
                             Elsevier Editorial System(tm) for Talanta 

                                  Manuscript Draft 

 

 

Manuscript Number: TAL-D-17-01479R1 

 

Title: Applicability of the direct injection liquid chromatographic 

tandem mass spectrometric analytical approach to the sub-ng L-1 

determination of perfluoro-alkyl acids in waste, surface, ground and 

drinking water samples  

 

Article Type: VSI:ExTech2016 and ISSS2016 

 

Keywords: Direct injection UHPLC-MS/MS; Perfluoroalkyl acids; Drinking 

water; Environmental water; Wastewater; Matrix effect chemometrics. 

 

Corresponding Author: Professor Massimo Del Bubba, Ph.D. 

 

Corresponding Author's Institution: University of Florence 

 

First Author: Lorenzo Ciofi 

 

Order of Authors: Lorenzo Ciofi; Lapo Renai; Daniele Rossini; Claudia 

Ancillotti; Maria Concetta Bruzzoniti; Alida Falai; Donatella Fibbi; José 

Juan Santana-Rodriguez; Serena Orlandini; Massimo Del Bubba, Ph.D. 

 

Manuscript Region of Origin:  

 

 

 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

 

Applicability of the direct injection liquid chromatographic tandem mass 

spectrometric analytical approach to the sub-ng L
-1

 determination of perfluoro-

alkyl acids in waste, surface, ground and drinking water samples 

 
Lorenzo Ciofi

a
, Lapo Renai

a
, Daniele Rossini

a
,
 
Claudia Ancillotti

a
, Alida Falai

b
, Donatella Fibbi

c
, Maria 

Concetta Bruzzoniti
d
, José Juan Santana-Rodriguez

e
, Serena Orlandini

a
, Massimo Del Bubba

a,
* 

 
a
 Department of Chemistry - University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence, Italy) 

b
 Publiacqua S.p.A., Via di Villamagna 90/c, 50126 Florence (Italy) 

c
 GIDA S.p.A., Via Baciacavallo 36, 59100 Prato (Italy) 

d
 Department of Chemistry - University of Turin, Via Pietro Giuria 7, 10125 Turin (Italy) 

e
 Department of Chemistry - University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria (Spain) 

 

* Corresponding Author. E-mail address: delbubba@unifi.it 

 

Abstract  

The applicability of a direct injection UHPLC-MS/MS method for the analysis of several 

perfluoroalkyl acids (PFAAs) in a wide range of water matrices was investigated. The method is 

based on the direct injection of 100 µL of centrifuged water sample, without any other sample 

treatment. Very good method detection limits (0.014-0.44 ng L
-1

) and excellent intra and inter-day 

precision (RSD% values in the range 1.8-4.4% and 2.7-5.7%, respectively) were achieved, with a 

total analysis time of 20 minutes per sample. A high number of samples – i.e. 8 drinking waters 

(DW), 12 ground waters (GW), 13 surface waters (SW), 8 influents and 11 effluents of wastewater 

treatment plants (WWTPIN and WWTPOUT) were processed and the extent of matrix effect (ME) 

was calculated, highlighting the strong prevalence of |ME|<20%. The occurrence of |ME|>50% was 

occasionally observed only for perfluorooctanesulphonic and perfluorodecanoic acids. Linear 

discriminant analysis highlighted the great contribution of the sample origin (i.e. DW, GW, SW, 

WWTPIN and WWTPOUT) to the ME. Partial least square regression (PLS) and leave-one-out cross-

validation were performed in order to interpret and predict the signal suppression or enhancement 

phenomena as a function of physicochemical parameters of water samples (i.e. conductivity, 

hardness and chemical oxygen demand) and background chromatographic area. The PLS approach 

resulted only in an approximate screening, due to the low prediction power of the PLS models. 

However, for most analytes in most samples, the fitted and cross-validated values were such as to 

correctly distinguish between | ME | higher than 20% or below this limit. PFAAs in the 

aforementioned water samples were quantified by means of the standard addition method, 

highlighting their occurrence mainly in WWTP influents and effluents, at concentrations as high as 

one hundred of µg L
-1

.  

Keywords - Direct injection UHPLC-MS/MS; Perfluoroalkyl acids; Drinking water; Environmental 

water; Wastewater; Matrix effect chemometrics. 
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1 Introduction 

Perfluoro-alkyl acids (PFAAs) are a class of compounds having a CF3-(CF2)n-R structure, where R 

is a carboxylic or a sulfonic or a phosphonic group, and “n” ranges mostly between 2 and 10. 

PFAAs are characterized by high resistance to physical, chemical and biological degradation and 

have been widely employed since the 1950s in a wide range of industrial and commercial 

applications, as well as in fluoropolymer production, giving rise to a widespread contamination of 

environmental matrices. More in detail, PFAAs have been determined in wastewater [1-3], surface 

water [4-6] and drinking water [7]. Moreover, PFAAs have been detected in remote areas like open 

oceans [8] and Arctic [9, 10]. 

Among PFAAs, perfluorooctanesulphonic acid (PFOS) and perfluorooctanoic acid (PFOA) have 

been the most industrially employed until 2006, when some regulatory restrictions have been 

promulgated both in Europe and United States [11, 12]. Furthermore, in 2013 PFOS has been 

included in the list of priority hazardous substances, within the Directive 2013/39/EU [13], whereas 

PFOA has been included in the candidate list of Substances of Very High Concern because of its 

carcinogenic, mutagenic or toxic for reproduction effects as well as persistent, bioaccumulative and 

toxic properties [14]. 

For PFOS an annual average environmental quality standard (EQS) and a maximum allowable 

concentration (MAC) of 0.65 ng L
-1

 and 36 µg L
-1

 have been respectively established for inland 

waters by the European Community (EC) [13]. As regards drinking water, Provisional Health 

Advisories of 0.4 µg L
-1

 and 0.2 µg L
-1

 have been proposed by the Environmental Protection 

Agency of Unites States (USEPA) for PFOA and PFOS, respectively [15]. For these compounds 

concentration limits in drinking water of 0.5 µg L
-1

 (PFOA) and 0.03 µg L
-1

 (PFOS) have been 

recommended by the Italian Health Institute, on the basis of maximum tolerable daily intake (TDI) 

data reported by the European Food Safety Authority [16]. Conversely, to the best of our 

knowledge, no limits have been established for the presence of PFAAs in groundwater. 

