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Abstract. We consider the inverse problem of determining the Lamé pa-
rameters and the density of a three-dimensional elastic body from the local

time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz

stability of this inverse problem when the Lamé parameters and the density
are assumed to be piecewise constant on a given domain partition.

1. Introduction

We study the inverse boundary value problem for time-harmonic elastic waves.
We consider isotropic elasticity, and allow partial boundary data. The Lamé param-
eters and the density are assumed to be piecewise constants on a given partitioning
of the domain. The system of equations describing time-harmonic elastic waves is
given by,

(1.1)

{
div(C∇̂u) + ρω2u = 0 in Ω ⊂ R3,

u = ψ on ∂Ω,

where Ω is an open and bounded domain with smooth boundary, ∇̂u denotes the
strain tensor, ∇̂u := 1

2 (∇u + (∇u)T ), ψ ∈ H1/2(∂Ω) is the boundary displace-
ment or source, and C ∈ L∞(Ω) denotes the isotropic elasticity tensor with Lamé
parameters λ, µ:

C = λI3 ⊗ I3 + 2µIsym, a.e. in Ω,

where I3 is 3 × 3 identity matrix and Isym is the fourth order tensor such that

IsymA = Â, ρ ∈ L∞(Ω) is the density, and ω is the frequency. Here, we make use
of the following notation for matrices and tensors: For 3× 3 matrices A and B we
set A : B =

∑3
i,j=1AijBij and Â = 1

2 (A+AT ). We assume that

0 < α0 ≤ µ ≤ α−1
0 , 0 < β0 ≤ 2µ+ 3λ ≤ β−1

0 a.e. in Ω,(1.2)

0 ≤ ρ ≤ γ−1
0 .(1.3)

The Dirichlet-to-Neumann map, ΛC,ρ, is defined by

ΛC,ρ : H1/2(∂Ω) 3 ψ → (C∇̂u)ν|∂Ω ∈ H−1/2(∂Ω),

where ν is the outward unit normal to ∂Ω. We consider the inverse problem:

determine C, ρ from ΛC,ρ.

For the static case (that is, ω = 0) of our problem, Imanuvilov and Yamamoto
[28] proved, in dimension two, a uniqueness result for C10 Lamé parameters. In
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dimension three, Nakamura and Uhlmann [36] proved uniqueness assuming that
the Lamé parameters are C∞ and that µ is close to a positive constant. Eskin
and Ralston [24] proved a related result. Global uniqueness of the inverse problem
in dimension three assuming general Lamé parametres remains an open problem.
Beretta et al. proved the uniqueness when the Lamé parameters are assumed to be
piecewise constant. They proved the Lipschitz stability when interfaces of subdo-
mains contain flat parts [14]; later, they extended this result to non-flat interfaces
[13]. Alessandrini et al. [2] proved a logarithmic stabilty estimate for the inverse
problem of identifying an inclusion, where constant Lamé parameters are different
from the background ones.

The key application we have in mind is (reflection) seismology, where Lamé
parameters and density need to be recovered from the Dirichlet-to-Neumann map.
In actual seismic acquisition, raw vibroseis data are modeled by the Neumann-to-
Dirichlet map, the inverse of the Dirichlet-to-Neumann map: The boundary values
are given by the normal traction underneath the base plate of a vibroseis and are
zero (‘free surface’) elsewhere, while the particle displacement (in fact, velocity)
is measured by geophones located in a subset of the boundary (Earth’s surface).
The applied signal is essentially time-harmonic (suppressing the sweep); see [7,
(2.52)-(2.53)]. (The displacement needs to be measured also underneath the base
plate.)

A key complication addressed in this paper is the multiparameter aspect of this
inverse problem. For the acoustic waves modeled by the equation

(1.4) ∇ · (γ∇u) + qω2u = 0,

Nachman [35] proved the unique recovery of γ ∈ C2 and q ∈ L∞ with Dirichlet-
to-Neumann maps at two different admissible frequencies ω1, ω2. For the optical
tomography problem, that is, recovering simultaneously a > 0 and c > 0 in the
partial differential equation

−∇ · (a∇u) + cu = 0,

from all possible boundary Dirichlet and Neumann pairs, Arridge and Lionheart
[5] demonstrated the non-uniqueness for general a and c. However, when a is
piecewise constant and c is piecewise analytic, Harrach [27] proved the uniqueness
of this inverse problem. In this paper, we prove, for our problem, that recovering a
higher order coefficient and a lower order coefficient jointly, that are assumed to be
piecewise constant, only needs single frequency data also. If we assume γ, q to be
piecewise constant in (1.4), we can establish the uniqueness with single frequency
data, following the methods of proof of this paper.

With the conditional Lipschitz stability which we obtain here, we can invoke
iterative methods with guaranteed convergence for local reconstruction, such as the
nonlinear Landweber iteration [22] and the nonlinear projected steepest descent
algorithm [23] (including a stopping criterion which allows inaccurate data). In
reflection seismology, iterative methods for solving inverse problems, casting these
into optimization problems, have been collectively referred to as Full Waveform
Inversion (FWI) through the use of the adjoint state method. These methods were
introduced in this field of application by Chavent [18], Lailly [30] and Tarantola
& Valette [42, 41] albeit for scalar waves. An early study of stability in dimen-
sion one can be found in Bamberger et al. [8]. Mora [33] developed the adjoint
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state formulation for the case of elastic waves and carried out computational ex-
periments; Crase et al. [21] then carried out applications to field data. Advantages
of using time-harmonic data, following specific workflows, were initially pointed
out by Pratt and collaborators [39, 38, 37]; Bunks et al. [17] developed an im-
portant insight in the use of strictly finite-frequency data. In recent years, there
has been a significant effort in further developing and applying these approaches
(with emphasis on iterative Gauss-Newton methods) – in the absence of a notion
of (conditional) uniqueness, stability or convergence – often in combination with
intuitive strategies for selecting parts of the data. In exploration seismology, we
mention the work of Gélis et al. [25], Choi [19], Brossier et al. [15, 16] and Xu &
McMechan [44]; in global seismology, we mention the work of Tromp et al. [43] and
Fichtner & Trampert [26].

In this paper, we consider piecewise constant Lamé parameters and density of
the form

C(x) =

N∑
j=1

(λjI3 ⊗ I3 + 2µjIsym)χDj (x), ρ(x) =

N∑
j=1

ρjχDj (x),

where theDj ’s, j = 1, · · · , N are known disjoint Lipschitz domains and λj , µj , ρj , j =
1, · · · , N are unknown constants. We establish uniqueness and a Lipschitz stability
estimate of the above mentioned inverse boundary value problem. The method
of proof follows the ideas introduced by Alessandrini and Vessella [4] in the study
of electrical impedance tomography (EIT) problems. The counterpart for scalar
waves, that is, the inverse boundary value problem for the Helmholtz equation, was
analyzed by Beretta et al. [10].

The existence and the “blow up” behavior of singular solutions close to a flat
discontinuity are utilized in our proof. The quantitative estimate of unique contin-
uation for elliptic systems, which is derived from a three spheres inequality, play
an essential role in the procedure. We directly prove a log-type stability estimate
for the Lamé parameters and the density combined with alternatingly estimating
them along a walkway of subdomains. Uniqueness then follows from the stabil-
ity estimate. From the restriction that the parameters to be recovered lie in a
finite-dimensional space, a Lipschitz stability estimate is obtained.

The paper is organized as follows: In Section 2, we summarize the main results.
In Section 3, we construct the singular solutions and establish the unique contin-
uation for the system describing time-harmonic elastic waves. We also prove the
Fréchet differentiability of the forward map, (C, ρ)→ ΛC,ρ. In Section 4, we prove
the main result. In Section 5, we give some remarks on the problems of identifying
the Lamé parameters given the density, and identifying the density given the Lamé
parameters.

