Fig. 7, we can ob-
serve that the event processor with its current computa-
tional resources is fully able to manage the inputs of Sec-
tion 6.3. In other scenarios, for example when a larger area 

is observed, the event processor may have to process a 
higher number of micro-events, leading to a higher com-
putational load. 

6.2 ETA Validation 

6.2.1 Validation methodology using R and RStudio 
By creating interface points between the anomaly de-

tection process and our validation tool, the processing of 
the events can be tracked as the ETA algorithms run after 
each other. In fact, we defined a tool that loads the data 
(macro-events), runs the algorithms on the ETA, and 
shows the results in diagrams. The data produced during 
this process can be exported from the ETA at any point 
(meaning before or after every algorithm). This way the 
different algorithms can be checked individually. 

To create such tool, we relied on the open source sta-
tistical environment R [15]. We used RStudio open source 
IDE developed for R [16] to write and run the R programs 
used for validation. We used the pam function of the clus-
ter [17] package which is a robust implementation of the 
K-means algorithm, and auxiliary packages [18], [19], 
[20], [21] to visualize the data on 2D and 3D plots. The 
tool developed is available at [46]. 

6.2.2 Validation of the ETA detection capability 
For every test case, the assumption on the input 

events has to be valid, meaning that more than half of the 
events are normal events. The goal is to measure the num-
ber of false positives/negatives in case of different setting 
of the ETA.  

False positive event is a normal event detected as 
anomalous. False negative event is an anomalous event de-
tected as normal. 

Fig. 9 shows the test case used for the analysis. The 
events located in the center area are normal, while the 
events in the corner areas are anomalies. Within each area 
the events are randomly distributed. The areas and num-
ber of events were set in order to use only the mean value 
algorithm for the detection; in this case the runtime exe-
cution only depends on the number of anomalies and not 
on the usage of the clustering algorithm. This test case can 
actually resemble a scenario of a running race in a city 
(generating 800 events within the central area) and the 
simultaneous presence of an attacker accomplishing a 
robbery against a shop breaking its window (in any of the 
neighboring areas, generating 50 events). 

As already discussed, the set of micro-events actually 
belonging to two different situations (Vandalism and Foot 
Race) can be wrongly interpreted by the event processor 
as correlated. This results in incorrect macro-event detec-
tion (Weapon Attack). This misbehavior can be properly 
detected by the ETA, and its accuracy in terms of false 
positives and false negatives depends on the assigned del-
ta value. 

We explore the validation of the ETA varying the delta 
parameter. In fact, this is the most relevant parameter for 
detection purposes, which is at the basis of the mean val-
ue and the event filtering algorithms.  

The left side of Fig. 10 shows the number of false posi-
tive events for several values of delta (from 78% to 100%). 

 
Fig. 7. Performance of the event processor without ETA (axes in logaritmic 

scale). 
 

 
Fig. 8. Performance of the ETA component (axes in logaritmic scale). 
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The event set contains 800 normal events (e.g., related to 
the foot-race) and 200 anomalies (e.g., those related to 
vandalism attacks). At least 501 events have to be detect-
ed as normal; meaning the maximum number of false 
positive events can be 299. If we set 78% of the original 
delta for the analysis, the number of false positive events 
is 293. Nevertheless, all true anomalies (e.g., those related 
to the vandalism attacks) are correctly detected. The right 
side of Fig. 10, and Fig. 11, show the number of false neg-
ative events for several delta setting (from 100% to 300%). 
Since the location of the original events is not modified, 
multiple runs of the algorithm have the same result. 

During the sensitivity analysis the performance of the 
ETA component was also measured. For every test case 
the average of three runs are shown in Fig. 12. The result 
shows that the number of anomalies does not significant-
ly affect the runtime of the component, as expected. 

The sensitivity analysis of the ETA component shows 
the importance of the delta parameter used for anomaly 
detection. This result emphasizes the fact that an anomaly 
is defined "as something which is not normal". If we sof-
ten the conditions on "what is normal", then no anomalies 
will be found. 