Several analytical methods for the determination of PFAAs in water media at trace level have been 

published, mostly employing solid-phase extraction (SPE) and liquid chromatography (LC) coupled 

with tandem mass spectrometry (MS/MS) [1, 17-19].  

However, physicochemical properties (i.e. solubility/lipophilicity and acidity) of these molecules 

greatly vary depending on the chain length and the acidic group present in the molecule, thus 

making challenging the recovery of all analytes during extraction and clean-up processes. 

Furthermore, special care should be taken during sample manipulation, treatment and analysis, 

since, as demonstrated by various inter-laboratory studies, there is an actual risk of contamination 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

during the whole analytical process, owing to the presence of fluorinated polymers in commonly 

used laboratory materials and equipment [20]. 

In order to minimize sample manipulation and treatment, as well as to increase the analytical 

throughput, several on-line SPE-LC-MS/MS methods have been developed for PFAAs 

determination in water samples [21-24].  

The direct injection (DI) approach is the best choice to overcome any contamination of the sample 

due to its manipulation and treatment, as well as to ensure a high analytical throughput. However, 

this approach may suffer a lower sensitivity, compared to SPE-based methods. Moreover, when the 

DI approach is used, matrix effect (ME) may significantly affect the precision and/or the sensitivity 

of the method, owing to the absence of extraction and clean-up steps. Several applications of the DI 

technique have been reported in literature for the determination of different classes of organic 

micropollutants in water samples [3, 20, 25-28]. Furthermore, the DI approach is also included in 

official methods for the analysis of selected organic contaminants in drinking water [29, 30], where 

ME is usually less important than in freshwater or wastewater [31-34]. Nevertheless, to the best of 

our knowledge, only two papers have been published to date concerning the application of DI-LC-

MS/MS to PFAA analysis [3, 20]. Furdui and co-workers evaluated ME for DI-LC-MS/MS analysis 

of C7-C12 perfluoro-carboxylic acids (PFCAs), C6 and C8 perfluoro-sulfonic acids (PFSAs) and 

C8 perfluoro-sulfonamide in lake water and effluent wastewater, highlighting in all real samples a 

suppressive ME [3]. Conversely, on a larger group of PFAAs, including also C4-C6 PFACs and C4 

PFSA, Wolf and Reagen evidenced the absence of ME in various synthetic and real drinking water 

samples, as well as in groundwater, cooling-water and effluent wastewater samples [20]. It should 

be however noted that in both studies ME was not systematically investigated, and the applicability 

of the DI-LC-MS/MS approach to a wide range of aqueous matrices, including those characterized 

by a strong matrix component (e.g. wastewaters and environmental waters), still remains worth to 

be further investigated. In this regard, it should be remarked that the analysis of PFAAs in aqueous 

samples provides a realistic picture of their presence in the whole environmental compartment (i.e. 

water with sediments and particulate matter), since these analytes are almost completely partitioned 

in the dissolved phase [8]. 

According to the considerations reported above, the aim of this work was to evaluate the feasibility 

of using the DI-LC-MS/MS analytical approach for the determination of PFCAs and PFSAs in a 

very wide range of water samples (i.e. drinking water, groundwater, river water, lake water and 

wastewater). For each sample ME was investigated by the standard addition method and tentatively 

interpreted as a function of a set of physicochemical parameters of water samples (i.e. conductivity, 

hardness, and organic carbon content), as well as chromatographic outputs.    



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

Moreover, since water samples herein analysed were collected in zones never investigated before 

for PFAA occurrence (i.e. various rural, urban and industrial districts of Tuscany, Italy), this study 

provides for the first time information regarding the contamination by PFAAs of these areas. 

2 Material and methods 

2.1  Standards and reagents 

Perfluorobutanesulphonic acid (PFBuS, CAS number: 375-73-5), perfluoropentanoic acid (PFPeA, 

CAS number: 2706-90-3), perfluorohexanoic acid (PFHxA, CAS number: 307-24-4), 

perfluorohexanesulphonic acid (PFHxS, CAS number: 355-46-4), perfluoroheptanoic acid (PFHpA, 

CAS number: 375-85-9), perfluorooctanoic acid (PFOA, CAS number: 335-67-1), perfluoro-n-

(1,2,3,4 
13

C4)octanoic acid (MPFOA), perfluoroactanesulphonic acid (PFOS, CAS number: 1763-

23-1), and perfluoro-1-(1,2,3,4 
13

C4)octanesulphonate (MPFOS),  perfluorononanoic acid (PFNA, 

CAS number: 375-95-1), perfluorodecanoic acid (PFDA, CAS number: 335-76-2), methanol stock 

solutions (50 µg mL
-1

) were purchased by Wellinghton Laboratories Inc. (Guelph, ON, Canada). 

Water and methanol (LC-MS grade) were obtained from Carlo Erba (Milan, Italy). 

Ammonium acetate (Sigma-Aldrich, St. Louis, MO, USA) 1 M solution was freshly prepared in 

water LC-MS grade. 

2.2 UHPLC-MS/MS analysis 

Ultra-high performance liquid chromatographic (UHPLC) analyses were performed on a Shimadzu 

(Kyoto, Japan) chromatographic system consisting of a low pressure gradient quaternary pump 

Nexera X2 LC-30AD, a DGU-20A 5R degassing unit, a SIL-30AC autosampler equipped with a 

100 µL loop, a CTO/20AC thermostatted column compartment and a CBM-20A module controller. 

A delay column (C18, 100 x 4.6 mm) was installed between the mixer and the sample injector, in 

order to separate the impurity PFAAs originating from the LC system from the analyte PFAAs of 

the sample. 

Chromatographic separation was obtained with a Waters ACQUITY UPLC BEH C18 column (100 x 

2.1 mm, particle size 1.7 µm) equipped with a guard column (Waters, Milford, MA, USA), 

thermostatted at 50° C, employing a mixture of 95% water 5% methanol solution of 2 mM 

ammonium acetate (solvent A) and a methanol solution of 2 mM ammonium acetate (solvent B) at a 

flow rate of 0.5 mL min
-1

. All glassware was thoroughly rinsed with methanol before use. The 

eluents were freshly prepared by adding a suitable aliquot of 1 M ammonium acetate solution 

filtered on 0.2 µm polyethersulfone filters. The chromatographic gradient was the following: 25% B 

for 2 min, from 25% to 90% in 6 min, 90% for 5 min, from 100% to 25% in 0.5 min and final hold 
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for 6.5 min for system re-equilibration. Total analysis time was 20 mins. The injection volume used 

was set to 100 µL. Fig. S1 of the Supplementary material section illustrates a reconstructed DI-LC-

MS/MS chromatogram of the quantifier and qualifier transitions of target PFAAs obtained by 

injecting 100 µL of a standard mixture in Milli-Q water at the concentration of 5 ng L
-1

 each. 