2. Main result

2.1. Direct problem. We summarize some results concerning the well-posedness
of problem (1.1).

Proposition 2.1. Let Ω be a bounded Lipschitz domain in R3, f ∈ H−1(Ω) and
g ∈ H1/2(∂Ω). Assume that λ, µ, ρ satisfy (1.2) and (1.3). Let λ0

1 be the smallest

Dirichlet eigenvalue of the operator −div(C0∇̂u) in Ω, where C0 = β0−3α0

2 I3⊗I3 +
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2α0Isym. Then, for any ω2 ∈ (0,
γ0λ

0
1

2 ], there exists a unique solution of

(2.1)

{
div(C∇̂u) + ρω2u = f in Ω ⊂ R3,

u = g on ∂Ω,

satisfying

(2.2) ‖u‖H1(Ω) ≤ C(‖g‖H1/2(∂Ω) + ‖f‖H−1(Ω)),

where C depends on α0, β0, γ0 and λ0
1.

Proof. Without loss of generality, we let g = 0. Indeed, we can always introduce a
w = u − g̃ where g̃ ∈ H1(Ω) is such that g̃ = g on ∂Ω, which satisfies (2.1) with
g = 0. We recall that

(2.3) λ0
1 = min

{∫
Ω

C0∇̂u : ∇̂u
∣∣∣u ∈ H1(Ω), ‖u‖L2(Ω) = 1

}
,

and observe that C ≥ C0, that is, (C− C0)Â : Â ≥ 0 for any 3× 3 matrix A.
We consider on H1

0 (Ω) the bilinear form

a(u, v) =

∫
Ω

C∇̂u : ∇̂vdx−
∫

Ω

ω2ρu · vdx.

Then we can write problem (2.1) (for g = 0) in the weak form,

a(u, v) = −〈f, v〉 ∀v ∈ H1
0 (Ω).

Clearly a(·, ·) is continuous. We check now that a(·, ·) is coercive. To this aim, we
recall the Korn inequality

(2.4)

∫
Ω

|∇̂u|2dx ≤ 2

∫
Ω

|∇u|2dx

for any u ∈ H1
0 (Ω) (using the matrix norm, |A|2 = A : A for any 3× 3 matrix A).

Furthermore,

a(u, u) =

∫
Ω

C∇̂u : ∇̂udx−
∫

Ω

ω2ρ|u|2dx

≥
∫

Ω

C0∇̂u : ∇̂udx− ω2γ−1
0

∫
Ω

|u|2dx

=
1

2

∫
Ω

C0∇̂u : ∇̂udx+
1

2

{∫
Ω

C0∇̂u : ∇̂udx− 2ω2γ−1
0

∫
Ω

|u|2dx

}
.

By (2.3), the strong convexity of C0, the Korn inequality (2.4) and the Poincaré
inequality, we have

a(u, u) ≥ ξ0
4

∫
Ω

|∇u|2 dx+
1

2

{∫
Ω

C0∇̂u : ∇̂udx− 2ω2γ−1
0

∫
Ω

|u|2dx

}
≥ ξ0CP

4
‖u‖2H1(Ω)

indeed, where ξ0 depends on α0 and β0 only and CP is the Poincaré constant of Ω.
By the Lax-Milgram lemma there exists a unique solution u ∈ H1

0 (Ω) to problem
(2.1), and (2.2) holds. �

Remark 2.1. We note that whenever ω is not in a particular countable subset of
real numbers (the set of eigenfrequencies), Problem (2.1) has a unique solution and
estimate (2.2) holds with the constant C depending also on ω.
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We let Σ be an open portion of ∂Ω. We denote by H
1/2
co (Σ) the space

H1/2
co (Σ) := {φ ∈ H1/2(∂Ω) | supp φ ⊂ Σ}

and by H
−1/2
co (Σ) the topological dual of H

1/2
co (Σ). We denote by 〈·, ·〉 the dual

pairing between H
1/2
co (Σ) and H

−1/2
co (Σ) based on the L2(Σ) inner product. By

Proposition 2.1 it follows that for any ψ ∈ H1/2
co (Σ) there exists a unique vector-

valued function u ∈ H1(Ω) that is a weak solution of the Dirichlet problem (1.1).
We define the local Dirichlet-to-Neumann map ΛΣ

C,ρ as

ΛΣ
C,ρ : H1/2

co (Σ) 3 ψ → (C∇̂u)ν|Σ ∈ H−1/2
co (Σ).

We have ΛC,ρ = Λ∂Ω
C,ρ. The map ΛΣ

C,ρ can be identified with the bilinear form on

H
1/2
co (Σ)×H−1/2

co (Σ),

(2.5) Λ̂Σ
C,ρ(ψ, φ) := 〈ΛΣ

C,ρψ, φ〉 =

∫
Ω

(C∇̂u : ∇̂v − ρω2u · v)dx,

for all ψ, φ ∈ H1/2
co (Σ), where u solves (1.1) and v is any H1(Ω) function such that

v = φ on ∂Ω. We shall denote by ‖ · ‖? the norm in L(H1/2(Σ), H−1/2(Σ)) defined
by

‖T‖? = sup
{
〈Tψ, φ〉

∣∣∣ ψ, φ ∈ H1/2
co (Σ), ‖ψ‖

H
1/2
co (Σ)

= ‖φ‖
H

1/2
co (Σ)

= 1
}
.

2.2. Notation and definitions. For every x ∈ R3 we set x = (x′, x3) where
x′ ∈ R2 and x3 ∈ R. For every x ∈ R3, r and L positive real numbers we denote by
Br(x), B′r(x

′) and Qr,L the open ball in R3 centered at x of radius r, the open ball in
R2 centered at x′ of radius r and the cylinder B′r(x

′)×(x3−Lr, x3+Lr), respectively;
Br(0), B′r(0) and Qr,L(0) will be denoted by Br, B

′
r and Qr,L, respectively. We

will also write R3
+ = {(x′, x3) ∈ R3 : x3 > 0}, R3

− = {(x′, x3) ∈ R3 : x3 < 0},
B+
r = Br ∩R3

+, and B−r = Br ∩R3
−. For any subset D of R3 and any h > 0, we let

(D)h = {x ∈ D | dist(x,R3 \D) > h}.

Definition 2.2. Let Ω be a bounded domain in R3. We say that a portion Σ ⊂ ∂Ω
is of Lipschitz class with constants r0 > 0, L ≥ 1 if for any point P ∈ Σ, there
exists a rigid transformation of coordinates under which P = 0 and

Ω ∩Qr0,L = {(x′, x3) ∈ Qr0,L | x3 > ψ(x′)},

where ψ is a Lipschitz continuous function in B′r0 such that

ψ(0) = 0 and ‖ψ‖C0,1(B′r0
) ≤ Lr0.

We say that Ω is of Lipschitz class with constants r0 and L if ∂Ω is of Lipschitz
class with the same constants.

2.3. Main assumptions. Let A,L, α0, β0, γ0, N be given positive numbers such
that N ∈ N, α0 ∈ (0, 1), β0 ∈ (0, 2), γ0 ∈ (0, 1) and L > 1. We shall refer to them
as the prior data.

In the sequel we will introduce a various constants that we will always denote by
C. The values of these constants might differ from one another, but we will always
have C > 1.
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Assumption 2.1 ([14]). The domain Ω ⊂ R3 is open and bounded with

|Ω| ≤ A,
and

Ω̄ = ∪Nj=1D̄j ,

where Dj , j = 1, . . . , N are connected and pairwise non-overlapping open subdo-
mains of Lipschitz class with constants 1, L. Moreover, there exists a region, say D1,
such that ∂D1∩∂Ω contains an open flat part, Σ, and that for every j ∈ {2, . . . , N}
there exist j1, . . . , jM ∈ {1, . . . , N} such that

Dj1 = D1, DjM = Dj

and, for every k = 2, . . . ,M
∂Djk−1

∩ ∂Djk

contains a flat portion Σk such that

Σk ⊂ Ω, for all k = 2, . . . ,M.

