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1 Introduction

The reconstruction of obstacles from scattering waves has been widely inves-
tigated [Col-Kr]. This approach requires enough information on the scattered
amplitude and generally infinitely many boundary measurements. In many
practical situations these data are not available, for example in physical sit-
uations where only transient waves are detectable and one measurement in
a finite time observation is obtainable.

A typical example is described by the following problem: consider the
wave equation in a domain Ω in Rn (n ≥ 2) whose boundary, which we
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assume sufficiently smooth, consists of two non overlapping portions Γ(a)

(accessible portion) and Γ(i) (inaccessible portion) where Γ(i) is an unknown
obstacle.

In the case where Γ(i) is a soft obstacle the mathematical problem is repre-
sented by the following initial boundary value problem (the direct problem).
Given a nontrivial function ψ on ∂Ω× [0, T ], 0 < T < +∞, such that

ψ = 0 , on Γ(i) × (0, T ),

let u be the (weak) solution to the following problem

(1.1)


∂2t u− div (A(x)∇xu) = 0, in Ω× [0, T ],

u|∂Ω×[0,T ] = ψ, on ∂Ω× [0, T ],

u(·, 0) = ∂tu(·, 0) = 0, in Ω,

(div :=
∑n

j=1 ∂xj
) where A(x) = {aij(x)}ni,j=1 denotes a known symmetric

matrix which satisfies a hypothesis of uniform ellipticity and some smooth-
ness conditions that we will specify in the sequel of the paper. The inverse
problem, we are interested in, is to determine Γ(i) from the knowledge of

(1.2) A(x)∇xu(x, t) · ν, on Σ× (0, T ),

where Σ ⊂ Γ(a) and ν denotes the exterior unit normal to Ω.
The uniqueness for the above inverse problem has been proved in [Is2],

however, contrary to the analogue problems for elliptic equations or systems
[Al-B-Ro-Ve], [Be-Ve], [Che-H-Y], [M-R1], [M-R2], [M-R-V2] and parabolic
equations [C-Ro-Ve1], [C-Ro-Ve2], [Dc-R-Ve], [Ve1], [Ve2], the stability issue
in the hyperbolic context is much less studied. This is due to the lack of a
complete and well understood analysis of the unique continuation property
for the wave equation in (1.1) (more generally, for equations with partial
analytic coefficients), we refer to [Ro-Zu], [Ta], and the corresponding quan-
titative estimates of unique continuation. In this paper we are interested in
the stability issue for the above inverse problem. More precisely we are inter-
ested in the continuous dependence of Γ(i) from the Cauchy data u, A∇xu ·ν
on Σ× (0, T ). We prove a logarithmic stability estimate under some a priori
information on the domain Ω, on Γ(i), on ψ and whenever T is large enough,
but finite and independent by the errors on the Cauchy data. In view of
John’s counterexample [Jo] it is reasonable to expect that the logarithmic
rate of stability is the optimal one. We are currently working on this topic.

We now describe briefly the main tools used in order to prove our main
stability result.
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(a) Stability Estimates for Cauchy Problem and Smallness Propagation
Estimates. In order to determine the unknown portion of boundary Γ(i) it
seems to be necessary to determine the values of u from Cauchy data on
Σ × (0, T ) up to Γ(i) × (0, T ′) for suitable T ′ < T . More precisely, let Ω1

and Ω2 be two domains whose boundary agree on Γ(a) and and let uj be the
solutions of (1.1) for Ω = Ωj, j = 1, 2. Denote byG the connected component
of Ω1 ∩ Ω2 that contains Γ(a), we need to estimate u1 − u2 in G × (0, T ′) in
terms of the error on the Cauchy data on Σ × (0, T ). In order to establish
such estimates we use the method introduced by Robbiano in [Ro1] and [Ro2]
based on the Fourier Bros Iagolnitzer (FBI) transform defined by

U(x, y) :=

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2 (u1 − u2) dt, for every (x, y) ∈ G× R,

where µ be a positive number and τ ∈ (0, T ).
By applying such a FBI transform the wave equation is transformed in a

second order elliptic equation in G×R in the new unknown function U with a
nonhomogeneous term f depending on the final values (u1−u2)(·, T ), ∂t(u1−
u2)(·, T ) and on µ. Since, roughly speaking, f is small when µ and T are large
and U(·, 0) is close to (u1−u2)(·, τ) for large µ, we can apply the estimates for
the Cauchy problem for elliptic equations proved in [Al-R-Ro-Ve] obtaining
useful estimates of u1 − u2 in G × (0, T ′). We wish to stress that here,
differently to [Ro1] and [Ro2], we have the additional difficulty that the
boundary of G might not be smooth.

(b) Quantitative estimates of strong unique continuation for wave equa-
tions. For our proof it is crucial to know that the vanishing rate of u near the
unknown boundary Γ(i) is of polynomial type. Namely, we need quantitative
estimates of strong unique continuation in the interior and at the boundary.
Such estimates have been proved in [Ve3] (in the present paper, Theorems 4.1
and 4.2). It is exactly this property that allows us to obtain a sharp estimate
of the Hausdorff distance, dH

(
Ω1,Ω2

)
, of the unknown domains Ω1,Ω2 in

terms of the error on the Cauchy data (Corollary 5.5). The use of quantita-
tive estimate of strong unique continuation is not new in inverse problem with
unknown boundaries. The first paper in which quantitative estimates have
been successfully used is, in the elliptic context, [Al-B-Ro-Ve]. Afterwards,
quantitative estimates of strong unique continuation have been proved and
used also for parabolic problems, we refer to the papers mentioned above
and the review paper [Ve2]. To the authors knowledge the quantitative esti-
mate of strong unique continuation was never used before in the framework
of hyperbolic inverse problems.

(c) Lemma of relative graphs and sharp three sphere inequality. At a first
stage the estimate of dH

(
Ω1,Ω2

)
is worse than logarithmic and, in addition,
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the observation time T for which such estimate is available may depend on
the error on the Cauchy data. In order to obtain the logarithmic stability
estimate for T finite and independent of the errors on the Cauchy data we
combine the geometric Lemma of relative graphs (Lemma 5.3) and a three
sphere inequality for elliptic equations whose exponent is sharply evaluated
when the radii of the three balls are close to each other (Theorem 4.6). This
point is the most delicate part of the proof and is developed in Section 5.3.

The plan of the paper is as follows.
In Section 2 we will introduce the main notation and definition.
In Section 3 we will state the main Theorem 3.2.
The Section 4 contains some preliminary results concerning the quanti-

tative estimates of strong unique continuation (Subsection 4.1), a regularity
result for hyperbolic equation (Subsection 4.2), some elementary estimates
for the FBI transform (Subsection 4.3) and a sharp form of the three sphere
inequality for elliptic equations (Subsection 4.4).

In Section 5 we prove the main Theorem 3.2.
In the Appendix (Section 6) we prove some results of Section 4.

2 Notation and Definition

Let n ∈ N, n ≥ 2. For any x ∈ Rn, we will denote x = (x′, xn), where

x′ = (x1, . . . , xn−1) ∈ Rn−1, xn ∈ R and |x| =
(∑n

j=1 x
2
j

)1/2
. Given x ∈ Rn,

r > 0, we will use the following notation for balls and cylinders.

Br(x) = {y ∈ Rn : |y − x| < r}, Br = Br(0),

B′
r(x

′) = {y′ ∈ Rn−1 : |y′ − x′| < r}, B′
r = B′

r(0),

Qa,b(x) = {y = (y′, yn) ∈ Rn : |y′ − x′| < a, |yn − xn| < b}, Qa,b = Qa,b(0).

For any x ∈ Rn x = (x1 . . . , xn) and any r > 0 we denote by x̃ ∈ Rn+1 the

point x̃ = (x1 . . . , xn, 0), or shortly x̃ = (x, 0) and by B̃r(x̃) the ball of Rn+1

of radius r centered at x̃. For any open set Ω ⊂ Rn and any function (smooth
enough) u we denote by ∇xu = (∂x1u, · · · , ∂xn) the gradient of u. Also, for
the gradient of u we use the notation Dx. If j = 0, 1, 2 we denote by Dj

xu
the set of the derivatives of u of order j, so that D0

xu = u, D1
xu = ∇xu and

D2
x is the hessian matrix {∂xixj

u}ni,j=1. Similar notation are used whenever
other variables occur and Ω is an open subset of Rn−1 or a subset Rn+1. By
Hℓ(Ω), ℓ = 0, 1, 2 we denote the usual Sobolev spaces of order ℓ, in particular
we have H0(Ω) = L2(Ω).
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For any interval J ⊂ R and Ω as above we denote by

W (J ; Ω) =
{
u ∈ C0

(
J ;H2 (Ω)

)
: ∂ℓtu ∈ C0

(
J ;H2−ℓ (Ω)

)
, ℓ = 1, 2

}
.

Definition 2.1 (Ck,1 regularity of a domain). Let Ω be a bounded domain
in Rn. Given k ∈ N ∪ 0, we say that a portion S of ∂Ω is of class Ck,1 with
constants ρ0, E > 0, if, for any P ∈ S, there exists a rigid transformation of
coordinates under which we have P = 0 and

Ω ∩Q ρ0
E

,ρ0 = {x = (x′, xn) ∈ Q ρ0
E

,ρ0 | xn > φ(x′)},

where φ is a Ck,1 function on B′
ρ0
E

satisfying

∥φ∥Ck,1(B′
ρ0/E

) ≤ Eρ0,

φ(0) = 0,

and, whenever k ≥ 1,

∇x′φ(0) = 0.

When ∂Ω is of class Ck,1 with constants ρ0, E > 0 we also say that Ω is of
class Ck,1 with constants ρ0, E > 0. Moreover, when k = 0 we also say that
S is of Lipschitz class with constants ρ0, E.

Remark 2.2. We use the convention of normalizing all norms in such a way
that all their terms are dimensionally homogeneous. For example:

∥φ∥C0,1(B′
r0

) = ∥φ∥L∞(B′
r0

) + r0∥∇x′φ∥L∞(B′
r0

).

Similarly, if u ∈ Hm(Ω), where Ω is a domain of Rn of class Ck,1 with con-
stants ρ0, E, denoting by Dju the vector which components are the deriva-
tives of order j of the function u,

∥u∥Hm(Ω) = ρ
−n/2
0

(
m∑
j=0

ρ2j0

∫
Ω

|Dju|2
) 1

2

,

∥u∥Ck(Ω) =
k∑

i=0

r0
i∥Diu∥L∞(Ω).
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Definition 2.3. (relative graphs). We shall say that two bounded domains
Ω1 and Ω2 in Rn of class C1,1 with constants ρ0, E are relative graphs if for
any P ∈ ∂Ω1 there exists a rigid transformation of coordinates under which
we have P ≡ 0 and there exist φP,1, φP,2 ∈ C1,1

(
B′

r0
(0)
)
, where r0

ρ0
≤ 1

depends on E only, satisfying the following conditions

(2.1a) φP,1 (0) = |∇x′φP,1 (0)| = 0 , |φP,2 (0)| ≤
r0
2
,

(2.1b) ∥φP,i∥C1,1(B′
r0

(0)) ≤ Eρ0,

(2.1c) Ωi ∩Br0 (0) = {x ∈ Br0 (0) : xn > φP,i (x
′)} , i = 1, 2.

We will denote

(2.2) γ0 (Ω1,Ω2) = sup
P∈∂Ω1

∥φP,1 − φP,2∥L∞(B′
r0

(0))

and, for any α ∈ (0, 1],

(2.3) γ1,α (Ω1,Ω2) = sup
P∈∂Ω1

∥φP,1 − φP,2∥C1,α(B′
r0

(0)) .

Definition 2.4. (Hausdorff distance). Let Ω1 and Ω2 be bounded do-
mains in Rn. We call Hausdorff distance between Ω1 and Ω2 the number

(2.4) dH
(
Ω1,Ω2

)
= max

{
sup
x∈Ω1

dist
(
x,Ω2

)
, sup
x∈Ω2

dist
(
x,Ω1

)}
.

Definition 2.5. (modified distance). Let Ω1 and Ω2 be bounded domains
in Rn. We call modified distance between Ω1 and Ω2 the number

(2.5) dm
(
Ω1,Ω2

)
= max

{
sup

x∈∂Ω1

dist
(
x,Ω2

)
, sup
x∈∂Ω2

dist
(
x,Ω1

)}
.

