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Abstract: We investigate spacetimes whose light cones could be anisotropic. We prove
the equivalence of the structures: (a) Lorentz–Finslermanifold forwhich themeanCartan
torsion vanishes, (b) Lorentz–Finsler manifold for which the indicatrix (observer space)
at each point is a convex hyperbolic affine sphere centered on the zero section, and (c)
pair given by a spacetime volume and a sharp convex cone distribution. The equivalence
suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-
metrical concept enters the definition. As a result, this work shows how the metric
features of spacetime emerge from elementary concepts such asmeasure and order. Non-
relativistic spacetimes are obtained replacing proper spheres with improper spheres, so
the distinction does not call for group theoretical elements. In physical terms, in affine
sphere spacetimes the light cone distribution and the spacetime measure determine the
motion of massive and massless particles (hence the dispersion relation). Furthermore,
it is shown that, more generally, for Lorentz–Finsler theories non-differentiable at the
cone, the lightlike geodesics and the transport of the particle momentum over them are
well defined, though the curve parametrization could be undefined. Causality theory
is also well behaved. Several results for affine sphere spacetimes are presented. Some
results in Finsler geometry, for instance in the characterization of Randers spaces, are
also included.
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1. Introduction

In recent years the Finslerian generalization of general relativity has made considerable
progress. Several results, includingmuch of the edifice of causality theory and the famous
singularity theorems, have been generalized [1,63,64,66]. Only a few but important
difficulties still remain; this work is devoted to the solutions of some of those. As we
shall see, their resolution will make us look at the spacetime concept in some novel
ways.

In general relativity it is possible to recover the Lorentz metric from the spacetime
volume form and the light cone distribution. In fact, it is well known that in spacetime
dimension n + 1 ≥ 3 two Lorentzian metrics on the same manifold share the same light
cones if and only if they are proportional, see e.g. [97, App. D]. The conformal factor
can then be fixed to one imposing the equality of the volume forms.

This very simple property has prominent importance because it shows that the grav-
itational phenomena is encoded in two simple concepts: the causal order and the space-
time measure. One could also add to this pair a further element, namely the spacetime
topology.

This observation has led several researchers to believe that the quantization of gravity
or better, of spacetime itself, must be formulated in terms of these structures. Among
the theories that embody these ideas we might mention Causal Set Theory [11] and
unimodular gravity [3,10,88].

We share the opinion that a fundamental theory should pass through the concepts
of order, measure and topology and so that once the manifold is given, one should be
able to recover the metric from a volume form and a cone structure. Unfortunately, this
correspondence is lost for the so far proposed Finslerian generalizations of Einstein’s
general relativity, so this work aims to solve this problem.

It is perhaps worth to recalling what is Finsler geometry before we become more
specific. We might say that Riemannian spaces can be obtained from differentiable
manifoldsM introducing a point dependent scalar product g (Riemannianmetric), which
has the effect of converting each tangent space TxM into a (finite dimensional) Hilbert
space. Similarly, Finsler spaces can be obtained frommanifoldsM by introducing a point
dependent Minkowski norm Fx or, which is the same, a Finsler LagrangianL = F2/2,
which converts each tangent space TxM into a Minkowski space, namely into a Banach
space with strongly convex unit balls. These unit balls are also called indicatrices.

As the Minkowski ball is no more round (ellipsoidal), namely since it cannot be
brought to a sphere through a linear change of coordinates on TxM , Finsler geometry is
essentially related to anisotropic features of the space.
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In Finslerian generalizations of Einstein’s theory there are further complications
related to the fact that the Finsler Lagrangian L , having Lorentzian Hessian, induces
non-compact unit balls (indicatrices).

We shall recognize that anisotropic theories of relativity can preserve the correspon-
dence,

Finsler Lagrangian ⇔ spacetime measure + light cone structure,

provided the Finsler indicatrix is an affine sphere, or equivalently, provided the mean
Cartan torsion (Tchebycheff form) vanishes:

Iα = 0. (1)

This idea is the result of the physical interpretation of deep mathematical results by
several distinguished mathematicians including Pogorelov, Calabi, Cheng and Yau. We
shall also show that the coordinates introduced by Gigena to study affine spheres have a
transparent physical interpretation. In particular, inhomogeneous projective coordinates
should be used on the tangent space while homogeneous projective coordinates should
be used on the cotangent space; in this way the former can be interpreted as velocity
components while the latter as momentum components. The function u(v) solving the
Monge–Ampère equation of the affine sphere will receive the interpretation of observer
Lagrangian of the theory.