Furthermore, for k = 1, . . . ,M , there exists Pk ∈ Σk and a rigid transformation of
coordinates such that Pk = 0 and

Σk ∩Q1/3,L = {x ∈ Q1/3,L : x3 = 0},
Djk ∩Q1/3,L = {x ∈ Q1/3,L : x3 < 0},
Djk−1

∩Q1/3,L = {x ∈ Q1/3,L : x3 > 0};
here, we set Σ1 = Σ. We will refer to Dj1 , . . . , DjM as a chain of subdomains
connecting D1 to Dj. For any k ∈ {1, . . . ,M} we will denote by nk the exterior
unit vector to ∂Dk at Pk.

An example of such a domain partition with Lipschitz class subdomains is an
unstructured tetrahedral mesh.

Figure 1. A domain partition including D1.

Assumption 2.2. The stiffness tensor, C, is isotropic and piecewise constant, that
is,

C =

N∑
j=1

CjχDj (x), Cj = λjI3 ⊗ I3 + 2µjIsym,

where the constants λj and µj satisfy (cf. (1.2))

(2.6) 0 < α0 ≤ µj ≤ α−1
0 , λj ≤ α−1

0 , 2µj + 3λj ≥ β0 > 0, j = 1, . . . , N.
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The density, ρ, is of the form,

ρ =

N∑
j=1

ρjχDj (x),

where the constants ρj satisfy (cf. (1.3))

0 ≤ ρj ≤ γ−1
0 , j = 1, . . . , N.

Assumption 2.3. Let λ0
1 be the smallest Dirichlet eigenvalue of operator

−div(C0∇̂u) in Ω as before,

ω2 ≤ γ0λ
0
1

2
.

2.4. Statement of the main result. We define for any set D ∈ R3,

dD((C1, ρ1), (C2, ρ2)) = max{‖λ1 − λ2‖L∞(D), ‖µ1 − µ2‖L∞(D), ‖ρ1 − ρ2‖L∞(D)}.

Theorem 2.3. Let (C1,2, ρ1,2) satisfy Assumption 2.2. Let Ω and Σ satisfy As-
sumption 2.1 and ω satisfy Assumption 2.3. If ΛΣ

C2,ρ2 = ΛΣ
C1,ρ1 then C1 = C2 and

ρ1 = ρ2. Moreover, there exists a positive constant C depending on L, A, N , α0,
β0, γ0 and λ0

1 only, such that

(2.7) dΩ((C1, ρ1), (C2, ρ2)) ≤ C ‖ΛΣ
C1,ρ1 − ΛΣ

C2,ρ2‖?.

In preparation of the proof, we introduce the forward map associated with the
inverse problem. We let L := (λ1, . . . , λN , µ1, . . . , µN , ρ1, . . . , ρN ) denote a vector
in R3N and A stand for the open subset of R3N defined by
(2.8)

A :=

{
L ∈ R2N

∣∣∣ α0

2
< µj <

2

α0
, λj <

2

α0
, 2µj + 3λj >

β0

2
,
γ0

2
< ρj <

2

γ0
, j = 1, . . . , N

}
.

For each vector L ∈ A we can define a piecewise constant stiffness tensor CL, and
a density ρL, with

‖L‖∞ = max
j=1,...,N

{sup{|λj |, µj , |ρj |}}.

The forward map is defined as

(2.9) F : A → L(H1/2
co (Σ), H−1/2

co (Σ)), L→ F (L) = ΛΣ
CL,ρL .

We can identify F with a map F̃ : A → B upon identifying F̃ (L) with the bilinear

form, Λ̃Σ
CL,ρL , on H

1/2
co (Σ) × H−1/2

co (Σ) (cf. (2.5)); B is the Banach space of this

bilinear form with the standard norm. In the sequel, we will write F and ΛΣ
CL,ρL

instead of F̃ and Λ̃Σ
CL,ρL . We denote

K := {L ∈ A | α0 ≤ µj ≤ α−1
0 , λj ≤ α−1

0 , 2µj+3λj ≥ β0, 0 ≤ ρj ≤ γ−1
0 , j = 1, . . . , N}.

Then the stability estimate in Theorem 2.3 can be stated as follows:

‖L1 − L2‖∞ ≤ C‖F (L1)− F (L2)‖?,
for every L1, L2 in K. We note that Theorem 2.3 implies that F is injective and
that its inverse is Lipschitz continuous.

Remark 2.4. Assumption 2.3 in Theorem 2.3 can be relaxed to include any ω that
is not in the set of eigenfrequencies. Then the constant C will also depend on the
distance between ω and the set of eigenfrequencies.
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3. Preliminary results

Here, we follow Beretta et al. [14, 13]. We summarize the relevant results in
their work and adapt them to the time-harmonic problem. We begin this section
with Alessandrini’s identity [1, 29]. We let uk be solutions to

div(Ck∇̂uk) + ρkω2uk = 0 in Ω

for k = 1, 2, where Ck, ρk satisfy Assumption 2.2. Then
(3.1)∫

Ω

(
(C1 − C2)∇̂u1 : ∇̂u2 − (ρ1 − ρ2)ω2u1 · u2

)
dx = 〈(ΛC1,ρ1 − ΛC2,ρ2)u1, u2〉.

3.1. Fréchet differentiability of F .
Here, we prove the Fréchet differentiability of the forward map, F .

Proposition 3.1. Under Assumptions 2.1, 2.2 and 2.3, the map

F : A → L(H1/2
co (Σ), H−1/2

co (Σ))

is Frechét differentiable in A and

(3.2) 〈DF (L)[H]ψ, φ〉 =

∫
Ω

(
H∇̂uL : ∇̂vL − hω2uL · vL

)
dx,

where H = CH , h = ρH . Moreover, DF : A → L(R3N ,L(H
1/2
co (Σ), H

−1/2
co (Σ))) is

Lipschitz continuous with Lipschitz constant CDF depending on A, L, α0, β0, γ0,
λ0

1 only.

Proof. Fix L ∈ A and let H ∈ R3N such that ‖H‖∞ is sufficiently small. By (3.1)
we have

〈(F (L+H)− F (L))ψ, φ〉 =

∫
Ω

H∇̂uL+H : ∇̂vLdx−
∫

Ω

hω2uL+H · vLdx.

Hence, by setting

(3.3) η := 〈(F (L+H)− F (L))ψ, φ〉 −
∫

Ω

H∇̂uL : ∇̂vLdx+

∫
Ω

hω2uL · vLdx

=

∫
Ω

H∇̂(uL+H − uL) : ∇̂vLdx−
∫

Ω

hω2(uL+H − uL) · vLdx,

we find that

(3.4) |η| ≤ C‖H‖∞‖∇(uL+H − uL)‖L2(Ω)‖φ‖H1/2
co (Σ)

,

where C depends on A,L, α0, β0, γ0, λ
0
1 only. We estimate ‖∇(uL+H − uL)‖L2(Ω).

We observe that w := uL+H − uL is the solution to

(3.5)

{
div(CL∇̂w) + ρω2w = −div(H∇̂uL+H)− hω2uL+H in Ω,

w = 0 on ∂Ω.

