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INEQUALITIES À LA FRÖLICHER AND COHOMOLOGICAL DECOMPOSITIONS

DANIELE ANGELLA AND ADRIANO TOMASSINI

Abstract. We study Bott-Chern and Aeppli cohomologies of a vector space endowed with two anti-
commuting endomorphisms whose square is zero. In particular, we prove an inequality à la Frölicher
relating the dimensions of the Bott-Chern and Aeppli cohomologies to the dimensions of the Dolbeault

cohomologies. We prove that the equality in such an inequality à la Frölicher characterizes the validity
of the so-called cohomological property of satisfying the ∂∂-Lemma. As an application, we study
cohomological properties of compact either complex, or symplectic, or, more in general, generalized-

complex manifolds.

Introduction

Given a compact complex manifold X, the Bott-Chern cohomology, H•,•BC(X), [11], and the Aeppli
cohomology, H•,•A (X), [1], provide useful invariants, and have been studied by several authors in different
contexts, see, e.g., [1, 11, 9, 17, 50, 2, 45, 33, 10, 49, 3, 6]. In the case of compact Kähler manifolds,
or, more in general, of compact complex manifolds satisfying the ∂∂-Lemma, the Bott-Chern and the
Aeppli cohomology groups are naturally isomorphic to the Dolbeault cohomology groups. The ∂∂-Lemma
for compact complex manifolds has been studied by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P.
Sullivan in [17], where it is proven that the validity of the ∂∂-Lemma on a compact complex manifold X
yields the formality of the differential graded algebra (∧•X ⊗R C, d), [17, Main Theorem]; in particular, a
topological obstruction to the existence of Kähler structures on compact differentiable manifolds follows,
[17, Lemma 5.11]. Furthermore, they showed that any compact manifold admitting a proper modification
from a Kähler manifold (namely, a manifold in class C of Fujiki, [21]) satisfies the ∂∂-Lemma, [17,
Corollary 5.23]. An adapted version of the ∂∂-Lemma for differential graded Lie algebras has been
considered also in [22] by W. M. Goldman and J. J. Millson, where they used a “principle of two types”,
see [22, Proposition 7.3(ii)], as a key tool to prove formality of certain differential graded Lie algebras in
the context of deformation theory, [22, Corollary page 84]. An algebraic approach to the ∂∂-Lemma has
been developed also by Y. I. Manin in [38] in the context of differential Gerstenhaber-Batalin-Vilkovisky
algebras, in order to study Frobenius manifolds arising by means of solutions of Maurer-Cartan type
equations. A generalized complex version of the ∂∂-Lemma has been introduced and studied by G. R.
Cavalcanti in [13, 14].

Since Bott-Chern and Aeppli cohomologies on compact Kähler manifolds coincide with Dolbeault
cohomology, in [6], we were concerned in studying Bott-Chern cohomology of compact complex (possibly
non-Kähler) manifolds X, showing the following inequality à la Frölicher, which relates the dimensions of
the Bott-Chern and Aeppli cohomologies to the Betti numbers, [6, Theorem A]:

for any k ∈ Z ,
∑
p+q=k

(dimCH
p,q
BC(X) + dimCH

p,q
BC(X)) ≥ 2 dimCH

k
dR(X;C) ;

furthermore, the authors showed that the equality in the above inequality holds for every k ∈ Z if and
only if X satisfies the ∂∂-Lemma, [6, Theorem B].

It turns out that such results depend actually on the structure of double complex of
(
∧•,•X, ∂, ∂

)
.

In this paper, we are concerned in a generalization of the inequality à la Frölicher in a more algebraic
framework, so as to highlight the algebraic aspects. As an application, we recover the above results
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on the cohomology of compact complex manifolds, and we get results on the cohomology of compact
symplectic manifolds and compact generalized complex manifolds: more precisely, characterizations
of compact symplectic manifolds satisfying the Hard Lefschetz Condition and of compact generalized
complex manifolds satisfying the d dJ -Lemma are provided.

More precisely, consider a double complex
(
B•,•, ∂, ∂

)
of K-vector spaces (namely, a Z2-graded K-

vector space B•,• endowed with ∂ ∈ End1,0(B•,•) and ∂ ∈ End0,1(B•,•) such that ∂2 = ∂
2

= ∂∂+∂∂ = 0).
Several cohomologies can be studied: other than the Dolbeault cohomologies

H•,•(∂;∂) (B•,•) :=
ker ∂

im ∂
and H•,•

(∂;∂)
(B•,•) :=

ker ∂

im ∂
,

and than the cohomology of the associated total complex,
(

Tot•B•,• :=
⊕

p+q=•B
p,q, d := ∂ + ∂

)
,

H•(d;d) (Tot•B•,•) :=
ker d

im d
,

one can consider also the Bott-Chern cohomology and the Aeppli cohomology, that is,

H•,•
(∂,∂;∂∂)

(B•,•) :=
ker ∂ ∩ ker ∂

im ∂∂
and H•,•

(∂∂;∂,∂)
(B•,•) :=

ker ∂∂

im ∂ + im ∂
.

The identity induces natural morphisms of (possibly Z-graded, possibly Z2-graded) K-vector spaces:

H•,•
(∂,∂;∂∂)

(B•,•)

ww ''��
H•,•(∂;∂) (B•,•)

''

H•(d;d) (Tot•B•,•)

��

H•,•
(∂;∂)

(B•,•)

ww
H•,•

(∂∂;∂,∂)
(B•,•)

In general, the above maps are neither injective nor surjective; actually, the map H•,•
(∂,∂;∂∂)

(B•,•) →

H•,•
(∂∂;∂,∂)

(B•,•) being injective is equivalent to all the above maps being isomorphisms, [17, Lemma 5.15,

Remark 5.16, 5.21]. In such a case, one says that
(
B•,•, ∂, ∂

)
satisfies the ∂∂-Lemma.

By considering the spectral sequence associated to the structure of double complex of
(
B•,•, ∂, ∂

)
,

one gets the Frölicher inequality, [20, Theorem 2],

min

{
dimK Tot•H•,•(∂;∂) (B•,•) , dimK Tot•H•,•

(∂;∂)
(B•,•)

}
≥ dimKH

•
(d;d) (Tot•B•,•) .

We prove an inequality à la Frölicher also for the Bott-Chern and Aeppli cohomologies. More precisely,
we prove the following result.

Theorem 1 (see Theorem 2.4 and Corollary 2.6). Let A• be a Z-graded K-vector space endowed

with two endomorphisms δ1 ∈ Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0.
Suppose that

dimKH
•
(δ1;δ1) (A•) < +∞ and dimKH

•
(δ2;δ2) (A•) < +∞ .

Then

dimKH
•
(δ1,δ2;δ1δ2) (A•) + dimKH

•
(δ1δ2;δ1,δ2) (A•) ≥ dimKH

•
(δ1;δ1) (A•) + dimKH

•
(δ2;δ2) (A•) .

In particular, given a bounded double complex
(
B•,•, ∂, ∂

)
, and supposed that

dimK Tot•H•,•(δ1;δ1) (B•,•) < +∞ and dimK Tot•H•,•(δ2;δ2) (B•,•) < +∞ ,

then, for ± ∈ {+,−},
dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) ≥ 2 dimKH

•
(δ1±δ2;δ1±δ2) (Tot•B•,•) .

Furthermore, we provide a characterization of the equality in the above inequality à la Frölicher in
terms of the validity of the δ1δ2-Lemma.
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Theorem 2 (see Theorem 3.3). Let (B•,•, δ1, δ2) be a bounded double complex. Suppose that

dimKH
•,•
(δ1;δ1) (B•,•) < +∞ and dimKH

•,•
(δ2;δ2) (B•,•) < +∞ .

The following conditions are equivalent:

(i) B•,• satisfies the δ1δ2-Lemma;
(ii) the equality

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•)

= 2 dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) .

holds.

Given a compact complex manifold X, one can apply Corollary 2.6 and Theorem 3.3 to the double
complex

(
∧•,•X, ∂, ∂

)
. More precisely, one recovers [6, Theorem A], getting that, on every compact

complex manifold,

dimC Tot•H•,•BC(X) + dimC Tot•H•,•A (X) ≥ 2 dimCH
•
dR(X;C) ,

and the characterization of the ∂∂-Lemma in terms of the Bott-Chern cohomology given in [6, Theorem
B], namely, that the equality holds if and only if the ∂∂-Lemma holds.

Furthermore, Corollary 2.6 and Theorem 3.3 allow also to study the cohomology of compact manifolds
X endowed with symplectic forms ω. In this case, one considers the Z-graded algebra ∧•X endowed with

d ∈ End1 (∧•X) and dΛ := [d, −ιω−1 ] ∈ End−1 (∧•X), which satisfy d2 =
(

dΛ
)2

= d dΛ + dΛ d = 0.

The symplectic Bott-Chern and Aeppli cohomologies have been introduced and studied by L.-S. Tseng
and S.-T. Yau in [47, 48, 49]. In particular, we get the following result.

Theorem 3 (see Theorem 4.4). Let X be a compact manifold endowed with a symplectic structure ω.
The inequality

(5) dimRH
•
(d,dΛ;d dΛ) (X) + dimRH

•
(d dΛ;d,dΛ) (X) ≥ 2 dimRH

•
dR(X;R)

holds. Furthermore, the equality in (5) holds if and only if X satisfies the Hard Lefschetz Condition.

We recall that a compact 2n-dimensional manifold X endowed with a symplectic form ω is said to

satisfy the Hard Lefschetz Condition if [ω]
k
^ · : Hn−k

dR (X;R)→ Hn+k
dR (X;R) is an isomorphism for every

k ∈ Z.

Finally, Corollary 2.6 and Theorem 3.3 can be applied also to the study of the cohomology of generalized-
complex manifolds. Generalized-complex geometry has been introduced by N. Hitchin in [30], and studied,
among others, by M. Gualtieri, [25, 27, 26], and G. R. Cavalcanti, [13]. It provides a way to generalize both
complex and symplectic geometry, since complex structures and symplectic structures appear as special
cases of generalized-complex structures. See, e.g., [31] for an introduction to generalized-complex geometry;
the cohomology of generalized-complex manifolds has been studied especially by G. R. Cavalcanti,
[13, 14, 15]. On a manifold X endowed with an H-twisted generalized complex structure J , (see §4.3 for
the definitions,) one can consider the Z-graduation Tot∧•X ⊗R C =

⊕
k∈Z U

k
J , and the endomorphisms

∂J ,H ∈ End1
(
U•J
)

and ∂J ,H ∈ End−1
(
U•J
)
, which satisfy ∂2

J ,H = ∂
2

J ,H = ∂J ,H∂J ,H + ∂J ,H∂J ,H = 0;
then, let

GH•∂J ,H (X) :=
ker ∂J ,H
im ∂J ,H

, GH•
∂J ,H

(X) :=
ker ∂J ,H

im ∂J ,H
,

and

GH•BCJ ,H (X) :=
ker ∂J ,H ∩ ker ∂J ,H

im ∂J ,H∂J ,H
, GH•AJ ,H (X) :=

ker ∂J ,H∂J ,H

im ∂J ,H + im ∂J ,H
.

The above general results yield the following.