In order to fully understand this solution we will have to introduce some concepts
from affine differential geometry, as the readermight not be acquaintedwith this beautiful
mathematical theory [52,74]. Thus portions of the work will have a review character.
We do not claim particular originality in this exposition, saved perhaps for the Finslerian
point of view which at this stage is necessary in order to establish a connection with
current literature on anisotropic gravity theories.

We recall that affine differential geometry originated with Blaschke’s construction
of a natural transverse direction—the affine normal—to any point on a non-degenerate
hypersurface immersed on affine space. Remarkably, the construction does not require a
scalar product, a fact which, ultimately, will allow us to give a definition of spacetime free
from algebraic-metrical elements. For instance, the distinction between non-relativistic
and relativistic physics will be devoid of group theoretical characterizations and related
instead to the center of the affine sphere distribution, whether placed at infinity or not.

Since the vacuum equations of general relativity demand the proportionality between
the Ricci tensor and the metric, one might ask whether the condition Iα = 0 has a similar
characterization. We shall prove that the answer is affirmative in at least three different
ways as Iα = 0 can be regarded as the Kähler–Einstein condition for the Lorentz–Finsler
metric (Theorem 2), as the Kähler–Einstein condition for the Monge–Ampère (Cheng-
Yau) Riemannian metric of the timelike cone (Theorem 1), and also as a kind of Einstein
condition for the Blaschke structure of the indicatrix (Proposition 2).

Much of this work will be devoted to the kinematics of the theory and to its interpre-
tation. The many proposed Finslerian gravitational dynamics [16,37–40,49,55,71,72,
76,80,83–87,93,96] can then be adapted to our kinematical model, adding the condition
Iα = 0. A dynamics proposed by the author which first suggested to consider a vanishing
mean Cartan torsion can be found in [63]. There it was shown that the (hh-)Ricci tensor
Rμ

αμβ appearing in most dynamical proposals is symmetric if Iα = 0, and also that these
spaces are weakly-Berwald and weakly-Landsberg.

In (positive definite) Finsler spaces the condition Iα = 0 was already considered by
Cartan [15], but later Deicke [20] discovered that Finsler spaces satisfying this condition
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were Riemannian and hence isotropic. Of course, the interest in this condition faded,
since themany results obtained through its impositionwere a consequenceof the triviality
of the Finsler space. Early authors working in Finsler gravity did not pay much attention
to the signature of the metric, so some of them discarded this condition [39] although
Deicke’s theorem really holds only for positive definite metrics.

Exact solutions will not be considered in this work but in a related paper [69] we shall
provide examples of affine sphere spacetimes that reduce themselves to the Schwarz-
schild, Kerr, FLRW spacetimes in a suitable velocity limit, and hence which satisfy the
Lorentzian Einstein equations in the same limit. In general, the affine sphere condition
Iα = 0 is quite hard to solve though, as we shall recall, general theorems guarantee
the existence of solutions. Mathematicians are working to find new methods to generate
affine spheres in closed form [25,33]. A perturbative approach seems more amenable
but will be pursued in a different work.

This work is organized as follows. In the first section we recall some elements of
Lorentz–Finsler theory, we define the indicatrix and we introduce the quotient and the
induced metrics on the indicatrix. We introduce the canonical Hessian metric of the
timelike cone and relate the Finsler Lagrangian to the Kähler potential of the cone. We
also give some arguments pointing to a null mean Cartan torsion, which can be added to
those already discussed in [63]. This conditionmakes it possible to identify the spacetime
volume form in the usual way and can be regarded as a Kähler affine condition of Ricci
flatness on the vertical degrees of freedom.

In the second section we introduce the mathematics of affine spheres, we characterize
affine spheres through the mean Cartan torsion Iα , we clarify the role of the volume form
on spacetime, we show how to convert affine sphere theoretical results into Finslerian
results (and conversely), andprove some theorems required for the physical interpretation
of affine spheres. We introduce both proper and improper spheres, the physical theory
constructed from those leading respectively to relativistic and non-relativistic physics.

The third section is devoted to the application of the results of the previous sections to
the geometrical and physical interpretation of Lorentz–Finsler spaces having vanishing
mean Cartan torsion. Here we use a deep mathematical theorem, first conjectured by
Calabi, in order to connect volume and conic order on spacetime with the affine sphere
distribution on the tangent bundle. We are then able to give a definition of affine sphere
spacetime that does not involve metrical or group theoretical elements.