Last, we comment on the Kmax and threshold parame-
ters (see Fig. 6). Different values can be assigned to the 

Kmax parameter. In our case study, for Kmax ≥ 5 we only 
observed minimal differences that consequently we do 
not report here. Setting Kmax  <  5 obviously fails to identi-
fy all the clusters in Fig. 9. Finally, we comment on the 
parameter threshold, considering our set of 1000 micro-
events and the anomalies identified in Fig. 12.  If the 
threshold is lower than 1000 - number of anomalies, the en-
tire macro-event is identified as normal, otherwise it is 
labelled anomalous. For example, in our case study, at 
most 493 anomalies are identified (see Fig. 12): if the 
threshold is lower than 1000-493=507, the macro-event is 
always marked normal. 

6.3 Realistic scenarios and a real deployment 
The event processor was tested in realistic settings af-

ter the integration with the whole Secure! system. Leav-
ing aside integration tests and functional tests, we illus-
trate its application in three selected scenarios and a long run 
of the whole Secure! system to monitor the famous Piazza 
dei Miracoli of Pisa (the scope of the crisis management 
system in this case is the world heritage protection). 

These experiments bring evidence that the event pro-
cessor is able to operate with real data extracted from the 
field. Additionally, they provide clear indications on the 
dimension of the input streams that should be expected 
for local ad-hoc deployments. 

The three scenarios were tested a-posteriori. In fact, 
information produced during the emergencies were col-
lected a posteriori, and submitted to the Secure! frame-
work. The three scenarios are: 
• Europa League Match (night between 18th and 19th Feb-

ruary 2015): clashes and vandalism between support-
ers and police in Rome occurred before the Roma - 
Feyenoord European football match. 845 micro-
events were available from: 1 note from the police 
headquarters warning on potential risks connected to 
the match, tweets trends, web site of online news. 
This scenario also included 5 messages from Secure! 
App (human sensors) notifying clashes occurring in 

 
Fig. 9. Test case used for sensitivity analysis. 

 

 

  
Fig. 10. Percentage of false positive (left) and false negative (right) events 
with respect to the decreased and increased values of delta, respectively. 

 

 
Fig. 11. Number of false negative events with respect to the increased 

values of delta. 
 

 
Fig. 12. Runtime of ETA with respect to the number of anomalies found. 
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Piazza Campo dei Fiori, where the largest part of the 
disorders occurred. These three messages contributed 
to generate three of the 22 macro-events that refer to 
that area of the city. In total, 64 normal macro-events 
were generated that described the evolution of the 
situation through time. 

• Political Manifestation: clashes between police and  vi-
olent members of Italian political factions (Lega Nord, 
Casapound) at a manifestation in Rome on the 27th and 
28th February 2015. In this case, 30 normal macro-
events were collected out of 630 input micro-events 
composed of tweets, and web site of online news. 

• Weather Warnings: intense atmospheric events (strong 
winds) raged in Tuscany on the 4th and 5th of March 
2015. Micro-events inputs where tweets trends de-
scribing weather conditions in locations of Tuscany, 
events from the local civil protection agency (it peri-
odically dispatches updates on weather status in case 
of bad weather) and web site of online news. In total, 
44 normal macro-events were generated in the 
abovementioned time window. 

 
Finally, in a long run of approximately two months, 

the Secure! system and the event processor were exer-
cised to monitor the UNESCO site Piazza dei Miracoli 
(Square of Miracles) in Pisa (Italy). The Secure! system 
was configured to provide to the event processor micro-
events originated from i) the twitter trends collected from 
Twitter, ii) data on movement of people collected by a 
doppler radar, iii) vibration data from an accelerometer. 
The doppler radar and the accelerometer were transmit-
ting fresh data to Secure! at the rate of 1 update per sec-
ond. 

Despite relevant critical situation did not happen in 
Piazza dei Miracoli for the duration of the considered ex-
periment, the event processor created 612 macro-events 
distributed over the two months. These macro-events 
were classified following the ontology as “public gather-
ing”, and they are due to the activity of the doppler radar 
and accelerometer. In fact, these are intended to detect 
aggregations of people (masses of tourists) moving alto-
gether: the doppler radar and accelerometer measure 
changes in the movement of groups of people. Each of the 
two sensors raises an alert when the measured value is 
above a defined threshold. This leads to the generation of 
a micro-event of type people detection that is provided to 
the event processor. If people detection micro-events are 
generated from both sensors in a time window, the corre-
sponding macro-event is generated.  

