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8 Integrals of groups

João Araújo∗, Peter J. Cameron†, Carlo Casolo‡, and Francesco Matucci§

Abstract

An integral of a group G is a group H whose derived group (com-
mutator subgroup) is isomorphic to G. This paper discusses integrals
of groups, and in particular questions about which groups have inte-
grals and how big or small those integrals can be. Our main results
are:

• If a finite group has an integral, then it has a finite integral.

• A precise characterization of the set of natural numbers n for
which every group of order n is integrable: these are the cubefree
numbers n which do not have prime divisors p and q with q | p−1.

• An abelian group of order n has an integral of order at most
n1+o(1), but may fail to have an integral of order bounded by cn

for constant c.

• A finite group can be integrated n times (in the class of finite
groups) if and only if it is the central product of an abelian group
and a perfect group.

There are many other results on such topics as centreless groups,
groups with composition length 2, and infinite groups. We also in-
clude a number of open problems.
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1 Introduction

Let G be a group. An integral (in the sense of antiderivative) of G is any
group H such that H ′ = G. Several authors refer to groups with an integral
as C-groups or commutator-realizable groups.

Questions about integrals of groups were first raised by Bernhard Neu-
mann in [11]. It is surprising how little progress has been achieved on this
topic since Neumann’s paper. Perhaps the explanation is that the proofs rely
as much on intricate constructions as on long arguments (though the proofs
of Theorems 4.4 and 7.1 are substantial).

Some groups have no integral, as observed in Group Properties [4]:

It is not true that every group can be realized as the derived
subgroup of another group – for instance, the “characteristically
metacyclic and commutator-realizable implies abelian” statement
tells us that a group whose first two abelianizations are cyclic, but
whose second derived subgroup is not trivial, cannot arise as a
derived subgroup.

Every abelian group is integrable; so the set of orders of non-integrable
groups is a subset of the set of orders of non-abelian groups. A major result,
which occupies Section 7, is an exact description of this set, more conveniently
expressed in terms of its complement: we show that every group of order n
is integrable if and only if n is cube-free and does not have prime divisors
p and q such that q | p − 1. This implies, in particular, that for every even
integer greater than 4 there is a non-integrable group of order n.

We will see in Section 2 that if a finite group has an integral, then it
has a finite integral; so it makes sense to ask for a good upper bound for
the smallest integral of a finite integrable group. In order to have a good
computational test for integrability, it is useful to have such a bound. We
conjecture that an integrable group of order n has an integral of order at
most n3; this is best possible, as shown by the cyclic group of order 2, whose
smallest integrals are the dihedral and quaternion groups of order 8. We have
been unable to find a closed formula for the smallest integral of an abelian
group, but we give a number of constructions in Section 4 for small integrals
of abelian groups. From these constructions it follows that an abelian group
of order n has an integral of order n1+o(1). In the other direction, we show
that integrals of abelian groups of order n do not have order bounded by cn
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for any constant c. We also give a weaker bound nc logn for the order of the
smallest integral of a centreless group of order n.

Also, there are infinite abelian groups A which do not have an integral G
with |G : A| finite.

Any perfect group, and in particular any non-abelian simple group, is its
own integral. Motivated by this, we analyse non-perfect groups with com-
position length 2, and decide whether or not such groups are integrable (up
to a specific question about outer automorphism groups of simple groups).
This question leads to a more general topic: When does a group G have an
integral inside some “universal” group U containing G?

By analogy with C∞ functions in analysis, we are led to the question:
does there exist a group which can be integrated infinitely often? Clearly
any perfect group has this property, since it is its own integral. Bernhard
Neumann [11] showed that there is no such sequence where all the groups
are finite and the sequence increases strictly; but we give in Subsection 8.3
two sequences satisfying slightly weaker conditions. We also examine finite
groups which can be integrated n times for every positive integer n. These
turn out to be central products of an abelian group and a perfect group.

We hope that the results about integrals will inspire the research on
similar inverse problems in group theory, some of which will be discussed in
a following paper.

We are grateful to Alireza Abdollahi, Lars Jaffke, Michael Kinyon, and
Avinoam Mann for valuable comments. In particular, Alireza Abdollahi
informed us of his paper [1]; although we have not seen the paper, the author
kindly communicated to us the main results. He also drew our attention to
a comment he had made on MathOverflow [8], and to the paper by Filom
and Miraftab [2]. This paper was published in 2017, but the work of these
authors was completely independent of ours. Finally, Abdollahi is (as far as
we know) the first author to use the term “integral” in the sense used here.

2 Preliminaries

In this section we gather some straightforward observations and prove that
integrable finite groups have finite integrals. First we note that, if a group
has an integral, then it has infinitely many:

Lemma 2.1 Let G be a group, let H be an integral for G and let A be an
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abelian group. Then H ×A is an integral for G.

This is self-evident and already known (but we do not know where it was
first observed). It is the analogue of adding a “constant of integration”.

Theorem 2.2 Let G be a finite group. If G has an integral, then it has an
integral which is a finite group.

Proof. Let H be an integral of G. First, we reduce to the case where H is
finitely generated.

Since G = H ′, there are finitely many commutators [h1, k1], . . . , [hr, kr]
which generate G, with hi, ki ∈ H . Now it is clear that the subgroup of H
generated by h1, . . . , hr, k1, . . . , kr is an integral ofG, and is finitely generated.
So, without loss, H is finitely generated.

Any conjugacy class inH is contained in a coset ofH ′ = G. (For h, x ∈ H ,
we have Gx−1hxh−1 = G, so Gx−1hx = Gh.) Thus H is a BFC-group (the
conjugacy classes are finite of bounded order). While not every BFC-group
has centre of finite index, this is true for finitely generated BFC-groups. For
let H = 〈x1, . . . , xk〉. By assumption, CH(xi) has finite index in H (at most
|G|); so Z(H) =

⋂k
i=1CH(xi) has finite index in H .

In consequence, Z(H) is finitely generated abelian. So it has the form
A × B, where A is finite and B is finitely generated torsion-free. Since
B ≤ Z(H), it is a normal subgroup of H ; since it is torsion-free, B ∩G = 1.
Thus G embeds in the finite group H = H/B, and (H)′ = G. �

Remark 2.3 In the paper [2], this theorem is proved under stronger hy-
potheses. In addition, there are results in the paper which can be improved
using our theorem. For example, Theorem 20 asserts that, if a non-abelian
2-group G has cyclic centre and automorphism group a 2-group, then any
integral of G is infinite; we can now conclude that such a group is not inte-
grable.