In the fourth section we return to the broader framework of Lorentz–Finsler theories.
We show that the lightlike geodesic flow follows solely from the distribution of light
cones and so does the transport of the photon momenta along the geodesic. These results
are really independent of the Lagrangian and so do not use its differentiability at the light
cone. They require just differentiability and convexity conditions on the distribution of
light cones. Finally, we prove that the standard results of causality theory are preserved.

For space reasons the discussion of the relativity principle and a study of somemodels
satisfying it will be given in a different work [69].

1.1. Elements of Lorentz–Finsler theory. Concerning notation and terminology, the
Lorentz signature is (−,+, . . . ,+). The wedge product between 1-forms is defined by
α ∧ β = α ⊗ β − β ⊗ α. On an affine space E the Hessian metric of a function f
with respect to affine coordinates will be denoted, with some abuse of notation, d2 f .
The inclusion is reflexive: X ⊂ X . The manifold M has dimension m = n + 1 ≥ 2 and
it will be physically interpreted as the spacetime. Greek indices take values 0, 1, . . . , n
while latin indices take values in 1, . . . , n. We shall often write y in place of yi . Local
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coordinates on M are denoted {xμ} while the induced local coordinate system on T M
is {xμ, yν}, namely yν∂/∂xν ∈ TxM .

A point in the space T T M will be denoted with (x, y, ẋ, ẏ). Observe that the canon-
ical projection π : T M → M , (x, y) 	→ x , has pushforward π∗ : T T M → T M ,
(x, y, ẋ, ẏ) 	→ (x, ẋ) so the vertical space VT M consists of the points (x, y, 0, ẏ) and
it is naturally diffeomorphic to T M ×M T M (it can be easily checked calculating the
cocyle after a change of coordinates x̃ = x̃(x) on the base [31,63]).

We start giving a quite general setting for Finsler spacetime theory, which we call
the rough model [4,70,77].

Let Ω be a subbundle of the slit tangent bundle, Ω ⊂ T M\0, such that Ωx is an
open sharp convex cone for every x . A Finsler Lagrangian is a mapL : Ω → R which
is positive homogeneous of degree two in the fiber coordinates

L (x, sy) = s2L (x, y), ∀s > 0.

It is assumed that the fiber dependence is at least C3(Ω), thatL < 0 on Ω and thatL
can be continuously extended setting L = 0 on ∂Ω . We might denote Lx := L |Ωx .
The matrix metric is defined as the Hessian of L with respect to the fibers

gμν(x, y) = ∂2L

∂yμ∂yν
.

This matrix can be used to define a metric in two different, but essentially equivalent
ways. The Finsler metric is typically defined as g = gμν(x, y)dxμdxν and is a map
g : Ω → T ∗M⊗T ∗M . For any given x one could also use this matrix and thementioned
diffeomorphism with the vertical space to define a vertical metric on Ωx as follows
gμν(x, y)dyμdyν . Most often we shall use the latter metric, but should nevertheless
be clear from the context which one is meant. In index free notation the metric will
be also denoted gy to stress the dependence on the fiber coordinates. Given a non-
linear connection one could also interpret these two metrics as two different restrictions,
horizontal or vertical, of the Sasaki metric on Ω

gS = gμν(x, y) dx
μdxν + gμν(x, y) δyμδyν,

where δyμ = dyμ + Nμ
ν (x, y)dxν and N ν

μ are the coefficients of the non-linear connec-
tion.

The manifold (M,L ) is called a Finsler spacetime whenever gy is Lorentzian,
namely of signature (−,+, . . . ,+). By positive homogeneity we have L = 1

2gy(y, y)
and dL = gy(y, ·). The usual Lorentzian-Riemannian case is obtained forL quadratic
in the fiber variables. The vectors belonging toΩx are called timelikewhile those belong-
ing to ∂Ωx\{0} are called lightlike. We shall also denote the former set with I +x and the
latter set with E+

x , often dropping the plus sign. A vector is causal if it is either timelike
or lightlike, the set of causal vectors being denoted J+x . The plus sign is introduced for
better comparison with notations of Lorentzian geometry and general relativity and can
be dropped in most parts of this work.