It should be noted that according to [56] the yearly 
number of tourists entering Piazza dei Miracoli is approx-
imately 2.5 million, implying that large aggregations or 
unexpected movements are expected. A different thresh-
old of the sensors could reduce the number of false 
alarms. This is a potential enhancement for the usage of 
Secure!. 

We conclude the discussion mentioning that novel 
sources could be introduced at the only cost of modifying 
the event model to appropriately include them. Also, nov-

el ontology and rules could be introduced. In the specific 
case of Secure!, micro-events are generated from the layer 
Source Data Collector and Media Integration which lays be-
low the event processor: the modified event model and the 
ontology must be shared between such layer and the event 
processor itself. Instead new rules can be added through 
the configuration interface of the event processor. 

7  RELATED WORKS  
Several studies describe enabling approaches, mecha-
nisms and supporting tools for crisis management, span-
ning on different contexts and involving social media for 
data acquisition and alert diffusion [38]. We organize the 
literature review as follows. In Section 7.1 we discuss the 
ontology and the event model: we consider alternative 
ontologies, and the possible compliance of our event pro-
cessor to existing event model. In Section 7.2 we compare 
our event processor with existing solutions for crisis de-
tection and management. Finally, in Section 7.3, we re-
view the usage of anomaly detection in crisis manage-
ment. 

7.1 Ontologies and event models 
Several ontologies specifically devoted to crisis-

oriented and disasters characterization are available [38], 
[47]. Focusing on those intended to describe disasters and 
critical events [47], most relevant ones are ISyCry [37], 
SOKNOS [50], WB-OS [51], EM-DAT [54], Canadian Dis-
aster Database [52], Australian AG Disasters Database 
[53], Humanitarian eXchange Language HXL [55]. Unfor-
tunately, these are either i) formally represented but not 
available publicly ([37], [50], [51]), or ii) they are intended 
for online querying and not available for download in a 
standard representation language for ontologies ([52], 
[53], [54], [55]). This led us to define a novel ontology, 
which is i) freely available for download [12] and ii) rep-
resented in the well-known language OWL. It should be 
further remarked that novel ontologies, or extension of 
the existing one, can be introduced in our event processor 
as already discussed in Section 3.1: our ontology shares 
the key concepts common to most of the abovementioned 
ontologies. 

Events are often linked to other concepts or meta-data 
that are fundamental for the definition of the crisis. It is 
relevant to discuss solutions from the state of the art to 
build events starting from sources.  

This allows verifying that our event model (and event 
processor) i) can be used in a wide range of contexts, and 
ii) can be integrated to existing data extraction tools. In 
fact, many authors faced the issue of crisis characteriza-
tion using a model-based approach. Noteworthy, our 
event model is devoted to describe the critical event, and 
consequently event models for management as [39] are 
not considered. 

We describe our findings with the support of Table IV. 
The first column enlists the surveyed works. The second 
column cat. classifies the works in four categories (note 
that some works may comprise different categories) [38]:  
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- information content category IC: works that extract 
categories of information from the input data; 

- information source category IS: works that select mes-
sages or data from specific groups; 

- information extraction and summarization category IES: 
works that focus on subdocument analysis and infor-
mation extraction and summarization. 

- crisis management systems CMS: works that include 
the whole event processing activities to describe a crisis, 
and possibly also address the management phases. These 
works are competitors of our solution (differences are in 
Section 7.2). 

The successive columns of Table IV report i) the use 
cases adopted for the considered work, and ii) the reference 

TABLE IV. EVENT MODELS FOR CRISIS MANAGEMENT AND POSITIONING OF OUR WORK 

 
cat. use case domain sources event representation 

real-word 
deployment Compatibility with our approach 

our 
work CMS see Section 6.3 crisis domain 

Twitter, news 
sites, sensors 

networks 

UML schema supported by 
an OWL ontology 

Piazza dei 
Miracoli, Pisa   

[66] 
IC, 
IS 

several: flooding, 
bombing,  … 

crisis domain 
microblogging 
(Twitter) 

a crisis lexicon  
no (a 
posteriori) 

the lexicon can be the input ontol-
ogy for our event processor 

[67] 
IC, 
IES 

Joplin 2011 
Tornado 

crisis domain 
microblogging 
(Twitter) 

machine learning for posts 
classification, based on an 
ontology  

no (a 
posteriori) 

the tailored ontology can become 
compatible with our event model 

[68] 
IS, 
IC 

Hurricane 
Sandy, 2012 

crisis-specific 
(hurricane) 

news on 
Reddit.com 

content type and formats 
of most relevant Sandy 
threads 

no (a 
posteriori) 