Theorem 4 (see Theorem 4.10 and Theorem 4.11). Let X be a compact differentiable manifold
endowed with an H-twisted generalized complex structure J . Then

(6) dimCGH
•
BCJ ,H (X) + dimCGH

•
AJ ,H (X) ≥ dimCGH

•
∂J ,H

(X) + dimCGH
•
∂J ,H (X) .

Furthermore, X satisfies the ∂J ,H∂J ,H-Lemma if and only if the Hodge and Frölicher spectral sequences

associated to the canonical double complex
(
U•1−•2J ⊗ β•2 , ∂J ,H ⊗C id, ∂J ,H ⊗C β

)
degenerate at the first

level and the equality in (6) holds.
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1. Preliminaries and notation

Fix K ∈ {R, C}. In this section, we summarize some notation and results concerning graded K-vector
spaces endowed with two commuting differentials.

1.1. (Bi-)graded vector spaces. We set the notation, in constructing two functors in order to change
over Z-graduation and Z2-graduation of a K-vector space.

Consider a Z2-graded K-vector space A•,• endowed with two endomorphisms δ1 ∈ Endδ̂1,1,δ̂1,2 (A•,•)

and δ2 ∈ Endδ̂2,1,δ̂2,2 (A•,•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. Define the Z-graded K-vector space

Tot• (A•,•) :=
⊕
p+q=•

Ap,q ,

endowed with the endomorphisms

δ1 ∈ Endδ̂1,1+δ̂1,2 (Tot• (A•,•)) and δ2 ∈ Endδ̂2,1+δ̂2,2 (Tot• (A•,•))

such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0.

Conversely, consider a Z-graded K-vector space A• endowed with two endomorphisms δ1 ∈ Endδ̂1 (A•)

and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. Following [12, §1.3], [13, §4.2], see [23, §II.2],
[16, §II], take an infinite cyclic multiplicative group {βm : m ∈ Z} generated by some β, and consider
the Z-graded K-vector space

⊕
•∈Z Kβ•. Define the Z2-graded K-vector space

Doub•1,•2 (A•) := Aδ̂1 •1+δ̂2 •2 ⊗K Kβ•2 ,

endowed with the endomorphisms

δ1 ⊗K id ∈ End1,0 (Doub•,• (A•)) and δ2 ⊗K β ∈ End1,0 (Doub•,• (A•)) ,

which satisfy (δ1 ⊗K id)
2

= (δ2 ⊗K β)
2

= (δ1 ⊗K id) (δ2 ⊗K β) + (δ2 ⊗K β) (δ1 ⊗K id) = 0; following [12,
§1.3], [13, §4.2], the double complex (Doub•,• (A•) , δ1 ⊗K id, δ2 ⊗K β) is called the canonical double
complex associated to A•.

1.2. Cohomologies. Let A• be a Z-graded K-vector space endowed with two endomorphisms δ1 ∈
Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that

δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0 .

Since one has the Z-graded K-vector sub-spaces im δ1δ2 ⊆ ker δ1 ∩ ker δ2, and im δ1 ⊆ ker δ1, and
im δ2 ⊆ ker δ2, and im δ1 + im δ2 ⊆ ker δ1δ2, one can define the Z-graded K-vector spaces

H•(δ1,δ2;δ1δ2) (A•) := ker δ1∩ker δ2
im δ1δ2

,

H•(δ1;δ1) (A•) :=
ker δ1
im δ1

, H•(δ2;δ2) (A•) :=
ker δ2
im δ2

,

H•(δ1δ2;δ1,δ2) (A•) := ker δ1δ2
im δ1+im δ2

,

and, since one has the K-vector sub-space im (δ1 + δ2) ⊆ ker (δ1 + δ2), one can define the K-vector space

H(δ1+δ2;δ1+δ2) (TotA•) :=
ker (δ1 + δ2)

im (δ1 + δ2)
;

we follow notation in [17, Remark 5.16]: more precisely, if maps fj : Cj → A for j ∈ {1, . . . , r} and
gk : A→ Bk for k ∈ {1, . . . , s} of K-vector spaces are given, then H(f1,...,fr;g1,...,gs) denotes the quotient⋂r
j=1 ker fj∑s
k=1 im gk

. (Note that, up to consider −δ2 ∈ Endδ̂2 (A•) instead of δ2 ∈ Endδ̂2 (A•), one has the

K-vector sub-space im (δ1 − δ2) ⊆ ker (δ1 − δ2), and hence one can consider also the K-vector space

H(δ1−δ2;δ1−δ2) (TotA•) := ker(δ1−δ2)
im(δ1−δ2) ; note that, for ]δ1,δ2 ∈ {(δ1; δ1) , (δ2; δ2) , (δ1, δ2; δ1δ2) , (δ1δ2; δ1, δ2)},

one has H•]δ1,δ2
(A•) = H•]δ1,−δ2

(A•).)

Remark 1.1. Note that H(δ1+δ2;δ1+δ2) (A•) admits a
(
Z
/(

δ̂1 − δ̂2
)
Z
)

-graduation; in particular, if

δ̂1 = δ̂2, then H•(δ1+δ2;δ1+δ2) (A•) is actually a Z-graded K-vector space.
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Remark 1.2. Note that, for ] ∈ {(δ1, δ2; δ1δ2) , (δ1; δ1) , (δ2; δ2) , (δ1δ2; δ1, δ2)}, if A•,• is actually Z2-
graded, then H•] (A•) admits a Z2-graduation such that Tot•H•,•] (A•,•) = H•] (Tot•A•,•). Furthermore,

for δ1 ∈ Endδ̂1,1,δ̂1,2 (A•,•) and δ2 ∈ Endδ̂2,1,δ̂2,2 (A•,•), one has that H(δ1+δ2;δ1+δ2) (TotA•) admits a((
Z
/(

δ̂1,1 − δ̂2,1
)
Z
)
×
(
Z
/(

δ̂1,2 − δ̂2,2
)
Z
))

-graduation; in particular, if δ̂1,1 = δ̂2,1 and δ̂1,2 = δ̂2,2,

then H(δ1+δ2;δ1+δ2) (TotA•) is actually Z2-graded.

Since ker δ1∩ker δ2 ⊆ ker (δ1 ± δ2) and im δ1δ2 ⊆ im (δ1 ± δ2) for± ∈ {+,−}, and ker δ1∩ker δ2 ⊆ ker δ1
and im δ1δ2 ⊆ im δ1, and ker δ1 ∩ ker δ2 ⊆ ker δ2 and im δ1δ2 ⊆ im δ2, and ker (δ1 ± δ2) ⊆ ker δ1δ2 and
im (δ1 ± δ2) ⊆ im δ1 + im δ2 for ± ∈ {+,−}, and ker δ1 ⊆ ker δ1δ2 and im δ1 ⊆ im δ1 + im δ2, and
ker δ2 ⊆ ker δ1δ2 and im δ2 ⊆ im δ1 + im δ2, then the identity map induces natural morphisms of (possibly
Z-graded, possibly Z2-graded) K-vector spaces

H•
(δ1,δ2;δ1δ2)

(A•)

ww || "" ''

��

H•
(δ1;δ1)

(A•)

00

H(δ1+δ2;δ1+δ2) (TotA•)

,,

H(δ1−δ2;δ1−δ2) (TotA•)

rr

H•
(δ2;δ2)

(A•)

nnH•
(δ1δ2;δ1,δ2)

(A•)

(As a matter of notation, by writing, for example, H•(δ1,δ2;δ1δ2) (A•) → H(δ1+δ2;δ1+δ2) (TotA•), we

mean TotH•(δ1,δ2;δ1δ2) (A•)→ H(δ1+δ2;δ1+δ2) (TotA•).)

1.3. δ1δ2-Lemma. Let A• be a Z-graded K-vector space endowed with two endomorphisms δ1 ∈
Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0, and consider the cohomolo-

gies introduced in §1.2. In general, the natural maps induced by the identity between such cohomologies
are neither injective nor surjective: the following definition, [17], points out when they are actually
isomorphisms.

Definition 1.3 ([17]). A Z-graded K-vector space A• endowed with two endomorphisms δ1 ∈ Endδ̂1 (A•)

and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0 is said to satisfy the δ1δ2-Lemma if and only if

ker δ1 ∩ ker δ2 ∩ (im δ1 + im δ2) = im δ1δ2 ,

namely, if and only if the natural map H•(δ1,δ2;δ1δ2) (A•) → H•(δ1δ2;δ1,δ2) (A•) induced by the identity is

injective.

A Z2-graded K-vector space A•,• endowed with two endomorphisms δ1 ∈ Endδ̂1,1,δ̂1,2 (A•,•) and

δ2 ∈ Endδ̂2,1,δ̂2,2 (A•,•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0 is said to satisfy the δ1δ2-Lemma if and only
if Tot• (A•,•) satisfies the δ1δ2-Lemma.

We recall the following result, which provides further characterizations of the validity of the δ1δ2-Lemma.
(Note that, according to Remark 1.1 and Remark 1.2, the natural maps induced by the identity in Lemma
1.4 are maps of possibly Z-graded, possibly Z2-graded K-vector spaces.)

Lemma 1.4 (see [17, Lemma 5.15]). Let A• be a Z-graded K-vector space endowed with two endo-

morphisms δ1 ∈ Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. The following
conditions are equivalent:

(i) A• satisfies the δ1δ2-Lemma, namely, the natural map H•(δ1,δ2;δ1δ2) (A•) → H•(δ1δ2;δ1,δ2) (A•)

induced by the identity is injective;
(ii) the natural map H•(δ1,δ2;δ1δ2) (A•)→ H•(δ1δ2;δ1,δ2) (A•) induced by the identity is surjective;

(iii) both the natural map H•(δ1,δ2;δ1δ2) (A•) → H•(δ1;δ1) (A•) induced by the identity and the natural

map H•(δ1,δ2;δ1δ2) (A•)→ H•(δ2;δ2) (A•) induced by the identity are injective;

(iv) both the natural map H•(δ1;δ1) (A•) → H•(δ1δ2;δ1,δ2) (A•) induced by the identity and the natural

map H•(δ2;δ2) (A•)→ H•(δ1δ2;δ1,δ2) (A•) induced by the identity are surjective.

Furthermore, suppose that the K-vector space ker δ1δ2 admits a Z-graduation

ker δ1δ2 =
⊕
`∈Z

(
ker δ1δ2 ∩ Ã`

)
5



with respect to which ker (δ1 ± δ2) ∩ Ã• = (ker δ1 ∩ ker δ2) ∩ Ã•. (For example, if δ̂1 6= δ̂2, then take

the Z-graduation given by A•. For example, if A•,• is actually Z2-graded and δ1 ∈ Endδ̂1,1,δ̂1,2 (A•,•)

and δ2 ∈ Endδ̂2,1,δ̂2,2 (A•,•) with
(
δ̂1,1, δ̂1,2

)
6=
(
δ̂2,1, δ̂2,2

)
, then take the Z-graduation induced by the

Z2-graduation of A•,• by means of a chosen bijection Z '→ Z2.) Then the previous conditions are equivalent
to each of the following:

(v) the natural map TotH•(δ1,δ2;δ1δ2) (A•)→ H(δ1+δ2;δ1+δ2) (TotA•) induced by the identity is injec-

tive;
(vi) the natural map H(δ1+δ2;δ1+δ2) (TotA•)→ TotH•(δ1δ2;δ1,δ2) (A•) induced by the identity is surjec-

tive;
(vii) the natural map TotH•(δ1,δ2;δ1δ2) (A•)→ H(δ1−δ2;δ1−δ2) (TotA•) induced by the identity is injec-

tive;
(viii) the natural map H(δ1−δ2;δ1−δ2) (TotA•)→ TotH•(δ1δ2;δ1,δ2) (A•) induced by the identity is surjec-

tive.