There are other approaches to Lorentz–Finsler geometry which are contrasted in [70].
For instance, one might start with a Finsler Lagrangian defined on the whole slit tangent
bundle T M\{0}, in which case it is possible to prove, for n ≥ 2 and for reversible
Lagrangians L (x,−y) = L (x, y), that the timelike set {L < 0} is the union of two
convex sharp cones [65] (see also [6,7,75]). A time orientability assumption allows
one to select a future I +x and a past I−

x continuous cone distribution as in Lorentzian
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geometry. The present study applies to this framework as well provided the future cone
is identified with Ω and the Finsler Lagrangian is there restricted. Observe that we do
not demand the differentiability of the Finsler Lagrangian at the boundary E+, nor that
the metric can be continuously extended to it. This condition would make it possible
to replace the Finsler Lagrangian with an extension defined over the whole slit tangent
bundle [70].

The space indicatrix, or observer space, or simply the indicatrix is the set1

I − = {(x, y) ∈ Ω : 2L (x, y) = −1}
Once again there will be no ambiguity in dropping the minus sign.

Due to positive homogeneity the Finsler Lagrangian can be recovered from the indi-
catrix as follows

L (x, y) = −s2/2, where s > 0 and y/s ∈ I −. (2)

The Cartan torsion is defined by

Cαβγ (x, y) := 1

2

∂

∂yγ
gαβ, (3)

it is symmetric and satisfies Cαβγ yγ = 0. Its traceless part will be denoted with Mαβγ .
The Cartan curvature is Cαβγ δ := ∂

∂yδ Cαβγ . For every x the set Ωx endowed with the

vertical metric gμν(x, y)dyμdyν has Levi–Civita connection coefficients Cα
βγ in the

coordinates {yμ}. The mean Cartan torsion is

Iα := gμνCμνα = 1

2

∂

∂yα
log | det gμν |, (4)

where for the last equality we used Jacobi’s formula for the derivative of the determinant.
A well known problem in Finsler geometry is that of providing a natural notion of

manifold volume form. There have been several proposals, the most popular being the
Busemann’s and the Holmes–Thompson’s volume forms [2]. Unfortunately, none of
them can work in a Lorentz–Finsler framework since they rely on the compactness of
the indicatrix.

In pseudo-Riemannian geometry there is a simple volume form associated to any
metric. In a local coordinate system it is given by

dμ =
∣
∣
∣

√| det gμν |dx0 ∧ dx1 ∧ · · · ∧ dxn
∣
∣
∣ = √| det gμν | dn+1x . (5)

where | | reminds us that we are taking the equivalence class, that is, we are regarding
as equivalent any two n+1-forms differing by a sign.

Since in Physics there seems to be the need of a well defined spacetime volume we
find in Eq. (4) a first motivation for imposing the condition Iα = 0. This is the simplest
condition which assures that a natural volume form on spacetime could be defined. In
fact, if it holds truewe can adopt the usual pseudo-Riemannian expression for the volume
form.

1 Whenever the Lagrangian is defined over the whole slit tangent bundle it can be useful to define [70] the
light cone indicatrix I 0 or the spacetime indicatrix I + obtained for L = 0 or 2L = 1. The names follow
from the signature of the induced metrics.
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1.2. Quotient and inducedmetrics. This section introduces the notion of quotientmetric,
and of induced (angular) metric on the indicatrix. It is known material introduced here
just to fix the notation and terminology.

The pair (Ωx , g) is a Lorentzian manifold. Let Qx be the quotient of Ωx under the
action of homotheties. The bundle πQ : Ωx → Qx is principal, the group action on it
being the group of dilations (R,+), where any homothety acts as y 	→ es y, for some
s ∈ R. The one-parameter group of diffeomorphisms is generated by the Liouville vector
field k : : TxM → T TxM

k(y) = y = yμ∂/∂yμ.

The positive homogeneity of the metric gμν(x, sy) = gμν(x, y) implies Lkg = 2g,
where L is the Lie derivative, thus k is a Killing vector for the metric g/|2L (x, y)|. The
principal bundle Ωx can be endowed with a natural connection 1-form

ω := gy(y, ·)
gy(y, y)

. (6)

Indeed, ω satisfies the defining conditions of a connection 1-form on a principal bundle
[46] (recall that Lkk = 0)

Lkω = 0, ω(k) = 1.

Let us define

F = √

2|L |. (7)

The connection 1-form is integrable and the principal bundle is trivial because the con-
nection is exact

ω = d log F.