By Proposition 2.1, we have

‖∇w‖L2(Ω) ≤ C‖w‖H1(Ω)

≤ C‖div(H∇̂uL+H)‖H−1(Ω) + C‖hω2uL+H‖H−1(Ω)

≤ C‖H∇̂uL+H‖L2(Ω) + C‖hω2uL+H‖H−1(Ω)

≤ C‖H‖∞‖uL+H‖H1(Ω) + C‖H‖∞‖uL+H‖L2(Ω)

≤ C‖H‖∞‖ψ‖H1/2
co (Σ)

,

(3.6)
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where C depends on A,L, α0, β0, γ0, λ
0
1. By inserting (3.6) into (3.4) we get

(3.7) |η| ≤ C‖H‖2∞‖ψ‖H1/2
co (Σ)

‖φ‖
H

1/2
co (Σ)

,

that yields (3.2).
We now prove the Lipschitz continuity of DF . Let L1, L2 ∈ A and set

ξ :=〈(DF (L2)−DF (L1))[H]ψ, φ〉

=

∫
Ω

(
H∇̂uL2 : vL2 −H∇̂uL1 : vL1

)
dx+

∫
Ω

(
hω2uL2 · vL2 − hω2uL1 · vL1

)
dx

=

∫
Ω

H(∇̂uL2 − ∇̂uL1) : ∇̂vL2dx+

∫
Ω

H∇̂uL1 : (∇̂vL2 − ∇̂vL1)dx

+

∫
Ω

hω2(uL2 − uL1) · vL2dx+

∫
Ω

hω2uL1 · (vL2 − vL1)dx.

By reasoning as we did to derive (3.7) we obtain

|ξ| ≤ CDF ‖H‖∞‖L2 − L1‖∞‖ψ‖H1/2
co (Σ)

‖φ‖
H

1/2
co (Σ)

,

where CDF depends on A,L, α0, β0, γ0, λ
0
1. �

3.2. Further notation and definitions.
Construction of an augmented domain and extension of C and ρ. First we
extend the domain Ω to a new domain Ω0 such that ∂Ω0 is of Lipschitz class and
B1/C(P1) ∩ Σ ⊂ Ω0, for some suitable constant C ≥ 1 depending only on L. We
proceed as in [3]. We set

(3.8) η1 = 1/CL,where CL =
3
√

1 + L2

L
,

and define, for every x′ ∈ B′1
3

ψ+(x′) =


η1

2 for |x′| ≤ η1

4L

η1 − 2L|x′| for η1

4L < |x
′| ≤ η1

2L

0 for |x′| > η1

2L .

We observe that for every x′ ∈ B′1/3, |ψ+(x′)| ≤ η1

2 and |∇x′ψ+(x′)| ≤ 2L. Next,

we denote by

D0 = {x = (x′, x3) ∈ Q1/3,L | 0 ≤ x3 < ψ+(x′)},

Ω0 = Ω ∪D0.

We have

i) Ω0 has a Lipschitz boundary with constants 1
3 , 3L;

ii)

Ω0 ⊃ Q1/4LCL,L.

Let C be an isotropic tensor that satisfies Assumption 2.2. We extend C to Ω0

such that C|D0
= C0. We also extend ρ such that ρ|D0

= 1. Then C, ρ are of the
form

(3.9) C =

N∑
j=0

CjχDj (x),
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(3.10) ρ =

N∑
j=0

ρj χDj (x).

Construction of a walkway. We fix j ∈ {1, . . . , N} and let Dj1 , . . . , DjM be
a chain of domains connecting D1 to Dj . We set Dk = Djk , k = 1, . . . ,M . By
[3] Proposition 5.5, there exists C ′L ≥ 1 depending on L only, such that (Dk)h is
connected for every k ∈ {1, . . . ,M} and every h ∈ (0, 1/C ′L). We introduce

(3.11) h0 = min

{
1

6
,

1

C ′L
,

η1

8
√

1 + 4L2

}
where η1 is as in (3.8).

Furthermore

i) Q(k), k = 1, . . . ,M , is the cylinder centered at Pk such that by a rigid trans-
formation of coordinates under which Pk = 0 and Σk belongs to the plane
{(x′, 0)}, and Q(k) = Qη1/4L,L. We also denote Q−(M) = Q(M) ∩DM−1;

ii) K is the interior part of the set
⋃M−1
k=1 D̄i;

iii) Kh =
⋃M−1
k=1 (Di)h, for every h ∈ (0, h0);

iv)

(3.12) K̃h = Kh ∪Q−(M) ∪
M−1⋃
k=1

Q(k);

v)

K0 =
{
x ∈ D0 | dist(x, ∂Ω) >

η1

8

}
.

It is straightforward to verify that K̃h is connected and of Lipschitz class for every
h ∈ (0, h0) and that

(3.13) K0 ⊃ B′η1/4L
(P1)×

(η1

8
,
η1

4

)
.

Figure 2. A path or walkway.

3.3. Existence of singular solutions.
Next, we construct singular solutions to the system describing time-harmonic elastic
waves. We prove the stability estimates for our inverse problems by studying the
behavior of singular solutions.
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3.3.1. Static fundamental solution in the biphase laminate. In order to construct
singular solutions, we make use of special fundamental solutions constructed by
Rongved [40] for isotropic biphase laminates. Consider

Cb = C+χR3
+

+ C−χR3
−
,

where C+ and C− are constant isotropic stiffness tensors given by

C+ = λI3 ⊗ I3 + 2µIsym, C− = λ′I3 ⊗ I3 + 2µ′Isym,
with λ, µ and λ′, µ′ satisfying (2.6).

By [40], there exists a fundamental solution Γ : {(x, y) | x ∈ R3, y ∈ R3, x 6=
y} → R3×3 such that

div(Cb∇̂Γ(·, y)) = −δyI3.
Here δy is the Dirac distribution concentrated at y. We point out some properties
of Γ. First of all, it is a fundamental solution, in the sense that Γ(x, y) is continuous
in {(x, y) ∈ R3 ×R3 | x 6= y}, Γ(x, ·) is locally integrable in R3 for all x ∈ R3, and,
for every vector valued function φ ∈ C∞0 (R3), we have∫

R3

Cb∇̂Γ(·, y) : ∇̂φdx = φ(y).

Furthermore, for every x, y ∈ R3, x 6= y, we have

|Γ(x, y)| ≤ C

|x− y|
and

|∇Γ(x, y)| ≤ C

|x− y|2
,

while for any r > 0,

(3.14) ‖∇Γ(·, y)‖L2(R3\Br(y)) ≤
C

r1/2
,

where C depends on α0, β0 only.

3.3.2. Time-harmonic singular solutions. Let F denote the union of the flats parts

of ∪Nj=1∂Dj . Let G = ∪Nj=0∂Dj \ F. Let C =
∑N
j=0 CjχDj where the tensors Cj

satisfy Assumption 2.2. Let y ∈ Ω0\G and let r = min(1/4,dist(y,G∪∂Ω0)). Then,
in the ball Br(y), either C is constant, C = Cj or C = Cj + (Cj+1−Cj)χ{x3>a} for
some a with |a| < r. We write

Cy =

{
Cj if C = Cj in Br(y),

Cj + (Cj+1 − Cj)χ{x3>a} otherwise,

and consider the biphase fundamental solution satisfying

div(Cy∇̂Γ(·, y)) = −δyI3 in R3.

Proposition 3.2. Let Ω0, C and ω satisfy Assumptions 2.1, 2.2 and 2.3. Then,
for y ∈ Ω0 \G, there exists only one function G(·, y), which is continuous in Ω\{y},
such that

(3.15)

∫
Ω0

(
C∇̂G(·, y) : ∇̂φ− ρω2G(·, y) · φ

)
dx = φ(y), ∀φ ∈ C∞0 (Ω0),

and
G(·, y) = 0 on ∂Ω0.