In order to minimize MS source contamination, the first 2 min. and the last 8 min. of the 

chromatographic run have been diverted to waste by means of a two-position six-port valve 

installed before the mass spectrometer. 

2.3 Mass spectrometric detection 

The Shimadzu LC system was coupled to a 5500 QTrap mass spectrometer (Sciex, Framingham, 

MA, USA), equipped with a Turbo V
®

 interface by an ESI probe. MS/MS analysis was carried out 

using the Multiple Reaction Monitoring (MRM) in negative ionization mode. The MS source 

parameters were optimized in flow injection analysis (FIA) at optimal LC flow and mobile phase 

composition and were as follows: Curtain Gas (CUR) 50, CAD Gas (CAD) Medium, Temperature 

(TEM) 650°C, Gas 1 (GS1) 50, Gas 2 (GS 2) 50, and IonSpray Voltage (IS) -4500 V in scheduled 

MRM(−). 

MRM mass transitions used for quantification and identity confirmation, together with compound-

dependent parameters are listed in Table S1 of the Supplementary material section. 

Confirmation criteria proposed by the Commission Decision 2002/657/EC [35] concerning 

retention time and quantifier-to-qualifier ion intensity ratio were adopted for compound 

identification. 

2.4 Method performance evaluation 

Standard solutions containing 1, 5, 10, 30, 50, 100 and 250 ng L
-1

 of each analyte were employed 

for calibration curves. For each investigated compound, method detection limits (MDLs) and 

method quantification limits (MQLs) were evaluated by replicated (n=5) analysis of procedural 

blanks, according to the following equation: 

           
    

 
 

where k is the critical value given by 2t1-α with n-1=4 degree of freedom and α=0.05 (k=4.264 and 

k=10, for MDLs and MQLs, respectively); σb is the standard deviation of the blank and m is the 

slope of the calibration curve. 

The method of standard additions was used for the evaluation of ME, as well as for analyte 

quantification in real samples. Each sample was split into four aliquots, three of which were spiked 

with increasing concentration of standard solutions of target PFAAs. The spike levels were selected 
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so that the final concentrations of the compounds fell into the linear range. Spike levels of 10, 50 

and 100 ng L
-1

 were employed. The extent of ME was evaluated according to the following 

equation: 

     
       

         
         

where msample is the slope of the calibration curve obtained in matrix, and mstandard is the slope of the 

calibration curve in solvent; accordingly, ME values <0 indicate ion suppression, whereas ME 

values > 0 indicate ion enhancement. 

2.5 Sample collection and handling before analysis 

A very wide range of wastewater and environmental water samples, comprising eight drinking 

waters (DW), twelve ground waters (GW), thirteen surface waters (SW), as well as eight influents 

and eleven effluents of wastewater treatment plants (WWTPIN and WWTPOUT), were included in 

this study (see Table S2 of the Supplementary material section).  

Glass bottles equipped with screw top and aluminium under-cap were employed for collecting the 

samples. All the samples were obtained through 24-h composite collections using Endress + Hauser 

Liquiport 2010 CSP44 autosamplers (Reinach, Switzerland). After collection, all samples were 

stored at +4 °C until analysis, which was performed in triplicate within 48 h after sampling. 

Ultracentrifugation of samples at 30,000 x g was performed in polypropylene Eppendorf vials for 

particulate matter removal before UHPLC-LC-MS/MS analysis. Afterwards, the samples were 

fortified with labelled MPFOA and MPFOs, as internal standards, in order to highlight any possible 

leakage during sample injection in the UHPLC system.   

2.6 Statistical analysis 

Linear discriminant analysis (LDA) and partial least square (PLS) regression with leave-one-out 

cross validation were performed using the Minitab software packages version 17.0.1 (Minitab Inc., 

State College, PA, USA). 

3 Results and discussion 

3.1 Figures of merit of the analytical method 

Method performance were evaluated by estimating method detection limits (MDLs), method 

quantification limits (MQLs), linearity, intra-day and inter-day precision via the replicated injection 

in the DI-LC-MS/MS system of 100 µL standard solutions in Milli-Q water. Table 1 summarizes 

the results obtained for these performance parameters. More in detail, MDLs and MQLs were 
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evaluated by replicated (n=5) analysis of procedural blanks, according to the equation reported in 

Section 2.4.  

Very good sensitivities were achieved for all investigated compounds, being the MDLs in all cases 

well-below 1 ng L
-1

. Furthermore, the MQL achieved for PFOS (0.17 ng L
-1

) was fully compatible 

with its quantification at the concentration level of the European EQS for inland waters (0.65 ng L
-

1
), which is commonly considered a challenging limit for every LC-MS analytical method [21]. 

For all compounds, linearity range covered at least two magnitude orders, ranging from MQLs to 

100 ng L
-1

, with determination coefficient of regression ≥0.9981. Intra-day and inter-day precisions 

were evaluated for all compounds at a concentration equal to 5 ng L
-1

, achieving RSD%intra and 

RSD%inter values comprised in the range 1.8-4.4% and 2.7-5.7%, respectively. 

3.2 Matrix Effect evaluation and interpretation 

Table S3 of the Supplementary material section summarizes the values of ME determined for each 

compound and sample investigated. Very different extents of signal suppression or enhancement 

were observed, depending on the analyte and the sample considered, thus giving rise to a very 

complex dataset.   

In order to make easier the discussion of data shown in Table S3, a graphical summary of the ME 

distribution determined for each investigated PFAA in the 52 water samples, is reported in Fig. 1. 