Proof. For the sake of completeness, we recall here the proof in [17].

[ (i) ⇒ (iii)]. By the hypothesis, ker δ1 ∩ ker δ2 ∩ (im δ1 + im δ2) = im δ1δ2, and we have to prove that
ker δ2∩ im δ1 ⊆ im δ1δ2 and ker δ1∩ im δ2 ⊆ im δ1δ2. Since im δ1 ⊆ im δ1 + im δ2 and im δ2 ⊆ im δ1 + im δ2,
one gets immediately that the natural maps H•(δ1,δ2;δ1δ2) (A•) → H•(δ1;δ1) (A•) and H•(δ1,δ2;δ1δ2) (A•) →
H•(δ2;δ2) (A•) are injective.

[ (iii) ⇒ (iv)]. By the hypotheses, we have that ker δ2 ∩ im δ1 = im δ1δ2 and ker δ1 ∩ im δ2 = im δ1δ2,
and we have to prove that ker δ1 + im δ2 ⊇ ker δ1δ2 and ker δ2 + im δ1 ⊇ ker δ1δ2. Let x ∈ ker δ1δ2. Then
δ1(x) ∈ ker δ2 ∩ im δ1 = im δ1δ2: let y ∈ A• be such that δ1(x) = δ1δ2(y). Then x = (x− δ2(y)) + δ2(y) ∈
ker δ1 + im δ2, since δ1 (x− δ2(y)) = 0; it follows that the natural map H•(δ1;δ1) (A•)→ H•(δ1δ2;δ1,δ2) (A•)

is surjective. Analogously, δ2(x) ∈ ker δ1 ∩ im δ2 = im δ1δ2: let z be such that δ2(x) = δ1δ2(z). Then
x = (x+ δ1(z)) − δ1(z) ∈ ker δ2 + im δ1, since δ2 (x+ δ1(z)) = 0; it follows that the natural map
H•(δ2;δ2) (A•)→ H•(δ1δ2;δ1,δ2) (A•) is surjective.

[ (iv) ⇒ (ii)]. By the hypothesis, ker δ1 + im δ2 = ker δ1δ2 and ker δ2 + im δ1 = ker δ1δ2, and we have to
prove that (ker δ1 ∩ ker δ2)+im δ1 +im δ2 ⊇ ker δ1δ2. Since ker δ1δ2 = (ker δ1 + im δ2)∩ (ker δ2 + im δ1) ⊆
(ker δ1 ∩ ker δ2) + im δ1 + im δ2, one gets that the natural map H•(δ1,δ2;δ1δ2) (A•) → H•(δ1δ2;δ1,δ2) (A•) is

surjective.

[ (ii) ⇒ (i)]. By the hypothesis, (ker δ1 ∩ ker δ2) + im δ1 + im δ2 = ker δ1δ2, and we have to prove
that ker δ1 ∩ ker δ2 ∩ (im δ1 + im δ2) ⊆ im δ1δ2. Let x :=: δ1(y) + δ2(z) ∈ ker δ1 ∩ ker δ2 ∩ (im δ1 + im δ2).
Therefore y ∈ ker δ1δ2 = (ker δ1 ∩ ker δ2)+im δ1 +im δ2 and z ∈ ker δ1δ2 = (ker δ1 ∩ ker δ2)+im δ1 +im δ2.
It follows that δ1(y) ∈ im δ1δ2 and δ2(z) ∈ im δ1δ2, and hence x = δ1(y) + δ2(z) ∈ im δ1δ2, proving that
the natural map H•(δ1,δ2;δ1δ2) (A•)→ H•(δ1δ2;δ1,δ2) (A•) is injective.

[ (i) ⇒ (v), and (i) ⇒ (vii)]. By the hypothesis, ker δ1∩ker δ2∩(im δ1 + im δ2) = im δ1δ2, and we have
to prove that ker δ1 ∩ ker δ2 ∩ im (δ1 ± δ2) ⊆ im δ1δ2 for ± ∈ {+,−}. Since ker δ1 ∩ ker δ2 ∩ im (δ1 ± δ2) ⊆
ker δ1 ∩ ker δ2 ∩ (im δ1 + im δ2), one gets immediately that the natural map TotH•(δ1,δ2;δ1δ2) (A•) →
H(δ1±δ2;δ1±δ2) (A•) is injective.

[ (v) ⇒ (vi), and (vii) ⇒ (viii)]. Fix ± ∈ {+,−}. By the hypothesis, ker δ1 ∩ ker δ2 ∩
im (δ1 ± δ2) = im δ1δ2, and we have to prove that ker (δ1 ± δ2) + im δ1 + im δ2 ⊇ ker δ1δ2. Let
x ∈ ker δ1δ2. Then (δ1 ± δ2) (x) ∈ ker δ1 ∩ ker δ2 ∩ im (δ1 ± δ2) = im δ1δ2; let z ∈ TotA• be
such that (δ1 ± δ2) (x) = δ1δ2(z). Since (δ1 ± δ2)

(
x± 1

2 δ1(z)− 1
2 δ2(z)

)
= 0, one gets that x =(

x± 1
2 δ1(z)− 1

2 δ2(z)
)
−
(
± 1

2 δ1(z)
)

+ 1
2 δ2(z) ∈ ker (δ1 ± δ2) + im δ1 + im δ2, proving that the natu-

ral map H(δ1±δ2;δ1±δ2) (TotA•)→ TotH•(δ1δ2;δ1,δ2) (A•) is surjective.

To conclude the equivalences, we assume the additional hypothesis given in the statement.

[ (vi) ⇒ (ii), and (viii) ⇒ (ii)]. Fix ± ∈ {+,−}. By the hypothesis, ker (δ1 ± δ2) + im δ1 + im δ2 =
ker δ1δ2, and we have to prove that (ker δ1 ∩ ker δ2) + im δ1 + im δ2 ⊇ ker δ1δ2. By the additional

hypothesis, we have that ker δ1δ2 admits a Z-graduation ker δ1δ2 =
⊕

`∈Z

(
ker δ1δ2 ∩ Ã`

)
with respect to
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which ker (δ1 ± δ2) ∩ Ã• = (ker δ1 ∩ ker δ2) ∩ Ã•. Then one has that

ker δ1δ2 =
⊕
`∈Z

(
ker δ1δ2 ∩ Ã`

)
=
⊕
`∈Z

(
(ker (δ1 ± δ2) + im δ1 + im δ2) ∩ Ã`

)
⊆

⊕
`∈Z

((
ker (δ1 ± δ2) ∩ Ã`

)
+ im δ1 + im δ2

)
=
⊕
`∈Z

((
(ker δ1 ∩ δ2) ∩ Ã`

)
+ im δ1 + im δ2

)
⊆ (ker δ1 ∩ δ2) + im δ1 + im δ2 ,

proving that the natural map H(δ1±δ2;δ1±δ2) (TotA•)→ TotH•(δ1δ2;δ1,δ2) (A•) is surjective. �

By noting that, for ]δ1,δ2 ∈ {δ1, δ2, δ1δ2, δ1 + δ2, δ1 − δ2},

(ker ]δ1⊗Kid,δ2⊗Kβ)
•1,•2 = (ker ]δ1,δ2)

δ̂1 •1+δ̂2 •2 ⊗K Kβ•2

and

(im ]δ1⊗Kid,δ2⊗Kβ)
•1,•2 = (im ]δ1,δ2)

δ̂1 •1+δ̂2 •2 ⊗K Kβ•2 ,

we get the following lemmata.

Lemma 1.5. Let A• be a Z-graded K-vector space endowed with two endomorphisms δ1 ∈ Endδ̂1 (A•)

and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. Then, there are natural isomorphisms of
K-vector spaces

H•1,•2]δ1⊗Kid,δ2⊗Kβ
(Doub•,•A•) ' Doub•1,•2 H•]δ1,δ2

(A•) ,

where ]δ1,δ2 ∈ {(δ1, δ2; δ1δ2), (δ1; δ1), (δ2; δ2), (δ1δ2; δ1, δ2)}.

Lemma 1.6. Let A• be a Z-graded K-vector space endowed with two endomorphisms δ1 ∈ Endδ̂1 (A•)

and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. Denote the greatest common divisor of δ̂1 and

δ̂2 by GCD
(
δ̂1, δ̂2

)
. The following conditions are equivalent:

(i) AGCD(δ̂1, δ̂2) • satisfies the δ1δ2-Lemma;
(ii) Doub•,• (A•) satisfies the (δ1 ⊗K id) (δ2 ⊗K β)-Lemma.

Proof. Indeed,

(ker (δ1 ⊗K id) ∩ im (δ2 ⊗K β))
•1,•2 =

(
ker δ1 ∩ im δ2 ∩Aδ̂1 •1+δ̂2 •2

)
⊗K Kβ•2

and

(im (δ1 ⊗K id) (δ2 ⊗K β))
•1,•2 =

(
im δ1δ2 ∩Aδ̂1 •1+δ̂2 •2

)
⊗K Kβ•2 ,

completing the proof. �

2. An inequality à la Frölicher

Let A•,• be a bounded Z2-graded K-vector space endowed with two endomorphisms δ1 ∈ End1,0 (A•,•)
and δ2 ∈ End0,1 (A•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. The bi-grading induces two natural

bounded filtrations of the Z-graded K-vector space Tot• (A•,•) endowed with the endomorphism δ1 + δ2 ∈
End1 (Tot• (A•,•)), namely,′F p Tot• (A•,•) :=

⊕
r+s=•
r≥p

Ar,s ↪→ Tot• (A•,•)


p∈Z

and ′′F q Tot• (A•,•) :=
⊕
r+s=•
s≥q

Ar,s ↪→ Tot• (A•,•)


q∈Z

.

Such filtrations induce naturally two spectral sequences, respectively,{′E•,•r (A•,•, δ1, δ2)
}
r∈Z and

{′′E•,•r (A•,•, δ1, δ2)
}
r∈Z ,

such that
′E
•1,•2
1 (A•,•, δ1, δ2) ' H•1,•2(δ2;δ2) (A•,•) ⇒ H•1+•2

(δ1+δ2;δ1+δ2) (Tot• (A•,•)) ,
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and
′′E
•1,•2
1 (A•,•, δ1, δ2) ' H•1,•2(δ1;δ1) (A•,•) ⇒ H•1+•2

(δ1+δ2;δ1+δ2) (Tot• (A•,•)) ,

see, e.g., [40, §2.4], see also [24, §3.5].

By using these spectral sequences (and up to consider −δ2 instead of δ2), one gets the classical A.
Frölicher inequality.