It is possible for a group to have infinitely many integrals with no abelian
direct factors (see [12]). For example, every extraspecial p-group is an integral
of the cyclic group of prime order p. (A p-group P is special if P ′ = Φ(P ) =
Z(P ), and is extraspecial if this subgroup is cyclic of prime order.)

Proposition 2.4 There exists a function f defined on the natural numbers
such that, if G is an integrable group of order n, then G has an integral of
order at most f(n).
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Proof. We can take f(n) to be the maximum, over all integrable groups G
of order n, of the minimum order of an integral of G. (We will see at the end
of this section that, for every n, there is an integrable group of order n, so
this function is well-defined.) �

An algorithm for deciding whether a groupG of order n is integrable could
run as follows: examine all groups H of order at most f(n) (and divisible by
n); return true if such an H is found with H ′ = G, and false otherwise. How-
ever, in the absence of a decent bound for f(n), this algorithm is worthless.
It would be useful to have a good bound, and we pose the question whether
f(n) < n3 for all natural numbers n. (Note that the smallest integrals of the
cyclic group of order 2 are the dihedral and quaternion groups of order 8.)

In Section 5 we will prove a weaker bound for centreless groups.

Finally, we consider abelian groups. Guralnick [5] showed that, if A is an
abelian group of order n, then the group A ≀ C2, of order 2n

2, is an integral
of A. In Section 4 we will find much smaller integrals of abelian groups, and
pose the question of finding the smallest.

3 Some examples of integrability

In this section we give some examples of integrable and non-integrable groups.
These are of some interest in their own right, and will also be used in the
discussion of orders of non-integrable groups. We also give some results con-
cerning direct products. We begin by recalling known results in the literature:

(a) Abelian groups are integrable [5].

(b) Dihedral groups are non-integrable. (This is stated by Neumann [11]
with a reference to Zassenhaus [18], which we have not been able to
check; an explicit proof, also showing that quasi-dihedral and general-
ized quaternion groups are non-integrable, is in [2, Corollary 18].)

(c) Symmetric groups Sn (for n ≥ 3) are non-integrable. (This is folklore.
The first reference we found in print is in [11], where it is stated with-
out proof; the earliest proof we found in print is [2, Corollary 15 and
Theorem 16].)

(d) Some matrix groups are integrable [10]. Miller deals with all normal
subgroups of the general linear groups GLn(K), the unitary groups
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Un(K), and the orthogonal groups On(K) for K a field of characteristic
different from 2.

We will recover some of the results above as consequences of our own con-
structions.

The next result is essentially the same as [2, Theorem 17].

Proposition 3.1 Let G be a group with a characteristic cyclic subgroup C
which is not contained in Z(G). Then G has no integral.

Proof. Suppose for a contradiction that H ′ = G. Since C is characteristic
in G, it is normal in H , and H (acting by conjugation) induces a group of
automorphisms of C. The automorphism group of a cyclic group is abelian,
and so G = H ′ acts trivially on C, and C ≤ Z(G), a contradiction. �

Corollary 3.2 If n is even and n > 4, the dihedral group of order n is
non-integrable.

Proof. The cyclic subgroup of order n/2 is characteristic (since all elements
outside it have order 2) and non-central (since n > 4). �

If n = pq, where p and q are primes, then a non-abelian group of order n
exists if and only if q | p− 1.

Corollary 3.3 Let p and q be primes and q | p − 1. Then the non-abelian
group of order pq is centreless and non-integrable.

There are two non-abelian groups of order p3. For p = 2, these are the
quaternion group (which has an integral, namely SL(2, 3)), and the dihedral
group (which does not have an integral).

The pattern is similar for odd p. We prove the following:

Theorem 3.4 Of the two non-abelian groups of order p3, where p is an odd
prime, the group of exponent p has an integral, while the group of exponent
p2 does not.

Proof. The group of exponent p is isomorphic to the group G of upper
unitriangular 3 × 3 matrices over the field of order p. A short calculation
with matrices shows that G = H ′, where H is the group of upper triangular
matrices with non-zero elements on the diagonal.
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The group of exponent p2 has the presentation

G = 〈a, b : ap
2

= bp = 1, b−1ab = ap+1.〉

We first develop some properties of this group. Note that its centre has order
p and is generated by ap. Let B = 〈ap, b〉. Then B is elementary abelian of
order p2.

We show first that every element outside B has order p2. To see this,
note that bjab−j = a−jp+1, so

bjaib−j = (bjab−j)i = ai(−jp+1).

Then we get

(aibj)p = ai · bjaib−j · b2jaib−2j · · · b(p−1)jaib−(p−1)j

= ai · ai(−jp+1) · ai(−2jp+1) · · · ai(−(p−1)jp+1)

= api,

since j(1 + 2 + · · · + (p − 1)) is divisible by p (since p is odd) and ap
2

= 1.
Thus, aibj has order p if and only if p divides i, which means that aibj ∈ B.

Let α be an automorphism of G, and suppose that aα = aibj (where p
does not divide i) and bα = apkbl (for if bα 6∈ B, then bα would have order p2,
which is impossible). We must have

b−αaαbα = (aα)p+1.

Since akp is central, for the left-hand side we have

b−l(aibj)bl = b−laiblbj

= ai(lp+1)bj .

On the right we have

(aibj)p+1 = (aibj)paibj = ai(p+1)bj .

So we must have l = 1. There are p(p − 1) choices for i, p for j, and p
for k; so |Aut(G)| = p3(p − 1). The inner automorphism group has order
|G/Z(G)| = p2, and so the outer automorphism group has order p(p− 1).

In more detail: Conjugation by b corresponds to (i, j, k) = (p + 1, 0, 0),
while conjugation by a corresponds to (i, j, k) = (1, 0,−1). So we can rep-
resent the outer automorphism group by pairs (i (mod p), j). Calculation
shows that this group is isomorphic to the 1-dimensional affine group.
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Now suppose that H is an integral of G. Then H acts on G by conju-
gation, so there is a homomorphism θ : H → Aut(G), whose restriction to
G maps G to Inn(G). Write H and G for the images of H and G under θ.
Then (H)′ = G, hence H/G is abelian, so either its order is p or it divides
p− 1.

If H/G has order p, then |H| = p3, and so it is not possible that |(H)′| =
|G| = p2.

Suppose thatm = |H/G| divides p−1. Up to conjugation, we may assume
that an element h of H of order m is represented as an outer automorphism
of G by a map with j = 0. This means that the automorphism fixes b. Its
action on the quotient G/Z(G), regarded as a 2-dimensional vector space, is
a diagonal matrix with eigenvalues λ and 1. An eigenspace with eigenvalue
λ has the property that all its cosets are fixed. This means that all the
automorphisms in H fix every coset of a subgroup K of G of order p2; so the
commutator of any two of them belongs to K. So the derived group of H is
contained in K, and cannot be G. �

For higher powers of a prime, a similar result holds:

Proposition 3.5 Let p be an odd prime and n > 3. Let

G = 〈a, b | ap
n−2

= 1, bp
2

= 1, b−1ab = ap
n−3+1〉.