More in detail, Fig. 1A illustrates the frequency of occurrence of the absolute values of ME within 

the following groups: (i) |ME|<20%, (ii) 20≤|ME|≤50% and (iii) |ME|>50%. For most investigated 

analytes ME was found always lower than 50%. Furthermore, |ME|<20%, which is considered to 

have a negligible influence on the performance of an analytical method [36-38], showed the highest 

frequency of occurrence. The occurrence of |ME|>50%, from -51.2% to -77.5%, was observed only 

for PFOS and PFDA; these extremely high signal suppressions interested mainly GW-6, GW-7 and 

GW-8 samples, which showed a quite strong suppression also for most of the other investigated 

compounds (Table S3). As illustrated in Fig. 1B, PFOS and PFDA were the only analytes showing 

the mean and median outside the ±20% range; the ME distribution of these two compounds was 

characterized by a more pronounced suppressive effect and was statistically different from those 

observed for PFBuS and PFHxS (P≤0.01). In fact, PFOS and PFDA were the most affected by ME 

(mean values equal to -23.7% and -21.1%, respectively), whereas PFBuS and PFHxS the less 

influenced by the matrix (mean values equal to -6.1% and -5.5%, respectively). It should also be 

noted that the ME distribution of PFOS was significantly different (P=0.018) from that of PFOA, as 

well. 
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LDA has been carried out on the whole ME dataset in order to verify if suppressive or enhancement 

effects due to the matrix is a parameter actually suitable for correctly categorizing a certain sample, 

according to the classification given in Table S2 (i.e. DW, GW, SW, WWTPIN and WWTPOUT). 

The squared distance between groups and the summary of the results obtained in fitted and cross-

validated (leave-one-out method) classification are illustrated in Table 2 and Table 3, respectively.  

As shown in Table 2, the highest between-group distance was observed by comparing the SW and 

the WWTP groups (23.4 and 21.7 for WWTPIN and WWTPOUT, respectively). SW group was also 

quite well-separated from DW (distance of 13.0) and GW (distance of 17.6) ones. Accordingly, SW 

samples were correctly classified in 11 out of 13 cases, both in fitting and in cross-validation (Table 

3), with probability levels that, in the worst case, were 98% and 95%, respectively, thus evidencing 

the robustness of this classification. It should also be remarked that the two misclassified samples 

(i.e. SW-3 and SW-13) were however attributed to GW and DW, without any misleading attribution 

to the wastewater category. 

DW and GW groups were characterized by very low between-group squared distance; a low 

distance was also observed by comparing these groups with the WWTPOUT one (Table 2). 

Accordingly, some DW and GW samples were mutually misclassified, as well as erroneously 

attributed to the WWTPOUT group, especially in cross-validation (Table 3). However, it is 

remarkable that no erroneous attribution to the WWTPIN group was generated by the LDA model.     

Interesting results were found for the WWTPIN and WWTPOUT groups, which were very low-

separated (Table 2). The samples of these groups were correctly classified in approximately 70% 

and 50% of the cases, for fitting and cross-validation, respectively (Table 3). It should be however 

underlined, that most of misclassified samples, with the only exceptions of WWTPOUT-7 and 

WWTPOUT-9, were identified as WWTP samples. In almost all these cases, fitting and cross-

validation probabilities of attribution ≥ 80% were obtained. WWTPOUT-7 was wrongly attributed to 

the GW group, probably as the result of the high dilution rate due to a strong run-off rain event, 

which occurred during few days before the collection of this sample. As regards WWTPOUT-9, it 

should be noted that this facility was the only one treating wastewater almost exclusively deriving 

from domestic activities, differently from all the other treatment plants, which receive a significant 

contribution of industrial origin. 

The LDA results highlighted the contribution of the sample origin to the ME observed during 

PFAA analysis by LC-MS/MS. Accordingly, PLS regression with leave-one-out cross-validation, 

was attempted on the whole sample dataset, adopting ME as response variable. Conductivity, 

hardness and COD measured in each water sample were used as sample dependent predictors of the 

PLS regression (3-variable models), due to the fact that these parameters are routinely determined 
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in laboratories of potabilization facilities and WWTPs and could be usefully adopted for avoiding 

an over-application of time-consuming and expensive approaches such as the standard addition 

method and the isotope dilution technique.   

PLS failed to correctly fit and cross-validate the experimental ME values, when the whole sample 

dataset was used for the regression. The inclusion in the model of a further variable representing the 

signal area at the retention time of target analytes under negative ionization (4-variable models) did 

not improve significantly the model.  

Better results were achieved when PLS regression was separately applied to the WWTP, DW and 

especially GW sample categories. As reported in Table S4 of the Supplementary material section, 

which illustrates the parameters of the 3-variable and 4-variable fitting and cross-validation models, 

for these sample categories statistically significant (P≤0.1) fitting models were obtained for most 

analytes. Moreover, in some cases the cross-validation models were found to be significant, even 

though they provided low prediction powers. The 4-variable models were associated to better 

fittings and predictions, compared to those based on 3 variables, evidencing the role of the signal 

area at the retention time of target analytes for explaining ME data. Even though the PLS approach 

resulted only in an approximate screening, due to the low prediction powers of the models, it is 

interesting to note that for most analytes in most samples, the fitted and cross-validated values were 

such as to correctly distinguish between |ME| higher than 20% or below this limit. As an example, 

the experimental, fitted and cross-validated ME values found for PFOA and PFOS in DW, GW and 

WW samples are plotted in Fig. 2. As illustrated in Table S4, for PFOA the prediction model was 

found to be statistically not significant, mainly due to the results obtained for the sample DW-8, 

while for the other samples a quite good agreement was observed between experimental and 

fitted/cross-validated data (Fig. 2A). In the same DW category, the agreement was more significant 

for PFOS, allowing to correctly identify the samples characterized by absolute values of ME much 

higher than 20%, with the main exception of sample DW-1 (Fig. 2B). In the GW category the 

percentage of correct attribution of absolute ME was even greater. In particular, only in the samples 

GW-4 and GW-6 a strong underestimation of ME was provided by the model for PFOA (Fig. 2C), 

whereas for PFOS all samples had a good estimation (Fig. 2D). Quite good agreements between 

experimental and fitted/cross-validated ME data were also observed in WW samples for PFOA 

(Fig. 2E) and PFOS (Fig. 2F), the latter even characterized by a statistically not significant 

prediction model. The main errors were indeed observed for PFOS in WW-6 and WW-8 samples, 

for which a strong suppression of the signal should be observed according to the prediction model, 

while the experimental ME was around 20%. 
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3.3 Comparison with previously published high-throughput methods 

Analytical methods must be characterized by high precision, selectivity and sensitivity, in order to 

achieve reliable results at ultra-trace concentration levels, requiring at the same time the minimum 

sample preparation and analysis time (high-throughput methods). The achievement of all these 

requirements is necessary for the development and optimization of analytical methods suitable to be 

applied to the PFAA monitoring within various environmental contexts, such as the evaluation of 

their removal efficiency in WWTPs and the entity of their release into the environment, as well as 

the assessment of their actual concentrations in drinking water, thus obtaining information on the 

human exposure towards these micropollutants. 