Notation 2.1. Given two Z-graded K-vector spaces A• and B•, writing, for example, dimKA
• ≥ dimKB

•,
we mean that, for any k ∈ Z, the inequality dimKA

k ≥ dimKB
k holds.

Proposition 2.2 ([20, Theorem 2]). Let A•,• be a bounded Z2-graded K-vector space endowed with two
endomorphisms δ1 ∈ End1,0 (A•,•) and δ2 ∈ End0,1 (A•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Then, for

± ∈ {+,−},

min
{

dimK Tot•H•,•(δ1;δ1) (A•,•) , dimK Tot•H•,•(δ2;δ2) (A•,•)
}
≥ dimKH

•
(δ1±δ2;δ1±δ2) (Tot•A•,•) .

As a straightforward consequence, the following result holds in the Z-graded case.

Corollary 2.3. Let A• be a bounded Z-graded K-vector space endowed with two endomorphisms δ1 ∈
Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Then, for ± ∈ {+,−},

min

{ ∑
p+q=•

dimKH
δ̂1 p+δ̂2 q
(δ1;δ1) (A•) ,

∑
p+q=•

dimKH
δ̂1 p+δ̂2 q
(δ2;δ2) (A•)

}

≥ dimKH
•
((δ1⊗Kid)±(δ2⊗Kβ);(δ1⊗Kid)±(δ2⊗Kβ)) (Tot•Doub•,•A•) .

Proof. By Lemma 1.5, one has that, for ]δ1,δ2 ∈ {(δ1, δ2; δ1δ2) , (δ1; δ1) , (δ2; δ2) , (δ1δ2; δ1, δ2)},

dimKH
•1,•2
]δ1⊗Kid,δ2⊗Kβ

(Doub•,•A•) = dimKH
δ̂1 •1+δ̂2 •2
]δ1,δ2

(A•) .

Hence, by applying the classical Frölicher inequality, Proposition 2.2, to Doub•,• endowed with δ1 ⊗K id
and δ2 ⊗K β, one gets, for ± ∈ {+,−},

min

{ ∑
p+q=•

dimKH
δ̂1 p+δ̂2 q
(δ1;δ1) (A•) ,

∑
p+q=•

dimKH
δ̂1 p+δ̂2 q
(δ2;δ2) (A•)

}

= min

{ ∑
p+q=•

dimKH
p,q
(δ1⊗Kid;δ1⊗Kid) (Doub•,•A•) ,

∑
p+q=•

dimKH
p,q
(δ2⊗Kβ;δ2⊗Kβ) (Doub•,•A•)

}

= min
{

dimK Tot•H•,•(δ1⊗Kid;δ1⊗Kid) (Doub•,•A•) , dimK Tot•H•,•(δ2⊗Kβ;δ2⊗Kβ) (Doub•,•A•)
}

≥ dimKH
•
((δ1⊗Kid)±(δ2⊗Kβ);(δ1⊗Kid)±(δ2⊗Kβ)) (Tot•Doub•,•A•) ,

completing the proof. �

We prove the following inequality à la Frölicher involving the cohomologies H•(δ1,δ2;δ1δ2) (A•) and

H•(δ1δ2;δ1,δ2) (A•), other than H•(δ1;δ1) (A•) and H•(δ2;δ2) (A•).

Theorem 2.4. Let A• be a Z-graded K-vector space endowed with two endomorphisms δ1 ∈ Endδ̂1 (A•)

and δ2 ∈ Endδ̂2 (A•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. Suppose that

dimKH
•
(δ1;δ1) (A•) < +∞ and dimKH

•
(δ2;δ2) (A•) < +∞ .

Then

(1) dimKH
•
(δ1,δ2;δ1δ2) (A•) + dimKH

•
(δ1δ2;δ1,δ2) (A•) ≥ dimKH

•
(δ1;δ1) (A•) + dimKH

•
(δ2;δ2) (A•) .

Proof. If either H•(δ1,δ2;δ1δ2) (A•) or H•(δ1δ2;δ1,δ2) (A•) is not finite-dimensional, then the inequality holds

trivially; hence, we are reduced to suppose that also

dimKH
•
(δ1,δ2;δ1δ2) (A•) < +∞ and dimKH

•
(δ1δ2;δ1,δ2) (A•) < +∞ .
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Following J. Varouchas, [50, §3.1], consider the exact sequences

0→ im δ1 ∩ im δ2
im δ1δ2

→ ker δ1 ∩ im δ2
im δ1δ2

→ ker δ1
im δ1

→ ker δ1δ2
im δ1 + im δ2

→ ker δ1δ2
ker δ1 + im δ2

→ 0 ,

0→ im δ1 ∩ im δ2
im δ1δ2

→ ker δ2 ∩ im δ1
im δ1δ2

→ ker δ2
im δ2

→ ker δ1δ2
im δ1 + im δ2

→ ker δ1δ2
ker δ2 + im δ1

→ 0 ,

0→ im δ1 ∩ ker δ2
im δ1δ2

→ ker δ1 ∩ ker δ2
im δ1δ2

→ ker δ1
im δ1

→ ker δ1δ2
ker δ2 + im δ1

→ ker δ1δ2
ker δ1 + ker δ2

→ 0 ,

0→ im δ2 ∩ ker δ1
im δ1δ2

→ ker δ1 ∩ ker δ2
im δ1δ2

→ ker δ2
im δ2

→ ker δ1δ2
ker δ1 + im δ2

→ ker δ1δ2
ker δ1 + ker δ2

→ 0

of Z-graded K-vector spaces.
Note that all the K-vector spaces appearing in the exact sequences have finite dimension. Indeed, since

H•(δ1δ2;δ1,δ2) (A•) has finite dimension, then

dimK
ker δ1δ2

ker δ1 + im δ2
< +∞ and dimK

ker δ1δ2
ker δ2 + im δ1

< +∞ ;

since H•(δ1,δ2;δ1δ2) (A•) has finite dimension, then

dimK
im δ1 ∩ ker δ2

im δ1δ2
< +∞ and dimK

im δ2 ∩ ker δ1
im δ1δ2

< +∞ .

Furthermore, note that the natural maps ker δ1∩im δ2
im δ1δ2

→ H•(δ1,δ2;δ1δ2) (A•) and ker δ2∩im δ1
im δ1δ2

→
H•(δ1,δ2;δ1δ2) (A•) induced by the identity are injective, and hence

dimK
ker δ1 ∩ im δ2

im δ1δ2
< +∞ and dimK

ker δ2 ∩ im δ1
im δ1δ2

< +∞ ;

it follows also that

dimK
im δ1 ∩ im δ2

im δ1δ2
< +∞ .

Analogously, since the natural maps H•(δ1δ2;δ1,δ2) (A•)→ ker δ1δ2
ker δ2+im δ1

and H•(δ1δ2;δ1,δ2) (A•)→ ker δ1δ2
ker δ1+im δ2

induced by the identity are surjective, then

dimK
ker δ1δ2

ker δ2 + im δ1
< +∞ and dimK

ker δ1δ2
ker δ1 + im δ2

< +∞ ,

and hence also

dimK
ker δ1δ2

ker δ1 + ker δ2
< +∞ .

By using the above exact sequences, it follows that

dimK
ker δ1δ2

im δ1 + im δ2
= dimK

im δ1 ∩ im δ2
im δ1δ2

− dimK
ker δ1 ∩ im δ2

im δ1δ2
+ dimK

ker δ1
im δ1

+ dimK
ker δ1δ2

ker δ1 + im δ2
,

dimK
ker δ1δ2

im δ1 + im δ2
= dimK

im δ1 ∩ im δ2
im δ1δ2

− dimK
ker δ2 ∩ im δ1

im δ1δ2
+ dimK

ker δ2
im δ2

+ dimK
ker δ1δ2

ker δ2 + im δ1
,

dimK
ker δ1 ∩ ker δ2

im δ1δ2
= dimK

im δ1 ∩ ker δ2
im δ1δ2

+ dimK
ker δ1
im δ1

− dimK
ker δ1δ2

ker δ2 + im δ1
+ dimK

ker δ1δ2
ker δ1 + ker δ2

,

dimK
ker δ1 ∩ ker δ2

im δ1δ2
= dimK

im δ2 ∩ ker δ1
im δ1δ2

+ dimK
ker δ2
im δ2

− dimK
ker δ1δ2

ker δ1 + im δ2
+ dimK

ker δ1δ2
ker δ1 + ker δ2

,

from which, by summing up, one gets

2 dimK
ker δ1δ2

im δ1 + im δ2
+ 2 dimK

ker δ1 ∩ ker δ2
im δ1δ2

= 2 dimK
ker δ1
im δ1

+ 2 dimK
ker δ2
im δ2

+ 2 dimK
im δ1 ∩ im δ2

im δ1δ2
+ 2 dimK

ker δ1δ2
ker δ1 + ker δ2

(2)

≥ 2 dimK
ker δ1
im δ1

+ 2 dimK
ker δ2
im δ2

,
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yielding

dimK
ker δ1δ2

im δ1 + im δ2
+ dimK

ker δ1 ∩ ker δ2
im δ1δ2

≥ dimK
ker δ1
im δ1

+ dimK
ker δ2
im δ2

,

and hence the theorem. �

Remark 2.5. Note that the proof of Theorem 2.4 works also for Z2-graded K-vector spaces, since
in this case J. Varouchas’ exact sequences are in fact exact sequences of Z2-graded K-vector spaces.
More precisely, one gets that, given a Z2-graded K-vector space A•,• endowed with two endomorphisms

δ1 ∈ Endδ̂1,1,δ̂1,2 (A•,•) and δ2 ∈ Endδ̂2,1,δ̂2,2 (A•,•) such that δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0, and supposed
that

dimKH
•,•
(δ1;δ1) (A•,•) < +∞ and dimKH

•,•
(δ2;δ2) (A•,•) < +∞ ,

then

dimKH
•,•
(δ1,δ2;δ1δ2) (A•,•) + dimKH

•,•
(δ1δ2;δ1,δ2) (A•,•) ≥ dimKH

•,•
(δ1;δ1) (A•,•) + dimKH

•,•
(δ2;δ2) (A•,•) .

As a consequence of Theorem 2.4 and Proposition 2.2, one gets the following inequality à la Frölicher
for double complexes, namely, Z2-graded K-vector spaces B•,• endowed with two endomorphisms δ1 ∈
End1,0 (B•,•) and δ2 ∈ End0,1 (B•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0.

Corollary 2.6. Let B•,• be a bounded Z2-graded K-vector space endowed with two endomorphisms
δ1 ∈ End1,0 (B•,•) and δ2 ∈ End0,1 (B•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Suppose that

dimK Tot•H•,•(δ1;δ1) (B•,•) < +∞ and dimK Tot•H•,•(δ2;δ2) (B•,•) < +∞ .

Then, for ± ∈ {+,−},
(3) dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) ≥ 2 dimKH

•
(δ1±δ2;δ1±δ2) (Tot•B•,•) .

3. A characterization of δ1δ2-Lemma by means of the inequality à la Frölicher

With the aim to characterize the validity of the δ1δ2-Lemma in terms of the dimensions of the
cohomologies H•(δ1,δ2;δ1δ2) (A•) and H•(δ1δ2;δ1,δ2) (A•), we need the following lemmata.