Then G is not integrable.

Proof. We first deal with the case n = 4, following the arguments in the
proof of Theorem 3.4. In this case, the group G = G4 has order p

4; its centre
and Frattini subgroup coincide, and Z(G) = 〈ap, bp〉, elementary abelian of
order p2, while its derived subgroup is generated by ap and is cyclic of order
p. The calculations in the proof of Theorem 3.4 show that (aibj)p = apibpj .
So elements outside Z(G) have order p2.

Any automorphism must map a to an element whose pth power lies in
the derived group, necessarily of the form aibpj, and b to an element not of
this form, say akbl where p ∤ l. Now the proof continues almost exactly as in
the proof of Theorem 3.4.

For n > 4, we can complete the proof by induction. We note that the Frat-
tini subgroup of G is generated by ap and bp, and is abelian, with structure
Cp×Cpn−3 ; its Frattini subgroupM is the group generated by ap

2

(isomorphic
to Cpn−4). Thus M is a nontrivial characteristic subgroup of G. If H is an
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integral of G, then M is normal in H , and (H/M)′ = H ′/M = G/M ∼= G4.
But we showed above that G4 is not integrable, so this is a contradiction.�

Now we consider product constructions, and show the following.

Proposition 3.6 Let G = G1 ×G2.

(a) If G1 and G2 are integrable, then so is G.

(b) If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are inte-
grable.

(c) If G1 is centreless and G2 is abelian, then G is integrable if and only if
G1 is integrable.

Proof. (a) Suppose that H ′
i = Gi for i = 1, 2, and let H = H1 ×H2. Then

H ′ = H ′
1 ×H ′

2 = G1 ×G2 = G.

(b) Suppose that H is an integral of G1×G2. Then G1 is a characteristic
subgroup of G1×G2, and hence is normal in H , and is contained in H ′. Thus

(H/G1)
′ = H ′/G1

∼= G2,

so G2 is integrable; and similarly G1 is integrable.

(c) Suppose that G1×G2 is integrable, say H
′ = G1×G2. By assumption,

G2 = Z(G1×G2), so G2 is a characteristic subgroup of G, and thus is normal
in H . Then

(H/G2)
′ = H ′/G2 = (G1 ×G2)/G2

∼= G1,

so G1 is integrable. The converse is clear. �

The “centreless” condition in part (c) is essential. For example, D8 is not
integrable, but C2 ×D8 has an integral of order 128.
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4 Abelian groups

As we noted earlier, Guralnick observed that finite abelian groups are inte-
grable. Indeed, A ≀ C2 is an integral of the abelian group A, and has order
2n2 if |A| = n.

It is possible to construct much smaller integrals of abelian groups in
most cases. If A is an abelian group of odd order, then the group

〈A, t | t2 = 1, t−1at = a−1 for all a ∈ A〉

is an integral of A of order 2|A|. Since any finite abelian group is the direct
product of a group of odd order and a 2-group, the results of the last section
show that it is enough to consider the latter.

Observe the following:

• If A ∼= (C2m)
2 = 〈a1, a2〉, then

〈A, s : s3 = 1, s−1a1s = a2, s
−1a2s = a−1

1 a−1
2 〉

is an integral of A of the form A⋊ C3.

• If A ∼= (C2m)
3, there is similarly an integral of A of the form A ⋊ C7.

(This is a little more complicated than the previous: there we used

the integer matrix

(

0 1
−1 −1

)

of order 3. There is no 3 × 3 integer

matrix of order 7; but there is such a matrix over the 2-adic integers.
Equivalently, (C2)

3 has an automorphism of order 7 (and is the derived
subgroup of the semidirect product), and this automorphism can be
lifted to (C2m)

3 for all m.)

• If A ∼= C2m , then the dihedral group of order 2m+2 is an integral of A.

Thus, a finite abelian group A has an integral of order at most 42 ·2m · |A|,
where m is the number of powers 2a for which the expression for A as a direct
product of cyclic groups of prime power order has a unique factor of order
2a. For this we extend each such cyclic factor to one twice as large; then
extend by a cyclic group of order 42, where the element of order 2 inverts
these cyclic groups and the odd-order part of A, while elements of orders 3
and 7 act as previously described on products of two or three cyclic 2-groups
of the same order. (Any number greater than 1 can be written as a sum of
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2s and 3s.) Noting that |A| ≥ 21+2+···+m = 2m(m+1)/2, we see that the order
of this integral is at most |A|1+o(1).

Can this bound be reduced to c|A| for some constant c? We see that, to
answer this question, we need to consider direct products of cyclic 2-groups
of distinct orders.

Lemma 4.1 Let H be a 2-group acting by automorphisms on the finite ele-
mentary abelian 2-group A, then

|A/[A,H ]| ≥ |A|1/|H|.

Proof. By induction on |H|. Let H = 〈x〉 have order 2. Then for every
a ∈ A,

[a, x]x = [a, x]−1 = [a, x],

hence [A, x] ≤ CA(x). On the other hand, the map a 7→ [a, x] is a homomor-
phism of the abelian group A, and so

∣

∣

∣

∣

A

[A, x]

∣

∣

∣

∣

≥

∣

∣

∣

∣

A

CA(x)

∣

∣

∣

∣

= |[A, x]|

which is what we want.
Let now |H| ≥ 4, let Z be a central subgroup of order 2 of G and A =

A/[A,Z]. Then H/Z acts on A and, by inductive assumption,

|A/[A,H ]| ≥ |A|1/|H/Z| = |A|2/|H|.

Now clearly [A,H ] = [A,H ]/[A,Z], whence

∣

∣

∣

∣

A

[A,H ]

∣

∣

∣

∣

=

∣

∣

∣

∣

A

[A,H ]

∣

∣

∣

∣

≥ |A|2/|H| ≥
(

|A|1/2
)2/|H|

= |A|1/|H|.

�

Lemma 4.2 Let A be a finite elementary abelian 2-group, and G a 2-group
such that G′ = A; writing H = G/A, we have

|H| log2 |H| ≥ 2 log |A|.
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Proof. Let T = [A,G]. Then, by Lemma 4.1,

|A|1/|H| ≤ |A/T |.

On the other hand, A/T = (G/T )′ is an elementary abelian subgroup of
Z(G/T ); by standard arguments it follows that G/T modulo its centre is
elementary abelian of order, say, 2t; moreover

|A/T | ≤ 2(
t

2) ≤ |H|(t−1)/2 ≤ |H|log |H|/2.