Table 4 illustrates the main characteristics of the analytical method herein proposed in comparison 

with those provided by elsewhere published high-throughput methods using the same approach (i.e. 

DI-LC-MS/MS) or other sample preparation techniques (i.e. online SPE-LC-MS/MS and in-tube 

SPME-LC-MS/MS) for the analysis of PFAAs in water matrices.   

Our method represented a general improvement in terms of sensitivity in comparison with 

previously published online SPE-LC-MS/MS and in-tube SPME LC-MS/MS methods. The 

difference in sensitivity was particularly remarkable when the method proposed herein was 

compared with that of Saito and co-workers [39], which was limited to PFOA and PFOS, and above 

all, of Gosetti et al. [24], which however had the advantages to be very rapid (about 7 min. per 

sample) and to provide negligible matrix effects, at least in the three river samples investigated. 

Moreover, the online SPE-LC-MS/MS approach for the analysis of perfluorinated compounds was 

frequently associated with very high intra-day and above all inter-day variations, in most cases 

much higher than 10%. For instance, for PFOS, Llorca et al. [23] reported inter-day RSD equal to 

26%, whereas Castiglioni and colleagues [40] found intra-day and inter-day RSD as high as 49% 

and 48%, respectively. It should also be noted that in this latter study, which involved the analysis 

of WWTP influents and effluents, river and groundwater samples, as well as drinking waters, a 

matrix effect extent similar to that observed in our study was reported, notwithstanding the presence 

of the washing step of SPE sorbent before LC-MS/MS determination of PFAAs [40].  

Furdui et al. [3] proposed a very fast DI-LC-MS/MS method (4 min. per sample) for the 

determination in lake waters of nine perfluorinated compounds, including a group of six analytes 

(i.e. PFHxS, PFHpA, PFOA, PFOS, PFNA and PFDA) in common with target compounds of this 

study. MQLs reported by Furdui and co-workers were much higher to those achieved herein (Table 

4). The very short analysis time was mainly due to the use of an isocratic elution with buffered 

CH3OH/H2O 80/20 (v/v), thus avoiding the time-consuming column re-equilibration before a new 

injection. However, the isocratic elution with high organic solvent percentages is not compatible 
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with the determination of short-chain PFAAs (i.e. PFBuS, PFPeA and PFHxA), which are eluted 

with the dead volume. Furthermore, the high eluting strength of the mobile phase results in low 

retention factors (k≤2.1 for PFAAs with carbon chain lower than 10 carbon atoms) and may 

translate in strong ME, especially when no sample preparation is performed [41]. Actually, a strong 

suppressive ME was reported by Furdui and colleagues for PFOS (mean value and standard 

deviation of the ME in various lake water samples: -70±15%). It should also be noted that the 

elution window of PFOS (the fourth eluting compound) was adjacent to the chromatographic band 

of polar unretained matrix constituents (i.e. salts and highly polar compounds), which are addressed 

to act as ‘‘endogenous suppressors’’ [42]. It should also be underlined that the isocratic elution does 

not provide an effective cleaning of the chromatographic column from the more retained matrix 

components, thus shortening the life of the column itself.  

The DI-LC-MS/MS approach was also employed by Schultz et al. [43] for the analysis of 

perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and selected fluorinated 

alkyl sulfonamides in wastewaters. This method was characterized by analysis time and sensitivity 

comparable to the ones achieved in our method. However, as reported by Schultz and co-workers, 

background contamination developed periodically within the instrument as detected in solvent 

blanks, probably due to the very high sample volume injected in the analytical column. In this 

regard, it is very surprising that no ME was found during the processing of effluent and even 

influent wastewater samples. In fact, the ESI-LC-MS/MS analysis of PFAAs in water samples 

usually involves the occurrence of high signal suppression/enhancement phenomena [3, 40]   

3.4 Method application to real samples 

Real samples were analysed in accordance with the identification criteria reported in the paragraph 

2.3. As an example, Fig. 3 illustrates the overlapped quantifier and qualifier MRM transitions of 

PFOA in the WWTPIN-1 (Fig. 3B), WWTPOUT-1 (Fig. 3C) and WWTPOUT-10 (Fig. 3D) samples, 

together with that of PFOS in WWTPOUT-1 (Fig. 3F) sample, in comparison with the corresponding 

standard solutions in Milli-Q water (Figs. 3A and 3E).  

Table 5 summarizes the concentrations found for target PFAAs in all the DW, GW, SW, WWTPIN 

and WWTPOUT samples previously investigated for ME (Table S3). Target compounds detected in 

between MDL and MQL or not detected in real samples were reported as below MQLsample or below 

MDLsample, respectively. MQLsample and MDLsample were calculated using the equations reported 

below: 
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where ME% are the values of matrix effect determined in each sample and reported in Table S3.  

This study was not designed for the investigation of occurrence and fate of perfluorinated 

compounds in the different water matrices investigated. However, many kind of water samples were 

analysed in this study and therefore it is interesting to evaluate the occurrence of target analytes in 

these samples, as well as to compare the data obtained herein with those found elsewhere. As a 

general finding, concentrations of carboxylates were higher than those of sulphonates. More in 

detail, PFPeA and above all PFOA were by far the most abundant perfluorinated compounds in 

water samples. The prevalence of PFOA is a result generally reported in literature. Furthermore, 

various recent European studies reported high PFAA concentrations, mainly with short carbon 

chain [44]. As expected, PFAAs were much less abundant in environmental waters than in 

wastewaters. In these latter samples concentrations as high as tens of ng L
-1

 of PFBuS, PFPeA, 

PFHxA, PFHpA and PFOA were observed in some cases. The comparative evaluation of PFAA 

concentrations in correlated WWTP influent and effluent 24-h composite samples (e.g. WWTPIN-1 

vs. WWTPOUT-1 or WWTPIN-2 vs. WWTPOUT-5, see Table S2) clearly evidenced the recalcitrant 

behaviour to biological treatment of these compounds. PFAAs showed even an increasing trend 

during the treatment, in agreement with findings elsewhere observed by different authors [44]. 

