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Constrained bang-bang-singular extremals

Laura Poggiolini1,2 and Gianna Stefani1,3

Abstract— By means of Hamiltonian methods we give suffi-
cient conditions for the strong local optimality of a Pontryagin
extremal for a Mayer problem where both the end points of
admissible trajectories are constrained to smooth manifolds of
the state space. The extremal is given by the concatenation
of two bang arcs and a partially singular one. Our sufficient
conditions amount to regularity conditions on the extremal and
the coercivity of a suitable quadratic form.

I. INTRODUCTION

The aim of this paper is to give an extension of the
results obtained in [1]. In there the authors proved sufficient
conditions for the strong local optimality of a Pontryagin
extremal in a Mayer problem with fixed initial point and free
final one and where the control set is given by a compact
convex polyhedron. Here we consider the case when the
Pontryagin extremal has the same control structure (i.e. bang-
bang-partially singular) but the constraints on the end points
of admissible trajectories are completely generic. By partially
singular control we mean that the control takes values in the
relative interior of an edge of the polyhedron.

A precise definition of strong local optimality is given
in Section I-A. Loosely speaking we can say that the
localization is only with respect to the graphs of admissible
trajectories, regardless of the control values. In the literature
also different kinds of local optimality are considered, such
as weak local optimality and Pontryagin local optimality,
where the localization concerns also the control, in the L∞

and L1 norms, respectively. We refer the reader to [2] for
precise definitions.

In proving our result we demonstrate that the fixed-free
case treated in [1] is a case study in the Hamiltonian ap-
proach. Indeed, in considering the fixed-free case, the authors
prove that certain regularity assumptions on the extremal and
the coercivity of a suitable second variation allow to lift any
neighboring admissible trajectory to the cotangent bundle.
Such lift allows to compare the cost of any such trajectory
with the cost of the extremal one.

We can refer the constrained case to the free final point
case thanks to the results in [3] which allow to add a
penalty on the final cost. If the initial point is fixed, the
lift immediately gives a comparison of the costs. Else, it
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reduces the comparison of the costs to a finite dimensional
optimization problem.

We stress the fact that here we treat also the case of abnor-
mal extremals (p0 = 0 in Pontryagin Maximum Principle)
and that the problem we are considering is not a single input
problem. Here we announce our result and give all the tools
that are required to understand our method of proof. Detailed
proofs will appear in [4]. For the sake of clarity we take the
Euclidean space Rn as state space but all the results are
coordinate free so that they can be easily extended to the
case when the state space is a smooth manifold.

A. Statement of the problem

We consider the following optimal control problem on the
fixed time interval [0, T ]

minimize C(ξ) = c0(ξ(0)) + cT (ξ(T )) subject to

ξ̇(t) ∈ X (ξ(t)), a.e. t ∈ [0, T ], (1a)
ξ(0) ∈ N0, ξ(T ) ∈ NT , (1b)

where N0 and NT are smooth manifolds in Rn and X (x)
is, at each point x ∈ Rn, the convex hull of smooth vector
fields of Rn, X1, . . . , Xm.

We assume there exists a reference trajectory ξ̂, whose
optimality we want to investigate. More precisely the aim of
the paper is to give sufficient conditions for the strong local
optimality of ξ̂, according to the following definition:

Definition 1.1: An admissible trajectory ξ̂ : [0, T ] → Rn
is a strong local minimizer of problem (1) if it is a minimizer
among the admissible trajectories which are close to ξ̂ in the
C0 topology, regardless of the control values. �

We assume we know the structure of the control associated
to ξ̂: there exist times τ̂1, τ̂2, 0 < τ̂1 < τ̂2 < T , vector
fields h1, h2, h3 ∈ {X1, . . . Xm}, and a continuous function
υ̂ ∈ C0 ([τ̂2, T ], (0, 1)) such that ξ̂ is the solution to

ξ̇(t) = h1(ξ(t)) t ∈ [0, τ̂1),

ξ̇(t) = h2(ξ(t)) t ∈ [τ̂1, τ̂2),

ξ̇(t) = υ̂(t)h3(ξ(t)) + (1− υ̂(t))h2(ξ(t)) t ∈ [τ̂2, T ],

ξ(0) ∈ N0, ξ(T ) ∈ NT .