12 E. BERETTA, M.V. DE HOOP, E. FRANCINI, S. VESSELLA, AND J. ZHAI

Furthermore, if dist(y,G ∪ ∂Ω0) ≥ 1
c1

for some c1 > 1 then

‖G(·, y)− Γ(·, y)‖H1(Ω0) ≤ C,(3.16)

‖G(·, y)‖H1(Ω0\Br(y)) ≤ Cr−1/2,(3.17)

‖G(·, y)‖L2(Ω0) ≤ C,(3.18)

where C depends on α0, β0, A, L, γ0, λ
0
1 and on c1.

3.4. Unique continuation for the system describing time-harmonic elastic
waves. We state a quantitative estimate of unique continuation. We will omit the
proof of this estimate since it is a minor modification of the proof of a similar
estimate for the Lamé system of elasticity [14].

Proposition 3.3. Let ε1, E1 and h be positive numbers, h < h0, where h0 is defined
in (3.11). Let v ∈ H1

loc(K) be a solution to

div(C∇̂v) + ρω2v = 0 in K,
such that

‖v‖L∞(K0) ≤ ε1
and

(3.19) |v(x)| ≤ E1 (dist(x,ΣM ))
−γ

for every x ∈ Kh/2.
Then

(3.20) |v(x̃)| ≤ Cr−3/2−γετr1 (E1 + ε1)1−τr ,

where r ∈ (0, 1
C ), x̃ = PM + rnM ,

τr = θ̃rδ,

and C, δ and θ̃ with 0 < θ̃ < 1 depend on A, L, α0, β0, γ0 and N .

Therefore, if the solution to the system of time-harmonic elastic waves is small in
a subdomain of K, and has a priori bound (3.19), then it is also small in K. The
above proposition gives a quantitative estimates on how the smallness propagates.

4. Proof of the main result

In this section we prove the main result that consists of showing the uniform
continuity for DF and F−1, and establishing a lower bound for DF . These results
together with the Fréchet differentiability of F establish Theorem 2.3 by Proposition
5 of [6].

4.1. Injectivity of F |K and uniform continuity of (F |K)−1. Let

(4.1) σ(t) =

{
| log t|− 1

8δ for 0 < t < 1
e

t− 1
e + 1 for t ≥ 1

e

and

σ1(t) = (σ(t))1/5.

Theorem 4.1. For every L1, L2 ∈ K the following inequality holds true,

(4.2) ‖L1 − L2‖∞ ≤ C∗σN1 (‖F (L1)− F (L2)‖?)
where C∗ is a constant depending on A,L, α0, β0, γ0, λ

0
1, N .
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Let j ∈ {1, . . . , N} be such that

dDj ((CL1 , ρL1), (CL2 , ρL2)) = dΩ0
((CL1 , ρL1), (CL2 , ρL2)),

and let Dj1 , . . . , DJM be a chain of domains connecting D1 to Dj . For the sake of

simplicity of notation, set Dk = Djk . Let Wk = Int(∪kj=0Dj), Uk = Ω0 \ Wk, for
k = 1, . . . ,M − 1. The stiffness tensors CL1 and CL2 are extended as in (3.9) to
all of Ω0. The densities ρL1 and ρL2 are extended as in (3.10). We set C := CL1 ,

C̄ := CL2 , ρ := ρL1 and ρ̄ := ρL2 . Finally, let K̃k = K̃h ∩ Wk and for y, z ∈ K̃k

define the matrix-valued function

Sk(y, z) :=

∫
Uk

(
(C− C̄)∇̂G(x, y) : ∇̂Ḡ(x, z)− (ρ− ρ̄)ω2G(x, y) · Ḡ(x, z)

)
dx,

the entries of which are given by

S(p,q)
k (y, z)

:=

∫
Uk

(
(C− C̄)∇̂G(p)(x, y) : ∇̂Ḡ(q)(x, z)− (ρ− ρ̄)ω2G(p)(x, y) · Ḡ(q)(x, z)

)
dx,

p, q = 1, 2, 3, where G(p)(·, y) and Ḡ(q)(, z) denote respectively the p-th columns and
the q-th columns of the singular solutions corresponding to C, ρ and C̄, ρ̄. From
(3.17) we have that

|S(p,q)
k (y, z)| ≤ C(d(y)d(z))−1/2 for all y, z ∈ K̃k,

where the constant C depends on the a priori parameters only and d(y) = d(y,Uk)
and d(z) = d(z,Uk).

First, following a similar argument in [14], we have the following two propositions:

Proposition 4.1. For all y, z ∈ K̃k we have that S(·,q)
k (·, z), S(p,·)

k (y, ·), belong to

H1
loc(K̃k) and for any q ∈ {1, 2, 3},

(4.3) div(C∇̂S(·,q)
k (·, z)) + ρω2S(·,q)

k (·, z) = 0 in K̃k,
and for any p ∈ {1, 2, 3},

(4.4) div(C̄∇̂S(p,·)
k (y, ·)) + ρ̄ω2S(p,·)

k (y, ·) = 0 in K̃k.

Proposition 4.2. If for a positive ε0 and for some k ∈ {1, . . . ,M − 1}
(4.5) |Sk(y, z)| ≤ ε0 for every (y, z) ∈ K0 ×K0,

then

(4.6) |Sk(yr, zr̄)| ≤ Cr−5/2r̄−2

(
ε0

C1 + ε0

)τrτr̄
,

where yr = Pk+1 + rnk+1, zr̄ = Pk+1 + r̄nk+1, Pk+1 ∈ Σk+1, r, r̄ ∈ (0, 1/C),
τr = θ̄rδ, τr̄ = θ̄r̄δ and C,C1, δ, θ̄ ∈ (0, 1) depend on A,L, α0, β0, γ0 only.

We can also prove the following

Proposition 4.3. If (4.5) holds, then

(4.7) |∂y1
∂z1Sk(yr, zr̄)| ≤ Cr−9/2r̄−3

(
ε0

C1 + ε0

)τrτr̄
,

where yr = Pk+1 + rnk+1, zr̄ = Pk+1 + r̄nk+1, Pk+1 ∈ Σk+1, r, r̄ ∈ (0, 1/C),
τr = θ̄rδ, τr̄ = θ̄r̄δ and C,C1, δ, θ̄ ∈ (0, 1) depend on A,L, α0, β0, γ0 only.
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We note that, in the above, ∂y1
and ∂z1 denote derivatives in directions lying on

the interface Σk+1.

Proof of Proposition 4.3. Fix z ∈ K0 and consider the function v(y) := S(·,q)(y, z),
for fixed q. By Proposition 4.1 we know that v is a solution of

div(C∇̂v(·)) + ρω2v(·) = 0 in K̃k.

Moreover, from Proposition 3.2, we get

|v(y)| ≤ C1d(y)−
1
2 , y ∈ K̃k,

where C1 depends on A,L, α0, β0, γ0, ω, λ
0
1. Then, applying Proposition 3.3 for

ε1 = ε0 and E1 = C1, we have

|v(yr)| = |S(·,q)
k (yr, z)| ≤ Cr−2

(
ε0

C1 + ε0

)τr
for all y ∈ Br/2(yr). By the gradient estimate for an elliptic system (see for example
[31]), we obtain

|∂y1
v(yr)| ≤ Cr−3

(
ε0

C1 + ε0

)τr
.

We note that ∂y1
G(x, yr) = ∂y1

Γk+1(x, yr) + ∂y1
w(x, yr), where ∂y1

w(x, yr) sat-
isfies

div
(
C∇̂x(∂y1w(x, yr))

)
+ ρω2∂y1w(x, yr) = div

(
(Ck+1

b − C)∇̂x(∂y1Γk+1(x, yr))
)

− ρω2∂y1Γk+1(x, yr) in Ω0,

∂y1
w(x, yr) = −∂y1

Γk+1(x, yr) on ∂Ω0,

where Γk+1 is the biphase fundamental solution for stiffness tensor

Ck+1
b = CkχR3

+
+ Ck+1χR3

−
.