For any open set Ω ⊂ Rn and r > 0, we will denote

Ωr = {x ∈ Ω : dist(x, ∂Ω) > r} .

We will use the the letters C to denote constants larger or equal than 1.
Sometime, for special constants or to emphasize the role that it have in the
proof, we will use the notation C0, C1, . . .. The value of the constants may
change from line to line, but we shall specified their dependence everywhere
they appear.
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3 The Inverse Problem: The Main Theorem

i) A priori information on the domain.
Given ρ0, M > 0, E ≥ 1 we assume

(3.1a) |Ω| ≤Mρn0 ,

(3.1b) ∂Ω of class C1,1 with constants ρ0 and E,

here, and in the sequel, |Ω| denotes the Lebesgue measure of Ω.
Let Γ(a) be a nonempty closed proper subset of ∂Ω and assume that the

closure of the interior part of Γ(a) in the relative topology in ∂Ω is equal to
Γ(a). In addition we assume that

(3.2) Int∂Ω
(
Γ(a)
)

is connected,

and we set

(3.3) Γ(i) = ∂Ω \ Int∂Ω
(
Γ(a)
)
,

here and in the sequel, Int∂Ω
(
Γ(a)
)
denotes the interior part of Γ(a) in the

relative topology in ∂Ω. In the sequel we will refer to Γ(a) and Γ(i) as the
accessible and inaccessible part of ∂Ω respectively.

Moreover denoting

Γ(a)
ρ =

{
x ∈ Γ(a) : dist(x,Γ(i)) ≥ ρ

}
,

we assume that, for any ρ ∈ (0, ρ0], Γ
(a)
ρ is a nonempty and connected set

and we assume that we can select a portion Σ satisfying for some P0 ∈ Σ

(3.4) ∂Ω ∩Bρ0(P0) ⊂ Σ ⊂ Γ(a)
ρ0
.

Remark 3.1. Observe that (3.1b) automatically implies a lower bound on
the diameter of every connected component of ∂Ω. Moreover, by combining
(3.1a) with (3.1b), an upper bound on the diameter of Ω can also be obtained.
Note also that (3.1a), (3.1b) implicitly comprise an a priori upper bound
on the number of connected components of ∂Ω. Finally observe that the
hypotheses (3.1)-(3.4) are satisfied in the case Ω = Ω̂ \ D, where Ω̂ and D

are two open domains in Rn whose boundaries, ∂Ω̂ and ∂D, are connected,
D ⊂ Ω̂, dist(D, ∂Ω) ≥ 2ρ0 and Ω̂, D satisfy condition (3.1). In addition

Γa = ∂Ω̂, Γi = ∂D and Σ is a portion of ∂Ω̂ satisfying, for some P0 ∈ Σ, the
condition ∂Ω̂ ∩Bρ0(P0) ⊂ Σ.
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ii) Assumptions about the boundary data.
Let m :=

[
n+2
4

]
. Assume that ψ is a function on ∂Ω × [0,+∞) which

satisfies the following conditions

(3.5a) ∂jtψ(·, t) ∈ C1,1(∂Ω) , for j ∈ {0, · · · , 2m+ 4}, and t ∈ [0,+∞),

(3.5b) ∂jtψ(·, 0) = 0 , for j ∈ {0, · · · , 2m+ 4}, and t ∈ [0,+∞).

Denote, for t ∈ [0,+∞)

(3.6) H(t) =
2m+4∑
j=0

ρj0 sup
ξ∈[0,t]

∥∥∂jξψ(·, ξ)∥∥C1,1(∂Ω)
.

Let t1 ≥ ρ0 and assume

(3.7)
H(t1)

∥ψ∥L∞(Γ(a)×[0,t1])
≤ F.

iii) Assumptions about the matrix A.
A(x) = {aij(x)}ni,j=1 is assumed to be a real-valued symmetric n × n

matrix whose the entries are measurable function and satisfying the following
conditions for given constants λ ∈ (0, 1], Λ > 0,

(3.8a) λ |ξ|2 ≤ A(x)ξ · ξ ≤ λ−1 |ξ|2 , for every x, ξ ∈ Rn,

(3.8b) |A(x)− A(y)| ≤ Λ

ρ0
|x− y| , for every x, y ∈ Rn.

Theorem 3.2. Let Ω1, Ω2 be two domains satisfying (3.1). Let Γ
(a)
j , Γ

(i)
j =

∂Ωj \ Int∂Ωj
(Γ

(a)
j ), j = 1, 2, be the corresponding accessible and inaccessible

parts of their boundaries. Let us assume Γ
(a)
1 = Γ

(a)
2 = Γ(a), Ω1, Ω2 lie on the

same side of Γ(a) and that (3.2), (3.3) and (3.4) are satisfied.
Then there exists a constant C depending on λ,Λ, E,M and F only such

that if T = max{Cρ0, 2t1} then the following holds true.
Let uj ∈ W ([0, T ]; Ω) be the solution to (1.1) when Ω = Ωj, j = 1, 2, and

if, for a given ε ∈ (0, e−1), we have

(3.9)

∫ T

0

∫
Σ

|A(x)∇u1 · ν − A(x)∇u2 · ν|2 dSdt ≤ Tρn−3
0 ε2,
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where dS is the surface element in dimension n− 1, then we have

(3.10) dH(Ω1,Ω2) ≤ C⋆ρ0| log ε|−1/C⋆ ,

where C⋆ depends on λ,Λ, E,M, F and the ratio H(T )
H(t1)

.

We prove this Theorem in Section 5.

4 Preliminary results

4.1 Quantitative estimates of strong unique continua-
tion.

The theorems presented in this subsection are crucial to prove Theorem 3.2.
They are analogs of the quantitative estimates of strong unique continua-
tion (doubling inequalities, three sphere inequality, three cylinders inequality,
two-sphere one cylinder inequality at the interior and at the boundary) which
are well known in the elliptic [Ga-Li], [La], [A-E] and in the parabolic context
[Es-Fe-Ve], [Es-Ve]. Theorem 4.1 is basically the quantitative version of the
strong unique continuation property for the self-adjoint hyperbolic equation
proved by Lebeau in [Le]. Theorems 4.1 and 4.2 have been proved in [Ve3].

Let u ∈ W ([−λρ0, λρ0];Bρ0) be a weak solution to

(4.1) ∂2t u− div (A(x)∇xu) = 0, in Bρ0 × (−λρ0, λρ0).

Let r0 ∈ (0, ρ0] and denote by

(4.2) ε0 := sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Br0

u2(x, t)dx

)1/2

and

(4.3) H0 :=

(
2∑

j=0

ρj−n
0

∫
Bρ0

∣∣Dj
xu(x, 0)

∣∣2 dx)1/2

.

Theorem 4.1. Let A(x) be a real-valued symmetric n× n matrix satisfying
(3.8) and let u ∈ W ([−λρ0, λρ0];Bρ0) be a weak solution to (4.1). Then there
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exist constants s0 ∈ (0, 1) and C ≥ 1 depending on λ and Λ only such that
for every r0 and ρ satisfying 0 < r0 ≤ ρ ≤ s0ρ0 the following inequality holds
true

∥u(·, 0)∥L2(Bρ)
≤ C (ρ0ρ

−1)
C
(H0 + eε0)(

θ log
(

H0+eε0
ε0

))1/6 ,(4.4)

where

(4.5) θ =
log(ρ0/Cρ)

log(ρ0/r0)
.

In order to state Theorem 4.2 below let us introduce some notation. Let
φ be a function belonging to C1,1

(
B′

ρ0

)
that satisfies

(4.6) φ(0) = |∇x′φ(0)| = 0

and

(4.7) ∥φ∥C1,1(B′
ρ0)

≤ Eρ0,

where

∥φ∥C1,1(B′
ρ0)

= ∥φ∥L∞(B′
ρ0)

+ ρ0 ∥∇x′φ∥L∞(B′
ρ0)

+ ρ20
∥∥D2

x′φ
∥∥
L∞(B′

ρ0)
.

For any r ∈ (0, ρ0] denote by

Kr := {(x′, xn) ∈ Br : xn > φ(x′)}

and
Sρ0 := {(x′, φ(x′)) : x′ ∈ B′

ρ0
}.

Let u ∈ W ([−λρ0, λρ0];Kρ0) be a solution to

(4.8) ∂2t u− div (A(x)∇xu) = 0, in Kρ0 × (−λρ0, λρ0),

satisfying one of the following conditions

(4.9) u = 0, on Sρ0 × (−λρ0, λρ0),

10



(4.10) A∇xu · ν = 0, on Sρ0 × (−λρ0, λρ0),

where ν denotes the outer unit normal to Sρ0 .
Let r0 ∈ (0, ρ0] and denote by

(4.11) ε0 := sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Kr0

u2(x, t)dx

)1/2

and

(4.12) H0 :=

(
2∑

j=0

ρj−n
0

∫
Kρ0

∣∣Dj
xu(x, 0)

∣∣2 dx)1/2

.

Theorem 4.2. Let (3.8) be satisfied. Let u ∈ W ([−λρ0, λρ0];Kρ0) be a
solution to (4.8) satisfying (4.11) and (4.12). Assume that u satisfies either
(4.9) or (4.10). There exist constants s0 ∈ (0, 1) and C ≥ 1 depending on λ,
Λ and E only such that for every r0 and ρ satisfying 0 < r0 ≤ ρ ≤ s0ρ0 the
following inequality holds true

∥u(·, 0)∥L2(Kρ)
≤ C (ρ0ρ

−1)
C
(H0 + eε0)(

θ̃ log
(

H0+eε0
ε0

))1/6 ,(4.13)

where

(4.14) θ̃ =
log(ρ0/Cρ)

log(ρ0/r0)
.

4.2 A regularity result for hyperbolic equation

The next Theorem is a mere simplified version of a regularity result proved
in [Co]. For the reader convenience we give a sketch of the proof of such a
result in the Appendix, Subsection 6.1.

Theorem 4.3. Let Ω be a bounded domain of Rn that satisfies (3.1). Let
A(x) be a real-valued symmetric n × n matrix satisfying (3.8). Let m :=[
n+2
4

]
. Assume that ψ is a function on ∂Ω×[0, T ] which satisfies the condition

(3.5).
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Let u ∈ W ([0, T ]; Ω) be the solution to the problem

(4.15)


∂2t u− div (A(x)∇xu) = 0, in Ω× [0, T ],

u = ψ , on ∂Ω× [0, T ],

u(·, 0) = ∂tu(·, 0) = 0 , in Ω.

Then for every α ∈ (0, 1) and t ∈ [0, T ] we have ∂2t u(·, t) ∈ L∞(Ω), u(·, t) ∈
C1,α(Ω) and the following inequalities hold true

(4.16a) sup
t∈[0,T ]

∥∥∂2t u(·, t)∥∥L∞(Ω)
≤ Cρ−2

0 (Tρ−1
0 + 1)H(T ),

(4.16b) sup
t∈[0,T ]

∥u(·, t)∥H2(Ω) ≤ C(Tρ−1
0 + 1)H(T ),

(4.16c) sup
t∈[0,T ]

∥u(·, t)∥C1,α(Ω) ≤ C(Tρ−1
0 + 1)H(T ),

where H(T ) is defined by (3.6) and C depends on α, n,E,M, λ and Λ only.

4.3 Elementary estimates for the FBI transform

For the convenience of the the reader, we collect in this section some well
known elementary properties of the FBI transform see also [Che-D-Y], [Che-P-Y],
[Ro1], [Ro2], [Ro-Zu]. Let Ω be a domain of Rn and T a positive number.
Let u ∈ W ([0, T ]; Ω) satisfy

(4.17)


∂2t u− div (A(x)∇xu) = 0, in Ω× [0, T ],

u(·, 0) = 0, in Ω,

∂tu(·, 0) = 0, in Ω.

Let µ be a positive number. For a fixed τ ∈ (0, T/2] we denote by U
(τ)
µ the

FBI transform of u defined by

(4.18)

U (τ)
µ (x, y) :=

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2u(x, t)dt, for every (x, y) ∈ Ω× R.

Observe that U
(τ)
µ , as a function of y, is a C∞(R) with values in H2(Ω).