Conversely, as shown in Table 5, the use of O3-based advanced oxidation and activated carbon 

treatments were effective for the reduction of PFAA concentrations (see WWTPOUT-1 vs. 

WWTPOUT-2 vs. WWTPOUT-3). The effectiveness of PFAA adsorption on activated carbon was also 

clearly highlighted by the comparison of PFAA occurrence in groundwater before and after the 

potabilization treatment. In fact, DW-6, which underwent an activated carbon treatment, did not 

show any significant residual PFAA contamination in comparison with GW-7, from which it 

derived. On the contrary, the counter-current air pumping together with the sand filtration 

treatments were not compatible with PFAA removal, as clearly shown by the comparison of GW-9 

and DW-2 samples.        

A higher number of PFAA positive samples was found in groundwater than in surface water, 

probably due to the much lower turn-over rate of the former compared to the latter, together with 

the high environmental persistence of these compounds. In this regard, the high PFOS concentration 

found in GW-8 (i.e. 2.5 ng L
-1

, see Table 5), which exceeded the European EQS (0.65 ng L
-1

) for 

about four times, should be underlined. It is remarkable that in the samples collected along the Arno 

river (the most important river of Tuscany and one of the biggest of Italy) the PFAA contamination 

was very low. More in detail, only in SW-7 two perfluorinated compounds were determined at 

concentrations higher than MQLs, probably due to the contribution of the WWTP effluent from an 

important leather industrial district, which enters the Arno river just before this sampling station.   
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PFOA and PFOS concentrations in DW samples were found to be much lower than the limits 

recommended by the Italian Health Institute (500 ng L
-1

 and 30 ng L
-1

 for PFOA and PFOS, 

respectively) and USEPA (400 ng L
-1

 and 200 ng L
-1

). 

4 Conclusions 

This study demonstrates the applicability of the high-throughput DI–LC–MS/MS analytical 

approach for the identification and quantitative determination of PFAAs in a wide range of water 

matrices, with sensitivities in the sub-ng L
-1

 range, intra-day and inter-day RSD lower than 4.5% 

and 6.0%, respectively. These performances were generally higher than those recently achieved 

with on-line SPE–LC–MS/MS, in-tube SPME–LC–MS/MS and DI–LC–MS/MS methods.  

Absolute values of ME herein observed were frequently lower than 20% and however below 50% 

with very few exceptions. The application of LDA on the whole ME dataset identified according to 

the classification given in Table S2 (i.e. DW, GW, SW, WWTPIN and WWTPOUT) highlighted the 

significant contribution of the sample origin to the ME. Hence, PLS and leave-one-out cross-

validation were performed in order to interpret and predict the signal suppression or enhancement 

phenomena as a function of conductivity, hardness and chemical oxygen demand of water samples 

as well as background chromatographic area. Even though the PLS approach gave rise to models 

characterized by low prediction powers, for most analytes in most samples, the fitted and cross-

validated values were such as to correctly distinguish between |ME| higher than 20% or below this 

limit. Accordingly, the possible use of this chemometric tool for avoiding the over-application of 

time-consuming and expensive approaches, such as the standard addition method and the isotope 

dilution technique, should be further investigated. 

The application of this DI–LC–MS/MS to the quantification of target PFAAs in real samples 

provided for the first time data regarding the occurrence of perfluorinated compounds in Tuscany 

water samples of various origin. Although our study was not designed as an environmental 

investigation, many kind of 24-hour composite water samples were analysed herein, thus providing 

interesting information. Among them, PFOA and PFOS concentrations in DW samples were found 

in all cases much lower than the limits recommended by the Italian Health Institute. Furthermore, 

the ineffectiveness of activated sludge treatments for the removal of PFAAs was observed, thus 

highlighting the possible role of biological WWTPs in the punctual release of perfluorinated 

contaminants in the receiving water bodies, when tertiary treatment stages based on chemical 

oxidation or activated carbon are not implemented. 
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Table 21 – Method detection limits (MDLs), linearity ranges, determination coefficients (R
2
), intra-

day and inter-day precision (expressed as relative standard deviation percentages, RSD%). See 

paragraph 2.1 for the meaning of compound acronyms. 

a
 The bottom limit of linearity represents the Method Quantification Limit. 

b
 Evaluated for all compounds at a concentration equal to 5 ng L

-1
 in Milli-Q water. 

Compound MDL
 
(ng L

-1
) Linear Range (ng L

-1
)

a
    R

2
 RSD%intra

b
 RSD%inter

b
 

PFBuS   0.014     0.033-250 0.9981 3.2 4.7 

PFPeA           0.16   0.38-250 0.9985 3.7 4.5 

PFHxA 0.44 1.0-250 0.9993 2.6 3.6 

PFHxS   0.013     0.030-250 0.9999 4.4 5.7 

PFHpA 0.18   0.42-250 0.9995 2.6 4.1 

PFOA 0.13   0.30-250 0.9995 2.1 3.8 

PFOS   0.071   0.17-250 0.9984 1.8 2.7 

PFNA 0.26   0.61-250 0.9992 4.4 5.4 

PFDA   0.054   0.13-250 0.9982 3.9 4.8 

Table 1



Table 4 2 – Between-group squared distance, calculated by Linear Discriminant Analysis on the basis of 

values of matrix effects determined for the analysis of PFAAs on the sample reported in Table 1. Groups: 

drinking water (DW), ground water (GW), surface water (SW), wastewater treatment plant influent 

(WWTPIN) and wastewater treatment plant effluent (WWTPOUT). 

 DW GW SW WWTPIN WWTPOUT 

DW 0.0 2.9 13.0 11.4   7.1 

GW - 0.0 17.6   9.7   7.0 

SW - -   0.0 23.4 21.7 

WWTPIN - -   -   0.0   2.0 

WWTPOUT - -   -   -   0.0 

 

Table 2



Table 5 3 – Fitting (FIT) and cross-validation (CV) results of the Linear Discriminant Analysis 

based on the values of matrix effects determined for the analysis of PFAAs on the samples reported 

in Table 1. Groups: drinking water (DW), ground water (GW), surface water (SW), wastewater 

treatment plant influent (WWTPIN) and wastewater treatment plant effluent (WWTPOUT). 