Reddit is a possible input source 

[69] IC 
Haiti 2010 
earthquake  

crisis-specific 
(earthquake) 

text messages 
(Ushaidi 
dataset) 

a vocabulary of words and 
labels to classify and ag-
gregate messages using 
machine learning 

no (a 
posteriori) 

can create micro-events (from text 
messages sources) 

[70] IS 
crimes in 
Monterrey, 
Mexico, in 2010 

crisis-specific 
(crime) 

microblogging 
(Twitter) 

Tweets content and related 
metadata including rele-
vance of the sources 

yes 

micro-events can be generated 
from the metadata considered. 
W.r.t. ETA, it provides trust in-
formation in a semi-automatic 
fashion. 

[71] IES not reported crisis domain 
text from Web 
documents 

includes structured de-
scription of events  

no 
generates updates of ongoing cri-
sis that could be micro-events 
(textual sources) 

[72] IES 
several from 
different 
domains 

general pur-
pose  

microblogging 
(Twitter) 

create clusters but a specif-
ic event model was not 
identified 

no (a 
posteriori) 

tweet summarization can generate 
micro-events, or event complex 
tweets-only macro-events 

[73] 
IC, 
IS 

TREC microblog 
benchmakr 

crisis domain 
microblogging 
(Twitter) 

tweet with semantic en-
richment: involved enti-
ties, classification of the 
tweet, links, user metadata 

yes 
enriched tweets can be used as 
micro-events 

[48] CMS forest fires crisis-specific 

not specified, 
provided 
through a User 
Interface 

follows an ontology specif-
ic to the definition and 
monitoring of plans for 
forest fighting 

not specified 
the ontology can be the basis to 
build our micro-events 

 
[58] 

CMS 
Earthquake in 
Pakistan, 2013  

crisis domain 
microblogging 
(Twitter) 

Relies on labelling catego-
ries: crisis-specific labels 
from previous similar dis-
asters 

yes 
the labelling categories can be in-
troduced in our event model 

[62] CMS 
Haiti 2010 earth-
quake,  
BP oil spill, 2010 

crisis domain 
Twitter + po-
tentially other 
sources 

geographic, temporal, and 
thematic information 

no (a 
posteriori) 

the required data and metadata 
are compatible to our event model 

[61] CMS 
2012 Syria civil 
war 

crisis domain 
(large scale 
events) 

microblogging 
(Twitter) 

based on keywords to or-
ganize Tweets; includes 
metadata on the tweet 

yes 

[42] CMS not reported crisis domain 
sensors 
networks 

ontology available for de-
pendability, capability, 
system assessment 

no (demo 
only) 

the ontology is not adequate for 
our solution because it does not 
describe the event but only the 
system status 
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domain distinguishing between general purpose, crisis 
domain, and crisis-specific. General purpose means that the 
domain is not restricted to crisis management; the crisis 
domain includes different contexts but always related to 
crisis; the crisis-specific refers to a specific crisis context. 

Table IV also reports the sources, the event representa-
tion, and information on real-world deployments (yes if the 
solution in the considered work is exercised during a real 
crisis, no if the validation was performed a-posteriori us-
ing data from past crises). Finally, a judgment on the com-
patibility of the considered event representation and solu-
tion with our ontology, event model and event processor 
is reported. 

From Table IV, it results that our work is an original 
one because of its capability to integrate in existing data 
extraction tools. Also, several event models are intended 
for only one source or only a well-defined set of sources. 
Additionally, several event models are crisis-specific. It 
should be noted that our work can be used in conjunction 
with most of the reviewed ones, at the cost of modifying 
the ontology and event model as discussed in Table IV 
column compatibility with our approach. 

7.2 Crisis Management Solutions 
The integration of information from different sources 

is an effective mean to improve situational awareness in 
crisis management systems [64]. Our work focuses on 
strategies and technologies for the analysis of information 
collected by different sources, including social networks 
and sensors network, as well as investigating the accuracy 
of the information through the identification of geo-
spatial anomalies. 

We compare our work to the most relevant near real-
time CMSs we identified in literature. We identify main 
differences and novelties of our approach. Noteworthy, 
some of the works considered in the following are not re-
ported in Table IV, because they did not place adequate 
emphasis on the event model or target ontology.  