The following propositions holds true.
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Proposition 4.4. We have ∣∣Dj
xU

(τ)
µ (x, y)

∣∣ ≤(4.19)

≤ cµ1/4e
µ
2
y2
(∫ T

0

∣∣Dj
xu(x, t)

∣∣2 dt)1/2

, for a.e. x ∈ Ω, and 0 ≤ j ≤ 2,

and ∣∣U (τ)
µ (x, 0)− u(x, τ)

∣∣ ≤ cµ−1/2 ∥∂tu(x, ·)∥L∞[0,T ](4.20)

where c is an absolute constant.

Proof. See Subsection 6.2.

Proposition 4.5. Let u ∈ W ([0, T ]; Ω) satisfy (4.17) and let U
(τ)
µ be defined

by (4.18). Then Uµ satisfies the equation

(4.21) ∂2yU
(τ)
µ + div

(
A(x)∇xU

(τ)
µ

)
= f (τ)

µ (x, y), in Ω× R,

where

(4.22) fµ(x, y) =

√
µ

2π
e−

µ
2
(iy+τ−T )2 (∂tu(x, T )− µ(iy + τ − T )u(x, T )) .

Proof. See Subsection 6.2.

4.4 A sharp three sphere inequality for elliptic equa-
tions

In the following theorem we give a three sphere inequality for elliptic equa-
tions in which we take care to evaluate the exponent of such an inequality
whenever the radii of the three balls are close to each other. Except for this
feature the following Theorem is quite standard and, for the convenience of
the reader, we will prove it in the Appendix (Subsection 6.3).

Let Ã(X) = {ãij(x)}Ni,j=1, N ≥ 2 be a real-valued symmetric N × N

matrix. Assume that the entries of matrix Ã are measurable function and it
satisfies

(4.23) λ0 |ξ|2 ≤ Ã(X)ξ · ξ ≤ λ−1
0 |ξ|2 , for every X, ξ ∈ RN ,

where λ0 ∈ (0, 1].
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Theorem 4.6 (Three sphere inequality). Let r̃3 and Λ0 be positive num-

bers. Assume that Ã satisfies (4.23) and

(4.24)
∣∣∣Ã(X)− Ã(Y )

∣∣∣ ≤ Λ0

r̃3
|X − Y | , for every X,Y ∈ Br̃3 .

Let f̃ ∈ L2(Br̃3) and let u ∈ H1(Br̃3) be a solution to

(4.25) Pu := div(Ã∇u) = f̃ , in Br̃3 .

Let r̃1, r̃2, r̃3 be such that 0 < r̃1 ≤ r̃2 < r̃3. Let δ be such that

(4.26) 0 < δ ≤ r̃3 − r̃2
2r̃3

.

Denote by

(4.27) ϑ0 =
r̃−β
2 − [(1− δ)r̃3]

−β

[(1− 2δ)r̃1]
−β − [(1− δ)r̃3]

−β
.

and

(4.28) C0 =
eC[(r̃2r̃

−1
3 )−β−(1−δ)−β]

δ4
,

where C depends on λ0,Λ0.
There exists β1 ≥ 1 depending on λ0,Λ0 only such that if β ≥ β1 then the

following inequality holds true ∫
Br̃2

|u|2 ≤(4.29)

≤ C0

(∫
Br̃1

|u|2 + r̃23

∫
Br̃3

∣∣∣f̃ ∣∣∣2)ϑ0
(∫

Br̃3

|u|2 + r̃23

∫
Br̃3

∣∣∣f̃ ∣∣∣2)1−ϑ0

.

5 Proof of the Main Theorem

In order to prove Theorem 3.2 we proceed in the following way.
Set

G the connected component of Ω1 ∩ Ω2 whose closure contains Γ(a).
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First step In Proposition 5.1 we prove that for a given t0 > 0 there ex-
ists T (ε) > 2t0 such that if (3.9) is satisfied for T = T (ε) and uj ∈
W ([0, T (ε)]; Ω) are the solutions to (1.1) when Ω = Ωj, j = 1, 2 then

sup
t∈[0,t0]

(
ρ−n
0

∫
Ωj\G

u2j(x, t)dx

)
≤ Cω(ε, t0) , for j = 1, 2,

where
lim
ε→0

ω(ε, t0) = 0 and lim
ε→0

T (ε) = +∞.

Second step First we prove (Proposition 5.2) an estimate from below, in
terms of the a priori information and boundary data, of the quantity
sup ∥u(·, t)∥L2(Bϱ(y0))

where the sup is taken for t ∈ [0, t], t is large

enough, Bϱ(y0) ⊂ Ω and ϱ ∈ (0, ρ0/2E]. Afterwards (Proposition 5.4)
we prove that if t0 is large enough and

sup
t∈[0,t0]

(
ρ−n
0

∫
Ωj\G

u2j(x, t)dx

)
≤ η2

then
dH
(
Ω1,Ω2

)
≤ Cρ0η

α,

for suitable constant C ≥ 1 and α ∈ (0, 1).

Third step We conclude the proof of Theorem 3.2.

5.1 Step 1

Proposition 5.1. There exist C ≥ 1 and ε, σ, ϑ2 ∈ (0, 1] depending on
E,M, λ and Λ only such that the following holds true.

Denoting

(5.1) Tσ := max
{
2t0,

√
10ρ0ϑ

− 1
2
σ−(n+1)

2

}
,

(5.2) Φ(σ) = σ−(n+1
4 )(Tσρ

−1
0 )11/2(H(Tσ) + 1)2.

Let us define for any ε ∈ (0, ε]

(5.3) T (ε) := Tσ(ε),

where

(5.4) σ(ε) := inf{σ ∈ (0, σ] : Φ(σ) ≤ | log ε|
1
8}.
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Let uj ∈ W ([0, T (ε)]; Ω) be the solution to (1.1) (when T = T (ε)) and Ω =
Ωj, j = 1, 2.

If, for a given ε ∈ (0, ε], we have

(5.5)
1

T (ε)ρn−3
0

∫ T (ε)

0

∫
Σ

|A(x)∇u1 · ν − A(x)∇u2 · ν|2 dSdt ≤ ε2

then for every t0 ∈ (0, T (ε)/2] we have

sup
t∈[0,t0]

(
ρ−n
0

∫
Ωj\G

u2j(x, t)dx

)
≤ Cω(ε, t0) , for j = 1, 2,(5.6)

where

ω(ε, t0) = (t0ρ
−1
0 )6(H(t0))

2 (σ(ε))1/4 + |log ε|−1/8 .(5.7)

Proof of Proposition 5.1. Let t0 > 0. We begin by assuming only
that T ≥ 2t0. Let uj ∈ W ([0, T ]; Ω) be the solution to (1.1) when Ω = Ωj,
j = 1, 2. Let u = u1 − u2, in G× [0, T ] and for any positive number µ such

that µT 2 ≥ 1 and τ ∈ (0, T/2] denote by U
(τ)
µ the FBI transform of u defined

by

U (τ)
µ (x, y) =(5.8)

=

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2u(x, t)dt, for every (x, y) ∈ G× R.

By (1.1), (3.9) and Proposition 4.5 we have

(5.9)


∂2yU

(τ)
µ + div

(
A(x)∇U (τ)

µ

)
= f

(τ)
µ (x, y), in G× R,

U
(τ)
µ (x, y) = 0, for (x, y) ∈ Σ× R,∫
Σ

∣∣∣A(x)∇U (τ)
µ (x, y) · ν

∣∣∣2 dS ≤ Cµ1/2Tρn−3
0 eµy

2
ε2, for y ∈ R,

and C is an absolute constant.
By (3.5), Proposition 4.4, Proposition 4.5, by Theorem 4.3 and by the

elementary inequality s3/2e−s2/8 ≤ ce−s2/10 we have, for every R > 0

(5.10) ∥fµ∥L∞(G×(−R,R)) ≤ CTρ−3
0 H(T )eµ(R

2/2−T 2/10),
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and

(5.11)
∥∥U (τ)

µ

∥∥
L∞(G×(−R,R))

≤ CTρ−1
0 H(T )eµR

2/2,

where C depends on E,M, λ and Λ only. Here and in the sequel, we fix
α = 1

2
in Theorem 4.3.

Now denote by P1 = P0 − ρ0
2E
ν, P̃1 = (P1, 0), ρ1 = σ1ρ0, where σ1 =

1
4E

√
1+E2 and denote by

(5.12) ε1 =
(µT 2)1/4ε

(H(T ) + 1)Tρ−1
0

.

By (5.9), (5.10) and by applying [Al-R-Ro-Ve, Theorem 1.7] we have

(5.13)
∥∥U (τ)

µ

∥∥
L2(B̃ρ1 (P̃1))

≤ CTρ−1
0 H(T )eµρ

2
0/2
(
e−µT 2/10 + ε1

)ϑ1

,

where ϑ1, ϑ1 ∈ (0, 1), and C depend on E,M, λ and Λ only.
Let σ ∈ (0, σ1] and denote by r = ρ0σ. Let Vr be the connected component

of Ω1,r ∩ Ω2,r whose closure contains Bρ1(P1)). Moreover denote by ωr =
Ω1,r \ Vr. We have

(5.14a) Ω1 \G ⊂ [(Ω1 \ Ω1,r) \G] ∪ ωr,

(5.14b) ∂ωr = Γ1,r ∪ Γ2,r,

where
Γ1,r ⊂ ∂Ω1,r, Γ2,r ⊂ ∂Ω2,r ∩ ∂Vr.

Let z ∈ Γ2,r be fixed. Since Vr is connected, Γ2,r ⊂ ∂Vr and P1 ∈ Vr,
there exists a continuous path γ : [0.1] → Vr such that γ(0) = P1, γ(1) = z.
Let us define 0 = s0 < s1 < . . . < sN = 1, according to the following rule.
We set sk+1 = max{s | |γ(s)−xk| = r

2
} if |xk− z| > r

2
, otherwise we stop the

process and set N = k + 1, sN = 1. By (3.1a) we have N ≤ cnMσ−n where
cn depends on n only. Let xk = γ(sk) and x̃k = (xk, 0). The balls (of Rn+1)

B̃r/4(x̃k) are pairwise disjoint for k = 0, . . . , N − 1 and |x̃k+1 − x̃k| = r
2
. We

have that B̃r/4(x̃k+1) ⊂ B̃3r/4(x̃k) and B̃r(x̃k) ⊂ G × (−r, r) and therefore,
by the three sphere inequality (4.29), we have

∥∥U (τ)
µ

∥∥
L2(B̃r/4(x̃k+1))

≤
∥∥U (τ)

µ

∥∥
L2(B̃3r/4(x̃k))

≤(5.15)

≤ C
(
∥U (τ)

µ ∥L2(B̃r/4(x̃k))
+ ∥f (τ)

µ ∥L2(B̃r(x̃k))

)ϑ∗ (
∥U (τ)

µ ∥L2(B̃r(x̃k))
+ ∥f (τ)

µ ∥L2(B̃r(x̃k))

)1−ϑ∗
,
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where C and ϑ∗, 0 < ϑ∗ < 1, depend on E, λ and Λ only.
Now, we denote by

(5.16) αk =

∥∥∥U (τ)
µ

∥∥∥
L2(B̃r/4(x̃k))

e−µr2/2

Tρ−1
0 (H(T ) + 1)

+ e−µT 2/10 for k = 0, . . . , N,

and by (5.15), (5.10) and (5.11) we have

(5.17) αk+1 ≤ Cαϑ∗
k for k = 0, . . . , N − 1,

where C and ϑ∗, 0 < ϑ∗ < 1, depend on E, λ and Λ only. By iterating (5.17)
we get

(5.18) αN ≤ C1/1−ϑ∗α
ϑN
∗

0 .