Hence
|A|1/|H| ≤ |H|log |H|/2,

i.e. |H| log2 |H| ≥ 2 log |A|. �

Proposition 4.3 Let A be an abelian 2-group which is a direct product of
m cyclic groups of distinct orders. Suppose that A = G′ for some group G.
Then |G : A| → ∞ as m→ ∞.

Proof. Let A = C2a1 × · · · × C2am , with a1, . . . , am in strictly decreasing
order. The Frattini subgroup Φ(A) has the property that A/Φ(A) is elemen-
tary abelian of order 2m, and automorphisms of A of odd order act faithfully
on A/Φ(A). There can be no such non-identity automorphisms. For the
subgroups of A consisting of elements of orders dividing 2ai are character-
istic, and their projections onto A/Φ(A) form a composition series for this
group, whose terms are necessarily fixed by automorphisms of odd order. So
elements of odd order in G centralise A, and we can assume without loss of
generality that G is a 2-group. Now the result follows from Lemma 4.2. �

We conclude:

Theorem 4.4 (a) A finite abelian group A has an integral of order at most
|A|1+o(1).

(b) There is no constant c such that every finite abelian group A has an
integral of order at most c|A|. �

The arguments above can be refined to give explicit upper and lower
bounds for the order of the smallest integral of an abelian group.

We have computed the smallest integrals of abelian 2-groups of orders up
to 64. The results are in Table 1. The computations involved simply testing
the groups H in the SmallGroups library in GAP to decide whether H ′ is
isomorphic to the given group G.
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Order Invariant Smallest
factors integral

2 (2) 8
4 (4) 16

(2, 2) 12
8 (8) 32

(4, 2) 64
(2, 2, 2) 56

16 (16) 64
(8, 2) 128
(4, 4) 48
(4, 2, 2) 128
(2, 2, 2, 2) 48

32 (32) 128
(16, 2) 256
(8, 4) 256
(8, 2, 2) 256
(4, 4, 2) 256
(4, 2, 2, 2) 256
(2, 2, 2, 2, 2) 256

Order Invariant Smallest
factors integral

64 (64) 256
(32, 2) 512
(16, 4) 512
(16, 2, 2) 512
(8, 8) 192
(8, 4, 2) 512
(8, 2, 2, 2) 512
(4, 4, 4) 448
(4, 4, 2, 2) 192
(4, 2, 2, 2, 2) 512
(2, 2, 2, 2, 2, 2) 192

Table 1: Smallest integrals of abelian groups
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5 Centreless groups

A group G is complete if its centre is trivial and Aut(G) = Inn(G). Equiva-
lently, a group G is complete if and only if, for any group H such that GEH ,
then H ∼= G × T , for some group T . This follows from [15, Theorems 7.15
and 7.17] or [14, Theorem 13.5.7]. This has the following consequence:

Proposition 5.1 Let G be a complete group. Then G is integrable if and
only if it is perfect.

Proof. Suppose that H ′ = G. Then GEH , so H ∼= G×T for some T EH
with G ∩ T = 1; and T ∼= GT/G ∼= H/H ′ is abelian, and so G′ = H ′ = G.

The converse is trivial since every perfect group is integrable. �

We now turn to the more general class of centreless groups (those with
trivial centre).

If Z(G) = 1, then G is isomorphic to a subgroup of Aut(G), namely the
group of inner automorphisms of G. Furthermore, Aut(G) also has trivial
centre. So the process can be continued:

G ≤ Aut(G) ≤ Aut(Aut(G)) ≤ · · · .

Wielandt’s automorphism tower theorem (for example, see [17, Theorem
13.5.4]) says that the procedure terminates after finitely many steps. The
final group in the sequence is complete.

In this section, we show that the same is true for reduced integrals of
G. Let G be a group with Z(G) = 1. We say that an integral H of G is
reduced if CH(G) = 1. Asking for a reduced integral removes the “constant
of integration” (abelian direct factor), but does more than this.

For example, let G = A5, and let H be a semidirect product of G with
a cyclic group of order 4 whose generator induces on G the automorphism
of conjugation by a transposition. Then CH(G) is cyclic of order 2, and
H/CH(G) is an integral of G isomorphic to S5.

Lemma 5.2 If Z(G) = 1 and H is an integral of G, then

(a) CH(G) = Z(H);

(b) H/CH(G) is a reduced integral of G.
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Proof. (a) Clearly CH(G) ≥ Z(H). Take h ∈ CH(G), so that gh = g for
all g ∈ G. Let t be any other element of H . Then gt ∈ G = H ′ EH . Then

g[h,t] = gh
−1t−1ht = g

for all g ∈ G, so [h, t] ∈ CH(G). But [h, t] ∈ H ′ = G, and G ∩ CH(G) =
Z(G) = 1. So [h, t] = 1 for all t ∈ H , whence h ∈ Z(H).

(b) We have

(H/CH(G))
′ = H ′CH(G)/CH(G) = GCH(G)/CH(G) ∼= G/(G∩CH(G)) = G,

so H/CH(G) is an integral of G. But H/CH(G) is isomorphic to the group
of automorphisms of G induced by H ; so H/CH(G) acts faithfully on G,
whence the centraliser of G is trivial. �

Note that, if Z(G) = 1 and H is a reduced integral of G, then Z(H) = 1,
so the process can be continued.

Proposition 5.3 Let G be a finite group with Z(G) = 1. Suppose that

G = G0 < G1 < G2 < · · · ,

where Gn+1 is a reduced integral of Gn for all n. Then the sequence terminates
after finitely many steps.

Proof. Note that G0 is normal in Gn for all n, since it is the nth term of
the derived series of Gn.

We prove that CGn
(G0) = 1 for all n. The proof is by induction on n;

it holds by definition for n = 1. So let us assume the result for n and take
g ∈ CGn+1

(G0).
For any h ∈ Gn+1, we see that [g, h] centralises G0, and [g, h] ∈ Gn; so

[g, h] ∈ CGn
(G0), whence [g, h] = 1. As this is true for all h ∈ Gn+1, we have

g ∈ Z(Gn+1). But by Lemma 5.2 and the construction, this forces g = 1.
Now this means that Gn is embedded in Aut(G0) for all n, so |Gn| is

bounded by a function of G0, and the sequence terminates. �

Corollary 5.4 Let G be a group of order n with Z(G) = 1. Then, if G is
integrable, it has an integral of order at most nlog2 n.