Lemma 3.1. Let B•,• be a Z2-graded K-vector space endowed with two endomorphisms δ1 ∈ End1,0 (B•,•)
and δ2 ∈ End0,1 (B•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. If

im δ1 ∩ im δ2
im δ1δ2

= {0} ,

then the natural map ι : Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) → H•(δ1+δ2;δ1+δ2) (Tot•B•,•) induced by the identity is

surjective.

Proof. Let a :=: [x] ∈ H•(δ1+δ2;δ1+δ2) (Tot•B•,•). Since δ1(x)+δ2(x) = 0 and im δ1∩ im δ2 = im δ1δ2, then

we have δ1(x) = −δ2(x) ∈ im δ1 ∩ im δ2 = im δ1δ2; let y ∈ Tot•−1B•,• be such that δ1(x) = δ1δ2(y) =
−δ2(x). Hence, consider a = [x] = [x− (δ1 + δ2) (y)] ∈ H•(δ1+δ2;δ1+δ2) (Tot•B•,•), and note that a =

ι ([x− (δ1 + δ2) (y)]) where [x− (δ1 + δ2) (y)] ∈ Tot•H•,•(δ1,δ2;δ1δ2) (B•,•), since δ1 (x− (δ1 + δ2) (y)) = 0

and δ2 (x− (δ1 + δ2) (y)) = 0. �

Lemma 3.2. Let B•,• be a Z2-graded K-vector space endowed with two endomorphisms δ1 ∈ End1,0 (B•,•)
and δ2 ∈ End0,1 (B•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. If

ker δ1δ2
ker δ1 + ker δ2

= {0} ,

then the natural map ι : H•(δ1+δ2;δ1+δ2) (Tot•B•,•) → Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) induced by the identity is

injective.

Proof. Let a :=: [x] ∈ H•(δ1+δ2;δ1+δ2) (Tot•B•,•). Suppose that ι(a) = [0] ∈ Tot•H•,•(δ1δ2;δ1,δ2) (B•,•), that

is, there exist y ∈ Tot•−1B•,• and z ∈ Tot•−1B•,• such that x = δ1(y) + δ2(z). Since (δ1 + δ2) (x) = 0
and ker δ1δ2 = ker δ1 + ker δ2, it follows that δ1δ2 (z − y) = 0, that is, z − y ∈ ker δ1δ2 = ker δ1 + ker δ2.
Let u ∈ ker δ1 and v ∈ ker δ2 be such that z − y = u + v. Then, one has that x = δ1(y) + δ2(z) =
δ1(y)+δ2(y+u+v) = (δ1 + δ2) (y+u) ∈ im (δ1 + δ2), proving that a = [0] ∈ H•(δ1+δ2;δ1+δ2) (Tot•B•,•). �

We can now prove the following characterization of the δ1δ2-Lemma for double complexes in terms of
the equality in (3).
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Theorem 3.3. Let B•,• be a bounded Z2-graded K-vector space endowed with two endomorphisms
δ1 ∈ End1,0 (B•,•) and δ2 ∈ End0,1 (B•,•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Suppose that

dimKH
•,•
(δ1;δ1) (B•,•) < +∞ and dimKH

•,•
(δ2;δ2) (B•,•) < +∞ .

The following conditions are equivalent:

(i) B•,• satisfies the δ1δ2-Lemma;
(ii) the equality

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•)

= 2 dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) .

holds.

Proof. [ (i) ⇒ (ii)]. By Lemma 1.4, it follows that

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) ≤ dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•)

and

dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) ≤ dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) .

By Corollary 2.6, it follows that

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) ≥ 2 dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) .

Hence actually the equality holds.

[ (ii) ⇒ (i)]. Since, by (2) and Proposition 2.2, it holds

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) + dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•)

= dimK Tot•H•,•(δ1;δ1) (B•,•) + dimK Tot•H•,•(δ2;δ2) (B•,•)

+ dimK
im δ1 ∩ im δ2

im δ1δ2
+ dimK

ker δ1δ2
ker δ1 + ker δ2

≥ 2 dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) ,

then, by the hypothesis, it follows that

im δ1 ∩ im δ2
im δ1δ2

= {0} and
ker δ1δ2

ker δ1 + ker δ2
= {0} .

By Lemma 3.1, one gets that the natural mapH•(δ1,δ2;δ1δ2) (Tot•B•,•)→ H•(δ1+δ2;δ1+δ2) (Tot•B•,•) induced

by the identity is surjective; by Lemma 3.2, one gets that the natural map H•(δ1+δ2;δ1+δ2) (Tot•B•,•)→
H•(δ1δ2;δ1,δ2) (Tot•B•,•) induced by the identity is injective. In particular, one has that

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) ≥ dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•)

and that

dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) ≥ dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) .

Hence, by the hypothesis, it holds in fact that

dimK Tot•H•,•(δ1,δ2;δ1δ2) (B•,•) = dimKH
•
(δ1+δ2;δ1+δ2) (Tot•B•,•) = dimK Tot•H•,•(δ1δ2;δ1,δ2) (B•,•) .

Since H•,•(δ1,δ2;δ1δ2) (B•,•) and H•,•(δ1δ2;δ1,δ2) (B•,•) are finite-dimensional by hypothesis, it follows that

the natural maps H•(δ1,δ2;δ1δ2) (Tot•B•,•) → H•(δ1+δ2;δ1+δ2) (Tot•B•,•) and H•(δ1+δ2;δ1+δ2) (Tot•B•,•) →
H•(δ1δ2;δ1,δ2) (Tot•B•,•) induced by the identity are in fact isomorphisms. By Lemma 1.4, one gets the

theorem. �

In order to apply Theorem 3.3 to Z-graded K-vector spaces to get geometric applications, e.g., for
compact symplectic manifolds, we need to record the following corollaries.
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Corollary 3.4. Let A• be a bounded Z-graded K-vector space endowed with two endomorphisms δ1 ∈
Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Denote the greatest common divisor

of δ̂1 and δ̂2 by GCD
(
δ̂1, δ̂2

)
. Suppose that

dimKH
•
(δ1;δ1) (A•) < +∞ and dimKH

•
(δ2;δ2) (A•) < +∞ .

The following conditions are equivalent:

(i) AGCD(δ̂1, δ̂2) • satisfies the δ1δ2-Lemma;
(ii) the equality ∑

p+q=•

(
dimKH

δ̂1 p+δ̂2 q
(δ1,δ2;δ1δ2) (A•) + dimKH

δ̂1 p+δ̂2 q
(δ1δ2;δ1,δ2) (A•)

)
= 2 dimKH

•
(δ1⊗Kid +δ2⊗Kβ;δ1⊗Kid +δ2⊗Kβ) (Tot•Doub•,•A•) .

holds.

Proof. The Corollary follows from Lemma 1.6, Theorem 3.3, and Lemma 1.5. �

Corollary 3.5. Let A• be a bounded Z-graded K-vector space endowed with two endomorphisms δ1 ∈
Endδ̂1 (A•) and δ2 ∈ Endδ̂2 (A•) such that δ2

1 = δ2
2 = δ1δ2 + δ2δ1 = 0. Suppose that the greatest common

divisor of δ̂1 and δ̂2 is GCD
(
δ̂1, δ̂2

)
= 1, and that

dimKH
•
(δ1;δ1) (A•) < +∞ and dimKH

•
(δ2;δ2) (A•) < +∞ .

The following conditions are equivalent:

(i) A• satisfies the δ1δ2-Lemma;
(ii) (a) both the Hodge and Frölicher spectral sequences of (Doub•,•A•, δ1 ⊗K id, δ2 ⊗K β) degenerate

at the first level, equivalently, the equalities

dimKH
•
(δ1⊗Kid +δ2⊗Kβ;δ1⊗Kid +δ2⊗Kβ) (Tot•Doub•,•A•)

= dimK Tot•H•,•(δ2⊗Kβ;δ2⊗Kβ) (Doub•,•A•)

= dimK Tot•H•,•(δ1⊗Kid;δ1⊗Kid) (Doub•,•A•)

hold;
(b) the equality

dimKH
•
(δ1,δ2;δ1δ2) (A•) + dimKH

•
(δ1δ2;δ1,δ2) (A•)

= dimKH
•
(δ1;δ1) (A•) + dimKH

•
(δ2;δ2) (A•)

holds.

Proof. The Corollary follows from Corollary 3.4, Proposition 2.2, Theorem 2.4, and Lemma 1.5. �

4. Applications

In this section, we prove or recover applications of the inequality à la Frölicher, Theorem 2.4 and
Theorem 3.3, to the complex, symplectic, and generalized complex cases.

4.1. Complex structures. Let X be a compact complex manifold. Consider the Z2-graded C-vector
space ∧•,•X of bi-graded complex differential forms endowed with the endomorphisms ∂ ∈ End1,0 (∧•,•X)

and ∂ ∈ End0,1 (∧•,•X), which satisfy ∂2 = ∂
2

= ∂∂+∂∂ = 0. As usual, define the Dolbeault cohomologies
as

H•,•∂ (X) := H•,•(∂;∂) (∧•,•X) , H•,•
∂

(X) := H•,•
(∂;∂)

(∧•,•X) ,

and the Bott-Chern cohomology and the Aeppli cohomology as, respectively, [11, 1],

H•,•BC(X) := H•,•
(∂,∂;∂∂)

(∧•,•X) , H•,•A (X) := H•,•
(∂∂;∂,∂)

(∧•,•X) .

Note that, since X is a compact manifold, dimC Tot•H•,•
∂

(X) < +∞: indeed, for any Hermitian

metric g with C-linear Hodge-∗-operator ∗g : ∧•1,•2 X → ∧dimCX−•2,dimCX−•1 , one has an isomorphism

ker
[
∂, ∂

∗] '→ H•
∂
(X), where ∂

∗
is the adjoint operator of ∂ with respect to the inner product induced
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on ∧•,•X by g, and the 2nd-order self-adjoint differential operator
[
∂, ∂

∗]
is elliptic. Furthermore,

dimC Tot•H•,•∂ (X) = dimC Tot•H•,•
∂

(X) < +∞, since conjugation induces the (C-anti-linear) isomor-

phism H•1,•2∂ (X) ' H•2,•1
∂

(X) of R-vector spaces.