Setting fd := h3 − h2 we can define the time-dependent
reference vector field f̂t as

f̂t :=


h1 t ∈ [0, τ̂1),

h2 t ∈ [τ̂1, τ̂2),

h2 + υ̂(t)fd t ∈ [τ̂2, T ].

(2)

We assume that ξ̂ satisfies the necessary conditions for
optimality, i.e. together with an adjoint covector µ̂ : [0, T ]→



(Rn)∗, it satisfies Pontryagin Maximum Principle (PMP)
and, along the singular interval [τ̂2, T ], it satisfies the Gener-
alized Legendre Condition (GLC), see [5, Proposition 20.1].
Denoting x̂0 := ξ̂(0), x̂T := ξ̂(T ), PMP and GLC can be
written as follows:

Assumption 1: There exist p0 ∈ {0, 1} and an absolutely
continuous mapping µ̂ : [0, T ] → (Rn)∗, p0 + |µ̂(t)| 6= 0,
such that

˙̂µ(t) = −µ̂(t) Df̂t(ξ̂(t)),

〈µ̂(t) , f̂t(ξ̂(t))〉 = max
Y ∈X (ξ̂(t))

〈µ̂(t) , Y 〉, a.e. t ∈ [0, T ]

µ̂(0) ∈ p0 dc0(x̂0) + T⊥x̂0
N0,

µ̂(T ) ∈ −p0 dcT (x̂T ) + T⊥x̂TNT ,

〈µ̂(t) , [fd, [h2, fd]] (ξ̂(t))〉 ≥ 0 ∀t ∈ [τ̂2, T ]

where T⊥x̂0
N0 and T⊥x̂TNT are the linear spaces of one-

forms which are orthogonal to the tangent spaces Tx̂0
N0

and Tx̂TNT , respectively.
The trajectory ξ̂ of the system is called a state extremal of

problem (1) while the couple λ̂(t) :=
(
µ̂(t), ξ̂(t)

)
is called

an extremal of problem (1). We denote the terminal points
and the switching points of the reference extremal aŝ̀

0 := λ̂(0), ̂̀
1 := λ̂(τ̂1), ̂̀

2 := λ̂(τ̂2), ̂̀
T := λ̂(T ).

In order to prove the strong local optimality of ξ̂ we
make further assumptions which can be split in two main
categories: 1) regularity assumptions which boil down to
requiring strict inequalities where the necessary conditions
yield mild ones; 2) the coercivity of a second variation
associated to a sub-problem of the given one.

In particular the regularity assumptions imply that υ̂ is a
smooth function so that the continuity assumption on υ̂ is
not restrictive.

B. Notation

We shall make an extensive use of notation from differ-
ential geometry which is more adequate for the Hamiltonian
setting.

Given a C1 vector field f on a manifold N , the solution
to the Cauchy problem

ξ̇(t) = f(ξ(t)), ξ(0) = x.

is denoted exp tf(x).
If g is another C1 vector field, [f, g](x) := Dg(x)f(x)−

Df(x)g(x) is the Lie bracket between f and g.
For any C1 function a : N → R, Lfa (x) :=

〈da(x) , f(x)〉 is the Lie derivative of a with respect to the
vector field f at the point x.

We also use some basic element of the theory of sym-
plectic manifolds referred to the trivial cotangent bundle
T ∗Rn ' (Rn)∗ × Rn, see for example [5].

We denote by π : ` = (p, x) ∈ T ∗Rn 7→ x ∈ Rn the
projection on the base space. The symbol s denotes the
canonical Liouville one–form on T ∗Rn: s :=

∑n
i=1 p

i dxi.
The associated canonical symplectic two–form σ = ds =∑n
i=1 dpi ∧ dxi allows one to associate to any, possibly

time-dependent, smooth Hamiltonian Ht : T
∗Rn → R, a

Hamiltonian vector field
−→
Ht, by

−→
Ht(`) =

(
− ∂Ht

∂x
(`),

∂Ht

∂p
(`)

)
, ∀` = (p, x) ∈ T ∗Rn.