Put into Group 
True Group 

DW GW SW WWTPIN WWTPOUT 

DW 
FIT 4 1 1 0 1 

CV 3 5 1 0 1 

GW 
FIT 2 9 1 0 1 

CV 2 5 1 0 1 

SW 
FIT 1 0 11 0 0 

CV 1 0 11 0 0 

WWTPIN 
FIT 0 0 0 6 2 

CV 0 0 0 4 4 

WWTPOUT 
FIT 1 2 0 2 7 

CV 2 2 0 4 5 

Total Number of Samples 8 12 13 8 11 

Correct Attributions 
FIT 4 9 11 6 7 

CV 3 5 11 4 5 

Percentage of Correct 

Attribution 

FIT 50% 75% 85% 75% 64% 

CV 38% 42% 85% 50% 45% 

 

Table 3



Table 6 4 – Main characteristics of the analytical method herein proposed in comparison with those provided by elsewhere published high-

throughput methods using the direct injection approach (i.e. DI-LC-MS/MS) or other sample preparation techniques (i.e. online SPE-LC-MS/MS 

and in-tube SPME-LC-MS/MS) for the analysis of PFAAs in water matrixes. See paragraph 2.1 for the meaning of compound acronyms. 

 
a
 n.i. = not investigated 

Technique 
Sample volume  

(mL) 

Total analysis time  

(min) 

 MQL (ng L
-1

)  
[Reference] 

 PFBuS PFPeA PFHxA PFHxS PFHpA PFOA PFOS PFNA PFDA  

DI-LC-MS/MS 0.100 20.0  0.033 0.38 1.0 0.030 0.42 0.30 0.17 0.61 0.13  This study 

DI-LC-MS/MS 0.100 4.0  n.i.
a
 n.i.

a
 n.i.

a
 1.4 1.6 1.3 0.50 1.2 0.80  [3] 

DI-LC-MS/MS 0.500 20.0  0.70 n.i.
a
 0.50 0.80 0.50 0.50 0.50 0.50 0.50  [43] 

Online SPE-LC-MS/MS 5.0 15.5  10 4.0 1.0 20 5.0 3.0 10 1.0 1.0  [40] 

Online SPE-LC-MS/MS 5.0 16.25  8.2 38 50 0.90 17 2.8 1.3 6.3 8.0  [23] 

Online SPE-LC-MS/MS 0.35 7.1  25 50 n.i.
a
 25 10 10 50 n.i.

a
 n.i.

a
  [24] 

in-tube SPME LC-MS/MS 0.040 25.0  n.i.
a n.i.

a n.i.
a n.i.

a n.i.
a 5.0 10.6 n.i.

a n.i.
a  [39] 

Table 4



Table 7 5 – Concentration values (ng L
-1

) determined for each investigated compound in all the 

samples analysed in this study. Values higher than MQLsample are reported in bold. See paragraph 

2.1 for the meaning of compound acronyms. 

a Method Detection Limit in real samples (MDLsample) 
b Method Quantification Limit in real samples (MQLsample) 

 