Now let us denote by ϑ2 = min
{
ϑ1, ϑ

cnM
∗
}
. By (5.16) and (5.18) we have∥∥U (τ)

µ

∥∥
L2(B̃r/4(z̃))

≤ CTρ−1
0 H(T )eµr

2/2×(5.19)

×


∥∥∥U (τ)

µ

∥∥∥
L2(B̃r/4(P̃1))

e−µr2/2

Tρ−1
0 (H(T ) + 1)

+ e−µT 2/10


ϑσ−n

2

,

where C depends on E,M, λ and Λ only. Moreover, by applying [G-T, The-
orem 8.17] and by using (5.10), (5.13) and (5.19) we have

∣∣U (τ)
µ (z, 0)

∣∣ ≤ CTρ−1
0 (H(T ) + 1)eµr

2/2ε2,(5.20)

where

(5.21) ε2 = σ−(n+1
2 )
(
e−µT 2/10 + eµρ

2
0/2
(
e−µT 2/10 + ε1

)ϑ2
)ϑσ−n

2

and C depends on E,M, λ and Λ only.
By (5.20), (4.16) and (4.20) we have

∥u∥L∞(Γ2,r×[0,t0])
≤ C(µT 2)−1/2

(
ρ−1
0 T

)2
H(T )+(5.22)

+ sup
τ∈[0,t0]

∥∥U (τ)
µ (·, 0)

∥∥
L∞(Γ2,r)

≤ C(Tρ−1
0 )3(H(T ) + 1)ε3,
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where

(5.23) ε3 = (µT 2)−1/2 + eµr
2/2ε2

and C depends on E,M, λ and Λ only.

By (5.14a) and Schwarz inequality we have, for any t ∈ (0, t0],

∫
Ω1\G

u21(x, t)dx =(5.24)

=

∫
Ω1\G

(∫ t

0

∂ξu1(x, ξ)dξ

)2

≤ t0

∫ t0

0

∫
Ω1\G

|∂ξu1(x, ξ)|2 dxdξ ≤

≤ t0

∫ t0

0

∫
ωr

|∂ξu1(x, ξ)|2 dxdξ + t0

∫ t0

0

∫
Ω1\Ω1,r

|∂ξu1(x, ξ)|2 dxdξ.

Now by (3.1) we have

(5.25) |Ω1 \ Ω1,r| ≤ Cρn0σ,

where C depends on E and M only.
By (3.1a), (5.24), (5.25) and by (4.16a) we have, for any t ∈ (0, t0],

ρ−n
0

∫
Ω1\G

u21(x, t)dx ≤(5.26)

≤ t0ρ
−n
0

∫ t0

0

∫
ωr

|∂ξu1(x, ξ)|2 dxdξ + C
(
t0ρ

−1
0

)6
H(t0)

2σ,

where C depends on E,M, λ and Λ only.
Now, in order to estimate from above the integral on the right hand side

of (5.26) we multiply both the side of the equation ∂2t u1−div (A(x)∇u1) = 0
by ∂tu1 and integrate over ωr and by integration by parts we have, for every
ξ ∈ [0, t0],

1

2

∫
ωr

(
|∂ξu1(x, ξ)|2 + A(x)∇u1(x, ξ) · ∇u1(x, ξ)

)
dx =(5.27)

=

∫ ξ

0

∫
Γ1,r

(A(x)∇u1(x, t)) ∂tu1(x, t)dSdt+
∫ ξ

0

∫
Γ2,r

(A(x)∇u1(x, t)) ∂tu1(x, t)dSdt := J1 + J2.

Estimate of J1.
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By Schwarz inequality and by (3.8a) we have

|J1| ≤ λ−1

(∫ ξ

0

∫
Γ1,r

|∇u1|2 dSdt

)1/2(∫ ξ

0

∫
Γ1,r

|∂tu1(x, t)|2 dSdt

)1/2

.

(5.28)

By (5.28) and (4.16c) we have, for every ξ ∈ [0, t0],

|J1| ≤ C
(
(t0ρ

−1
0 + 1)t0ρ

n−3
0

)1/2
H(t0)

(∫ ξ

0

∫
Γ1,r

|∂tu1(x, t)|2 dSdt

)1/2

,

(5.29)

where C depends on E,M, λ and Λ only.
Now, by interpolation inequality we have

∥∂tu1∥L∞(Γ1,r×[0,t0])
≤ C ∥u1∥1/2L∞(Γ1,r×[0,t0])

∥∥∂2t u1∥∥1/2L∞(Γ1,r×[0,t0])
,

where C is an absolute constant, hence by using (5.29), (4.16) and recalling
that u1 = 0 on Γ1 × [0, T ] we obtain

|J1| ≤ C(t0ρ
−1
0 )5/2ρn−2

0 (H(t0))
2 σ1/4,(5.30)

where C depends on E,M, λ and Λ only.

Estimate of J2.
By Schwarz inequality, (3.8a) and by (4.16c) we have, for every ξ ∈ [0, t0],

|J2| ≤ C
(
t20ρ

n−4
0

)1/2
H(t0)

(∫ ξ

0

∫
Γ2,r

|∂tu1(x, t)|2 dSdt

)1/2

,(5.31)

where C depends on E,M, λ and Λ only.
By the triangle inequality and taking into account that u = u1 − u2 on

Γ2,r × [0, T ] we have, for every ξ ∈ [0, t0],

(∫ ξ

0

∫
Γ2,r

|∂tu1(x, t)|2 dSdt

)1/2

≤(5.32)

≤ C
(
t0ρ

n−1
0

)1/2 (∥∂tu∥L∞(Γ2,r×[0,t0])
+ ∥∂tu2∥L∞(Γ2,r×[0,t0])

)
,
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where C depends on E and M only.
Arguing as in the estimate of J1, by (5.22), (5.31), (5.32) and (4.16a) we

have

|J2| ≤ Cρn−2
0 (t0ρ

−1
0 )5/2(H(t0))

2σ1/4+(5.33)

+Cρn−2
0 (Tρ−1

0 )3(H(T ) + 1)2ε
1/2
3 ,

where C depends on E,M, λ and Λ only.
By (5.26), (5.27), (5.30) and (5.33) we have, for every t ∈ (0, t0],

ρ−n
0

∫
Ω1\G

u21(x, t)dx ≤ C(t0ρ
−1
0 )6(H(t0))

2σ1/4+(5.34)

+C(Tρ−1
0 )5(H(T ) + 1)2ε

1/2
3 ,

where C depends on α,E,M, λ and Λ only. In order to estimate from above
the right hand side of (5.34) first we assume

ε ≤ e−5.

Let µ and T be such that

(5.35) µT 2 =
1

5
|log ε| .

By (5.12), (5.35) we have trivially

(5.36) e−µT 2/10 + ε1 ≤ cε1/2,

where c is an absolute constant. Hence, taking into account (5.21) and (5.23),
we have

ε
1/2
3 ≤ (µT 2)−1/4 + eµT

2(ρ0T−1)2σ2/4ε
1/2
2 ≤(5.37)

≤ (µT 2)−1/4 + Cσ−(n+1
4 )e

1
4
µK(σ,T ),

where

(5.38) K(σ, T ) = 2ρ20σ
2 − T 2

5
ϑσ−n−1

2 .

Let us choose

(5.39) T = Tσ = max
{
2t0,

√
10ρ0ϑ

− 1
2
σ−(n+1)

2

}
,
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and we have K(σ, Tσ) ≤ −3ρ20. Hence by (5.37) and (5.39) we have

ε
1/2
3 ≤ Cσ−(n+1

4 ) (Tσρ−1
0

)1/2 |log ε|−1/4 ,(5.40)

where C depends on E,M, λ and Λ only. By (5.34) and (5.40) we have, for
every t ∈ (0, t0] and σ ∈ (0, σ1],

ρ−n
0

∫
Ω1\G

u21(x, t)dx ≤(5.41)

≤ C
(
(t0ρ

−1
0 )6(H(t0))

2σ1/4 + Φ(σ) |log ε|−1/4
)
,

where C depends on E,M, λ and Λ only and Φ(σ) is defined by (5.2).
Let σ = min{σ1, (2n| log ϑ2|)1/(n+1)}, by (5.39) we have that Φ is a de-

creasing function in (0, σ], so that min(0,σ]Φ = Φ(σ). Now, let us denote by

ε = min{e−5, e−(Φ(σ))8} and for any ε ∈ (0, ε] let us choose σ = σ(ε) where
σ = σ(ε) is defined by (5.4). By (5.41) we have

ρ−n
0

∫
Ω1\G

u21(x, t)dx ≤ Cω(ε, t0),(5.42)

where C depends on E,M, λ and Λ only and ω(ε, t0) is defined by (5.7).�

5.2 Step 2

Proposition 5.2. Let ϱ ∈ (0, ρ0/2E] and let y0 ∈ Ω be such that Bϱ(y0) ⊂
Ω. Assume that u is solution to (1.1). Then there exists a constant CF ,
CF ≥ 2, depending on E,M, λ,Λ, ϱρ−1

0 and F only such that if t ≥ t∗ :=
max{CFρ0, 2t1} then the following inequality holds true

(5.43) tρ−1
0 H(t)e−F(t) ≤ sup

t∈[0,t]
∥u(·, t)∥L2(Bϱ(y0))

,

where

(5.44) F(t) =

(
CF (tρ

−1
0 )3H(t)

H(t1)

)2

.

Proof. For any number t such that t ≥ 2t1 let us denote

(5.45) η = sup
t∈[0,t]

∥u(·, t)∥L2(Bϱ(y0))
.
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Let (x0, τ) ∈ Γ(a) × [0, t1] be such that

(5.46) |ψ (x0, τ)| = ∥ψ∥L∞(Γ(a)×[0,t1]) .

Let δ ∈
(
0, 1

4

]
be a number that we will choose later and let xδ = x0 −

4δϱν(x0). By Theorem 4.3 and by (5.46) we have

∥ψ∥L∞(Γ(a)×[0,t1]) ≤ |u (x0, τ)− u (xδ, τ)|+ |u (xδ, τ)| ≤(5.47)

≤ C0t1ϱρ
−2
0 H(t1)δ + |u (xδ, τ)|

where C0 depends on E,M, λ and Λ only. Now let us choose

δ = min

{
1

4
,

ρ0
2C0t1F

}
and by (5.47) we have

1

2
∥ψ∥L∞(Γ(a)×[0,t1]) ≤

∣∣∣u(x(δ), τ)∣∣∣ .(5.48)

Now we estimate from above the right hand side of (5.48) in terms of η.
In order to get such an estimate we proceed similarly to Proposition 5.1. For
any positive number µ such that µt

2 ≥ 1 and τ ∈ (0, t/2] denote by U
(τ)
µ the

FBI transform of u defined by

(5.49)

U (τ)
µ (x, y) :=

√
µ

2π

∫ t

0

e−
µ
2
(iy+τ−t)2u(x, t)dt, for every (x, y) ∈ Ω× R.

Denote by x1 = x0 − ϱν(x0) where ν(x0) is the exterior unit normal to
∂Ω in x0. Since

∂2yU
(τ)
µ + div

(
A(x)∇U (τ)

µ

)
= f

(τ)
µ (x, y), in Ω× R,∫

Bϱ(y0)

∣∣∣U (τ)
µ (x, y)

∣∣∣2 dx ≤ cµ1/2tρn0e
µy2η2,

by arguing as in Proposition 5.1 we get

∥∥U (τ)
µ

∥∥
L2(B̃ϱ/4(x̃1))

≤ Ctρ−1
0 H(t)eµϱ

2/2×(5.50)

×


∥∥∥U (τ)

µ

∥∥∥
L2(B̃ϱ/4(ỹ0))

e−µϱ2/2

tρ−1
0 (H(t) + 1)

+ e−µt
2
/10


ϑ∗
1

,
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and

∥∥U (τ)
µ

∥∥
L2(B̃ϱ/4(x̃1))

≤ C(tρ−1
0 H(t) + 2η)eµϱ

2/2
(
(µt

2
)3/2e−µt

2
/8 + η1

)ϑ∗
1

,

(5.51)

where

(5.52) η1 =
(µt

2
)1/4η

H(t)tρ−1
0 + 2η

,

ϑ∗
1 ∈ (0, 1) depends on E,M, λ,Λ and ϱ only and C depends on E,M, λ and

Λ only.
By (4.16), (4.20), (4.22), (5.48) and by applying [G-T, Theorem 8.17] we

have

1

2
∥ψ∥L∞(Γ(a)×[0,t1]) ≤

∣∣u (xδ, τ)− U (τ)
µ (xδ, 0)

∣∣+ ∣∣U (τ)
µ (xδ, 0)

∣∣ ≤(5.53)

≤ C(µt
2
)−1/2(tρ−1

0 )3H(t) +
∥∥U (τ)

µ

∥∥
L∞(B̃ϱ(1−3δ)(x̃1))