The maximized Hamiltonian function of the given control
system is denoted as Hmax:

Hmax(`) := max
Y ∈X (x)

〈p , Y 〉, ∀` = (p, x) ∈ T ∗Rn.

We recall that any vector field f on Rn defines, by lifting
to the cotangent bundle, a Hamiltonian

F : ` = (p, x) ∈ T ∗Rn 7→ 〈p , f(x)〉 ∈ R.

We denote by H1, H2, H3, Fd the Hamiltonians associated
with h1, h2, h3, fd respectively and by H12, H23 the
Hamiltonians associated with the vector fields [h1, h2] and
[h2, h3], respectively.

The solution to the Cauchy problem

d

dt
ξ(t) = f̂t(ξ(t)), ξ(T ) = x,

i.e. the flow from time T of the reference vector field f̂t
defined in (2) is denoted as Ŝt(x). For any t ∈ [0, T ] the
map Ŝt is a local diffeomorphism defined in a neighborhood
of the point x̂T . Moreover

F̂t =


H1 if t ∈ [0, τ̂1),

H2 if t ∈ [τ̂1, τ̂2),

H2 + υ̂(t)Fd if t ∈ [τ̂2, T ],

denotes the time–dependent reference Hamiltonian.
Finally, we identify any bilinear form Q on a vector

space W with a linear form Q : W → W ∗, we write
Q(v, w) = 〈Qv , w〉, and we denote the associate quadratic
form as Q(v, v) = Q[v]2.

II. THE MAIN ASSUMPTIONS

A. Regularity assumptions

For the sake of completeness we state the regularity
assumptions which are the same as in [1]. We refer to that
paper for more details. Along the bang arcs we require
the reference Hamiltonian to be the only maximizing one
(Assumption 2), while on the singular arc we require that
only the Hamiltonians on the edge defined by H2 and
H3 give the maximum, and that the generalized Legendre
condition holds as a strict inequality (Assumptions 3 and 4).
Our last regularity assumption concerns the switching points
between the different arcs of λ̂ (Assumption 5).

Assumption 2 (Regularity along the bang arcs): For any
t ∈ [0, τ̂1)

H1(λ̂(t)) > 〈µ̂(t) , Y 〉 ∀Y ∈ X (ξ̂(t)) \ {h1(ξ̂(t))},

For any t ∈ (τ̂1, τ̂2)

H2(λ̂(t)) > 〈µ̂(t) , Y 〉 ∀Y ∈ X (ξ̂(t)) \ {h2(ξ̂(t))}



Assumption 3 (Regularity along the singular arc): For
any a ∈ [0, 1] and any t ∈ [τ̂2, T ]

H2(λ̂(t)) + υ̂(t)Fd(λ̂(t)) > 〈µ̂(t) , Y 〉
∀Y ∈ X (ξ̂(t)), Y 6= (h2 + afd) (ξ̂(t)).

Assumption 4 (SGLC): For all t ∈ [τ̂2, T ]

R(t) := 〈µ̂(t) , [fd, [h2, fd]] (ξ̂(t))〉 > 0. (3)
Assumption 5 (Regularity at the switching times):

H12(̂̀1) = 〈µ̂(τ̂1) , [h1, h2] (ξ̂(τ̂1))〉 > 0,

〈µ̂(τ̂2) , [h2, [h2, fd]] (ξ̂(τ̂2))〉 < 0.
Remark 2.1: Thanks to (3), see e.g. [1], the singular

control is smooth on (τ̂2, T ). Moreover (3) implies that there
exists a neighborhood Os of the range of the singular arc
λ̂([τ̂2, T ]) in T ∗Rn such that the sets