Proof. G can be generated by at most log2 n elements (using Lagrange’s
theorem, since by induction on m the group generated by m independent
elements has order at least 2m). Now an automorphism is determined by its
effect on the generators, and each generator has at most n possible images
under any automorphism. �
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6 Groups with composition length 2

In this section, we analyse groups with composition length at most 2, and
give a procedure to determine whether or not such groups are integrable, up
to a specific question about outer automorphism groups of simple groups.

First we consider groups with composition length 1, and observe:

Proposition 6.1 If G is a finite simple group, then G has an integral.

Proof. This is easily seen by considering three cases:

• If G = C2, then the dihedral and quaternion groups D8 and Q8 are
integrals of G.

• If G = Cp, then the dihedral group of order 2p is an integral of G.

• If G is a non-abelian simple group, then it is perfect, so it is its own
integral. �

For groups with composition series of length 2, we begin with a simple
observation.

Lemma 6.2 Let G be a group with the property that, in every composition
series G > N > · · · for G, the factor group G/N is a non-abelian simple
group. Then G is perfect, and hence is its own integral.

Proof. For if G is not perfect, then it has an abelian quotient, and hence a
normal subgroup with quotient Cp. Taking this as the start of a composition
series gives the result. �

Now let G be a group with composition series G > N > {1}. By Lemma
6.2, we may suppose that G/N ∼= Cp for some prime p.

Case 1: N ∼= Cq for some prime q. There are two possibilities:

• G = Cp × Cq. Then G is abelian, and so has an integral.

• p | q − 1 and G is non-abelian. Then G does not have an integral.
For suppose that H is an integral of G. Since N = G′, we see that
N is normal in H . The automorphism group of the cyclic group N is
abelian, and so H ′ acts trivially on N . This contradicts the fact that
H ′ = G and G induces a group of order p of automorphisms of N .
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Case 2: N is a non-abelian simple group. Again there are two subcases:

• If Cp induces the trivial outer automorphism of N , then we can change
the generator by an element of N so that it acts trivially on N ; then
G = N × Cp, and both factors have integrals, and hence so does G.

• In the other case, Cp is a subgroup of Out(N). If H is an integral of
G, then H/N is an integral of G/N ∼= Cp inside Out(N).

But such a subgroup may or may not exist. (For example, if Out(N) ∼=
D6 and p = 2, then C2 has an integral, but not within Out(N), so G
has no integral.) Resolving this case will require some detailed analysis
of the outer automorphism groups of simple groups.

The previous discussion allows us to recover the following folklore result
(see [10]).

Proposition 6.3 For every n ≥ 5, symmetric group Sn is non-integrable.

Proof. For every n ≥ 5, the symmetric group Sn has composition length
2 with series Sn > An > {1}. We recall that Out(A6) ∼= C2 × C2 and
Out(An) ∼= C2 for all n 6= 6. Since T := An/Sn

∼= C2 and its smallest
integral S is D8, then S is not contained in Out(An) for any n ≥ 5, the
discussion above implies that Sn is non-integrable. �

7 Orders of non-integrable groups

This section is devoted to the proof of the following theorem:

Theorem 7.1 Let n be a positive integer. Then every group of order n is
integrable if and only if n is cube-free and there do not exist prime divisors
p, q of n with q | p− 1.

Remark 7.2 It is a formal consequence of the statement of this theorem
that non-integrable groups of all even orders greater than 4 exist: if n is even
and n > 4 then either n = 2d for d ≥ 3, or n is divisible by an odd prime
p (with 2 | p− 1). However, we already know this because of Corollary 3.2,
and we use this result in the proof; so we assume that n is odd.
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Remark 7.3 It is interesting to compare this theorem with the description
of numbers n for which all groups of order n are abelian. Since abelian groups
are integrable, this set is a subset of the set in the Theorem. It is known
that all groups of order n are abelian if and only if n is cube-free and there
do not exist primes p and q such that either

• p and q divide n, and q | p− 1; or

• p2 and q divide n, and q | p+ 1.

(This result is folklore. For a proof by Robin Chapman, see [7].) So the two
sets contain no non-cube-free integers, and coincide on squarefree integers;
but there are integers (such as 75) for which non-abelian groups exist but all
groups are integrable.

Proof We show that the conditions on n in the Theorem are necessary. If
n is not cube-free, then n = pam where p is prime, a ≥ 3, and p ∤ m. By
Theorem 3.4 and Proposition 3.5, there is a non-integrable group P of order
pa; since gcd(pa, m) = 1, then the direct product of P with any group of
order m is not integrable, by Proposition 3.6(b). If primes p and q divide
n, with q | p − 1, then the non-abelian group of order pq is centreless and
non-integrable by Corollary 3.3, so its direct product with any group of order
n/pq is non-integrable, by Proposition 3.6(c).

So suppose that n satisfies these conditions. If n is even, then n = 2 or
n = 4; then all groups or order n are abelian, and so integrable (Section 4). So
we may assume from now on that n is odd. Assume (for a contradiction) that
there exists a non-integrable group of order n; inductively, we may suppose
that n is minimal subject to this.

Our strategy is to show that G has a normal subgroup N which is a
direct product of elementary abelian groups of order p2 for various primes
p, and an abelian complement H which normalises each of these factors of
N , whose action on N gives each factor (of order p2, say) the structure of
the additive group of GF(p2) such that the action of H on N corresponds to
multiplication by a subgroup of the multiplicative group of the finite field of
order dividing p+ 1.

When this is achieved, we let K = 〈G, t〉, where t2 = 1, t normalises
N and acts on each factor of order p2 as the field automorphism of order
2 of GF(p2) (that is, as the map x 7→ xp), and on H by inversion (the
map x 7→ x−1). A short calculation shows that this gives an action of t by
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automorphism on G. (If the order of an element x of the multiplicative group
of GF(p2) divides p + 1, then xp = x−1.) Now commutators [t, g] for g ∈ G
generate G. (If h ∈ H , then [h, g] = h−2; since |H| is odd, these elements
generate H . If P is a Sylow p-subgroup of N , then the commutators [g, t],
for g ∈ P , generate a non-trivial subgroup of P ; since H acts irreducibly
on P , the H-conjugates of this generate P .) So K ′ = G, contradicting the
assumption that G is not integrable.

So it remains to prove that G has the structure described above. In
particular, we have to show that G is metabelian. The Odd-Order Theorem
shows that G is soluble; but this can be proved much more easily using
Burnside’s transfer theorem, as follows.

Since n is cube-free, the Sylow p-subgroups of G have order p or p2, and
so are abelian. Let p1 < p2 < . . . < pr be the primes dividing n. Let P1

be a Sylow p1-subgroup of G. Now the automorphism group of P1 has order
either p1(p1 − 1) or p1(p1 − 1)2(p1 +1), the fact that p1 is the smallest prime
divisor of n and is odd shows that NG(P1) acts trivially on P1, and so is equal
to CG(P1). By Burnside’s Transfer Theorem, G has a normal p1-complement
G1. By induction we construct normal subgroups G2, . . . , Gr = 1 so that
Gi+1 is a normal pi-complement in Gi, and the quotient is abelian. Thus G
is soluble, as claimed.