Thus ∂y1w(·, yr) ∈ H1(Uk) and

(4.8) ‖∂y1
w(·, yr)‖H1(Uk) ≤ C.

Moreover,

∂y1
v(yr) = ∂y1

S(·,q)
k (yr, z)

=

∫
Uk

(
(C− C̄)∇̂(∂y1

G(x, yr)) : ∇̂Ḡ(x, z)− (ρ− ρ̄)ω2(∂y1
G(x, yr)) · Ḡ(x, z)

)
dx,

while

v̄(z) = ∂y1
S(p,·)
k (yr, z),

is a solution to

div(C̄∇̂v(·)) + ρ̄ω2v(·) = 0 in K̃k,
by the same reasoning as in Proposition 4.1. By (4.8) and the estimates,

(4.9) ‖∂y1
Γk+1(·, y)‖L2(R3\Br(y)) ≤ Cr−1/2,

(4.10) ‖∇(∂y1Γk+1(·, y))‖L2(R3\Br(y)) ≤ Cr−3/2,

we find that

|v̄(z)| ≤ Cr− 3
2 d(z)−

1
2 .
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Applying Proposition 3.3 with ε1 = r−3
(

ε0
C1+ε0

)τr
and E1 = Cr−

3
2 , we have

|v̄(z)| ≤ Cr̄−2r−
9
2

(
ε0

C1 + ε0

)τrτr̄
,

for all z ∈ Br̄/2(zr̄). Then, again, by the gradient estimate,

|∂z1 v̄(zr̄)| ≤ Cr̄−3r−
9
2

(
ε0

C1 + ε0

)τrτr̄
.

Arguing in a similar way, it also follows that

∂z1∂y1
Sk(yr, zr̄) = ∂z1 v̄(zr̄)

=

∫
Uk

(
(C− C̄)∇̂(∂y1G(x, yr)) : ∇̂(∂z1Ḡ(x, zr̄))

− (ρ− ρ̄)ω2(∂y1
G(x, yr)) · (∂z1Ḡ(x, zr̄))

)
dx.

This completes the proof of (4.7). �

Proof of Theorem 4.1. We follow a walkway and alternate between estimates for
Lamé parameters and for the density. Observe that ‖F (L1) − F (L2)‖? = ‖ΛC,ρ −
ΛC̄,ρ̄‖. We write

ε := ‖F (L1)− F (L2)‖?.
Then using (3.1), we derive that for every y, z ∈ K0 and for |l|, |m| = 1,
(4.11)∣∣∣∣∫

Ω

(
(C− C̄)(x)∇̂G(x, y)l : ∇̂Ḡ(x, z)m− (ρ− ρ̄)(x)ω2G(x, y)l · Ḡ(x, z)m

)
dx

∣∣∣∣ ≤ Cε,
where C depends on α0, β0, γ0, ω,A, L. Let

δk := max
0≤j≤k

{max{|λj − λ̄j |, |µj − µ̄j |, |ρj − ρ̄j |}},

where k ∈ {0, 1, . . . ,M}. We will prove that for a suitable, increasing sequence
{ωk(ε)}0≤k≤M satisfying ε ≤ ωk(ε) for every k = 0, . . . ,M we have

δk ≤ ωk(ε) =⇒ δk+1 ≤ ωk+1(ε), for every k = 0, . . . ,M − 1.

Without loss of generality we can choose ω0(ε) = ε. Suppose now that for some
k = {1, . . . ,M − 1} we have

(4.12) δk ≤ ωk(ε).

In the following, we estimate δk+1 by first estimating |λk+1 − λ̄k+1|, |µk+1 − µ̄k+1|
and then |ρk+1 − ρ̄k+1|. Consider

Sk(y, z) :=

∫
Uk

(
(C− C̄)(x)∇̂G(x, y) : ∇̂Ḡ(x, z)− (ρ− ρ̄)(x)ω2G(x, y) · Ḡ(x, z)

)
dx,

and fix z ∈ K0. From Proposition 3.2 and from (4.11) we get that, for y, z ∈ K0,

|Sk(y, z)| ≤ C(ε+ ωk(ε)),

where C depends on A,L, α0, β0, γ0, λ
0
1, ω. By (4.6) and choosing r̄ = cr with

c ∈ [1/4, 1/2], we find that there are constants C0, δ ∈ (0, 1) and θ∗ depending on
A,L, α0, β0, γ0, ω and M , such that for any r < 1/C0 and fixed l,m ∈ R3 with
|l| = |m| = 1,

(4.13) |Sk(yr, zr̄)m · l| ≤ Cr−9/2ς (ωk(ε), r) ,
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where

ς(t, s) =

(
t

1 + t

)θ∗s2δ
.

We choose l = m = e3 and decompose

(4.14) Sk(yr, zr̄)e3 · e3 = I1 + I2,

where

(4.15) I1 =

∫
Br1∩Dk+1

(
(C− C̄)(x)∇̂G(x, yr)e3 : ∇̂Ḡ(x, zr̄)e3

− (ρ− ρ̄)(x)ω2G(x, yr)e3 · Ḡ(x, zr̄)e3

)
dx,

(4.16) I2 =

∫
Uk+1\(Br1∩Dk+1)

(
(C− C̄)(x)∇̂G(x, yr)e3 : ∇̂Ḡ(x, zr̄)e3

− (ρ− ρ̄)(x)ω2G(x, yr)e3 · Ḡ(x, zr̄)e3

)
dx,

with r1 = 1
4LCL

. Then, from Proposition 3.2, we derive immediately that

(4.17) |I2| ≤ C.
By (3.18), we have∣∣∣∣∣

∫
Br1∩Dk+1

(ρ− ρ̄)(x)ω2G(x, yr)e3 · Ḡ(x, zr̄)e3dx

∣∣∣∣∣ ≤ C,
where C depends on A,L, α0, β0, γ0, λ

0
1. Using (3.16) and (3.17), we get

|I1| ≥

∣∣∣∣∣
∫
Br1∩Dk+1

(Ck+1
b − C̄k+1

b )(x)∇̂Γk+1(x, yr)e3 : ∇̂Γ̄k+1(x, zr̄)e3dx

∣∣∣∣∣− C
(

1√
r

+ 1

)
,

(4.18)

where Γk+1 and Γ̄k+1 are the biphase fundamental solutions introduced in Subsec-
tion 3.3 corresponding to the stiffness tensors Ck+1

b and C̄k+1
b given by

Ck+1
b = CkχR3

+
+ Ck+1χR3

−
,

C̄k+1
b = C̄kχR3

+
+ C̄k+1χR3

−
,

up to a rigid coordinate transformation that maps the flat part of Σk+1 into x3 = 0.
Furthermore by (4.13), (4.14) and (4.17) we obtain

(4.19) |I1| ≤ C
(
r−9/2ς (ωk(ε), r) + 1

)
,

where C depends on A,L, α0, β0, γ0, λ
0
1. Hence, by (4.18) and (4.19) and by per-

forming the change of variables x = rx′ in the integral, we get

(4.20)

∣∣∣∣∣
∫
B−
r1/r

(Ck+1
b − C̄k+1

b )(x′)∇̂Γk+1(x′, e3)e3 : ∇̂Γ̄k+1(x′, ce3)e3dx′

∣∣∣∣∣ ≤ δ0 (r) ,

where

δ0 (r) = C
[
r−7/2ς (ωk(ε), r) + r1/2

]
.

We then follow the procedure of [14] pp. 27-29, and obtain

(4.21) |λk+1 − λ̄k+1| ≤ Cσ(ωk(ε)), |µk+1 − µ̄k+1| ≤ Cσ(ωk(ε)).