Σ := {` ∈ Os : Fd(`) = 0} ,
S := {` ∈ Σ: H23(`) = 0}

are smooth simply connected manifolds of codimension 1

and 2, respectively. More precisely
−→
Fd is tangent to Σ and

transverse to S in Σ and the Hamiltonian vector field
−−→
H23

is transverse to Σ in Os, see [6].
We now recall how the regularity Assumptions 2–5 allow to
define a neighborhood ΣT of ̂̀T in Σ and an overmaximized
Hamiltonian Ht whose flow H emanating from ΣT at time
T satisfies the following overmaximality property

Ht ◦ Ht(`) ≥ Hmax(Ht(`)) (t, `) ∈ [0, T ]× ΣT ,

and the following compatibility conditions

Ht(ΣT ) ⊂ Σ t ∈ [τ̂2, T ];

Ht◦λ̂(t)= F̂t◦λ̂(t)=Hmax(λ̂(t)) t ∈ [0, T ];

−→
Ht ◦ λ̂(t) =

−→
F̂t ◦ λ̂(t) a.e. t ∈ [0, T ].

Such flow is the main tool for proving the strong local
optimality of ξ̂. The overmaximized Hamiltonian was first
introduced in [7] for singular extremals in single input
control problems, then extended in [8], [9] for singular
extremals in multi input control problems and in [6] for
concatenations of bang and singular extremals.

Possibly restricting ΣT , the following implicit function
problem has a solution θ : Os → R:{

H23 ◦ exp(θ(`)
−→
Fd)(`) = 0,

θ(`) = 0 if H23(`) = 0.

Starting from

H̃2(`) := H2 ◦ exp(θ(`)
−→
Fd)(`)

we define, for t ∈ [τ̂2, T ] the over-maximized Hamiltonian
as

Ht(`) := H̃2(`) + υ̂(t)Fd(`).

The main properties of H̃2 and Ht are summarized in the
following lemma, proven in [6].

Lemma 2.1: Possibly restricting Os the following proper-
ties hold

1) H̃2(`) ≥ H2(`) for any ` ∈ Σ and equality holds if
and only if ` ∈ S.

2)
−→
H̃2 and

−→
Ht are tangent to Σ. �

To extend Ht to the bang intervals we need to define the
switching times near the reference switching points ̂̀1 and̂̀
2. Thanks to the second inequality in Assumption 5, the

implicit function theorem applies to the problem{
H23 ◦ exp(t2 − τ̂2)

−→
H̃ 2 (`) = 0,

t2(`) = τ̂2 if H23(`) = 0,

so that it defines a real valued function t2 in a neighborhood
O2 of ̂̀2. If ` ∈ Σ, then t2(`) = τ̂2 if and only if ` ∈ S.

We set

τ2(`) := min {t2(`), τ̂2} =

{
t2(`) if H23(`) < 0,

τ̂2 if H23(`) ≥ 0.

Finally, possibly shrinking O2, we can define the switching
time τ1 : O2 → R. Indeed, thanks to the first inequality in
Assumption 5, the implicit function theorem applies to

(H2 −H1) ◦ exp (τ1 − τ2(`))
−→
H2◦

◦ exp (τ2(`)− τ̂2)
−→
H̃2(`) = 0,

τ1(̂̀2) = τ̂1,

see e.g. [10].
Possibly restricting ΣT we can now extend the flow

(t, `) 7→ Ht(`) emanating from ΣT at time T backwards
in time.

For t < τ̂2, setting ˜̀ := Hτ̂2(`), we define

Ht(`) :=


exp(t−τ̂2)

−→
H̃2(˜̀) t ∈ [τ2(˜̀), τ̂2],

exp(t−τ2(˜̀))−→H2◦Hτ2(˜̀)(˜̀) t ∈ [τ1(˜̀), τ2(˜̀)),
exp(t−τ1(˜̀))−→H1◦Hτ1(˜̀)(˜̀) t ∈ [0, τ1(˜̀)).