Let F be the Fitting subgroup ofG, the largest nilpotent normal subgroup
of G. Since F is the direct product of its Sylow subgroups, and these are
abelian, F is abelian. Moreover, F contains its centraliser [3, Theorem 6.1.3],
and so CG(F ) = F . Thus, G/F is isomorphic to the group of automorphisms
of F induced by conjugation in G. This group is a subdirect product of the
groups induced on the Sylow subgroups of F .

Now the automorphism group of Cp is Cp−1; the automorphism group of
Cp2 is Cp(p−1); and the automorphism group of Cp × Cp is GL(2, p), of order
p(p−1)2(p+1). Now if p divides n, then p−1 is coprime to n by assumption;
and if F contains a Sylow p-subgroup then p does not divide |G/F |. Thus the
group induced on a Sylow p-subgroup P of F is trivial if P is cyclic, and has
order dividing p + 1 if P is elementary abelian of order p2. Moreover, from
the structure of GL(2, p), we see that a subgroup of order dividing p + 1 is
cyclic, and corresponds to multiplication by an element in the multiplicative
group of GF(p2) acting on the additive group of this field.

So G/F is a subdirect product of cyclic groups, and hence is abelian.
Moreover, cyclic Sylow subgroups of F are central in G.

Now we define N to be the product of the Sylow subgroups of F which

19



are elementary abelian of prime squared order. We see that G/N has a
subgroup F/N (generated modulo N by the cyclic Sylow subgroups of F )
with (G/N)/(F/N) ∼= G/F abelian. Thus G/N is an extension of a central
subgroup by an abelian group, and so it is nilpotent of class at most 2. But
then it is a direct product of its Sylow subgroups, and so is abelian.

We also note that, if G/N acts trivially on a Sylow p-subgroup P of N ,
then by Burnside’s transfer theorem, G ∼= P × G1 for a subgroup G1 of
order n/p2; by the minimality of n, we have that G1 is integrable, and has
order coprime to p, so that G is integrable, a contradiction. So the action
of G/N on each Sylow subgroup is non-trivial, and each such subgroup has
the structure of a finite field GF(p2), with the induced automorphism group
isomorphic to a subgroup of the multiplicative group, acting irreducibly.

Finally, N is a normal Hall subgroup of G; if we take H to be a Hall
subgroup for the complementary set of primes, then H is a complement for
N in G, and H ∼= G/N , so H is abelian, and we have reached our goal. �

8 Miscellanea

8.1 Products, subgroups, quotients

We saw in Proposition 3.6(a) that, if G1 and G2 have integrals, then so
does G1 × G2. But what about the converse? In other words, is it possible
that G1 × G2 has an integral but G1 and G2 do not? We saw earlier in
Proposition 3.6(b) that this is not possible if the orders of G1 and G2 are
coprime.

A particular case of the above question is: can G×G be integrable when
G is not integrable? We do not have an example. The smallest non-integrable
group is S3; and S3 × S3 is also non-integrable. (For this group has trivial
centre, so if it were integrable it would have a reduced integral, which would
be contained in the automorphism group of S3 × S3; but this automorphism
group has order 72, and its derived group has order 18.)

The next case is D8×D8. We have shown that it has no integral of order
at most 512.

A related question would replace direct product by central product. How-
ever, this question has a negative answer. It is well-known that D8 ◦ D8 is
isomorphic to Q8 ◦Q8, which has the integral SL(2, 3) ◦ SL(2, 3).

Regarding semidirect products, there are groups H and G, with H acting
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on G into two different ways, say φ and ψ, such that the semidirect product
induced by φ is integrable but the semidirect product induced by ψ is not.
For one such example take G = C4 and H = C2, and the two possible actions
of H on G (the trivial action, and the action by inversion). There are also
groups G and H such that every semidirect product they can form fails to
be integrable: take the dihedral group of order 10 and the Klein four group.
Finally, all semidirect products of two copies of C2 are integrable. So all
possibilities involving integrals of semidirect products can occur.

Regarding subgroups and homomorphic images, note that the group G =
A5 (which is perfect, so integrable) contains H , the dihedral group of order
10, which is not integrable (by Proposition 5.1), but has a normal subgroup
K, the cyclic group of order 5, such that H is the normalizer of K and both
K and H/K are integrable. So neither integrability nor non-integrability is
subgroup-closed, and a group can have the property that all its non-trivial
proper normal subgroups are integrable with integrable quotient without
itself being integrable. Moreover, any finite group has both integrable and
non-integrable overgroups (since the alternating group is integrable but the
symmetric group is usually not).

In the reverse direction, we have the following:

Proposition 8.1 Let G be an integrable finite group. Then either G is sim-
ple, or G has a non-trivial proper quotient which is integrable.

Proof. Let H be an integral of G. There are two cases:

Case 1: G has a non-trivial proper characteristic subgroup N (one
invariant under all automorphisms of G). Then N is normal in H , and
we have (H/N)′ = H ′/N = G/N .

Case 2: G is characteristically simple. In this case, G is a direct
product of isomorphic simple groups. So either G is simple, or it has a
simple (and hence integrable) proper quotient. �

8.2 Relative integrals

Let U be a “universal” group. Can we decide, for members G of some class
of subgroups of U , whether or not G has an integral within U?

This question includes several special cases which have arisen elsewhere
in this paper:
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• U = Aut(T ) for some non-abelian simple group T , and G is a subgroup
containing T .

• U is the affine group AGL(d, p), and G is a subgroup containing the
translation group.

• U is the symmetric group Sn, and G is a (transitive, or maybe 2-
homogeneous) permutation group of degree n.

The third problem for 2-transitive groups involves solving some special
cases of the other two, since a 2-transitive group is either affine or almost
simple.

More generally, we could ask for a classification of the primitive groups
H ≤ Sn that have a given 2-homogeneous group G ≤ Sn in their integrals
tower. (Equivalently, find the primitive subgroups of Sn that appear as the
derived group of the derived group of the . . . of a given 2-homogeneous group
G ≤ Sn.) This question should not be difficult; examining the known list of
2-homogeneous groups should give a solution, since in all cases the derived
length of the soluble residual is very small.