It is also possible to define a metric on Qx while working with vectors on TΩx �
TxM . This process is quite well known in relativity theory [27] and has been called
indicatorization in the literature on Finsler spaces [61].

Let us consider the metric on Ωx

h = 1

|2L |
(

g − gy(y, ·) ⊗ gy(y, ·)
gy(y, y)

)

, (8)

which in coordinates {yμ} reads

hμν = 1

|2L |
(

L,μ,ν − 1

2L
L,μL,ν

) = − 1

F
F,μ,ν (9)

then

h(y, ·) = 0, hsy = hy, for s > 0,

where the last property can be written Lkh = 0. Thus h depends only on the point of
Qx and annihilates the radial position vector y, so it defines a metric h̃ on the quotient
Qx through

h̃ ỹ(w1, w2) := hy(W1,W2),
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where w1, w2 ∈ TỹQx . Here y ∈ Ωx is any vector such that πQ(y) = ỹ, and W1,W2 ∈
TxM are representatives of w1, w2 ∈ TỹQx in the sense that π

Q∗ (Wi ) = wi , i = 1, 2.
Since h is homogeneous of zero degree and annihilates y, the defining expression is well
posed as it is independent of the choice of representatives (y,W1,W2). Observe that
h = πQ∗h̃ but in what follows we might not be too rigorous in distinguishing between
h and h̃.

Remark 1. The metric (9) is also the induced metric on the indicatrix I − since there
2L = −1, and the vectors tangent to the indicatrix annihilate dL , so over vectors
tangent to the indicatrix hμν = L,μ,ν . In Finsler geometry it is called angular metric
but in Lorentz–Finsler theory the name acceleration metric seems more appropriate.

From (8) the metric g reads

g = |2L |( − ω ⊗ ω + h
)

. (10)

Since g is Lorentzian, h is Riemannian overI −. This decomposition can also be written
in polar form

g = −dF2 + F2h. (11)

1.3. Riemannian Hessian metric on the timelike subbundle. The Lorentz–Finsler struc-
tureL onΩ , induces a Lorentzian metric on each fiberΩx which is in one-to-one corre-
spondence with a Riemannian Hessian structure on Ωx induced by a m-logarithmically
homogeneous potential.

Let us construct this correspondence (compare with recent work in [26,34]). From
the previous section, the metric on Ωx can be written

g = d2L = 1

2L
(dL )2 ⊕ (−2L )h = −dF2 + F2h, L = −1

2
F2.

This Lorentz metric is positive homogeneous of degree two. If we look for a scale
invariant complete Riemannianmetric onΩx it is natural to consider the Hessian (Kähler
affine) metric (m = n + 1)

ĝ = m
[ 1

(2L )2
(dL )2 ⊕ h

]

= m
[

(d log F)2 ⊕ h
] = d2 log V (12)

where

V =
(−2L

m

)−m
2 =

( F√
m

)−m
. (13)

Here the denominator has been chosen so as to get Eq. (15). The function log V is the
Kähler potential [18]. It is (−m)-logarithmically homogeneous, namely

log V (sy) = log V (y) − m log s.

Conversely, let log V be (−m)-logarithmically homogeneous with complete positive
definite Hessian metric on Ωx for every x , then it is possible to define a Lorentz–Finsler
structure on Ω inverting (13).
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Writing g in place of h in (12)

ĝ = m
[ 2

(2L )2
(dL )2 ⊕ 1

−2L
g
]

, (14)

and using the rank one update of the determinant we get

det ĝy = −(det gy)V
2, (15)

thus

Iμ = 1

2

∂

∂yμ
log

(

V−2 det
∂2 log V

∂yα∂yβ

)

. (16)

By positive homogeneity of degree −1 of Iα , this identity is equivalent to

Kαβ = K̂αβ + 2ĝμν. (17)

Here we have introduced the Kähler Ricci tensor of a Kähler affine metric (it is not the
usual Ricci tensor) for both the Lorentzian and Riemannian metrics

Kαβ := − ∂2

∂yα∂yβ
log | det gy | = −2

∂

∂yα
Iβ, (18)

K̂αβ := − ∂2

∂yα∂yβ
log det ĝy . (19)

This definition is inspired by analogous definitions inKähler geometry [18]. The connec-
tionwith complexKähler geometry can bemademore precise introducing a tube domain,
but this approach will not be pursued here. The Hessian metric ĝ is Kähler–Einstein if

K̂αβ = κ̂(x, y)ĝαβ. (20)