Note also that dimC Tot•H•,•BC(X) = dimC Tot2 dimCX−•H•,•A (X) < +∞, [45, Corollaire 2.3,
§2.c]: indeed, for any Hermitian metric g on X, the C-linear Hodge-∗-operator ∗g : ∧•1,•2 X →
∧dimCX−•2,dimCX−•1X induces the isomorphism ∗g : H•1,•2BC (X)

'→ HdimCX−•2,dimCX−•1
A (X), [45, §2.c],

and ker ∆̃BC
'→ H•,•BC(X), [45, Théorème 2.2], where ∆̃BC :=

(
∂∂
) (
∂∂
)∗

+
(
∂∂
)∗ (

∂∂
)

+
(
∂
∗
∂
)(

∂
∗
∂
)∗

+(
∂
∗
∂
)∗ (

∂
∗
∂
)

+ ∂
∗
∂ + ∂∗∂ is a 4th-order self-adjoint elliptic differential operator, [32, Proposition 5], see

also [45, §2.b].
By abuse of notation, one says that X satisfies the ∂∂-Lemma if the double complex

(
∧•,•X, ∂, ∂

)
satis-

fies the ∂∂-Lemma, and one says that X satisfies the d dc-Lemma if the Z-graded C-vector space ∧•X⊗RC
endowed with the endomorphisms d ∈ End1 (∧•X ⊗R C) and dc := − i

(
∂ − ∂

)
∈ End1 (∧•X ⊗R C) such

that d2 = (dc)
2

= [d, dc] = 0 satisfies the d dc-Lemma. Actually, it turns out that X satisfies the
d dc-Lemma if and only if X satisfies the ∂∂-Lemma, [17, Remark 5.14]: indeed, note that ∂ = 1

2 (d + i dc)

and ∂ = 1
2 (d− i dc), and ∂∂ = − i

2 d dc.
From Corollary 2.6 and Theorem 3.3, one gets straightforwardly the following inequality à la Frölicher

for the Bott-Chern cohomology of a compact complex manifolds and the corresponding characterization
of the ∂∂-Lemma by means of the Bott-Chern cohomology, first proved by the authors in [6].

Corollary 4.1 ([6, Theorem A, Theorem B]). Let X be a compact complex manifold. The inequality

(4) dimC Tot•H•,•BC(X) + dimC Tot•H•,•A (X) ≥ 2 dimCH
•
dR(X;C)

holds. Furthermore, the equality in (4) holds if and only if X satisfies the ∂∂-Lemma.

4.2. Symplectic structures. Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure ω, namely, a non-degenerate d-closed 2-form on X. The symplectic form ω induces a natural

isomorphism I : TX
'→ T ∗X; more precisely, I(·)(··) := ω(·, ··). Set Π :=: ω−1 := ω

(
I−1·, I−1 · ·

)
∈ ∧2TX

the canonical Poisson bi-vector associated to ω, namely, in a Darboux chart with local coordinates{
x1, . . . , xn, y1, . . . , yn

}
such that ω

loc
=
∑n
j=1 dxj ∧ d yj , one has ω−1 loc

=
∑n
j=1

∂
∂xj ∧

∂
∂yj . One gets a

bi-R-linear form on ∧kX, denoted by
(
ω−1

)k
, by defining it on the simple elements α1 ∧ · · · ∧ αk ∈ ∧kX

and β1 ∧ · · · ∧ βk ∈ ∧kX as(
ω−1

)k (
α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk

)
:= det

(
ω−1

(
α`, βm

))
`,m∈{1,...,k} ;

note that
(
ω−1

)k
is skew-symmetric, respectively symmetric, according to k is odd, respectively even.

We recall that the operators

L ∈ End2 (∧•X) , L(α) := ω ∧ α ,

Λ ∈ End−2 (∧•X) , Λ(α) := −ιΠα ,

H ∈ End0 (∧•X) , H(α) :=
∑
k∈Z

(n− k) π∧kXα ,

yield an sl(2;R)-representation on ∧•X (where ιξ : ∧• X → ∧•−2X denotes the interior product with
ξ ∈ ∧2 (TX), and π∧kX : ∧• X → ∧kX denotes the natural projection onto ∧kX, for k ∈ Z).

Define the symplectic co-differential operator as

dΛ := [d, Λ] ∈ End−1 (∧•X) ;

one has that
(

dΛ
)2

=
[
d, dΛ

]
= 0, see [34, page 266, page 265], [12, Proposition 1.2.3, Theorem 1.3.1].

As a matter of notation, for ] ∈
{(

d,dΛ; d dΛ
)
, (d; d) ,

(
dΛ; dΛ

)
,
(

d dΛ; d,dΛ
)}

, we shorten

H•] (X) := H•] (∧•X). Note that H•(d;d)(X) = H•dR(X;R). As regards notation introduced by L.-S. Tseng

and S.-T. Yau in [47, §3], note that H•
(dΛ;dΛ)

(X) = H•
dΛ(X), and that H•

(d,dΛ;d dΛ)
(X) = H•

d + dΛ(X), and

that H•
(d dΛ;d,dΛ)

(X) = H•
d dΛ(X).
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Note also that, as a consequence of the Hodge theory developed by L.-S. Tseng and S.-T. Yau in [47,
Proposition 3.3, Theorem 3.5, Theorem 3.16], one has that, [47, Corollary 3.6, Corollary 3.17], X being

compact, for ] ∈
{(

d,dΛ; d dΛ
)
, (d; d) ,

(
dΛ; dΛ

)
,
(

d dΛ; d,dΛ
)}

,

dimRH
•
] (X) < +∞ .

With the aim to develop a symplectic counterpart of Riemannian Hodge theory for compact symplectic
manifolds, J.-L. Brylinski defined the symplectic-?-operator, [12, §2],

?ω : ∧• X → ∧2n−•X

requiring that, for every α, β ∈ ∧kX,

α ∧ ?ωβ =
(
ω−1

)k
(α, β) ωn .

Since dΛb∧kX= (−1)k+1 ?ω d ?ω, [12, Theorem 2.2.1], and ?2
ω = id, [12, Lemma 2.1.2], then one gets

that ?ω induces the isomorphism

?ω : H•(d;d)(X)
'→ H2n−•

(dΛ;dΛ)
(X) .

In particular, by the Poincaré duality, it follows that

dimRH
•
(d;d)(X) = dimRH

•
(dΛ;dΛ)(X) < +∞ .

Furthermore, by choosing an almost-complex structure J compatible with ω (namely, such that ω(·, J ·)
is positive definite and ω(J ·, J · ·) = ω), and by considering the J-Hermitian metric g := ω(·, J · ·), one
gets that, [47, Corollary 3.25], the Hodge-∗-operator ∗g : ∧• X → ∧2n−•X associated to g induces the
isomorphism, [12, Corollary 2.2.2],

∗g : H•(d,dΛ;d dΛ)(X)
'→ H2n−•

(d dΛ;d,dΛ)
(X) .

In particular, it follows that

dimRH
•
(d,dΛ;d dΛ)(X) = dimRH

2n−•
(d dΛ;d,dΛ)

(X) < +∞ .

Recall that one says that the Hard Lefschetz Condition holds on X if

(HLC) for every k ∈ N , Lk : Hn−k
dR (X;R)

'→ Hn+k
dR (X;R) .

As in [7], and miming [35] in the almost-complex case, define, for r, s ∈ N,

H(r,s)
ω (X;R) :=

{[
Lr γ(s)

]
∈ H2r+s

dR (X;R) : Λγ(s) = 0
}
⊆ H2r+s

dR (X;R) ;

one has that ∑
2r+s=•

H(r,s)
ω (X;R) ⊆ H•dR(X;R) ,

but in general neither the sum is direct, nor the inclusion is an equality.
As proved by Y. Lin in [36, Proposition A.5], if the Hard Lefschetz Condition holds on X, then

H(0,•)
ω (X;R) = PH•d(X;R) ,

where

PH•d(X;R) :=
ker d∩ ker dΛ ∩ ker Λ

im dbker dΛ ∩ ker Λ

is the primitive cohomology introduced by L.-S. Tseng and S.-T. Yau in [47, §4.1].

We recall the following result.

Theorem 4.2 ([39, Corollary 2], [51, Theorem 0.1], [41, Proposition 1.4], [28], [47, Proposition 3.13], [13,
Theorem 5.4], [7, Remark 2.3]). Let X be a compact manifold endowed with a symplectic structure ω.
The following conditions are equivalent:

(i) every de Rham cohomology class of X admits a representative being both d-closed and dΛ-closed,
namely, Brylinski’s conjecture [12, Conjecture 2.2.7] holds on X;

(ii) the Hard Lefschetz Condition holds on X;
(iii) the natural map H•

(d,dΛ;d dΛ)
(∧•X)→ H•dR(X;R) induced by the identity is surjective;

(iv) the natural map H•
(d,dΛ;d dΛ)

(∧•X)→ H•dR(X;R) induced by the identity is an isomorphism;
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(v) the bounded Z-graded R-vector space ∧•X endowed with the endomorphisms d ∈ End1 (∧•X)

and dΛ ∈ End−1 (∧•X) satisfies the d dΛ-Lemma;
(vi) the decomposition

H•dR(X;R) =
⊕
r∈N

LrH(0,•−2r)
ω (X;R) ,

holds.

In order to apply Corollary 3.5 to the Z-graded R-vector space ∧•X endowed with the endomorphisms

d ∈ End1 (∧•X) and dΛ ∈ End−1 (∧•X), satisfying d2 =
(

dΛ
)2

=
[
d, dΛ

]
= 0, we need the following

result.

Lemma 4.3 ([12, Theorem 2.3.1], [18, Theorem 2.5]; see also [18, Theorem 2.9], [14, Theorem 5.2]).
Let X be a compact manifold endowed with a symplectic structure ω. Consider the Z2-graded R-vector
space ∧•X endowed with the endomorphisms d ∈ End1 (∧•X) and dΛ ∈ End−1 (∧•X). Both the spectral

sequences associated to the canonical double complex
(

Doub•,• ∧•X, d⊗R id, dΛ⊗Rβ
)

degenerate at the

first level.

Hence, by applying Theorem 2.4 and Corollary 3.5 to the Z-graded R-vector space ∧•X endowed with
d ∈ End1 (∧•X) and dΛ ∈ End−1 (∧•X), we get the following result.

Theorem 4.4. Let X be a compact manifold endowed with a symplectic structure ω. The inequality

(5) dimRH
•
(d,dΛ;d dΛ) (X) + dimRH

•
(d dΛ;d,dΛ) (X) ≥ 2 dimRH

•
dR(X;R)

holds. Furthermore, the equality in (5) holds if and only if X satisfies the Hard Lefschetz Condition.

Consider X = Γ\G a solvmanifold endowed with a G-left-invariant symplectic structure ω; in
particular, ω induces a linear symplectic structure on g; therefore the endomorphisms d ∈ End1 (∧•X)

and dΛ ∈ End−1 (∧•X) yield endomorphisms d ∈ End1 (∧•g∗) and dΛ ∈ End−1 (∧•g∗) on the Z-graded
R-vector sub-space ∧•g∗ ↪→ ∧•X, where we identify objects on g with G-left-invariant objects on X

by means of left-translations. For ] ∈
{(

d,dΛ; d dΛ
)
, (d; d) ,

(
dΛ; dΛ

)
,
(

d dΛ; d,dΛ
)}

, one has the

natural map ι : H•] (∧•g∗) → H•] (X). We recall the following result, which allows to compute the
cohomologies of a completely-solvable solvmanifold by using just left-invariant forms; recall, e.g., that,
by A. Hattori’s theorem [29, Corollary 4.2], if G is completely-solvable (that is, for any g ∈ G, all the
eigenvalues of Adg := d (ψg)e ∈ Aut(g) are real, equivalently, if, for any X ∈ g, all the eigenvalues of

adX := [X, ·] ∈ End(g) are real, where ψ : G 3 g 7→
(
ψg : h 7→ g h g−1

)
∈ Aut(G) and e is the identity

element of G), then the natural map H•dR (∧•g∗)→ H•dR (X;R) is an isomorphism.