≤

≤ C
(
(µt

2
)−1/2 + eµ(ϱ

2/2−t
2
/10)
)
(tρ−1

0 )3H(t) +
C ′

δ
(n+1)/2

∥∥U (τ)
µ

∥∥
L2(B̃ϱ(1−2δ)(x̃1))

,

where C depends on E,M, λ and Λ only and where C ′ depends on λ only.
Now let us apply the three sphere inequality (4.29) with r1 = ϱ

4
, r2 =

ϱ(1− 2δ) and r3 = ϱ. By (4.22) and (5.51) we have

(5.54)
∥∥U (τ)

µ

∥∥
L2(B̃ϱ(1−2δ)(x̃1))

≤ C
(
(tρ−1

0 )3H(t) + 2η
)
eµϱ

2/2
(
e−µt

2
/10 + η1

)ϑ∗
2

where ϑ∗
2, ϑ

∗
2 ∈ (0, 1), and C depend on E,M, λ,Λ, ϱρ−1

0 and F only.
By (5.53) and (5.54) we have

∥ψ∥L∞(Γ(a)×[0,t1]) ≤ C(tρ−1
0 H(t) + 2η)

(
(µt

2
)−1/2 + eµϱ

2/2
(
e−µt

2
/10 + η1

)ϑ∗
2

)
,

(5.55)

where C depends on E,M, λ,Λ, ϱ and F only. Now if t ≥ max
{√

10(ϑ∗
2)

−1/2ϱ, 2ρ0, 2t1
}

then (5.52) and (5.55) give

∥ψ∥L∞(Γ(a)×[0,t1]) ≤ C
(
(tρ−1

0 )3H(t) + 2η
)
×(5.56)

×

(
(µt

2
)−1/2 + (µt

2
)ϑ

∗
2/4eµϑ

∗
2t

2
/20

(
η

tρ−1
0 H(t) + 2η

)ϑ∗
2

)
,
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where C depends on E,M, λ,Λ, ϱρ−1
0 and F only.

Now let us choose

µ =
10

t
2

∣∣∣∣log( η

tρ−1
0 H(t) + 2η

)∣∣∣∣
and by (5.56), taking into account that η ≤ CH(t), we get

∥ψ∥L∞(Γ(a)×[0,t1]) ≤ C(tρ−1
0 )2H(t)

∣∣∣∣log( η

CT1ρ
−1
0 H(t)

)∣∣∣∣−1/2

,(5.57)

where C depends on E,M, λ,Λ, ϱρ−1
0 and F only. By (5.57) the thesis follows.

Now we recall the following Lemma that was proved in [Al-B-Ro-Ve,
Lemma 8.1].

Lemma 5.3 (relative graphs). Let Ω1 and Ω2 be bounded domains in Rn

of class C1,1 with constants ρ0, E and satisfying |Ωj| ≤Mρn0 , j = 1, 2. There
exist numbers d0, ρ0 ∈ (0, ρ0] such that d0

ρ0
and ρ0

ρ0
depend on E only, and

such that if we have

(5.58) dH
(
Ω1,Ω2

)
≤ d0,

then the following facts hold true
i) Ω1 and Ω2 are relative graphs and

(5.59) γ0 (Ω1,Ω2) ≤ CdH
(
Ω1,Ω2

)
,

where C depends E only,

(5.60) γ1,α (Ω1,Ω2) ≤ Cρ
1+α
2

0

(
dH(Ω1,Ω2)

) 1−α
2 , for every α ∈ (0, 1),

where C depends E and α only,
ii) there exists an absolute positive constant c such that

(5.61) dH
(
Ω1,Ω2

)
≤ cdm

(
Ω1,Ω2

)
,

iii) Ω1 ∩ Ω2 is a domain of Lipschitz class with constants ρ0, L, where ρ0 is
as above and L > 0 depends on E only.
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Proposition 5.4. There exist constants CF and C depending on E,M, λ,Λ
and F only and on E,M, λ Λ only respectively, such that if t0 ≥ t∗ + λρ0
where t∗ is introduced in Proposition 5.2 and if

(5.62) sup
t∈[0,t0]

(
ρ−n
0

∫
Ωj\G

u2j(x, t)dx

)
≤ η2

then

(5.63) dH
(
Ω1,Ω2

)
≤ Cρ0

(
η

t0ρ
−1
0 H(t0)

)1/K0

,

where

(5.64) K0 =

(
H(t0)

H(t0)

)6

eCF(t0).

t0 = t0 − λρ0

and F(t0) is defined by (5.44).

Proof. First we prove the following inequality

(5.65) dm
(
Ω1,Ω2

)
≤ Cρ0

(
η

t0ρ
−1
0 H(t0)

)1/K0

,

where dm(Ω1,Ω2) is the quantity introduced in Definition 2.5.
For the sake of brevity let us denote dm = dm

(
Ω1,Ω2

)
Let us assume, with

no loss of generality, that there exists x0 ∈ Γ
(i)
1 ⊂ ∂Ω1 such that dist(x0,Ω2) =

dm.
By (5.62) we have trivially

(5.66) sup
t∈[0,t0]

(
ρ−n
0

∫
Ω1∩Bdm (x0)

u21(x, t)dx

)
≤ η2

let us distinguish the following two cases
i) dm ≤ 1

2
s0ρ0,

ii) dm > 1
2
s0ρ0,

where s0, s0 ∈ (0, 1), is defined in Theorem 4.2 and depends on E, λ, and Λ
only.

In case i), by applying Theorem 4.2 with r0 = dm and ρ = s0ρ0
2

we have
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sup
t∈[0,t0−λρ0]

∥u1(·, t)∥L2(Bs0ρ0/2
(x0)∩Ω1) ≤(5.67)

≤ C
(
ρ−1
0 t0H(t0)

)(
θ1 log

(
ρ−1
0 t0H(t0)

η

))−1/6

,

where

(5.68) θ1 =
1

C log(ρ0/dm)
.

and C depends on E,M, λ and Λ only.
Now let us introduce the following notation: s∗ = min

{
s0
4
, 1
2E

}
and y0 =

x0− s∗ρ0ν(x0), t0 = t0−λρ0. We have Bs∗ρ0/2(y0) ⊂ Bs0ρ0/2(x0)∩Ω1. Let us
assume that t0 ≥ max{2CFρ0, 2t1} where CF is defined in Proposition 5.2.
By (5.67) and Proposition 5.2 we have

t0ρ
−1
0 H(t0)e

−F(t0) ≤(5.69)

≤ C
(
ρ−1
0 t0H(t0)

)(
θ1 log

(
ρ−1
0 t0H(t0)

η

))−1/6

,

where C depends on E,M, λ and Λ only and F(t0) is defined by (5.44). Now,
taking into account that t0/t0 ≤ 2, by (5.68) and (5.69) we have

1

K0

log

(
ρ−1
0 t0H(t0)

η

)
≤ log(ρ0/dm),

so that we have

(5.70) dm ≤ ρ0

(
η

ρ−1
0 t0H(t0)

)1/K0

,

where K0 is defined in (5.64).
Consider now case ii). Since we have Bs∗ρ0/2(y0) ⊂ Bs0ρ0/2(x0) ∩ Ω1 we

get

t0ρ
−1
0 H(t0)e

−F(t0) ≤ sup
t∈[0,t0−λρ0]

∥u1(·, t)∥L2
(
Bϑ∗

1ρ0/2
(y0)

) ≤(5.71)

≤ sup
t∈[0,t0−λρ0]

∥u1(·, t)∥L2(Bs0ρ0/2
(x0)∩Ω1) ≤ η.
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Hence

(5.72) 1 ≤ eF(t0)η

t0ρ
−1
0 H(t0)

.

Now by the a priori information we have dm ≤ Cρ0 where C depends on E
and M only. Therefore by (5.72) we have trivially

(5.73) dm ≤ Cρ0 ≤ Cρ0

(
eF(t0)η

t0ρ
−1
0 H(t0)

)1/K0

.

Therefore in both the cases we have (5.65).
Now we prove (5.63). Let us denote by d = dH

(
Ω1,Ω2

)
. With no loss of

generality, let y ∈ Ω1 \ Ω2 be such that dist(y,Ω2) = d. Since in general y
needs not to belong to ∂Ω1, [Al-B-Ro-Ve] it is necessary to analyze various
different cases separately. Denoting by h = dist(y, ∂Ω1), let us distinguish
the following three cases:

i) h ≤ d
2
,

ii) h > d
2
, h > d0

2
,

iii) h > d
2
, h ≤ d0

2
,

where d0 is the number introduced in Proposition 5.3.
If case i) occurs, taking z ∈ ∂Ω1 such that |y − z| = h, we have that

dist(z,Ω2) ≥ d− h ≥ d
2
, so that d ≤ 2dm and (5.63) follows by (5.65).

Let us now consider case ii). Let us denote

(5.74) d1 = min

{
d

2
,
s0d0
4

}
.

where s0, s0 ∈ (0, 1), is defined in Theorem 4.1 and depends on λ and Λ only.
We have that

(5.75) Bd0/2(y) ⊂ Ω1 and Bd1(y) ⊂ Ω1 \ Ω2.

Now by applying Theorem 4.1 with r0 = d1 and ρ = s0ρ0
2

we have

sup
t∈[0,t0−λρ0]

∥u1(·, t)∥L2(Bd1
(y)) ≤

≤ C
(
ρ−1
0 t0H(t0)

)(
θ2 log

(
ρ−1
0 t0H(t0)

η

))−1/6

,
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where

θ2 =
1

C log(ρ0/dm)
,

and C depends on λ and Λ only.
Now proceeding exactly as in the proof of (5.70) we have

(5.76) d1 ≤ ρ0

(
η

ρ−1
0 t0H(t0)

)1/K0

,

where K0 is defined by (5.64) (perhaps with a different value of constant C).
Now, if

ρ0

(
η

ρ−1
0 t0H(t0)

)1/K0

<
s0d0
4

then by (5.76) we have d1 <
s0d0
4
, hence d1 =

d
2
. Therefore we get

(5.77) d = 2d1 ≤ 2ρ0

(
η

ρ−1
0 t0H(t0)

)1/K0

.

If, instead, we have

ρ0

(
η

ρ−1
0 t0H(t0)

)1/K0

≥ s0d0
4
,

we have trivially

(5.78) d ≤ Cρ0 ≤
4Cρ20
s0d0

(
η

ρ−1
0 t0H(t0)

)1/K0

,

where C depends on E and M only.
If case iii) occurs we have in particular that d < d0, hence by Proposition

5.3 we have d ≤ cdm and by (5.65) the thesis follows again.

Corollary 5.5. Let t∗ be defined in Proposition 5.4 and let t0 ≥ t∗ be fixed.
We have for every ε ∈ (0, ε], ε is defined in Proposition 5.1,

(5.79) dH
(
Ω1,Ω2

)
≤ ρ0ω1(ε, t0),

where

(5.80) ω1(ε, t0) := C

(
ω(ε, t0)

t0ρ
−1
0 H(t0)

)1/K0

,

ω(ε, t0) is defined by (5.7) and C on E,M, λ, Λ and F only and K0 is defined
in (5.64).

Proof. Inequality (5.79) is an immediate consequence of Proposition 5.1 and
Proposition 5.4
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5.3 Step 3

Now we conclude the proof of the main Theorem.
Let t0 ≥ t∗ be fixed and let d0 be defined in Proposition 5.3 and let

s ∈ (0, d0
ρ0
] be a number that we will choose later. Denote by

ϵ(s) = sup {ε ∈ (0, ε] : ω1(ε, t0) ≤ s} .

By Proposition 5.3 we have that, for every s ∈ (0, d0
ρ0
] and every ε ∈

(0, ϵ(s)], ∂Ω1 and ∂Ω2 are relative graphs, moreover G it is equal to Ω1 ∩Ω2

and is a domain of Lipschitz class with constants CE and ρ0/C where C ≥ 1
depends on E only.

We have
∂ (Ω1 \G) ⊂ Γ

(i)
1 ∪

(
Γ
(i)
2 ∩ ∂G

)
.