Observe that both K̂αβ and ĝαβ are Hessian metrics, thus their vertical derivative is
a symmetric tensor. A simple observation by Knebelman [45], originally conceived
for Finsler metrics but perfectly valid for Hessian metrics, shows that κ̂ is actually
independent of y, thus the previous equation is equivalent to

− log det ĝy = κ̂

2
log V 2 + a + bα y

α,

for some a, bα independent of y. However, (15) shows that log det ĝy and log V 2 are
(−2m)-logarithmically homogeneous, thus bα = 0 and κ̂ = −2, namely det ĝy =
e−a(x)V 2. The comparison of this equation with (15) shows that det gy does not depend
on y. Conversely, if det gy does not depend on y then (20) holds true, just use Eq. (17).

We conclude

Theorem 1. The complete, Riemannian, Hessian metric ĝ on Ωx is Kähler–Einstein if
and only if the mean Cartan torsion vanishes: Iα = 0. In this case k̂ = −2 and

det
∂2 log V

∂yα∂yβ
= αV 2, α = − det gαβ.
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If this equation is satisfied, ĝ is called the Monge–Ampère or the Cheng-Yau metric of
the cone Ωx .

We have a similar result for the Einstein condition, Kαβ = κ(x, y)gαβ , on the
Lorentzian metric (compare [41, Sect. 5]).

Theorem 2. The Lorentzian Hessian metric g on Ωx is Kähler–Einstein if and only if
the mean Cartan torsion vanishes: Iα = 0. In this case κ = 0.

Proof. Once again Knebelman observation implies that κ does not depend on y. Thus
multiplying the Einstein condition by yα and using the positive homogeneity of degree
−1 of Iα , 2Iβ = κ(x)yβ . Applying yγ ∂

∂yγ to both sides gives −2Iβ = κyβ thus
Iα = 0. ��

2. Preliminaries on Affine Spheres and Indicatrices

Let us consider a pair (E, ω)where E is an affine spacemodeled over a n+1-dimensional
vector space V andω is a non-trivial alternatingmultilinear n+1-formover V , sometimes
called determinant (not to be confused with the determinant of an endomorphism). In
short we are considering an affine space with a translational invariant notion of oriented
volume.

Next let f : N → E be a C3 immersion where N is a n-dimensional manifold.
The manifold N is termed hypersurface and f is called hypersurface immersion. Let
ξ : N → T E , p 	→ ξp, be a vector field over f (N ) and transverse to it. We have for
p ∈ N ,

T f (p)E = f∗(TpN ) ⊕ 〈ξp〉.
Furthermore, on E we have a natural derivative D due to its affine structure. Let X,Y
be vector fields on N (so f∗(X) and f∗(Y ) are tangent to f (N )). The next formulas are
obtained splitting the left-hand side by means of the direction determined by ξ

D f∗(X) f∗(Y ) = f∗(∇XY ) + h(X,Y )ξ, (Gauss) (21)

D f∗(X)ξ = − f∗(S(X)) + τ(X)ξ. (Weingarten) (22)

They define a torsion-less connection∇, a symmetric bilinear form h (the affine metric),
an endomorphism S of the tangent bundle T N (the shape operator) and a one-form τ

over N . These objects satisfy some differential equalities (Gauss, Codazzi) which the
reader can find in [74, Theor. 2.1].

Under a change of transverse field

ξ̄ = φξ + f∗(Z) (23)

these objects change as follows [74, Prop. 2.5]

h̄ = 1

φ
h, (24)

∇̄XY = ∇XY − 1

φ
h(X,Y )Z , (25)

τ̄ = τ +
1

φ
h(Z , ·) + d log |φ|, (26)
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S̄ = φS − ∇. Z + τ̄ (·)Z . (27)

Observe that h is definite if f (N ) is the boundary of a convex set. The change of
transverse field redefines h through multiplication by a conformal factor, thus the non-
degeneracy of h including the absolute value of its signature is really a property of N .
In what follows we shall assume that N is non-degenerate. With some abuse of notation
we shall often identify N with f (N ) and p with f (p) in the next formulas. This is not
source of confusion when f is an embedding.