We first review crisis-specific CMSs. In general, crisis-
specific CMSs cannot be easily applied to other contexts, thus 
differentiating from our solution. Examples are [48], [59]. 
SIADEX [48] integrates AI techniques to design fighting 
plans against forest fires. It analyzes the knowledge 
stored in an ontology server and it creates an attack plan, 
whose execution is successively monitored. [59] is a 
framework for real-time humanitarian logistics data fo-
cused on mathematical modeling. It is deployed and 
managed manually to meet specific requirements of a 
post-crisis management.  

Several CMSs address the broad crisis domain but they fo-
cus on only one source of information. The objective of our 
event processor instead is being able to manage multiple 
sources, merging data from social media, sensors networks, 
alerts dispatched from authorities, online news, etc. AIDR (Ar-
tificial Intelligence for Disaster Response [58], [74]) is a 
platform designed to perform automatic classification of 
crisis-related microblog communications. It performs a 
classification of tweets generated during large-scale disas-
ters. The Emergency Situation Awareness (ESA, [65]) col-
lects tweets from Australia and New Zealand and pro-

cesses them to identify unexpected incidents, monitor on-
going emergency events and provide access to an archive 
to explore past events. CrisisTracker [61] is an online sys-
tem that efficiently captures distributed situation aware-
ness reports based on Twitter activity during large-scale 
events, such as natural disasters or wars. 

Other CMSs, both crisis-specific and domain-specific, con-
sider different sources but do not tackle the issue of heterogenei-
ty. Including new sources is not a central issue of their design. 
For example, the following CMSs use a known number of 
sources, mainly deployed sensors networks or ad-hoc 
personal devices. [33] describes an architecture for plan-
ning and decision support for environmental information 
management. It relies on dispatched sensors able to pro-
vide vehicle position and weather information. [34] deliv-
ers tsunami warning messages using information about 
tide gauge, seismology, GPS ocean observation, weather 
collected from dispatched sensors. CodeBlue [27] is a dis-
tributed architecture comprising wireless sensors and re-
mote devices that allows monitoring and tracking of pa-
tients and first responders into disaster response scenari-
os. The remote devices are wearable vital sign sensors, 
handheld computers, and location-tracking tags. The RT-
HRLE [49] system uses a wireless sensor network for real-
time monitoring, tracking of missed people inside build-
ings and reporting partial or total destruction of build-
ings. [42] presents an approach for architecting wireless 
sensors networks and connected crisis management sys-
tem. The resulting sensors network can provide resilient 
search and rescue capabilities. 

Finally, we devote special attention to SensePlace2 
[62]. Although it is specialized to acquire and process da-
ta from Twitter, it is conceived to consider alternative 
text-based sources. SensePlace2 is a web-based geovisual 
analytics application through which information con-
tained in social media can be gathered and analyzed to 
support situational awareness in crisis management and 
related application domains. However, w.r.t. our work, 
SensePlace2 is focused on text-based sources and it is leaning 
towards geo-localization and visualization rather than on merg-
ing data from different sources to detect and depict a situation. 

We conclude this discussion reporting on the usage of 
CEP technologies to manage large data streams. CEP-
based technologies have been widely used for managing 
streams of data, and especially in the context of crisis 
management systems [26]. Their adequacy for managing 
large stream of data has been documented before. For ex-
ample, in [29] a distributed CEP system integrates differ-
ent CEP engines, and it is applied to a nuclear crisis man-
agement scenario. In [32], a Mediation Information Sys-
tem (MIS) is proposed to help the crisis cell partners to 
design, run and manage the workflows of the response to 
a crisis situation, where a CEP engine is used to consume 
and manage events. To the best of our knowledge, CEP has 
never been used to create macro-events from micro-events as 
proposed in our solution. However, the state of the art on CEP 
technology here reported makes us confident that CEP is ade-
quate to operate on the data stream managed by the event pro-
cessor. 
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7.3 Anomaly Detection and Crisis Management  
Several technologies exploiting crowd-sensing and 

crowd-sourcing information fusion for situational aware-
ness are described in the literature. However, being able 
to verify the quality and trust of the information, which in 
several cases is left to the users (as in the Ushahidi plat-
form [9]), is currently an open challenge. Several ap-
proaches verify the trustworthiness of the information 
sources [10], but they are not considering heterogeneous 
data sources for detecting a critical situation. In this paper 
we consider heterogeneous sources of information and 
we exploit anomaly detection techniques to identify 
anomalous (i.e., not trustable) events actually not belong-
ing to the identified critical situation. 