Denote by u = u1 − u2. By Schwarz inequality, energy inequality, (4.16a),

(4.16c) and recalling that u2 = 0 on Γ
(i)
2 we have, for any t ∈ (0, t0],

ρ−n
0

∫
Ω1\G

u21(x, t)dx ≤ t0ρ
−n
0

∫ t0

0

∫
Ω1\G

|∂ξu1(x, ξ)|2 dxdξ ≤(5.81)

≤ C(t0ρ
−1
0 )5/2 (H(t0))

3/2 ∥u∥1/2
L∞((Γ

(i)
2 ∩∂G)×[0,t0])

,

where C depends on α,E,M, λ and Λ only.
Let P ∈ ∂G, without restriction we may assume that P ≡ 0. By (5.79)

and Proposition 5.3 we have that if s ∈ (0, d0
ρ0
] and ε ∈ (0, ϵ(s)] then there

exist φ1, φ2 ∈ C1,1
(
B′

r0
(0)
)
, where r0

ρ0
≤ 1 depends on E only, satisfying the

following conditions

(5.82a) ∥φi∥C1,1(B′
r0

(0)) ≤ Eρ0,

(5.82b) Ωi ∩Br0 (0) = {x ∈ Br0 (0) : xn > φi (x
′)} , i = 1, 2.

It is not restrictive to assume that

(5.83) φ1 (0) = |∇x′φ1 (0)| = 0 , φ2(0) ≤ 0.

Now, Let us denote by φ = max{φ1, φ2} and by d1 = min{d0, r0} By
(5.79) and (5.60) we have (we fix α = 1/2), for every s ∈ (0, d1

ρ0
] and every

ε ∈ (0, ϵ(s)],
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(5.84) ∥∇x′φ∥L∞(B′
sρ0)

≤ Ls := C∗s
1/4,

where C∗ depends on E only.
For any s ∈ (0, d1

ρ0
] let us introduce the following notation

(5.85) Ts := max {T (ϵ(s)), 2t0} ,

where T (ε) is defined in (5.3),

(5.86) γ = arctan
1

Ls

.

Moreover let γ1, γ2 be two numbers such that 0 < γ1 < γ2 < γ < π
2
that we

will choose later and let

(5.87a) χ =
1− sin γ2
1− sin γ1

,

(5.87b) l1 =
sLsρ0/2

1 + sin γ
,

(5.87c) lk = χk−1l1 , k ∈ N,

(5.87d) wk = lken , k ∈ N,

(5.87e) Rk = lk sin γ, ρk = lk sin γ2, rk = lk sin γ1, k ∈ N.

It is easy to check that, denoting by C the cone

C =

{
x ∈ Rn : Ls |x′| ≤ xn ≤ sLsρ0

2

}
,

we have

(5.88) Brk+1
(wk+1) ⊂ Bρk(wk) ⊂ BRk

(wk) ⊂ C ⊂ G , for every k ∈ N

and
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(5.89) dist (Br1(w1), ∂G) ≥
1

2
ρ0sh,

where

(5.90) h =
sin γ − sin γ1
1 + sin γ

.

Let T ≥ Ts be a number that we will choose. For any positive number µ
such that µT 2 ≥ 1 and τ ∈ (0, T/2] denote by U

(τ)
µ the FBI transform of u

defined by

(5.91) U (τ)
µ (x, y) =

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2u(x, t)dt, for (x, y) ∈ G× R.

Let κ0 ≤ 1 be such thatGr is connected for every r ∈ (0, κ0ρ0] [Al-R-Ro-Ve].
Let κ1 = min{d1

ρ0
, κ0}. Arguing as in Proposition 5.1 we have by (3.9), for

every s ∈ (0, κ1] and every ε ∈ (0, ϵ(s)],

∥∥U (τ)
µ

∥∥
L2(B̃r1 (w̃1))

≤(5.92)

≤ CTρ−1
0 (H(T ) + 1) eµ(sρ0)

2/2

(
e2µρ

2
0

(
e−µT 2/10 + ε1

)ϑ2
)ϑ

(hs/2)−n

2

,

where ϑ2 ∈ (0, 1) is the same exponent of inequality (5.19), ϑ2, C depend on
E,M, λ and Λ only and

(5.93) ε1 =
(µT 2)1/4ε

(H(T ) + 1)Tρ−1
0

.

Now we apply inequality (4.29) when r̃1 = rk, r̃2 = ρk, r̃3 = Rk and
x0 = wk, k ∈ N.

Let us denote by

αk = e−µT 2/10 +

e−µR2
k/2
∥∥∥U (τ)

µ

∥∥∥
L2(B̃rk

(w̃k))

(H(T ) + 1)Tρ−1
0

.(5.94)
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Taking into account (5.88) we have

(5.95) αk+1 ≤ C̃0e
µ
2 (R2

k−R2
k+1)αϑ̃0

k , for every k ∈ N,

where

(5.96) ϑ̃0 =
ρ−β1

1 − [(1− δ)R1]
−β1

[(1− 2δ)r1]
−β1 − [(1− δ)R1]

−β1
,

(5.97) 0 < δ ≤ R1 − ρ1
2R1

,

(5.98) C̃0 = C
eC[(ρ1R

−1
1 )−β1−(1−δ)−β1 ]

δ4
,

β1 has been introduced in Theorem 4.6 and C depends on E,M, λ and Λ
only.

Notice that
R2

k −R2
k+1 = χ2kR2

1(χ
−2 − 1).

By iterating (5.95) we get

(5.99) αk+1 ≤ (CC̃0)
1/(1−ϑ̃0)

(
eµR

2
1Ak/2α1

)ϑ̃k
0

, k ∈ N,

where

(5.100) Ak = (χ−2 − 1)(χ2ϑ̃−1
0 )

1− (χ2ϑ̃−1
0 )k

1− (χ2ϑ̃−1
0 )

, k ∈ N.

Let κ2 = min{κ1, 2 (|log4 ϑ2|)1/n} and taking into account that, by (5.90),
h ≤ 1, from (5.92) and (5.99) we get that for every s ≤ κ2 the following
inequality holds true

∥∥∥U (τ)
µ

∥∥∥
L2(B̃rk+1

(w̃k+1))

(H(T ) + 1)Tρ−1
0

≤(5.101)

≤ (CC̃0)
1/(1−ϑ̃0)

(
eµA

(1)
s,kε

ϑ1ϑ
(sh/2)−n

2
1 + eµA

(2)
s,k

)ϑ̃k
0

, k ∈ N,
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where

(5.102) A
(1)
s,k =

1

2

(
Ak + (χ2ϑ̃−1

0 )
)
R2

1 + ρ20 , k ∈ N,

(5.103) A
(2)
s,k = A

(1)
s,k −

1

10
T 2ϑ

1+(sh/2)−n

2 , k ∈ N,

and C depends on E,M, λ and Λ only.
Since we need that A

(1)
s,k is bounded for k ∈ N we search for which s ∈

(0, κ2] we have

(5.104) χ2ϑ̃−1
0 < 1.

Let ς, a, b, q ∈ (0, 1) three numbers that we will fix later on and let

(5.105) sin γ1 = 1− ς, sin γ2 = 1− aς, sin γ = 1− abς

and

(5.106) δ = q

(
R1 − ρ1
2R1

)
=
q

2

a(1− b)ς

1− abς
,

by (5.87) and (5.96) we have respectively

(5.107) χ = a,

and

(5.108) ϑ̃0 =
a(1− b)(1− q/2)

1− ab+ qa(1− b)/2
+ o(1) , as ς → 0.

In order that (5.104) is satisfied it is enough that

(5.109) a2 <
a(1− b)(1− q/2)

1− ab+ qa(1− b)/2
,

for instance if we choose

(5.110) q =
1

2
, a =

1

4
, b =

1

3
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then (5.109) is satisfied and we have

(5.111) χ2ϑ̃−1
0 =

23

48
+ o(1) , as ς → 0.

By (5.111) we have that there exists ς0 > 0 such that if 0 < ς ≤ ς0 then

(5.112) χ2ϑ̃−1
0 ≤ 1

2
.

Let

ς1 =

(
1−

(
1 + C∗κ

1/2
2

)−1/2
)1/2

,

where C∗ is defined in (5.84) and depends on E only.
Now, let us fix ς = ς := min

{
ς0, ς1,

1
4

}
and denote by γ1, γ2, γ the numbers

belonging to (0, π
2
) such that

(5.113) sin γ1 = 1− ς, sin γ2 = 1− 1

4
ς, sin γ = 1− 1

12
ς

and denote by

(5.114) s =
1

C4
∗

(
(1− ς/12)−4 − 1

)
.

Notice that (5.84), (5.114) and the third equality of (5.113) imply that equal-
ity (5.86) is satisfied. Namely we have

γ = arctan
1

Ls

.

Now for any quantity g introduced in (5.87), (5.90), (5.96) and (5.106) we
denote by g the value of such a quantity when s = s or, equivalently, when
ς = ς. In particular we have

(5.115) δ =
ς

24− 2ς
,

(5.116) h =
sin γ − sin γ1
1 + sin γ

=
2s

24− 3s
,

(5.117) ϑ̃0 =

(
sin γ2

sin γ

)−β1

− (1− δ)−β1(
(1− 2δ) sin γ1

sin γ
)
)−β1

− (1− δ)−β1

.
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By (5.100), (5.112), (5.102) and (5.114) we have

(5.118) A
(1)
s,k ≤ 2ρ20 , k ∈ N.

Let

(5.119) T̃ = max

{(
40ϑ

−1−(sh/2)−n

2

)1/2
ρ0, Ts

}
.

By (5.103), (5.118) and (5.119) we have, for every T ≥ T̃ ,

(5.120) A
(2)
s,k ≤ − 1

20
T 2ϑ

1+(sh/2)−n

2 , k ∈ N.

By (5.118), (5.120) we have, for every T ≥ T̃ ,

∥∥U (τ)
µ

∥∥
L2(B̃rk+1

(w̃k+1))
≤(5.121)

≤ C0(H(T ) + 1)Tρ−1
0

(
e2µρ

2
0 ε̃δ31 + e−

1
20

µT 2δ3
)ϑ̃k

0

, k ∈ N,

where

C0 = (CC̃0)
1/(1−ϑ̃0),

ε̃1 =
(µT 2)1/4ε

(H(T ) + 1)(Tρ−1
0 + 1)

,

δ3 = ϑ
1+(sh/2)−n

2

and C depends on E,M, λ and Λ only.
Denote by

d1 = l1 (1− sin γ1) , dk = χk−1d1, for every k ∈ N

here, we recall that by (5.107) and (5.110) we have χ = 1
4
and, by (5.87b)

l1 =
C∗s3/2ρ0/2
1+sin γ

.

Let r ∈ (0, d1] be a number that we will choose later on. Let us denote
by ϱ = rd−1

1 ,
k0 = min {k ∈ N : dk ≤ r}

and
δ4 =

∣∣∣log4 ϑ̃0

∣∣∣ .
We have

(5.122) |log4(ϱ/4)| ≤ k0 < |log4(ϱ/16)|
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and

(5.123) ϑ̃
2

0ϱ
δ4 ≤ ϑ̃

k0

0 ≤ ϑ̃0ϱ
δ4 .

Now by applying [G-T, Theorem 8.17], (4.16), (4.20) and (4.22) we have,

for every τ ∈ (0, t0] and every T ≥ T̃ ,

|u (0, τ)| ≤
∣∣∣u (0, τ)− u

(
w̃k0+1, τ

)∣∣∣+ ∣∣∣u(w̃k0+1, τ
)
− U (τ)

µ

(
w̃k0+1

)∣∣∣+(5.124)

+
∣∣∣U (τ)

µ

(
w̃k0+1

)∣∣∣ ≤ Ct0ρ
−1
0 H(t0)ϱ+ C

(
Tρ−1

0

)2
H(T )

(
T 2µ

)−1/2
+

+Cϱ−(
n+1
2 )(H(T ) + 1)Tρ−1

0

(
e2µρ

2
0 ε̃δ31 + e−

1
20

µT 2δ3
)ϑ̃2

0ϱ
δ4

where C depends on E,M, λ and Λ only. Now we have trivially

(5.125) e2µρ
2
0 ε̃δ31 + e−

1
20

µT 2δ3 ≤ e2µT
2

εδ3 + e−
1
20

µT 2δ3 .