B. The extended second variation

In order to use the Hamiltonian approach we first extend
in a suitable way the cost functions p0 c0 and p0cT defined
on N0 and NT , respectively. Indeed they can be extended to
the whole Rn in such a way that the transversality conditions
hold on the whole tangent spaces. Let α, β : Rn → R be
smooth functions such that

β = p0 cT on NT , µ̂(T ) = d(−β)(x̂T ), (4)
α = p0 c0 on N0, µ̂(0) = dα(x̂0). (5)

In the normal case (p0 = 1) β and α are cost functions
equivalent to the original ones while in the abnormal case
(p0 = 0) they are extensions of the zero function. When p0 =
0 all the costs disappear and we are studying the constraints.
Proving that ξ̂ is a strict strong minimizer with p0 = 0 means
that it is an isolated admissible trajectory.

We consider the problem of minimizing the cost

α(ξ(0)) + β(ξ(T )),



allowing only for perturbations of the reference control on
the singular interval (τ̂2, T ) and for perturbations of τ̂1.

In order to write the second variation, as in [1], we
pushforward the problem to the time T . Indeed we define

α̂ := α ◦ Ŝ0, N̂0 := Ŝ−10 (N0),

gt := Ŝ−1t∗ fd ◦ Ŝt, t ∈ [τ̂2, T ],

ki := Ŝ−1τ̂1∗hi ◦ Ŝτ̂1 , i = 1, 2, k := k1 − k2.

We thus obtain a problem evolving in a neighborhood of x̂T

minimize α̂(η(0)) + β(η(T )) subject to

η̇(t) =


(υ0(t)− 1)k1(ξ(t)) t ∈ (0, τ̂1),

(υ0(t)− 1)k2(ξ(t)) t ∈ (τ̂1, τ̂2),

(υ(t)− υ̂(t))gt(η(t)) t ∈ (τ̂2, T ),

υ0(t) > 0,

∫ τ̂2

0

(υ0(t)− 1) dt = 0,

|υ(t)− υ̂(t)| < δ, η(0) ∈ N̂0, η(T ) ∈ NT ,

(6)

where δ is a suitable positive constant.
As in [1] we first write the second variation of problem

(6) and then, by means of an intrinsic version of a Goh
transformation, we extend it to a new quadratic form which
we call extended second variation.

Denoting δe := (δx, δy, ε0, ε1, w) ∈ Tx̂TNT × Tx̂T N̂0 ×
R×R×L2([τ̂2, T ]), the extended second variation of (6) is
the linear quadratic form defined by

Jext[δe]
2 =

1

2
D2(α̂+ β)(x̂T )[δy]2

+
ε20
2

(
L2
kβ (x̂T ) + L[k2,k1]β (x̂T )

)
+ ε0LδyLkβ (x̂T )− ε21

2
L2
fd
β (x̂T )− ε1LδxLfdβ (x̂T )

+
1

2

∫ T

τ̂2

(
2w(t)Lζ(t)Lġtβ (x̂T ) + w(t)2R(t)

)
dt

subject to

ζ̇(t) = w(t)ġt(x̂T ), t ∈ [τ̂2, T ]

ζ(τ̂2) = δy + ε0 k(x̂T ), ζ(T ) = δx+ ε1fd(x̂T ).

We denote byWext the space of admissible variations of the
above described problem.

Remark 2.2: Notice that ġt = Ŝ−1t∗ [h2, h3] ◦ Ŝt, t ∈
[τ̂2, T ] and L[k2,k1]β (x̂T ) = H12(̂̀1). Moreover Jext does
not depend on the choice of the functions α and β satisfying
(4)–(5).

III. THE MAIN RESULTS

We can now state the main theorems of this paper.
Theorem 3.1: Assume that the reference trajectory ξ̂ is

a state extremal (Assumption 1) satisfying the regularity
Assumptions 2–5. Assume the extended second variation
Jext is coercive.
• If p0 = 1, then ξ̂ is a strict strong local optimal

trajectory of (1).

• If p0 = 0, then Wext = {0} and ξ̂ is an isolated
admissible trajectory of (1a)–(1b). �

We can also prove strong local optimality in a case when the
extended second variation is not coercive.