Theorem 4.5 ([37, Theorem 3, Remark 4], see also [4]). Let X = Γ\G be a completely-
solvable solvmanifold endowed with a G-left-invariant symplectic structure ω. Then, for ] ∈{(

d,dΛ; d dΛ
)
, (d; d) ,

(
dΛ; dΛ

)
,
(

d dΛ; d,dΛ
)}

, the natural map

ι : H•] (∧•g∗)→ H•] (X)

is an isomorphism.

Example 4.6. Let I3 := Z [i]
3
∖(

C3, ∗
)

be the Iwasawa manifold, where the group structure ∗ on C3 is

defined by
(z1, z2, z3) ∗ (w1, w2, w3) := (z1 + w1, z2 + w2, z3 + z1w2 + w3) .

There exists a
(
C3, ∗

)
-left-invariant co-frame

{
ej
}
j∈{1,...,6} of T ∗X such that

d e1 = d e2 = d e3 = d e4 = 0 , d e5 = −e13 + e24 , d e6 = −e14 − e23

(in order to simplify notation, we shorten, e.g., e12 := e1 ∧ e2).
Consider the

(
C3, ∗

)
-left-invariant almost-Kähler structure (J, ω, g) on I3 defined by

Je1 := −e6 , Je2 := −e5 , Je3 := −e4 , ω := e16 + e25 + e34 , g := ω (·, J · ·) ;

it has been studied in [8, §4] as an example of an almost-Kähler structure non-inducing a decomposition
in cohomology according to the almost-complex structure, [8, Proposition 4.1].

The symplectic cohomologies of the Iwasawa manifold I3 endowed with the
(
C3, ∗

)
-left-invariant

symplectic structure ω can be computed using just
(
C3, ∗

)
-left-invariant forms. This follows from [37,
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Theorem 3], see also [5, Theorem 3.2], thanks to [43, Theorem 1]. The real dimensions of the symplectic
cohomologies are summarized in Table 1.

Note that, from [47, Proposition 3.24], on a compact symplectic manifold of dimension 2n, the symplectic

cohomologies Hk
(d,dΛ;ddΛ), H

2n−k
(d,dΛ;ddΛ)

, Hk
(ddΛ;d,dΛ), H

2n−k
(ddΛ;d,dΛ)

are all (non-naturally) isomorphic. This is

done by means of the wedge product with powers of the symplectic forms and of the Hodge-∗-operator
associated to a compatible metric, which both induce isomorphisms between cohomologies.

(The computations have been performed with the aid of Sage [44]. Further examples are studied in
[5].)

dimCH
•
] (I3) (d; d)

(
dΛ; dΛ

) (
d,dΛ; d dΛ

) (
d dΛ; d,dΛ

)
0 1 1 1 1

1 4 4 4 4

2 8 8 10 10

3 10 10 11 11

4 8 8 10 10

5 4 4 4 4

6 1 1 1 1

Table 1. The symplectic cohomologies of the Iwasawa manifold I3 := Z [i]
3
∖(

C3, ∗
)

endowed with the symplectic structure ω := e1 ∧ e6 + e2 ∧ e5 + e3 ∧ e4.

In particular, note that

dimKH
1

(d,dΛ;d dΛ) (X) + dimKH
1

(d dΛ;d,dΛ) (X)− 2 dimKH
1
dR(X;R) = 0 ,

dimKH
2

(d,dΛ;d dΛ) (X) + dimKH
2

(d dΛ;d,dΛ) (X)− 2 dimKH
2
dR(X;R) = 3 ,

dimKH
3

(d,dΛ;d dΛ) (X) + dimKH
3

(d dΛ;d,dΛ) (X)− 2 dimKH
3
dR(X;R) = 2 .

Remark 4.7. More in general, let X be a compact manifold endowed with a Poisson bracket {·, ··},
and denote by G the Poisson tensor associated to {·, ··}. By following J.-L. Koszul, [34], one defines
δ := [ιG, d] ∈ End−1 (∧•X). One has that δ2 = 0 and [d, δ] = 0, [34, page 266, page 265], see also [12,
Proposition 1.2.3, Theorem 1.3.1].

One has that, on any compact Poisson manifold, the first spectral sequence ′E
•,•
r associated to the

canonical double complex (Doub•,• ∧•X, d⊗R id, δ ⊗R β) degenerates at the first level, [18, Theorem 2.5].
On the other hand, M. Fernández, R. Ibáñez, and M. de León provided an example of a compact

Poisson manifold (more precisely, of a nilmanifold endowed with a co-symplectic structure) such that the
second spectral sequence ′′E

•,•
r (Doub•,• ∧•X, d⊗R id, δ ⊗R β) does not degenerate at the first level, [18,

Theorem 5.1].
In fact, on a compact 2n-dimensional manifold X endowed with a symplectic structure ω, the

symplectic-?-operator ?ω : ∧• X → ∧2n−•X induces the isomorphism ?ω : ′E
•1,•2
r

'→ ′′E
•2,2n+•1
r , [18,

Theorem 2.9]; it follows that, on a compact symplectic manifold, also the second spectral sequence
′′E
•,•
r (Doub•,• ∧•X, d⊗R id, δ ⊗R β) actually degenerates at the first level, [12, Theorem 2.3.1], see also

[18, Theorem 2.8].

4.3. Generalized complex structures. Let X be a compact differentiable manifold of dimension 2n.
Consider the bundle TX ⊕ T ∗X endowed with the natural symmetric pairing

〈· | ··〉 : (TX ⊕ T ∗X)× (TX ⊕ T ∗X)→ R , 〈X + ξ |Y + η〉 :=
1

2
(ξ(Y ) + η(X)) .

16



Fix a d-closed 3-form H on X. On the space C∞ (X; TX ⊕ T ∗X) of smooth sections of TX ⊕ T ∗X over
X, define the H-twisted Courant bracket as

[·, ··]H : C∞ (X; TX ⊕ T ∗X)× C∞ (X; TX ⊕ T ∗X)→ C∞ (X; TX ⊕ T ∗X) ,

[X + ξ, Y + η]H := [X, Y ] + LXη − LY ξ −
1

2
d (ιXη − ιY ξ) + ιY ιXH

(where ιX ∈ End−1 (∧•X) denotes the interior product with X ∈ C∞(X;TX) and LX := [ιX , d] ∈
End0 (∧•X) denotes the Lie derivative along X ∈ C∞(X;TX)); the H-twisted Courant bracket can be
seen also as a derived bracket induced by the H-twisted differential dH := d +H ∧ ·, see [25, §3.2], [27, §2].

Furthermore, consider the Clifford action of TX ⊕ T ∗X on the space of differential forms with respect
to 〈· | ··〉,

Cliff (TX ⊕ T ∗X)× ∧•X → ∧•−1X ⊕ ∧•+1X , (X + ξ) · ϕ := ιXϕ+ ξ ∧ ϕ ,

and its bi-C-linear extension Cliff ((TX ⊕ T ∗X)⊗R C)×(∧•X ⊗R C)→
(
∧•−1X ⊗R C

)
⊕
(
∧•+1X ⊗R C

)
,

where Cliff (TX ⊕ T ∗X) :=
(⊕

k∈Z
⊗k

j=1 (TX ⊕ T ∗X)
)/
{v ⊗R v − 〈v | v〉 : v ∈ TX ⊕ T ∗X} is the

Clifford algebra associated to TX ⊕ T ∗X and 〈· | ··〉.

Recall that an H-twisted generalized complex structure on X, [25, Definition 4.14, Definition 4.18], [27,
Definition 3.1] is an endomorphism J ∈ End (TX ⊕ T ∗X) such that (i) J 2 = − idTX⊕T∗X , and (ii) J is
orthogonal with respect to 〈· | ··〉, and (iii) the Nijenhuis tensor

NijJ ,H := − [J ·, J · ·]H+J [J ·, ··]H+J [·, J · ·]H+J [·, ··]H ∈ (TX ⊕ T ∗X)⊗R(TX ⊕ T ∗X)⊗R(TX ⊕ T ∗X)
∗

of J with respect to the H-twisted Courant bracket vanishes identically.
Equivalently, [25, Proposition 4.3], (by setting L :=: LJ the i-eigen-bundle of the C-linear extension

of J to (TX ⊕ T ∗X) ⊗R C), a generalized complex structure on X is identified by a sub-bundle L of
(TX ⊕ T ∗X) ⊗R C such that (i) L is maximal isotropic with respect to 〈· | ··〉, and (ii) L is involutive
with respect to the H-twisted Courant bracket, and (iii) L ∩ L̄ = {0}.

Equivalently, [25, Theorem 4.8], (by choosing a complex form ρ whose Clifford annihilator

Lρ := {v ∈ (TX ⊕ T ∗X)⊗R C : v · ρ = 0}

is the i-eigen-bundle LJ of the C-linear extension of J to (TX ⊕ T ∗X) ⊗R C), a generalized complex
structure on X is identified by a sub-bundle U :=: UJ (which is called the canonical bundle, [25, §4.1], [27,
Definition 3.7]) of complex rank 1 of ∧•X ⊗R C being locally generated by a form ρ = exp (B + iω) ∧ Ω,
where B ∈ ∧2X, and ω ∈ ∧2X, and Ω = θ1 ∧ · · · ∧ θk ∈ ∧kX ⊗R C with

{
θ1, . . . , θk

}
a set of linearly

independent complex 1-forms, such that (i) Ω∧ Ω̄∧ωn−k 6= 0, and (ii) there exists v ∈ (TX ⊕ T ∗X)⊗RC
such that dH ρ = v · ρ, where dH := d +H ∧ ·.

By definition, the type of a generalized complex structure J on X, [25, §4.3], [27, Definition 3.5], is
the upper-semi-continuous function

type (J ) :=
1

2
dimR (T ∗X ∩ J T ∗X)

on X, equivalently, [27, Definition 1.1], the degree of the form Ω.

A generalized complex structure J on X induces a Z-graduation on the space of complex differential
forms on X, [25, §4.4], [27, Proposition 3.8]. Namely, define, for k ∈ Z,

Uk :=: UkJ := ∧n−kL̄J · UJ ⊆ ∧•X ⊗R C ,

where LJ is the i-eigenspace of the C-linear extension of J to (TX ⊕ T ∗X)⊗R C and UnJ := UJ is the
canonical bundle of J .

For a 〈· | ··〉-orthogonal endomorphism J ∈ End (TX ⊕ T ∗X) satisfying J 2 = − idTX⊕T∗X , the Z-
graduation U•J still makes sense, and the condition that NijJ ,H = 0 turns out to be equivalent, [25,
Theorem 4.3], [27, Theorem 3.14], to

dH : U•J → U•+1
J ⊕ U•−1

J .

Therefore, on a compact differentiable manifold endowed with a generalized complex structure J , one
has, [25, §4.4], [27, §3],

dH = ∂J ,H + ∂J ,H where ∂J ,H : U•J → U•+1
J and ∂J ,H : U•J → U•−1

J .
17



Define also, [25, page 52], [27, Remark at page 97],

dJH := − i
(
∂J ,H − ∂J ,H

)
: U•J → U•+1

J ⊕ U•−1
J .