Hence, if

ε ≤ e−(2/δ3+1/20)

then we choose

µ =
1

T 2

δ3| log ε|
2 + δ3/20

and by (5.124) and (5.125) we have

|u (0, τ)| ≤ Ct0ρ
−1
0 H(t0)ϱ+ C

(
Tρ−1

0

)2
H(T )| log ε|−1/2+(5.126)

+Cϱ−(
n+1
2 )(H(T ) + 1)Tρ−1

0 εδ5ϱ
δ4

where C depends on E,M, λ and Λ only and

δ5 =
δ3ϑ̃

2

0

40 + δ3
.

Now let us choose
ϱ = | log ε|−1/(2δ4)

and by (5.126) we have

|u (0, τ)| ≤ C
(
Tρ−1

0

)2
(H(T ) + 1)| log ε|−1/2(5.127)
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where C depends on E,M, λ and Λ only.
Otherwise, if

ε ≥ e−(2/δ3+1/20)

then by (4.16c) we have trivially

|u (0, τ)| ≤ Ct0ρ
−1
0 H(t0) ≤ Ce(2/δ3+1/20)t0ρ

−1
0 H(t0)ε.(5.128)

where C depends on E,M, λ and Λ only. By (5.127) and (5.128) we have,

for 0 < ε < e−1 and every T ≥ T̃

∥u∥
L∞((Γ

(i)
2 ∩∂G)×[0,t0])

≤ C
(
Tρ−1

0

)2
(H(T ) + 1)| log ε|−1/2(5.129)

where C depends on E,M, λ and Λ only. By (5.129) and (5.81) we have

sup
t∈[0,t0]

(
ρ−n
0

∫
Ωj\G

u2j(x, t)dx

)
≤(5.130)

≤ C(t0ρ
−1
0 + 1)5/2 (H(t0))

3/2 (Tρ−1
0

)
(H(T ) + 1)1/2| log ε|−1/4

where C depends on E,M, λ and Λ only.
Now we fix t0 = t∗ + λρ0 and T = T̃ and by (5.130) and Proposition 5.4

we have

(5.131) dH
(
Ω1,Ω2

)
≤ K1ρ0| log ε|−1/(8K0),

where

K0 =

(
H(t0)

H(t∗)

)6

eCF(t∗),

K1 = C

(
H(T̃ )

H(t∗)

)1/(8K0)

,

where F(t∗) is defined by (5.44) and C depends on E,M, λ and Λ only.�

6 Appendix

6.1 Proof of Theorem 4.3

Theorem 4.3 is a straightforward consequence of Theorem 6.1 below and of
standard results concerning the extension of function
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Theorem 6.1. Let Ω be a bounded domain of Rn that satisfies (3.1). Let
A(x) be a real-valued symmetric n × n matrix satisfying (3.8). Let m :=[
n+2
4

]
. Assume that ∂kt F ∈ L∞(Ω × (0, T )) for every k ∈ {0, · · · , 2m + 2}

and let u ∈ W ([0, T ]; Ω) be the solution to the problem

(6.1)


∂2t u− div (A(x)∇xu) = F (x, t), in Ω× [0, T ],

u = 0, on ∂Ω× [0, T ],

u(·, 0) = ∂tu(·, 0) = 0, in Ω.

Let α ∈ (0, 1). Then for every t ∈ [0, T ] we have u(·, t) ∈ C1,α(Ω) and the
following inequalities hold true

(6.2a)
∥∥∂2t u(·, t)∥∥L∞(Ω)

≤ Cρ−2
0

(
ρ2m+3
0 TF2m+2 +

m∑
j=0

ρ2j+2
0 F2j

)
,

(6.2b) ∥u(·, t)∥C1,α(Ω) ≤ C

(
ρ2m+3
0 TF2m+2 +

m∑
j=0

ρ2j+2
0 F2j

)
,

where Fj :=
∥∥∂jtF∥∥L∞(Ω×[0,T ])

for every j ∈ N ∪ {0} and C depends on

α, n,E,M, λ and Λ only.

In order to prove Theorem 6.1 we use propositions 6.2, 6.3 given below.

Proposition 6.2. Assume that Ω and A(x) are the same of Theorem 6.1.
Let Ω be a bounded domain of Rn that satisfies (3.1a) and whose boundary
is of class C1,1. Let A(x) be a real-valued symmetric n× n matrix satisfying
(3.8). If f ∈ Lp(Ω), p ∈ (1,∞), then the solution v to the Dirichlet problem

(6.3)

{
div (A(x)∇v) = f, in Ω,

v ∈ H1
0 (Ω),

belongs to W 2,p(Ω) and the following estimate holds true

(6.4) ∥v∥W 2,p(Ω) ≤ Cρ20 ∥f∥Lp(Ω) ,

where C depends on λ,Λ, E,M and p only.

Proof. The Proposition is an immediate consequence of [G-T, Theorem 9.15]
and [G-T, Lemma 9.17].
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Proposition 6.3. Assume that Ω and A(x) are the same of Theorem 6.1.
Let F ∈ L2(Ω×(0, T )) and let u ∈ W ([0, T ]; Ω) be the solution to the problem

(6.5)


∂2t u− div (A(x)∇xu) = F, in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(·, 0) = ∂tu(·, 0) = 0, in Ω.

Then the following inequality holds true

(6.6) ∥u(·, t)∥Lp0 (Ω) ≤ Cρ0T ∥F∥L∞(Ω×(0,T )) , for every t ∈ (0, T ),

where p0 is the Sobolev imbedding exponent, namely

(6.7a) p0 =
2n

n− 2
, for n > 2,

(6.7b) p0 is an arbitrary number of [2,+∞) , for n = 2

and C depends on n,E,M and λ only.

Proof. Let τ ∈ (0, T ]. By multiplying both the sides of the first equation in
(6.5) by ∂tu and by integrating over Ω× (0, τ) we get∫ τ

0

∫
Ω

F∂tudxdt = −1

2

∫ τ

0

∫
Ω

∂t
(
A(x)∇u · ∇u+ (∂tu)

2) dxdt =
= −1

2

∫
Ω

(
A(x)∇u · ∇u+ (∂tu)

2) dx.
Hence, denoting by

K(τ) =

∫
Ω

(
A(x)∇u(x, t) · ∇u(x, t) + (∂tu(x, t))

2) dx,
we get

K(τ) ≤ 2

∫ τ

0

∫
Ω

|F | |∂tu| dxdt ≤ T

∫ τ

0

∫
Ω

F 2dxdt+
1

T

∫ τ

0

∫
Ω

(∂tu)
2 dxdt ≤

≤ T

∫ τ

0

∫
Ω

F 2dxdt+
1

T

∫ τ

0

K(t)dt.

By Gronwall inequality we derive the energy inequality

(6.8) K(τ) ≤ eT

∫ T

0

∫
Ω

F 2dxdt.
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In particular (6.8) gives

(6.9)

∫
Ω

|∇u(x, t)|2 dx ≤ eλ−1T

∫ T

0

∫
Ω

F 2dxdt.

Since u(·, t) ∈ H1
0 (Ω), by (6.9) and the Poincaré inequality we have

(6.10) ∥u(·, t)∥H1(Ω) ≤ Cρ0T ∥F∥L∞(Ω×(0,T )) .

Finally by the imbedding Sobolev theorem the thesis follows.

Sketch of the proof of Theorem 6.1.
In this sketch of the proof we skip on the question of regularity of the

solution for which we refer to [Co] and we focus on the proof of inequality
(6.2).

In order to estimate ∥∂2t u(·, t)∥L∞(Ω), for every t ∈ (0, T ) we distinguish
two cases: (a) n is not of the type 4h + 2, h ∈ N ∪ {0}, (b) n is of the type
4h+ 2, h ∈ N ∪ {0}.

Case (a). Denote by pk, k ∈ N ∪ {0}, the sequence such that

1

pk
=

1

p0
− 2k

n
, for k ∈ N ∪ {0}.

Notice that
1

pk
=

1

pk−1

− 2

n
, for k ∈ N

and that
1

pm−1

− 2

n
> 0 , and

1

pm
− 2

n
< 0.

Let us denote

u(j) := ∂jtu , for every j ∈ {0, · · · , 2m+ 2}.

By (6.1) we have, for every j ∈ {0, · · · , 2m+ 2},

(6.11)


∂2t u

(j) − div
(
A(x)∇xu

(j)
)
= ∂jtF, in Ω× [0, T ],

u(j) = 0 , on ∂Ω× [0, T ],

u(j)(·, 0) = ∂tu
(j)(·, 0) = 0, in Ω.

Observe that, since u(2j+2) = ∂2t u
(2j), by (6.11) we have that u(2j) is the

solution to the following Dirichlet elliptic problem

(6.12)

{
div
(
A(x)∇xu

(2j)
)
= u(2j+2) − ∂2jt F , in Ω,

u(2j) ∈ H1
0 (Ω),

41



hence by Proposition 6.2 we have, for every j ∈ {1, · · · ,m} and t ∈ (0, T ),

(6.13)
∥∥u(2j)(·, t)∥∥

W 2,pm−j (Ω)
≤ Cρ20

(∥∥u(2j+2)(·, t)
∥∥
Lpm−j (Ω)

+ F2j

)
,

where C depends on λ,Λ, E and M only. Hence by Sobolev imbedding
theorem we get, for every j ∈ {2, · · · ,m} and t ∈ (0, T ),

(6.14)
∥∥u(2j)(·, t)∥∥

Lpm−j+1 (Ω)
≤ C0ρ

2
0

(∥∥u(2j+2)(·, t)
∥∥
Lpm−j (Ω)

+ F2j

)
,

and

(6.15)
∥∥u(2)(·, t)∥∥

L∞(Ω)
≤ C0ρ

2
0

(∥∥u(4)(·, t)∥∥
Lpm−2 (Ω)

+ F2

)
,

where C0 ≥ 1 depends on n, λ,Λ, E and M only. Now by applying Proposi-
tion 6.3 to u(2m+2) we have, for every t ∈ (0, T ),

(6.16)
∥∥u(2m+2)(·, t)

∥∥
Lp0 (Ω)

≤ C1ρ0TF2m+2,

where C1 ≥ 1 depends on n, λ, E and M only. Therefore, by iterating (6.14)
and by (6.15) and (6.16) we get, for every t ∈ (0, T ),

(6.17)
∥∥u(2)(·, t)∥∥

L∞(Ω)
≤ C1C

m
0

(
ρ2m+1
0 TF2m+2 +

m∑
j=0

ρ2j0 F2j

)
,

Now since u = u(0), by (6.12) and by [G-T, Theorem 8.33] we get, for
every t ∈ (0, T ),

(6.18) ∥u(·, t)∥C1,α(Ω) ≤ Cρ20

(∥∥u(2)(·, t)∥∥
L∞(Ω)

+ F0

)
,

where C depends on α, n,E,M, λ and Λ only. By (6.18) and (6.17) we obtain
(6.2) in the case (a).

Case (b) We consider only the case n > 2, because if n = 2 we can
proceed similarly.