INVERSE BOUNDARY VALUE PROBLEM FOR TIME-HARMONIC ELASTIC WAVES 17

Next, we estimate |ρk+1− ρ̄k+1|. By Proposition 4.3, there are constants C0, δ ∈
(0, 1) and θ∗ depending on A,L, α0, β0, γ0, ω and, increasingly, on M , such that for
any r < 1/C0 and fixed l,m ∈ R3 such that |l| = |m| = 1,

(4.22) |∂y1
∂z1Sk(yr, yr)m · l| ≤ Cr−15/2ς (ωk(ε), r) .

We choose l = m = e3, again, and decompose

(4.23) ∂y1
∂z1Sk(yr, yr)e3 · e3 = J1 + J2,

where

(4.24) J1 =

∫
Br1∩Dk+1

(
(C− C̄)(x)∇̂(∂y1G(x, yr))e3 : ∇̂(∂z1Ḡ(x, yr))e3−

− (ρ− ρ̄)(x)ω2(∂y1G(x, yr))e3 · (∂z1Ḡ(x, yr))e3

)
dx,

(4.25) J2 =

∫
Uk+1\(Br1∩Dk+1)

(
(C− C̄)(x)∇̂(∂y1

G(x, yr))e3 : ∇̂(∂z1Ḡ(x, yr))e3−

− (ρ− ρ̄)(x)ω2(∂y1
G(x, yr))e3 · (∂z1Ḡ(x, yr))e3

)
dx.

Then, with (4.8), (4.9), (4.10) we derive that

(4.26) |J2| ≤ C.

By estimates (4.8), (4.9), (4.10), and using that |λk − λ̄k| ≤ Cωk(ε), |µk − µ̄k| ≤
Cωk(ε), |λk+1 − λ̄k+1| ≤ Cσ(ωk(ε)) and |µk+1 − µ̄k+1| ≤ Cσ(ωk(ε)), we get

|J1| ≥

∣∣∣∣∣
∫
Br1∩Dk+1

(ρk+1 − ρ̄k+1)
∂

∂y1
Γk+1(x, yr)e3 ·

∂

∂y1
Γk+1(x, yr)e3dx

∣∣∣∣∣
− C

(
1√
r

+
σ(ωk(ε))

r3

)
≥|ρk+1 − ρ̄k+1|

∫
Br1∩Dk+1

∣∣∣∣ ∂∂y1
Γk+1(x, yr)e3

∣∣∣∣2 dx− C
(

1√
r

+
σ(ωk(ε))

r3

)
,

(4.27)

where we have used that∫
Br1∩Dk+1

∣∣∣∣ ∂∂y1
Γk+1(x, yr)e3

∣∣∣∣ ∣∣∣∣ ∂∂y1
Γk+1(x, yr)e3 −

∂

∂y1
Γ̄k+1(x, yr)e3

∣∣∣∣dx ≤ Cσ(ωk(ε))

r
.

Furthermore, by (4.22),(4.23) and (4.26) we obtain

(4.28) |J1| ≤ C
(
r−15/2ς (ωk(ε), r) + 1

)
.

By (4.27) and by performing the change of variables x = rx′ in the integral, we
have

r−1|ρk+1 − ρ̄k+1|
∫
B−
r1/r

∣∣∣∣ ∂∂y1
Γk+1(x′, e3)e3

∣∣∣∣2 dx′

≤ C
((

r−15/2ς (ωk(ε), r) + 1
)

+
1√
r

+
σ(ωk(ε))

r3

)
.
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Since r1/r ≥ C/4LCL when r ∈ (0, 1/C), we have∫
B−
r1/r

∣∣∣∣ ∂∂y1
Γk+1(x′, e3)e3

∣∣∣∣2 dx′ ≥
∫
B−
C/4LCL

∣∣∣∣ ∂∂y1
Γk+1(x′, e3)e3

∣∣∣∣2 dx′ ≥ C,

for some positive C. Then

|ρk+1 − ρ̄k+1|r−1 ≤ C
((

r−15/2ς (ωk(ε), r) + 1
)

+
1√
r

+
σ(ωk(ε))

r3

)
,

and thus

(4.29) |ρk+1 − ρ̄k+1| ≤ δ1(r),

where

δ1(r) = C

[
r−13/2ς (ωk(ε), r) +

√
r +

σ(ωk(ε))

r2

]
.

If ωk(ε) < 1/e, we choose

r =
|σ(ωk(ε))|2/5

C
,

and then

(4.30) |ρk+1 − ρ̄k+1| ≤ C|σ(ωk(ε))|1/5.

Otherwise, if ωk(ε) ≥ 1/e, since |ρk+1 − ρ̄k+1| is bounded, we get (4.30) trivially.
By (4.21) and (4.30), we follow the weakest estimate to get

δk+1 ≤ ωk+1(ε) := Cσ1(ωk(ε)).

Following the way of alternatingly estimating |λ− λ̄|, |µ− µ̄| and |ρ− ρ̄| along the
walkay D1, D2, . . . , DM , and recalling that ω0(ε) = ε, we get (4.2).

�

The uniqueness statement in Theorem 2.3 is an immediate consequence of the
proposition above.

4.2. Injectivity of DF (L) and estimate from below of DF |K.

Proposition 4.4. Let

q0 := min{‖DF (L)[H]‖? | L ∈ K, H ∈ R3N , ‖H‖∞ = 1};

we have

(4.31) (σN1 )−1(1/C?) ≤ q0,

where C? > 1 depends on A,L, α0, β0, γ0, λ
0
1 and N only.

Proof. By the definition of q0 there exists an L0 ∈ K and

H0 = (h0,1, . . . , h0,N , k0,1, . . . , k0,N , l0,1, . . . , l0,N ), ‖H0‖∞ = 1,

such that

(4.32) ‖DF (L0)[H0]‖? = q0.

Therefore, by (3.2), (4.32), we have

(4.33)

∣∣∣∣∫
Ω

H(x)
(
∇̂G(x, y)l : ∇̂G(x, z)m− h(x)ω2G(x, y)l ·G(x, z)m

)
dx

∣∣∣∣ ≤ Cq0
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for every y, z ∈ K0, where C depends on α0, β0, γ0, ω,A, L, H = CH0
, h = ρH0

and
G(·, y) denotes the singular solution corresponding to CL, ρL. From now on the
vector

(0, h0,1, . . . , h0,N , 0, k0,1, . . . , k0,N , 0, l0,1, . . . , l0,N ),

will still be denoted by H0.
We fix j ∈ {1, . . . , N} and let Dj1 , . . . , DjM be a chain of domains connecting

D1 to Dj , where

max{|h0,j |, |k0,j |, |l0,j |} = ‖H0‖∞ = 1.

Now, let

ηi := max
0≤j≤i

{max{|h0,j |, |k0,j |, |l0,j |}},

where i ∈ {0, 1, . . . ,M}. We will prove that for a suitable increasing sequence
{ωi(q0)}0≤i≤M satisfying ε ≤ ωi(q0) for every k = 0, . . . ,M , we have

δk ≤ ωi(q0) =⇒ δi+1 ≤ ωk+1(q0) for every i = 0, . . . ,M − 1.