By abuse of notation, one says that X satisfies the ∂J ,H∂J ,H-Lemma if
(
U•, ∂J ,H , ∂J ,H

)
satisfies

the ∂J ,H∂J ,H -Lemma, and one says that X satisfies the dH dJH-Lemma if
(
U•, dH , dJH

)
satisfies the

dH dJH -Lemma. Actually, it turns out that X satisfies the dH dJH -Lemma if and only if X satisfies

the ∂J ,H∂J ,H -Lemma, [14, Remark at page 129]: indeed, note that ker ∂J ,H∂J ,H = ker dH dJH , and

ker ∂J ,H ∩ ker ∂J ,H = ker dH ∩ ker dJH , and im ∂J ,H + im ∂J ,H = im dH + im dJH .
Moreover, the following result by G. R. Cavalcanti holds.

Theorem 4.8 ([13, Theorem 4.2], [14, Theorem 4.1, Corollary 2]). A manifold X endowed with an H-

twisted generalized complex structure J satisfies the dH dJH-Lemma if and only if
(

ker dJH , d
)
↪→ (U•, dH)

is a quasi-isomorphism of differential Z-graded C-vector spaces. In this case, it follows that the splitting
∧•X ⊗R C =

⊕
k∈Z U

k gives rise to a decomposition in cohomology.

An application of [17, Proposition 5.17, 5.21] yields the following result.

Theorem 4.9 ([13, Theorem 4.4], [14, Theorem 5.1]). A manifold X endowed with an H-twisted

generalized complex structure J satisfies the d dJ -lemma if and only if the canonical spectral sequence
degenerates at the first level and the decomposition of complex forms into sub-bundles Uk induces a
decomposition in cohomology.

Given a compact complex manifold X endowed with an H-twisted generalized complex structure,
consider the following cohomologies:

GHdRH (X) := H(dH ;dH)

(
TotU•J

)
,

and

GH•
∂J ,H

(X) := H•(∂J ,H ;∂J ,H)

(
U•J
)
, GH•∂J ,H (X) := H•(∂J ,H ;∂J ,H)

(
U•J
)
,

and

GH•BCJ ,H (X) := H•(∂J ,H ,∂J ,H ;∂J ,H∂J ,H)

(
U•J
)
, GH•AJ ,H (X) := H•(∂J ,H∂J ,H ;∂J ,H ,∂J ,H)

(
U•J
)
.

Note that, for H = 0, one has GHdR0(X) = TotH•dR(X;R).
By [25, Proposition 5.1], [27, Proposition 3.15], it follows that dimCGH

•
∂J ,H

(X) < +∞ and

dimCGH
•
∂J ,H

(X) < +∞.

As an application of Theorem 2.4, we get the following result.

Theorem 4.10. Let X be a compact differentiable manifold endowed with an H-twisted generalized
complex structure J . Then

(6) dimCGH
•
BCJ ,H (X) + dimCGH

•
AJ ,H (X) ≥ dimCGH

•
∂J ,H

(X) + dimCGH
•
∂J ,H (X) .

As an application of Corollary 3.5, we get the following result; compare it also with [13, Theorem 4.4].

Theorem 4.11. Let X be a compact differentiable manifold endowed with an H-twisted generalized
complex structure J . The following conditions are equivalent:

• X satisfies the ∂J ,H∂J ,H-Lemma;
• the Hodge and Frölicher spectral sequences associated to the canonical double complex(

Doub•,• U•J , ∂J ,H ⊗C id, ∂J ,H ⊗C β
)

degenerate at the first level and the equality in (6),

dimCGH
•
BCJ ,H (X) + dimCGH

•
AJ ,H (X) = dimCGH

•
∂J ,H

(X) + dimCGH
•
∂J ,H (X) ,

holds.

Symplectic structures and complex structures provide the fundamental examples of generalized complex
structures; in fact, the following generalized Darboux theorem by M. Gualtieri holds. (Recall that a
regular point of a generalized complex manifold is a point at which the type of the generalized complex
structure is locally constant.)
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Theorem 4.12 ([25, Theorem 4.35], [27, Theorem 3.6]). For any regular point of a 2n-dimensional
generalized complex manifold with type equal to k, there is an open neighbourhood endowed with a set
of local coordinates such that the generalized complex structure is a B-field transform of the standard
generalized complex structure of Ck × R2n−2k.

The standard generalized complex structure of constant type n (that is, locally equivalent to the
standard complex structure of Cn), the generalized complex structure of constant type 0 (that is, locally
equivalent to the standard symplectic structure of R2n), and the B-field transform of a generalized
complex structure are recalled in the following examples. See also [25, Example 4.12].

Example 4.13 (Generalized complex structures of type n, [25, Example 4.11, Example 4.25]). Let X
be a compact 2n-dimensional manifold endowed with a complex structure J ∈ End(TX). Consider the
(0-twisted) generalized complex structure

JJ :=

(
−J 0
0 J∗

)
∈ End (TX ⊕ T ∗X) ,

where J∗ ∈ End(T ∗X) denotes the dual endomorphism of J ∈ End(TX). Note that the i-eigenspace of
the C-linear extension of JJ to (TX ⊕ T ∗X)⊗C C is

LJJ = T 0,1
J X ⊕

(
T 1,0
J X

)∗
,

and the canonical bundle is
UnJJ = ∧n,0J X .

Hence, one gets that, [25, Example 4.25],

U•JJ =
⊕
p−q=•

∧p,qJ X ,

and that
∂JJ = ∂J and ∂JJ = ∂J ;

note that dJJ is the operator dcJ := − i(∂ − ∂), [25, Remark 4.26]. Note also that X satisfies the

d dJJ -Lemma if and only if X satisfies the d dcJ -Lemma, and that the Hodge and Frölicher spectral
sequence associated to the canonical double complex

(
Doub•,• U•JJ , ∂JJ ⊗R id, ∂JJ ⊗R β

)
degenerates at

the first level if and only if the Hodge and Frölicher spectral sequence associated to the double complex(
∧•,•J X, ∂J , ∂J

)
does, [13, Remark at page 76].

In particular, it follows that, for ] ∈
{
∂, ∂, BC, A

}
,

GH•]JJ
(X) = Tot•H•,−•]J

(X) =
⊕
p−q=•

Hp,q
]J

(X) .

Therefore, by Theorem 4.10 and Theorem 4.11, and by using the equalities dimCH
•1,•2
BCJ

(X) =

dimCH
n−•2,n−•1
AJ

(X) and dimCH
•1,•2
∂J

(X) = dimCH
n−•2,n−•1
∂J

(X), one gets the following result, compare

Corollary 4.1, [6, Theorem A, Theorem B].

Corollary 4.14. Let X be a compact complex manifold. Then the inequality∑
p−q=•

dimCH
p,q
BCJ

(X) ≥
∑
p−q=•

dimCH
p,q

∂J
(X)

holds. Furthermore, X satisfies the ∂J∂J -Lemma if and only if (i) the Hodge and Frölicher spectral
sequence of X degenerates at the first level, namely,

dimCH
•
dR(X;C) = dimC Tot•H•,•

∂J
(X) ,

and (ii) the equality ∑
p−q=•

dimCH
p,q
BCJ

(X) =
∑
p−q=•

dimCH
p,q

∂J
(X)

holds.
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Example 4.15 (Generalized complex structures of type 0, [25, Example 4.10]). Let X be a compact
2n-dimensional manifold endowed with a symplectic structure ω ∈ ∧2X ' Hom (TX;T ∗X). Consider
the (0-twisted) generalized complex structure

Jω :=

(
0 −ω−1

ω 0

)
,

where ω−1 ∈ Hom (T ∗X;TX) denotes the inverse of ω ∈ Hom (TX;T ∗X). Note that the i-eigenspace of
the C-linear extension of Jω to (TX ⊗R C)⊕ (T ∗X ⊗R C) is

LJω = {X − i ω (X, ·) : X ∈ TX ⊗R C} ,
which has Clifford annihilator exp(i ω), and the canonical bundle is

UnJω = C 〈exp (i ω)〉 .
In particular, one gets that, [14, Theorem 2.2],

Un−•Jω = exp (iω)

(
exp

(
Λ

2 i

)
(∧•X ⊗R C)

)
,

where Λ := −ιω−1 . Note that, [14, §2.2],

dJω = dΛ .

By considering the natural isomorphism

ϕ : ∧• X ⊗R C→ ∧•X ⊗R C , ϕ(α) := exp (iω)

(
exp

(
Λ

2 i

)
α

)
,

one gets that, [14, Corollary 1],

ϕ (∧•X ⊗R C) ' Un−• , and ϕd = ∂Jωϕ and ϕdJω = −2 i ∂Jωϕ ;

in particular,
GH•

∂Jω
(X) ' Hn−•

dR (X;C) .

In particular, one recovers Theorem 4.4, namely,

dimRH
•
(d,dΛ;d dΛ) (X) + dimRH

•
(d dΛ;d,dΛ) (X) ≥ 2 dimRH

•
dR(X;R) ,

and the equality holds if and only if X satisfies the Hard Lefschetz Condition.

Example 4.16 (B-transform, [25, §3.3]). Let X be a compact 2n-dimensional manifold endowed with
an H-twisted generalized complex structure J , and let B be a d-closed 2-form. Consider the H-twisted
generalized complex structure

J B := exp (−B) J expB where expB =

(
idTX 0
B idT∗X

)
.

Note that the i-eigenspace of the C-linear extension of J to (TX ⊕ T ∗X)⊗R C is, [13, Example 2.3],

LJB = {X + ξ − ιXB : X + ξ ∈ LJ } ,
and the canonical bundle is, [13, Example 2.6],

UnJB = expB ∧ UnJ .
Hence one gets that, [14, §2.3],

U•JB = expB ∧ U•J .
and that, [14, §2.3],

∂JB = exp (−B) ∂J expB and ∂JB = exp (−B) ∂J expB .

In particular, one gets that J satisfies the ∂J ∂J -Lemma if and only if J B satisfies the ∂JB∂JB -Lemma.

Remark 4.17. We recall that, given a d-closed 3-form H on a manifold X, an H-twisted generalized
Kähler structure on X is a pair (J1, J2) of H-twisted generalized complex structures on X such that
(i) J1 and J2 commute, and (ii) the symmetric pairing 〈J1·, J2 · ·〉 is positive definite. Generalized
Kähler geometry is equivalent to a bi-Hermitian geometry with torsion, [26, Theorem 2.18].

We recall that a compact manifold X endowed with an H-twisted generalized Kähler structure (J1, J2)

satisfies both the dH dJ1

H -Lemma and the dH dJ2

H -Lemma, [26, Corollary 4.2].
Any Kähler structure provide an example of a 0-twisted generalized Kähler structure. A left-invariant

non-trivial twisted generalized Kähler structure on a (non-completely solvable) solvmanifold (which is the
21



total space of a T2-bundle over the Inoue surface, [19, Proposition 3.2]) has been constructed by A. Fino
and the second author, [19, Theorem 3.5].

Remark 4.18. Note that A. Tomasiello proved in [46, §B] that satisfying the d dJ -Lemma is a stable
property under small deformations.
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