If n is of the type 4h + 2, h ∈ N ∪ {0} then inequality (6.13) still holds,
but by Sobolev imbedding Theorem, instead of inequality (6.15) we have, for
every q ∈ [2,∞),

(6.19)
∥∥u(4)(·, t)∥∥

Lq(Ω)
≤ C2ρ

2
0

(∥∥u(6)(·, t)∥∥
Lpm−1 (Ω)

+ F4

)
,

where C2 ≥ 1 depends on n, λ,Λ, E,M and q only.
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Let us choose q > n
2
, by applying [G-T, Theorem 8.29] to u(2)(·, t) we

have

(6.20)
∥∥u(2)(·, t)∥∥

L∞(Ω)
≤ C3ρ

2
0

(∥∥u(4)(·, t)∥∥
Lq(Ω)

+ F2

)
,

where C3 ≥ 1 depends on n, λ,E,M and q.
Now, by iterating (6.13) and by using (6.19) and (6.20) we get

(6.21)
∥∥u(2)(·, t)∥∥

L∞(Ω)
≤ C2C3C

m−1
0

(
ρ2m+1
0 TF2m+2 +

m∑
j=0

ρ2j0 F2j

)

and arguing as in the case (a) the thesis follows.�

6.2 Proof of Propositions 4.4, 4.5

Proof of Proposition 4.4
We prove (4.19) for j = 0, the proof for j > 0 being the same.
By (4.18) we have

√
2π
∣∣U (τ)

µ (x, y)
∣∣ = ∣∣∣∣√µ∫ T

0

e−
µ
2
(iy+τ−t)2u(x, t)dt

∣∣∣∣ ≤
≤ √

µe
µ
2
y2
∫ T

0

e−
µ
2
(τ−t)2 |u(x, t)| dt,

hence, the Schwarz inequality yields

√
2π
∣∣U (τ)

µ (x, y)
∣∣ ≤ √

µe
µ
2
y2
(∫ T

0

e−µ(τ−t)2dt

)1/2(∫ T

0

|u(x, t)|2 dt
)1/2

≤

≤ √
µe

µ
2
y2
(∫ +∞

0

e−µt2dt

)1/2(∫ T

0

|u(x, t)|2 dt
)1/2

≤ cµ1/4e
µ
2
y2
(∫ T

0

|u(x, t)|2 dt
)1/2

.
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Now we prove (4.20). By the change of variable η =
√
µ(t− τ) we have

√
2π
(
U (τ)
µ (x, 0)− u(x, τ)

)
=(6.22)

=
√
µ

∫ T

0

e−
µ
2
(τ−t)2u(x, t)dt− u(x, τ)

∫ +∞

−∞
e−

η2

2 dη =

=

∫ √
µ(T−τ)

−√
µτ

e−
η2

2 u

(
x, τ +

η
√
µ

)
dη − u(x, τ)

∫ +∞

−∞
e−

η2

2 dη =

=

∫ √
µ(T−τ)

−√
µτ

e−
η2

2

(
u

(
x, τ +

η
√
µ

)
− u(x, τ)

)
dη−

−u(x, τ)

(∫ +∞

√
µ(T−τ)

e−
η2

2 dη +

∫ −√
µτ

−∞
e−

η2

2 dη

)
:= I1 + I2.

We begin to estimate |I1|. We have

|I1| ≤ µ−1/2 ∥∂tu(x, ·)∥L∞[0,T ]

∫ +∞

−∞
|η|e−

η2

2 dη ≤(6.23)

≤ cµ−1/2 ∥∂tu(x, ·)∥L∞[0,T ] ,

where c is an absolute constant.
Now we estimate |I2|. Taking into account that τ ∈ (0, T/2) we have

|I2| ≤ 2 |u(x, τ)|
∫ +∞

√
µτ

e−
η2

2 dη ≤(6.24)

≤ 2 |u(x, τ)| e−
µ
4
τ2
∫ +∞

√
µτ

e−
η2

4 dη ≤ ce−
µ
4
τ2 |u(x, τ)| ,

where c is an absolute constant.
Now, since u(x, 0) = 0 we have

e−
µ
4
τ2 |u(x, τ)| ≤(6.25)

≤ e−
µ
4
τ2τ ∥∂tu(x, ·)∥L∞[0,T ] ≤ 2e−1µ−1/2 ∥∂tu(x, ·)∥L∞[0,T ] .

By (6.22), (6.23), (6.24) and (6.25) we get (4.20).�
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Proof of Proposition 4.5. We have

∂yUµ(x, y) =

√
µ

2π

∫ T

0

−iµ(iy + τ − t)e−
µ
2
(iy+τ−t)2u(x, t)dt =

=

√
µ

2π

∫ T

0

−i∂t
(
e−

µ
2
(iy+τ−t)2

)
u(x, t)dt =

= −i
√

µ

2π

(
e−

µ
2
(iy+τ−T )2u(x, T )−

∫ T

0

e−
µ
2
(iy+τ−t)2∂tu(x, t)dt

)
and similarly

∂2yUµ(x, y) =

√
µ

2π
e−

µ
2
(iy+τ−T )2 (∂tu(x, T )− µ(iy + τ − T )u(x, T ))−(6.26)

−
√

µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2∂2t u(x, t)dt.

On the other side, by (4.17) we have

div (A(x)∇Uµ) =

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2div (A(x)∇u) dt =(6.27)

=

√
µ

2π

∫ T

0

e−
µ
2
(iy+τ−t)2∂2t u(x, t)dt.

By (6.26) and (6.27) the thesis follows.�

6.3 Proof of Theorem 4.6

In the sequel, for seek of brevity we omit the tilde over rj, j = 1, 2, 3.

First we consider the homogeneous case in which f̃ = 0 and we assume
that r3 = 1. In [M-R-V1, Theorem 4.5] it has been proved that there exists
a positive number β depending on λ0,Λ0 only such that if β > β, then there
exist constants C, τ1 and r0, (C ≥ 1, τ1 ≥ 1, 0 < r0 ≤ 1) depending only on
λ0,Λ0 and β such that the following estimate holds true

τ

∫
|X|β e2τ |X|−β

|∇v|2 + τ 3
∫

|X|−β−2 e2τ |X|−β

|v|2 ≤(6.28)

≤ C

∫
|X|2β+2 e|X|−β

|Pv|2 ,

for every v ∈ C∞
0 (Br0 \ {0}) and for every τ ≥ τ1.

On the other hand it is simple to check that there exists β̃ depending
on λ0,Λ0 only such that if β ≥ β̃ then |X|−β satisfies the pseudoconvexity
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conditions of [Hö, Theorem 8.3.1] in B1 \Br0/2. Therefore there exist τ2 ≥ τ1
and C depending on λ0,Λ0 and β only such that

τ

∫
e2τ |X|−β

|∇v|2 + τ 3
∫
e2τ |X|−β

|v|2 ≤(6.29)

≤ C

∫
e|X|−β

|Pv|2 ,

for every v ∈ C∞
0

(
B1 \Br0/2

)
and for every τ ≥ τ2.

Now we have trivially

(6.30a)

∫
e2τ |X|−β

|∇v|2 ≥
∫

|X|β e2τ |X|−β

|∇v|2,

(6.30b)

∫
e2τ |X|−β

|v|2 ≥ (r0/2)
β+2

∫
|X|−β−2 e2τ |X|−β

|v|2,

(6.30c)

∫
e|X|−β

|Pv|2 ≤ 1

(r0/2)2β+2

∫
|X|2β+2 e|X|−β

|Pv|2 ,

for every v ∈ C∞
0

(
B1 \Br0/2

)
. Let ζ ∈ C∞

0 (Br0) such that 0 ≤ ζ ≤ 1,
|∇ζ|, |D2ζ| ≤ C and ζ(X) = 1 for every X ∈ Br0/2.

Now let us denote by β1 := max{β, β̃, 1} and let v ∈ C∞
0 (B1 \ {0}). By

applying (6.31) and (6.29) to ζv and (1 − ζ)v respectively and taking into
account (6.30) we have, for β ≥ β1

τ

∫
|X|β e2τ |X|−β

|∇v|2 + τ 3
∫

|X|−β−2 e2τ |X|−β

|v|2 ≤(6.31)

≤ C

∫
|X|2β+2 e|X|−β

|Pv|2 + C

∫
|X|2β+2 e|X|−β (

|D2ζ|2v2 + |∇ζ|2|∇v|2
)
.

Now the second term at the right hand side can be absorbed by the left hand
side. Hence there exists τ3 ≥ τ2 and C depending on λ0,Λ0 and β only such
that for every v ∈ C∞

0 (B1 \ {0}) and every τ ≥ τ3 the following inequality
holds true

τ

∫
|X|β e2τ |X|−β

|∇v|2 + τ 3
∫

|X|−β−2 e2τ |X|−β

|u|2 ≤(6.32)

≤ C

∫
|X|2β+2 e|X|−β

|Pv|2 .

Now we use a standard argument to derive by (6.32) the desired three sphere
inequality.
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First we observe that, by density, estimate (6.32) holds true for every v ∈
H2

0 (B1 \ {0}). Now let u ∈ H1 (B1) be a solution to equation Pu = 0. By L2

regularity theorem we have that u ∈ H2
loc (B1). Let 0 < r1 ≤ r2 < 1, 0 < δ ≤

min
{

1−r2
2
, 1
2

}
and let us consider a cutoff function η ∈ C2

0

(
B1−δ \Br1(1−2δ)

)
such that 0 ≤ η ≤ 1 and satisfying the following conditions

η = 1 , in B1−2δ \Br1(1−δ),

|∇η| ≤ c

δr1
, |D2η| ≤ c

δ2r21
, in Br1(1−δ) \Br1(1−2δ)

and
|∇η| ≤ c

δ
, |D2η| ≤ c

δ2
, in B1−δ \B1−2δ,

where c is an absolute constant.
By (4.25), since f̃ = 0 we have

|P (ηu)| ≤ C (|∇η||∇u|+ |Pη||u|) ,

∫
|X|2β+2 e|X|−β

|P (ηu)|2 ≤ Ce2τ((1−2δ)r1)
−β

r2β+2
1 ×(6.33)

×

[∫
Br1(1−δ)\Br1(1−2δ)

(
(δr1)

−2|∇u|2 + (δr1)
−4|u|2

)]
+

+Ce2τ(1−2δ)−β

[∫
B1−δ\B1−2δ

(
δ−2|∇u|2 + δ−4|u|2

)]
,

where C depends on λ0,Λ0 and β only.
By applying the Caccioppoli inequality to the right hand side of (6.33)

and by (6.32) we have, for every τ ≥ τ3

∫
Br2

|X|−β−2 e2τ |X|−β

|uη|2 ≤ Ce2τ((1−2δ)r1)
−β

r2β−2
1 δ−4

∫
Br1

|u|2+(6.34)

+Ce2τ(1−2δ)−β

δ−4

∫
B1

|u|2,

where C depends on λ0,Λ0 and β only.
On the other hand we have trivially

(6.35)

∫
Br2

|X|−β−2 e2τ |X|−β

|uη|2 ≥ r−β−2
2 e2τr

−β
2

∫
Br2\Br1

|u|2.
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Now let us denote

(6.36) ϵ :=

(∫
Br1

|u|2
)1/2

, and K :=

(∫
B1

|u|2
)1/2

.

By (6.34) and (6.35) we have for every τ ≥ τ3

∫
Br2\Br1

|u|2 ≤(6.37)

≤ Cδ−4
{
e2τ[((1−2δ)r1)

−β−r−β
2 ]ϵ2 + e2τ[((1−δ))−β−r−β

2 ]K2
}
,

where C depends on λ0,Λ0 and β only.
Now we add to both the side of (6.37) the integral

∫
Br1

u2dX and we get

(6.38)

∫
Br2

|u|2 ≤ Cδ−4
{
e2τ[((1−2δ)r1)

−β−r−β
2 ]ϵ2 + e2τ[((1−δ))−β−r−β

2 ]K2
}
,

where C depends on λ0,Λ0 and β only.
Now denote by τ the number

(6.39) τ =
log(ϵ−1K)

((1− 2δ)r1)
−β − (1− δ)−β

such a number satisfies the equality

e2τ[((1−2δ)r1)
−β−r−β

2 ]ϵ2 = e2τ[((1−δ))−β−r−β
2 ]K2.

If τ ≥ τ3 then we choose τ = τ in (6.38) and we obtain

(6.40)

∫
Br2

|u|2 ≤ Cδ−4K2(1−ϑ)ϵϑ,

where

ϑ =
r−β
2 − (1− δ)−β

[(1− 2δ)r1]
−β − (1− δ)−β

.

On the other side if τ < τ3 then by (6.39) we have

(6.41) (ϵ−1K)2ϑ < e2τ3[r
−β
2 −(1−δ)−β ]
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hence we have trivially
(6.42)∫

Br2

|u|2 ≤
∫
B1

|u|2 = K2 = K2(1−ϑ)K2ϑ ≤ e2τ3[r
−β
2 −(1−δ)−β ]K2(1−ϑ)ϵ2ϑ.

Therefore by (6.43) and (6.42) we have

(6.43)

∫
Br2

|u|2 ≤ Cδ−4e2τ3[r
−β
2 −(1−δ)−β ]K2(1−ϑ)ϵϑ.

In the nonhomogeneous case, let u ∈ H1(B1) a solution to Pu = f̃ and
let w be the solution to the Dirichlet problem{

Pw = f̃ , in B1,

w ∈ H1
0 (B1),

we have that

(6.44)

∫
B1

|w|2 ≤ C

∫
B1

|f̃ |2,

where C depends on λ0. By applying (6.43) to the function u − w and by
(6.44) we obtain inequality (4.29) when r̃3 = 1. Finally, by using the dilation
X → r3X the thesis follows easily.�
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