Theorem 3.2: Assume that the reference trajectory ξ̂ is
a state extremal (Assumption 1) satisfying the regularity
Assumptions 2–5. Assume

i) fd(x̂T ) 6= 0;
ii) There exists a neighborhood O of x̂T such that

fd(x) ∈ TxNT , Lfd(p0cT ) (x) = 0 ∀x ∈ O∩NT .

iii) The extended second variation Jext restricted to
{δe ∈ Wext : ε1 = 0} is coercive.

Then
• in the normal case p0 = 1, ξ̂ is a strict strong local

optimal trajectory of (1);
• in the abnormal case p0 = 0, ξ̂ is an isolated admissible

trajectory of (1a)–(1b). �

Indeed in both the main results of this paper, we deal with
the coercivity of a quadratic form of the following kind

Jext[(δx, δy, ε0, w)]2 =
1

2
D2(α̂+ β̃)(x̂T )[δy]2

+
ε20
2

(
L2
kβ̃ (x̂T ) +H12(̂̀1)

)
+ε0LδyLkβ̃ (x̂T )

+
1

2

∫ T

τ̂2

(
2w(t)Lζ(t)Lġt β̃ (x̂T ) + w(t)2R(t)

)
dt

(7)

subject to

ζ̇(t) = w(t)ġt(x̂T ),

ζ(τ̂2) = δy + ε0 k(x̂T ), ζ(T ) = δx ∈ VT (8)

where VT is a suitable linear subspace of Rn and β̃ is
a smooth function defined in a neighborhood O of x̂T ,
satisfying the following properties

β̃(x) ≤ β(x) ∀x ∈ O, β̃(x̂T ) = β(x̂T ),

Lfd β̃ (x) = 0 ∀x ∈ O, dβ̃(x̂T ) = −µ̂(T ).
(9)

VT and β̃ are defined according to the different cases
examined in the discussion below. Theorem 3.1 is covered
by cases 1) and 2) while case 3) is the one considered in
Theorem 3.2.

1) fd(x̂T ) ∈ Tx̂TNT . Evaluating the second variation
on δe = (−fd(x̂T ), 0, 0, 1, 0) we obtain Jext[δe]

2 =
1

2
L2
fd
β (x̂T ) so that a necessary condition for the

coercivity of Jext is L2
fd
β (x̂T ) > 0. This condition

does not depend on the choice of β satisfying the
compatibility conditions (4) and it implies that we are
dealing with the normal case p0 = 1.
In this case we consider the set, locally defined near
x̂T in Rn,

M̃ := {x ∈ Rn : Lfdβ (x) = 0} .

M̃ is a hyper-surface whose tangent space at x̂T is

Tx̂T M̃ = {δz ∈ Rn : LδzLfdβ (x̂T ) = 0}



and the intersection ÑT := M̃ ∩NT is a submanifold
of Rn whose tangent space at x̂T is

Tx̂T ÑT = {δz ∈ NT : LδzLfdβ (x̂T ) = 0} .

Notice that M̃ depends on the choice of β but ÑT does
not. For x = exp(rfd)(z), z ∈ M̃ set β̃(x) := β(z),
i.e. we extend β|

M̃
as a constant function along the

integral lines of fd.
Setting VT := Tx̂TNT we obtain that the coercivity of
Jext is equivalent to L2

fd
β (x̂T ) > 0 plus the coercivity

of the quadratic form (7)–(8), see [1] for details.
2) fd(x̂T ) /∈ Tx̂TNT . In this case we can choose β

with properties (4) and such that Lfdβ ≡ 0. Since
β satisfies the properties of β̃ in (9), we set β̃ := β,
VT := Tx̂TNT ⊕ Rfd(x̂T ) and we obtain for Jext the
same formulas as in (7)–(8).

3) If assumptions i) and ii) of Theorem 3.2 are satisfied,
then Jext[(fd(x̂T ), 0, 0,−1, 0)]2 = 0, so that Jext is
not coercive. By the properties of fd, we can choose
the extension β such that Lfdβ ≡ 0 and require the
coercivity on the subspace of Wext such that ε1 = 0.
In this case β satisfies the properties of β̃ in (9) so
that, if we set β̃ := β and VT := Tx̂TNT , we obtain
for Jext the same formulas as in (7)–(8).