The affine metric induces a n-formωh on N . Let {ei , i = 1, . . . , n} be a basis of TpN
such that (ξ, f∗(e1), . . . , f∗(en)) is ω-positively oriented. Defined hi j = h(ei , e j ) let

ωh := √| det hi j | θ1 ∧ · · · ∧ θn,

where {θ i , i = 1, . . . , n} is the dual basis of {ei }.
Blaschke has shown that it is possible to select a special transverse field on every

non-degenerate hypersurface. The Blaschke or affine normal is determined up to a sign
by the conditions

(i) τ = 0, (equiaffine condition)
(ii) ωh = f ∗(iξω).

If h is definite the sign of ξ is fixed so as to make h positive definite. If h is Lorentzian
up to a sign, it is fixed in such a way that the signature is (−,+, . . . ,+). Given the
Blaschke normal the formulas of Gauss and Weingarten determine a Blaschke metric,
shape operator and torsion-less connection. The scalar H = 1

n trS is called affine mean
curvature. It can be shown that the equiaffine condition is equivalent to∇[ f ∗(iξω)] = 0
(see the next Proposition 1 or [74, Prop. 1.4]).

So far we have given a traditional introduction to affine differential geometry. Actu-
ally, it is interesting to notice that the affine normal can be defined already for the
weaker structure given by (E, |ω|) where |ω| is a volume form rather than a n+1-form.
It is sufficient to replace (ii) with

(ii’) |ωh | = | f ∗(iξω)|, (the affine volume equals the induced volume)

where ω is any local representative of |ω|. In fact (ii) is not able, in any case, to fix the
sign of ξ .

The Pick cubic form is a symmetric tensor on N defined by

c(X,Y, Z) = 1

2
[(∇Xh)(Y, Z) + τ(X)h(Y, Z)], (28)

where X,Y, Z ∈ TpN and where the symmetry follows from the Codazzi equations.
Actually, the usual definition from affine differential geometry does not include the 1/2
factor. We included it for consistency with a related Finslerian definition (cf. Theorem
6). Let c� be the tensor on N defined by h(X, c�(Y, Z)) = c(X,Y, Z), from Eq. (28) it
follows that the Levi–Civita connection of h is given by

∇h
XY = ∇XY + c�(X,Y ) − 1

2
τ(X)Y. (29)

We shall need
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Proposition 1. On N we have

∇Xωh = {tr [Y 	→ c�(X,Y )] − nτ(X)/2} ωh, (30)

∇X f ∗(iξω) = τ(X) f ∗(iξω). (31)

Proof. Let EX be the endomorphism Y 	→ c�(X,Y ) − 1
2τ(X)Y

(∇Xωh)(Y1, . . . ,Yn) = ∂Xωh(Y1, . . . ,Yn) −
∑

i

ωh(. . . ,∇XYi , . . .)

= ∂X {ωh(Y1, . . . ,Yn)} −
∑

i

ωh(. . . ,∇h
XYi , · · · )

+
∑

i

ωh(. . . , EX (Yi ), . . .)

= (∇h
Xωh)(Y1, . . . ,Yn) + (trEX ) ωh(Y1, . . . , Yn).

Concerning the second equation

∇X f ∗(iξω) = f ∗(D f∗(X)iξω) = f ∗(iξ D f∗(X)ω + iD f∗(X)ξω).

Since ω is translational invariant D f∗(X)ω = 0, thus Eq. (31) follows from (22). ��
Observe that the equiaffine condition is preserved redefining ξ → βξ where β �= 0

is a constant while ωh and f ∗(iξω) can be made coincident with a suitable choice of
β provided they differ by a multiplicative constant. Furthermore, in the equiaffine case
they differ by a multiplicative constant iff ∇ωh = 0 iff

(iii) tr [Y 	→ c�(·,Y )] = 0 (apolarity condition)

Thus the transverse field is Blaschke’s up to a constant provided (i) and (iii) hold.
If the lines on E generated by the Blaschke normals to N meet at a point o, N is said

to be a proper affine spherewith center o, while if they are parallel it is an improper affine
sphere [74, Def. 3.3]. If S = H I then H is constant over N and N is an affine sphere,
proper if H �= 0 and improper if H = 0. The converse also holds: if N is an affine
sphere S ∝ I . An affine sphere is called elliptic, parabolic or hyperbolic depending on
the sign of H , respectively positive, zero or negative. For a proper affine sphere if y ∈ N
then ξ(y) = −H(y − o).