8.3 Infinitely integrable groups

There are groups which can be integrated n times (that is, which are iso-
morphic to the nth derived group of another group), for all n. For example,
additive groups of rings with identity have this property: if G is the group of
upper unitriangular (2n+1)×(2n+1) matrices over the ring R with identity,
then the nth derived group of G consists of unitriangular matrices with zeros
in all above-diagonal positions except the top right, and is isomorphic to the
additive group R+ of R. (We note that, since an upper unitriangular matrix
has determinant 1, Cramer’s rule shows that its inverse can be found by ring
operations alone, and so any product of commutators in this group over any
ring with identity can be computed with ring operations.)

We have the following result about groups with this property.

Theorem 8.2 (a) Let G be a finite abelian group; then G can be integrated
n times for every natural number n (even within the class of finite
nilpotent groups).

(b) A finite group can be integrated n times for every natural number n if
and only if it is central product of a perfect group and an abelian group.

22



Proof. (a) Since any finite abelian group is a direct product of finite cyclic
groups, it is enough to show the result for these. Now the cyclic group Cn is
the additive group of the ring Rn = Z/nZ, and so is the nth derived group
of the group of upper unitriangular matrices of order 2n + 1 over Rn. Since
the group of upper unitriangular matrices is nilpotent, the result is proved.

Observe that, in this way, one may realize any finite abelian group A as
the nth derived group of a nilpotent group, in which A is central.

(b) Let G = NA, with N,A normal subgroups, N perfect, A abelian, and
A ∩ N = Z(N), and let n be a natural number. By point (a) there exists a
group R such that A = R(n) and A ≤ Z(R). Now, if H is the central product
H = X ◦R, then H(n) = G.

Conversely, let G be a finite group. Then there is k such that X(k)

is perfect for every X ≤ Aut(G). Let N be the soluble residual of G (the
smallest normal subgroup such that G/N is soluble); then N is characteristic
in G. Suppose there exists a group H such that G = H(n), for some n ≥ k,
and let C = CH(G). Then NC/C is the soluble residual of H/C and NC ≥
H(k) ≥ G. Hence, A = G∩C ≤ Z(G) and G = NC ∩G = N(C ∩G) = NA,
thus proving the claim. �

Combining this result with Theorem 7.1, we obtain the following result:

Corollary 8.3 For a natural number n, the following are equivalent:

(a) every group of order n is abelian;

(b) every group of order n can be integrated twice;

(c) every group of order n can be integrated k times, for every natural
number k;

(d) n is cubefree and has no prime divisors p and q such that either q | p−1,
or q | p+ 1 and p2 | n.

Proof. We saw in Section 7 the (classical) equivalence of (a) and (d). We
have observed that (a) implies (c), and trivially (c) implies (b). So suppose
that n is such that every group of order n can be integrated twice. Then by
Theorem 7.1, n is cubefree and has no prime divisors p and q with q | p− 1.
So suppose that p and q are primes, with q | p + 1 and p2 | n. Let H be
the group of order p2q which is a semidirect product of the additive group
N of the field of order p2 with a subgroup of index q in the multiplicative
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group. Then as argued there, the only reduced integral of G is obtained by
adjoining the Frobenius automorphism t of the field. If 〈G, t〉 is integrable,
then so is 〈G, t〉/N . But this group is dihedral of order 2q, with q odd, and
so is not integrable. �

One can ask if there are infinitely integrable groups. More precisely, even
if a group G is not solvable, one can ask whether there exists an infinite chain
of finite groups of the form

G = G′
1 ≤ G1 = G′

2 ≤ G2 = G′
3 ≤ . . .

The answer to this question is positive if we allow perfect groups, by
taking Gi = G for all i. However, Neumann [11, Corollary 7.5] showed that
there is no strictly ascending infinite sequence if G2 is finitely generated; so
in particular, there is no such sequence of finite groups. (Note that Neu-
mann [11] gives an example of an infinite ascending sequence where G0 and
G1 are finite and the other terms infinite.)

If we relax the conditions slightly, the following construction gives exam-
ples of groups G with subgroups Gn for all natural numbers n, such that G0

is finite (but Gn infinite for n > 0), and other examples where all Gn are
finite but the second condition is weakened to the pair of conditions

• G′
n ≥ Gn−1 for n > 0,

• G
(n)
n = G0.

Construction: Let R be a ring with identity. (We are particularly inter-
ested in the case where R is finite; but the construction works in general.)
Let I be the set of dyadic rational numbers in [0, 1], and In the subset of I
in which the denominators are at most 2n. (So I0 = {0, 1}.)

Our groups will be contained in the group of upper triangular matrices
over R, where the index set of rows and columns is I. Let eij be a symbol
for each i, j ∈ I with i < j. Our group will be generated by elements xeij
for all such i, j and all x ∈ R; the relations are

• xeij · yeij = (x+ y)eij;

• for i < j < k, [xeij , yejk] = xyeik;

• if j 6= k and i 6= l, then [xeij , yekl] = 1.
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Think of xeij as the matrix I + xEij , where Eij has entry 1 in the (i, j)
position and 0 elsewhere.

Let Gn be the subgroup generated by xeij for i, j ∈ In, and Hd be gen-
erated by xij with j − i ≥ d. The groups Gn are isomorphic to the group of
(2n+1)× (2n+1) strictly upper triangular matrices over R, and so are finite
if R is finite. The groups Hd are infinite if d < 1; G0 = H1 is isomorphic to
the additive group of R.

Moreover, we see that

G′
n = Gn ∩H1/2n−1 ≥ Gn−1;

H ′
d = H2d,

with the convention that Hd = {1} if d > 1.
Hence the chains (H1/2n) and (Gn) of groups have the properties claimed.

9 Infinite groups

We have rather less to say about infinite groups.
The definition of integral applies equally to finite and infinite groups.

Several of our results (Lemma 2.1, Proposition 3.1, Proposition 3.6(a) and
(c), and Proposition 5.1) also apply to infinite groups.

Following the first part of the proof of Theorem 2.2, we show:

Proposition 9.1 Let G be finitely generated. If G has an integral, then it
has a finitely generated integral.

Proof. Suppose that H is an integral of G. Take a finite generating set
for G, and write each generator as a product of commutators of elements of
H . Then the finite set of elements involved in these commutators generate a
subgroup of H whose derived group is G. �

We mention a couple of classes of infinite groups which are integrable.

Theorem 9.2 (a) Any abelian group is integrable.

(b) Any free group is integrable.
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Proof. (a) We follow Guralnick’s proof [5]: if A is abelian, then the derived
group of A ≀ C2 is the subgroup {(a, a−1) : a ∈ A} of the base group A2 of
the wreath product, which is clearly isomorphic to A.