IV. PROOF OF THE RESULT

A. A Hamiltonian sufficient condition
We now describe the Hamiltonian methods that we are

going to use to prove our strong local optimality result.
Assume c̃ is a smooth function such that

c̃(x̂T ) = β̃(x̂T ), dc̃(x̂T ) = dβ̃(x̂T ),

c̃ ≥ β̃, Lfd c̃ ≡ 0.
(10)

Define the Lagrangian manifold

Λ := {(d(−c̃)(x), x) : x ∈ O} (11)

contained in Σ and let T̂̀
T

Λ be its tangent space at ̂̀T .
Consider the problem

minimize C̃(ξ) := α(ξ(0)) + c̃(ξ(T )) subject to

ξ̇(t) ∈ X (ξ(t)) a.e. t ∈ [0, T ], (12a)
ξ(0) ∈ N0, ξ(T ) ∈ Rn. (12b)

Our main tool for proving the strong local optimality result
is the following theorem, whose proof is given in [4].

Theorem 4.1: Let Λ be defined in (11) and let Ht be the
overmaximized Hamiltonian defined in Section II-A. Define
dα∗ := D2α(x̂0), H0∗ := DH0(̂̀T ) and assume

1) The map

id× πH : (t, `) ∈ [0, T ]× Λ 7→ (t, πHt(`)) ∈ U

is locally Lipschitz invertible onto a neighborhood U
of the graph of ξ̂ in [0, T ]× Rn,

2) σ (dα∗πH0∗δ`,H0∗δ`) > 0 for any δ` ∈ T̂̀
T

Λ such
that πH0∗δ` ∈ Tx̂0

N0.
Then ξ̂ is a strict strong locally optimal trajectory for the
cost C̃(ξ) subject to (12a)–(12b). �

B. Reduction to a free final point problem

We are now going to define the function c̃. The main tool is
[3, Theorem 13.2] which permits to extend coercive quadratic
forms defined on a closed linear subspace of a Hilbert space
preserving the coercivity.

Let p be the dimension of the linear space VT and let
f2, . . . fp : Rn → TRn be smooth vector fields such that

Span {fd(x̂T ), f2(x̂T ), . . . fp(x̂T )} = VT

and choose coordinates in Rn by

x 7→ expx1fd ◦ x2f2 . . . ◦ expxpfp ◦ . . . ◦ expxnfn(x̂T ).

Let ψ : Rn → R be defined as ψ(x) := 1
2

∑n
i=p+1(xi)2 and

consider the system

ζ̇(t) = w(t)ġt(x̂T ),

ζ(τ̂2) = δy + ε0 k(x̂T ), ζ(T ) = δx ∈ Rn. (13)

In the Hilbert space

V :=
{

(δx, δy, ε0, w) ∈ Rn × Tx̂T N̂0 ×R×L2([τ̂2, T ]) :

(13) admits a solution
}

we apply [3, Theorem 13.2] to the Legendre form Jext
given by (7) and to the weakly continuous quadratic form
D2ψ(x̂T )[δe]2 := D2ψ(x̂T )[δx]2. There exists ρ > 0 such
that

J [δx, δy, ε0, w]2 := Jext[δx, δy, ε0, w]2+ρD2ψ(x̂T )[δx]2

is coercive on V . Let

c̃ := β̃ + ρψ, J0 := L2
k c̃ (x̂T ) +H12(̂̀1),

γ′′ := D2(α̂+ c̃)(x̂T ).

Since, by (13), δx = δy+ε0 k(x̂T )+
∫ T
τ̂2
w(t)ġt(x̂T ) dt, with

lengthy calculations, which will be given in [4], we obtain

2J [δx, δy, ε0, w]2 = γ′′[δy]2 + 2ε0LδyLk c̃ (x̂T ) +

+ ε20J0 +

∫ T

τ̂2

(
2w(t)Lζ(t)Lġt c̃ (x̂T ) + w(t)2R(t)

)
dt

(14)

subject to (13).
Remark 4.2: The function c̃ defined above satisfies the

properties required in (10) and λ̂ is a normal Pontryagin
extremal for the optimal control problem (12).