Sample PFBuS PFPeA PFHxA PFHxS PFHpA PFOA PFOS PFNA PFDA 

DW-1 <0.021
a
 <0.17

a 3.3 <0.016
a
 <0.22

a
 4.4 <0.10

a <0.35
a
 <0.065

a
 

DW-2 <0.015
a
 <0.17

a 3.5 <0.015
a 4.5 12.8 <0.16

a <0.93
b
 <0.10

a
 

DW-3 <0.015
a
 <0.17

a
 <0.46

a
 <0.015

a <0.21
a
 <0.15

a
 <0.084

a <0.33
a
 <0.058

a
 

DW-4 <0.014
a
 <0.15

a
 <1.0

b <0.015
a 2.5 7.2 <0.13

a 3.2 <0.070
a
 

DW-5 <0.016
a
 <0.24

a
 <1.2

b <0.016
a <0.24

a <0.16
a <0.11

a <0.31
a <0.078

a
 

DW-6 <0.016
a
 <0.21

a
 <1.2

b <0.015
a <0.22

a <0.15
a <0.16

a <0.42
a <0.11

a
 

DW-7 <0.015
a
 <0.20

a
 <1.3

b <0.036
b
 <0.58

b
 <0.52

b
 <0.10

a <0.34
a <0.077

a
 

DW-8 <0.015
a
 <0.15

a
 <0.47

a
 <0.011

a <0.16
a <0.11

a
 <0.069

a <0.23
a <0.053

a
 

GW-1 <0.014
a
 <0.17

a
 <1.1

b <0.014
a <0.19

a <0.44
b <0.068

a <0.28
a <0.058

a
 

GW-2 <0.034
b
 <0.18

a
 <1.2

b <0.015
a <0.22

a 4.1 <0.10
a <0.28

a <0.065
a
 

GW-3 <0.015
a
 <0.19

a
 <1.3

b <0.016
a <0.21

a <0.47
b <0.082

a <0.28
a <0.062

a
 

GW-4 <0.016
a
 <0.21

a
 <0.61

a
 <0.018

a <0.21
a <0.60

b <0.090
a <0.29

a <0.11
a
 

GW-5 <0.016
a
 <0.21

a
 <1.2

b <0.015
a <0.22

a <0.55
b <0.10

a <0.33
a <0.064

a
 

GW-6 <0.020
a
 <0.26

a
 3.9 1.8 <0.28

a 4.5 <0.15
a <0.46

a <0.12
a
 

GW-7 <0.019
a
 <0.24

a
 7.0 1.0 <0.70

b
 20.8 <0.55

b
 3.2 <0.58

b
 

GW-8 <0.040
b
 <0.64

b
 <1.4

b <0.016
a
 4.2 <0.60

b
 2.5 1.3 2.3 

GW-9 <0.012
a
 <0.15

a 3.2 1.8 3.4 14.4 <0.090
a 4.8 <0.064

a
 

GW-10 <0.034
b
 <0.17

a <0.47
a <0.014

a <0.18
a <0.44

b
 <0.073

a <0.27
a <0.055

a
 

GW-11 <0.033
b
 <0.16

a <0.45
a <0.013

a <0.18
a <0.14

a
 <0.072

a <0.26
a <0.056

a
 

GW-12 <0.034
b
 <0.16

a <0.47
a 0.8 <0.18

a <0.45
b
 <0.073

a <0.27
a <0.051

a
 

SW-1 <0.012
a
 <0.13

a <0.41
a <0.010

a <0.15
a <0.10

a <0.068
a <0.23

a <0.054
a
 

SW-2 <0.012
a
 <0.13

a <0.40
a <0.010

a <0.14
a <0.10

a <0.059
a <0.21

a <0.048
a
 

SW-3 <0.013
a
 <0.14

a <0.40
a <0.011

a <0.17
a <0.40

b
 <0.10

a <0.25
a <0.061

a
 

SW-4 <0.013
a <0.13

a <0.40
a <0.010

a <0.15
a <0.10

a
 <0.068

a <0.21
a <0.052

a
 

SW-5 <0.013
a <0.13

a <0.9
b
 <0.010

a <0.16
a <0.32

b <0.061
a <0.22

a <0.042
a
 

SW-6 <0.013
a <0.15

a <1.0
b <0.026

b
 <0.16

a <0.34
b <0.058

a <0.22
a <0.043

a
 

SW-7 2.8 <0.13
a <0.8

b <0.010
a <0.15

a <0.31
b <0.052

a <0.20
a 2.3 

SW-8 4.7 <0.15
a 2.7 <0.010

a <0.40
b 3.6 <0.21

b <0.25
a <0.086

a
 

SW-9 <0.014
a
 <0.37

b
 3.2 <0.010

a <0.39
b 4.0 <0.24

b 2.7 <0.11
a
 

SW-10 <0.013
a
 <0.15

a <0.45
a <0.010

a <0.16
a <0.11

a <0.063
a <0.23

a <0.049
a
 

SW-11 <0.010
a
 <0.12

a <0.36
a <0.010

a <0.17
a <0.089

a <0.064
a <0.19

a <0.045
a
 

SW-12 <0.013
a
 <0.14

a <0.44
a <0.026

b
 <0.40

b
 <0.34

b <0.31
b
 <0.70

b
 <0.11

a
 

SW-13 <0.033
b
 <0.16

a
 <0.48

a <0.013
a
 <0.18

a
 <0.42

b <0.072
a
 <0.27

a
 <0.055

a
 

WWTPIN-1 <0.047
b
 24.4 22.0 9.1 13.9 30.4 2.0 6.2 10.6 

WWTPIN-2 1.6 29.5 24.4 <0.018
a
 22.7 43.1 <0.26

b
 7.8 4.8 

WWTPIN-3 <0.019
a
 <0.22

a
 9.6 4.1 7.8 24.4 <0.25

b <0.26
a
 8.6 

WWTPIN-4 <0.019
a <0.24

a
 <0.80

a
 <0.018

a
 <0.24

a
 <0.18

a
 <0.14

a <0.34
a
 <0.083

a
 

WWTPIN-5 <0.017
a 17.5 22.0 <0.017

a
 8.6 18.1 <0.11

a <0.31
a
 4.8 

WWTPIN-6 <0.013
a <0.43

b
 3.9 <0.012

a
 <0.49

b 6.2 <0.088
a <0.27

a
 <0.066

a
 

WWTPIN-7 <0.016
a <0.62

b
 <0.57

a
 <0.035

b
 <0.62

b <0.56
b
 <0.27

b
 <0.85

b
 <0.097

a
 

WWTPIN-8 3.3 <0.48
b
 6.3 <0.013

a 5.5 16.9 2.3 3.2 4.9 

WWTPOUT-1 <0.042
b
 39.1 45.1 <0.043

b 22.0 66.4 4.3 12.5 17.4 

WWTPOUT-2 <0.013
a
 27.5 11.9 <0.012

a 9.2 21.7 <0.11
a 1.4 1.5 

WWTPOUT-3 <0.013
a
 26.7 15.8 <0.012

a 8.3 23.9 <0.11
a 3.3 <0.053

a
 

WWTPOUT-4 <0.013
a
 18.7 6.0 <0.012

a 4.7 11.8 <0.12
a <0.63

b
 <0.086

a
 

WWTPOUT-5 62.3 132.5 95.2 1.3 61.4 103.9 <0.38
b 19.2 4.2 

WWTPOUT-6 4.4 20.3 14.9 1.0 11.6 37.5 <0.23
b 3.8 1.5 

WWTPOUT-7 <0.020
a
 <0.23

a
 <0.73

a
 <0.019

a <0.27
a
 <0.19

a
 <0.10

a <0.34
a
 <0.077

a
 

WWTPOUT-8 <0.021
a
 98.2 60.4 <0.019

a 28.2 61.9 <0.21
a 23.0 6.4 

WWTPOUT-9 3.0 <0.40
b
 8.3 2.1 4.6 16.2 <0.11

a <0.75
b <0.067

a
 

WWTPOUT-10 0.073 85.8 3.5 1.3 1.2 4.9 4.2 1.4 1.8 

WWTPOUT-11 2.0 <0.44
b
 7.0 <0.012

a
 2.7 14.8 <0.14

a
 <0.69

b <0.092
a
 

Table 5
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Figure 1 – Graphical summary of the matrix effect dataset. (A) Histogram reporting the frequency of occurrence of 

matrix effect (ME) within the ranges ME <20, 20≤ ME ≤50, ME >50. (B) Boxplot of the distribution of ME dataset 

determined for each investigated PFAA: each boxplot represents the interquartile range (75% of the ME data are less 

than or equal to the top value of the box and 25% of the ME data are less than or equal to the bottom value of the box); 

upper and lower whiskers refer to the maximum and minimum data point, respectively; the line within the box 

represents the median of the data; the asterisk represents the mean value of the ME . The mean values with at least one 

letter in common are not statistically different according to the Tukey test (P<0.05). See paragraph 2.1 for the meaning 

of the compound acronyms. 
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Figure 2 – Experimental,F fitted and cross-validated matrix effect values determined for PFOA and PFOS in drinking 

water (DWA-B), groundwater (GWC-D) and wastewater (WWE-F) sample categories using PLS regression, in 

comparison with experimental data.  
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Figure 3 – Overlapped MRM quantifier (black line) and qualifier (red line) transitions, retention time (Rt) and ion ratio 

of: (A) PFOA, Milli-Q water (5 ng L
-1

); (B) PFOA, WWTPIN-1 (30.4 ng L
-1

); (C) PFOA, WWTPOUT-1 (66.4 ng L
-1

); 

(D) PFOA, WWTPOUT-10 (4.9 ng L
-1

): (E) PFOS, Milli-Q water (5 ng L
-1

); (F) PFOS, WWTPIN-1 (2.0 ng L
-1

). See 

paragraph 2.1 for acronyms meaning. 
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