Anomaly detection refers to the problem of finding 
patterns in data that do not conform to the expected be-
havior [31]. Anomaly detection techniques are extensively 
used in a wide variety of applications such as fraud detec-
tion for credit cards, insurance or health care, intrusion 
detection for cyber-security, fault detection in safety criti-
cal systems, and military surveillance of enemy activities 
[31]. 

Regarding crisis management systems and anomaly 
detection, [10] proposes an anomaly detection technique 
against the diffusion of false information through social 
media and activities linked to compromised accounts. The 
proposed solution is based on an analysis process that 
models the behavior of normal users accurately and iden-
tifies significant deviations from it as anomalous. [11] 
analyses tweets using a cluster analysis approach to dis-
tinguish between local event reports and global media 
reaction, and to detect spatial-temporal anomalies. [22] 
uses cell phone networks to record movements and inter-
action patterns of the population. Anomalies in the 
streaming of data produced by the cell phone network 
support a crisis management system. [36] proposes a so-
lution that concerns drinking water surveillance and in-
cludes sensors and algorithms that detect anomalies in 
the properties of drinking water. 

In our approach, anomaly detection is applied to im-
prove the trust in the critical situation described by mac-
ro-events generated by the aggregation of heterogeneous 
input sources. This approach allows coping with the (spa-
tial, temporal) uncertainty which is inevitably lying in the 
micro-events, thus also affecting the events at the macro 
level. To the authors’ knowledge no works apply anoma-
ly detection to such scope. 

8 CONCLUSIONS 
This paper presented an approach for critical situation 

detection that is able to integrate heterogeneous sources 
and it can possibly scale to any input source, thanks to the 
definition of an event model which exploits an ontology. 
The solution devised is an event processor that combines 
i) Complex Event Processing for the detection and com-
position of the events that describe the critical situation, 
and ii) anomaly detection to improve trustworthiness of 
the events reducing the uncertainty introduced by human 
sources. 

A prototype of the proposed solution has been devel-
oped and exercised in the context of the Secure! project. 
The conducted experimental validation activities show 
the feasibility of the approach for on-line critical situation 
detection and its capabilities in detecting anomalous 
events that could impair the accuracy of the critical detec-
tion process. 

Two families of tests were implemented. First, tests of 
the event processor and of the individual component 
Event Trust Analysis were performed to explore their 
performance. Second, the event processor was tested in a 
larger setting, where it is part of a crisis management sys-
tem. Tests results showed that the event processor per-
forms adequately for its intended purpose, and that the 
algorithms implemented for anomaly detection are ade-
quate for the considered scenarios. In particular, we exer-
cised the event processor in a world heritage protection 
scenario. This experience will be a relevant input for the 
heritage protection platform that is targeted in the start-
ing project H2020-DRS-700191-STORM [60], where the 
two companies Engineering Ingegneria Informatica and 
Resiltech, co-authors of this paper, are involved. Amongst 
its objectives, STORM will explore heritage protection re-
lying on several information sources as intra-fluorescent 
and wireless acoustic sensors, LiDAR (Light Detection 
and Ranging) sensors, UAVs (Unmanned Aerial Vehi-
cles), and crowdsourcing. The STORM project will pro-
vide the ground to further consolidate the event proces-
sor i) promoting its execution in novel scenarios, and  ii) 
showing its flexibility to different heterogeneous data 
sources and targets. 

Beyond its use in crisis management systems, the 
event processor and the event trust analysis may be also 
adopted in other contexts, whenever multiple heteroge-
neous events are collected that can be classified and ag-
gregated satisfying specific rules according to a given on-
tology, event model and correlation rules. This can result 
useful in several cases, roughly corresponding to the do-
mains where the demand of complex event processing is 
increasing. Possible examples are [63] i) intrusion and 
failure detection to protect from attacks or failures [57], 
[58], ii) environmental monitoring applications which 
process data coming from multiple sensors, iii) traffic 
management and V2I (Vehicles to Infrastructure) com-
munication.  
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