The coercivity of J on V is equivalent to requiring the
coercivity of J on the space

V0 := {δe = (δx, δy, ε0, w) ∈ V : δy = 0}

and the coercivity of J on V⊥J0 , i.e. on the orthogonal with
respect to J of V0 in V .

In [1] the authors prove that the coercivity of J on V0
implies that the first assumption of Theorem 4.1 is satisfied.

In order to prove that also the second assumption is
satisfied, one has to exploit the coercivity of J on V⊥J0 .
Here we only sketch the proof and we refer the reader to [4]
for details. Indeed, let (µ′′t (δx), ζ ′′t (δx)) be the solution to



the Hamiltonian linear system associated with the quadratic
Hamiltonian

H ′′t (δp, δx) = − 1

2R(t)
(〈δp , ġt(x̂T )〉+ LδxLġt c̃ (x̂T ))

2

and final conditions (µ′′T (δx), ζ ′′T (δx)) = (0, δx). Writing
the bilinear form associated with J , one can prove that if
δe = (δx, δy, ε0, w) is in V ⊥J0 then

ε0H12(̂̀1) + Lζ′′
τ̂2

(δx)Lk c̃ (x̂T ) + 〈µ′′τ̂2(δx) , k(x̂T )〉 = 0

2 J [δe]2 = γ′′[δy]2 + ε0LδyLk c̃ (x̂T ) + 〈µ′′τ̂2(δx) , δy〉.

By means of the antisymplectic isomorphism

ι : (Rn)
∗ × Rn → (Rn)

∗ × Rn,

ι : (δp, δx) 7→ δ` :=
(
−δp+ D2 (−β̃)(x̂T )(δx, ·), δx

)
one can show that for any δ` ∈ T̂̀

T
Λ, there holds

σ (dα∗πH0∗δ`,H0∗δ`) = 2J [δe]2

where δe = (δx, δy, ε0, w) ∈ V ⊥J0 is defined by

δx = π∗δ`, δy = Ŝ−10∗ (πH0)∗δ`, ε0 = 〈dτ1(̂̀2) , Hτ̂2∗δ`〉
and w is the extremal control associated to the LQ accessory
problem (13)–(14).

Summarizing, assuming the coercivity of (7)–(8), we ob-
tain the coercivity of (13)–(14) so that also assumption 2 of
Theorem 4.1 holds. Thus Theorems 3.1–3.2 are proved.

V. CONCLUSION

We point out that the case we have studied corresponds
to a multi-input controlled dynamics where the control set
is the unit symplex of Rm and where the extremal control
takes values either in a vertex of the control set or in the
relative interior of one of its one-dimensional edges.

It is clear to the authors that the result can be easily
extended to the case of bang-bang-singular (or singular-bang-
bang) concatenations with an arbitrary number of bang arcs.

Our approach was applied successfully to the minimum
time problem in the case of bang-singular-bang extremals,
see [6], and bang-singular ones, see [11], thus covering also
the Dubin’s problem and the dodgem car problem.

The Mayer problem for bang-singular-bang concatenations
presents some technical difficulties and it is still under study.

The present paper extends the results proved by the authors
in [1]. In there the authors also studied a Van Der Pol
oscillator and proved that the assumptions of Theorem 3.2 are
satisfied by the extremal found in [12] (also studied in [13]).
This example is particularly meaningful as the strong local
optimality of the extremal had not yet been proved. Indeed
in [13] the author proved that the extremal is optimal among
trajectories having the same bang-bang-singular structure
with different switching times. We point out that the example

fits in the class where the extended second variation is not
coercive.

Other examples, fitting in the same non-coercive class, are
provided in [14, Section IV.C and IV.D] for an appropriate
cost function and appropriate choices of the control set with
the dynamic constraint given by the Rayleigh equation.

The authors are currently studying structural stability
of bang-bang-singular extremals, by using the Hamiltonian
approach as in [15] for the minimum time problem.
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