(b) If α is an infinite cardinal, then |Fα| = α, so |F ′
α| ≤ α. The inequality

cannot be strict, since if {fi : i ∈ α} is a free generating set for Fα, then the
elements [f0, fi], for i ∈ α, i > 0, of the derived group are all distinct. So
F ′
α
∼= Fα.
For finite rank, we use the result of Nielsen [13], a special case of which

asserts that the derived group of the free product Cm1
∗ Cm2

is a free group
of rank (m1 − 1)(m2 − 1). So the derived group of C2 ∗ Cn+1 is Fn. �

Remark 9.3 The free product of integrable groups may or may not be in-
tegrable. For example,

• C2 ∗ C2 is the infinite dihedral group, which is not integrable (by the
same argument as for finite dihedral groups).

• C3 ∗ C3 is the derived group of PGL(2,Z) [6, 16].

In view of part (a) above and our results on abelian groups, we could
ask whether any abelian group A has an integral G with |G : A| finite.
For example, if A = A2 (that is, every element of G is a square), then the
generalized dihedral group

G = 〈A, t〉 | t2 = 1, t−1at = a−1 for all a ∈ A〉

is an integral of A with |G : A| = 2. But in general the answer is negative:

Theorem 9.4 There exist infinite abelian groups A having no integral G
with |G : A| finite.

Proof. Following the arguments given in Section 4, we take A to be the
direct product of cyclic groups of orders 2k for k ∈ N.

Let G be a 2-group such that G′ = A, and suppose for a contradiction
that |G/A| is finite. Then we can find subgroups N ≤ A with NEG and A/N
finite and arbitrarily large. But A/N = (G/N)′, contradicting Proposition
4.3. �

In fact much more can be said about integrals of infinite abelian groups;
this will be discussed in a later paper.
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10 Open problems

We conclude with a list of problems arising from this study, some of which
have already been mentioned.

Problem 10.1 Let N be the set of positive integers n for which every group
of order n is integrable (Theorem 7.1). Does N have a density? What is its
density? (We note that of the integers up to 108, the number which lie in N
is 32261534.)

Problem 10.2 Find a good upper bound for the order of the smallest inte-
gral of an integrable group of order n.

Problem 10.3 True or false? For a fixed prime p, the proportion of groups
of order pn which are integrable tends to 0 as n→ ∞.

Problem 10.4 (a) Let us call a group G almost integrable if G × A is
integrable for some abelian group A. We saw in Proposition 3.6(c)
that, for centreless groups, “integrable” and “almost integrable” are
equivalent. Which groups with non-trivial centre are almost integrable?
(At the end of Section 3, we noted that C2 ×D8 is integrable, so D8 is
almost integrable, but not integrable.)

(b) Does there exist a finite non-integrable group G, such that G×G is in-
tegrable? In particular, is D8×D8 integrable? (As noted in Subsection
8.1 it has no integral of order less than 512.)

Problem 10.5 For the three cases mentioned in Subsection 8.2 decide, for
members G of some class of subgroups of U , whether or not G has an integral
within U . In the context of the discussion following Lemma 6.2, especially
Case 2, we are particularly interested in the case where U = Out(T ) for some
simple group T and G is cyclic.

Problem 10.6 For which finite non-abelian groups G is it true that, for all
finite groups H with G′ = H ′, it holds that H is integrable if and only if G
is? (All finite abelian groups have this property, but it fails for D8 and Q8.)

Problem 10.7 One difficult problem is relating integrability of G to that
of G/Z(G), or indeed G/Z for any central subgroup Z of G. Is there a
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cohomological tool that would help? One direction is trivial: if G has an
integral then so does G/Z(G).

Let us suppose that Z(G) ∼= Cp; putH = G/Z(G). Then G is “described”
by a cohomology class γ in the second cohomology group (or extension group)
H2(H,Cp). Suppose that H has an integral K. Does cohomology provide a
tool to decide whether γ is the restriction to H of a class δ ∈ H2(K,Cp)? If
so, then the corresponding extension is an integral of G.

Problem 10.8 Which integrable infinite groups G have an integral H such
that the index of G in H is finite?

Problem 10.9 let G be a locally finite group which is locally integrable (that
is, every finite subset is contained in an integrable subgroup). Must G be
integrable? If so, must there be a locally finite integral?

Problem 10.10 Let X be a n-set and Sn the symmetric group on X . Does
there exist an equivalence relation ρ on X such that the group G ≤ Sn of all
permutations that preserve ρ is integrable in Sn? We know this is false for
the identity or universal relations; is it false for all equivalence relations?

Such a group G is a direct product of wreath products Sa ≀Sb of symmetric
groups. As a preliminary step, we could ask whether a direct product of
symmetric groups can be integrable.

Problem 10.11 Determine whether the following problem is undecidable:
given a presentation 〈X | R〉 for a group G, is G integrable? Are there
decidable instances of this problem? For example, is the problem decidable
for one-relator groups?

Problem 10.12 It is known that the infinite finitely presented Thompson
groups T and V are simple. On the other hand, Thompson’s group F has
simple commutator subgroup, but is not itself simple. Is the group F inte-
grable?

Problem 10.13 (a) The class of all integrals of a given variety V of groups
is a variety of groups W . Given a base of identities for V , is it possible
to find a base of identities for W ?

(b) Let G be a finite integrable group, and W the variety of integrals of
groups in V = Var(G). Is there an integral H of G such that W =
Var(H)?

28



Related to the previous problem we have the following.

Problem 10.14 Is it possible to classify the finite sets A ⊆ F2, the 2-
generated free group, such that the group

〈a, b | w(a, b) = 1 = w(b, a) (w ∈ A)〉

satisfies w(x, y) = 1, for all w ∈ A?

Problem 10.15 Every group in a variety of abelian groups has integral. Are
there other varieties with this property?

Problem 10.16 For any integrable group there is a smallest integral; how
many different integrals of smallest order can there be?

Problem 10.17 Is it true that no Coxeter group with connected diagram,
apart from C2, is integrable?

Problem 10.18 Produce some algorithms and effective GAP code to find
integrals of a given group.

Problem 10.19 As there is a classification of the groups in which all sub-
groups are normal, classify the groups in which all subgroups are integrable.

Problem 10.20 It makes sense to adapt the integrability concept to Lie
algebras via the derived subalgebra. Is it true that a Lie algebra is integrable
if and only if the corresponding Lie group is?

Problem 10.21 Is there a ring theoretic analogue of the results in this pa-
per, now taking [a, b] = ab− ba?

Observe that in general, the commutators of all pairs of elements in a
ring form a subring, but they do not necessarily form an ideal [9]. Therefore
the ring theory literature considers the commutator as the ideal generated
by all pairs [a, b]. Nevertheless, they form a right ideal if and only if they
form a left ideal: (ab− ba)c = a(bc− cb) + (ac)b− b(ac).
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