Without loss of generality we can choose ω0(q0) = q0. Suppose now that for some

i = {1, . . . ,M − 1} we obtain (4.32). Let Yi(y, z) = {Y(p,q)
i (y, z)}1≤p,q≤3 be the

matrix valued function the elements of which are given by

Y(p,q)
i (y, z) :=

∫
Ui

(
H(x)∇̂G(p)(x, y) : ∇̂G(q)(x, z)− h(x)ω2G(p)(x, y) ·G(q)(x, z)

)
dx,

with z ∈ K0 fixed. From Proposition 3.2 and from (4.11) we get that, for y, z ∈ K0,

|Yi(y, z)| ≤ C(q0 + ωi(q0)),

where C depends on A,L, α0, β0, γ0, λ
0
1. Choosing r̄ = cr with c ∈ [1/4, 1/2], as

in Proposition 4.2, we have that there exists a constant C2 such that for every
r ∈ (0, 1/C2),

(4.34) |Yi(yr, zr̄)| ≤ Cr−9/2ς (ωi(q0, r)) ,

where

ς(t, s) =

(
t

1 + t

)θ∗s2δ
.

We choose l = m = e3, again, and decompose

(4.35) Yk(yr, zr̄)e3 · e3 = I1 + I2,

where
(4.36)

I1 =

∫
Br1∩Di+1

(
H(x)∇̂G(x, yr)e3 : ∇̂G(x, zr̄)e3 − h(x)ω2Ḡ(x, yr)e3 ·G(x, zr̄)e3

)
dx,

I2 =

∫
Ui+1\(Br1∩Di+1)

(
H(x)∇̂G(x, yr)e3 : ∇̂G(x, zr̄)e3

− h(x)ω2G(x, yr)e3 ·G(x, zr̄)e3

)
dx,

(4.37)

and r1 = 1
4LCL

. Then, from Proposition 3.2, we derive that

(4.38) |I2| ≤ C.
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Using (3.18), we find that∣∣∣∣∣
∫
Br1∩Dk+1

h(x)ω2G(x, yr)e3 ·G(x, zr̄)e3dx

∣∣∣∣∣ ≤ C,
where C depends on A,L, α0, β0, γ0, λ

0
1. Then, by (3.16) and (3.17) we get

(4.39) |I1| ≥

∣∣∣∣∣
∫
Br1∩Di+1

H(x)∇̂Γi+1(x, yr)e3 : ∇̂Γi+1(x, zr̄)e3dx

∣∣∣∣∣− C
(

1√
r

+ 1

)
.

With (4.34), (4.35) and (4.38) we obtain

(4.40) |I1| ≤ C
(
r−9/2ς (ωi(q0), r) + 1

)
,

where C depends on A,L, α0, β0, γ0, λ
0
1. Following the procedure of [14] pp. 31-33,

we get

(4.41) |h0,i+1| ≤ Cσ(ωi(q0)), |k0,i+1| ≤ Cσ(ωi(q0)).

Similar to Proposition 4.3, we find that there are constants C2, δ ∈ (0, 1) and θ∗
depending on A,L, α0, β0, γ0, ω and, increasingly, on M , such that for any r < 1/C2

(4.42) |∂y1
∂z1Yi(yr, yr)e3 · e3| ≤ Cr−15/2ς (ωi(q0, r)) .

We decompose

(4.43) ∂y1
∂z1Yi(yr, yr)e3 · e3 = J1 + J2,

where

(4.44) J1 =

∫
Br1∩Di+1

(
H(x)∇̂(∂y1

G(x, yr))e3 : ∇̂(∂z1G(x, yr))e3

− h(x)ω2(∂y1
G(x, yr))e3 · (∂z1G(x, yr))e3

)
dx,

(4.45) J2 =

∫
Ui+1\(Br1∩Di+1)

(
H(x)∇̂(∂y1

G(x, yr))e3 : ∇̂(∂z1G(x, yr))e3

− h(x)ω2(∂y1
G(x, yr))e3 · (∂z1G(x, yr))e3

)
dx.

Using (4.8), (4.9), (4.10) and (4.41), we get

(4.46) |J2| ≤ C

and

|J1| ≥

∣∣∣∣∣
∫
Br1∩Di+1

l0,i+1
∂

∂y1
Γi+1(x, yr)e3 ·

∂

∂y1
Γi+1(x, yr)e3dx

∣∣∣∣∣− C
(

1√
r

+
σ(ωi(ε))

r3

)

=|l0,i+1|
∫
Br1∩Di+1

∣∣∣∣ ∂∂y1
Γi+1(x, yr)e3

∣∣∣∣2 dx− C
(

1√
r

+
σ(ωi(q0))

r3

)
.

(4.47)

Furthermore by (4.42), (4.43) and (4.46), we obtain

(4.48) |J1| ≤ C
(
r−15/2ς (ωi(q0)), r) + 1

)
.
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Hence, by (4.47) and upon performing the change of variables x = rx′ in the
integral, we obtain

r−1|l0,i+1|
∫
B−
r1/r

∣∣∣∣ ∂∂y1
Γi+1(x′, e3)e3

∣∣∣∣2 dx′

≤ C
((

r−15/2ς (ωi(q0)), r) + 1
)

+
1√
r

+
σ(ωi(q0))

r3

)
.

Since r1/r ≥ C/4LCL when r ∈ (0, 1/C), we have∫
B−
r1/r

∣∣∣∣ ∂∂y1
Γi+1(x′, e3)e3

∣∣∣∣2 dx′ ≥
∫
B−
C/4LCL

∣∣∣∣ ∂∂y1
Γi+1(x′, e3)e3

∣∣∣∣2 dx′ ≥ C.

Then

|l0,i+1|r−1 ≤ C
((

r−15/2ς (ωi(q0)), r) + 1
)

+
1√
r

+
σ(ωi(q0))

r3

)
,

and thus

(4.49) |l0,i+1| ≤ δ1(r),

where

δ1(r) = C

[
r−13/2ς (ωi(q0), r) +

√
r +

σ(ωi(q0))

r2

]
.

If ωi(q0) < 1/e, we choose

r =
|σ(ωi(q0))|2/5

C

so that

(4.50) |l0,i+1| ≤ C|σ(ωi(q0))|1/5.

Otherwise, if ωi(q0) ≥ 1/e, because |l0,i+1| is bounded, we get (4.50) trivially. Then,
by (4.41) and (4.50) we get

ηi+1 ≤ ωi+1(q0) := Cσ1(ωi(q0)).

Finally, by alternating the estimates for |λ− λ̄|, |µ− µ̄| and |ρ− ρ̄|, we get

1 = ηM ≤ CσM1 (q0) ≤ CσN1 (q0),

and the statement follows. �

5. Remarks on two reduced problems

The stability estimates for the following two complementary inverse problems
are immediate implications of Theorem 2.3.

(i) Inverse Problem S1: For known ρ: determine C from ΛC,ρ;
(ii) Inverse Problem S2: For known C: determine ρ from ΛC,ρ,

However, here, that we get much improved estimates in Theorem 4.1, and Propo-
sition 4.4. This enables us to get better Lipschitz constants in the final Lipschitz
stability estimates.
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Corollary 5.1. For every L1, L2 ∈ K the following inequality holds true

(5.1) ‖L1 − L2‖∞ ≤ C∗σN (‖F (L1)− F (L2)‖?)

if either

ρ1
i = ρ2

i , i = 1, · · · , N (Problem S1)

or

λ1
i = λ2

i , µ
1
i = µ2

i , i = 1, · · · , N (Problem S2)

where C∗ is a constant depending on A,L, α0, β0, γ0, λ
0
1, N .

Corollary 5.2. Let

q0 := min{‖DF (L)[H]‖?|L ∈ K, H ∈ R3N , ‖H‖∞ = 1}.

We have

(5.2) q0 ≥ (σN )−1(1/C?)

if either

li = 0, i = 1, · · · , N (Problem S1)

or

hi = ki = 0, i = 1, · · · , N (Problem S2)

where C? > 1, depends on A,L, α0, β0, γ0, λ
0
1 and N only.

We note that, here, σ replaces σ1 in the corollaries above. This is due to the
fact that we are not dealing with the multi-parameter identification. That is, we
do not need to alternatingly estimate coefficients of different order terms.
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