Now suppose to have been given a pair (M, |ω|) where M is a n+1-dimensional
manifold and |ω| is a volume form. Then (TxM, |ω||x ) is a pair given by an affine
space (actually a vector space) and a translational invariant volume form. Thus we can
introduce, up to a sign, the affine normal to any non-degenerate immersions Nx in TxM .
However, TxM is not an affine space but a vector space thus there is a point which plays
a special role: the origin. The initial structure (M, |ω|) naturally suggests to consider
distributions x 	→ Nx of proper affine spheres with center the origin of the tangent
spaces TxM .

Remark 2. Let ∇ and h be the connection and affine metric induced by the Blaschke
transverse field (one speaks of Blaschke structure), and let Ric∇ be the Ricci tensor of
the connection ∇ on N . A characterization of the affine sphere condition is given by

Proposition 2. N is an affine sphere if and only if theBlaschke structure satisfies Ric∇ ∝
h, in which case Ric∇ = H(n − 1)h, where H is the affine mean curvature of the affine
sphere.
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We remark that the condition involved in this statement is not the usual Einstein
condition since in general ∇ does not coincide with ∇h .

Proof. For any Blaschke structure [74, Prop. 3.4]

Ric∇(Y, Z) = trS h(Y, Z) − h(S(Y ), Z).

The conclusion is easily reached upon taking the trace. ��
The next result, which will turn out to be useful in the next section, does not seem to

have been previously noticed or stressed in the literature. Let m be the traceless part of
the cubic form c (where the trace is taken with h), namely

m(W, X,Y ) = c(W, X,Y )

− 1

n + 2
{trc(W )h(X,Y ) + trc(Y )h(W, X) + trc(X)h(Y,W )},

we have

Theorem 3. The tensor defined by h(X,m�(Y, Z)) = m(X,Y, Z) does not depend on
the transverse field used to define c and h. It coincides with the (one index raised) Pick
cubic form c�

B for the Blaschke normal.

Proof. Let us consider a change of transverse field parametrized as in (11). Using the
mentioned transformation rules and the corrected (Finslerian) definition of cubic form
we arrive at

c̄(W, X,Y ) = 1

φ
c(W, X,Y )

+
1

2φ2 {h(Z ,W )h(X,Y ) + h(Z ,Y )h(W, X) + h(Z , X)h(Y,W )}

taking the trace

t̄rc̄(W ) = trc(W ) +
n + 2

2φ
h(Z ,W ) (32)

From here we arrive at m̄(W, X,Y ) = 1
φ
m(W, X,Y ), and the first statement follows

from (24). The Pick cubic form for the Blaschke normal is traceless (apolarity condition),
thus m� coincides with c�

B . ��

2.1. Proper affine spheres. Any embedding on a vector space which does not pass
through the origin and which is transverse to the position vector at every point is called
centroaffine [74]. It is instructive to prove the next known result on centroaffine embed-
dings making particular attention to the role of the volume form. The parametrization of
the affine sphere there introduced is due to Gigena [30,58]. We shall see later on that v
will be interpreted as observed velocity, while u(v) will be the observer Lagrangian of
our theory.
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Theorem 4. Let {eα} be a basis of (V, |ω|), let ρ = |ω|(e0, . . . , en) > 0, and let yα

be the induced coordinates on the vector space V . Let v be inhomogeneous projective
coordinates on {y ∈ V : y0 > 0} so that

y = (y0, y) = −1

u
(1, v). (33)

Let N be a centroaffine hypersurface with respect to the position vector with origin
p ∈ E, then identifying V with E − p, let

f : v → − 1

u(v)
(1, v), (34)

be its local hypersurface immersion. Let c �= 0, then relative to the transverse vector
field ξ := −cy the affine metric is

h = hi j dvi dv j = ui j
cu

dvi dv j , (35)

the connection coefficients are (∇)ki j = − 1
u (uiδkj +u jδ

k
i ), the shape operator is S = cI ,

and τ = 0. The transverse field ξ is the Blaschke normal and hence N is a proper affine
sphere with affine mean curvature H = c and center p if and only if

det ui j = ερ2
(H

u

)n+2
. (36)

where ε is the sign of the determinant of hi j , i.e. the parity of the negative signature of
h (thus ε = 1 if h is positive definite and ε = −1 if Lorentzian). In particular, in the
positive definite case

hi j =
( ρ2

det ui j

) 1
n+2 1

u2
ui j . (37)

Remark 3. If E = TxM and p is not the origin of E then {yα} are not canonical coordi-
nates on the tangent bundle at x .

Proof. Let us observe that (here ẽ j is the canonical basis of Rn)

f∗(ẽ j ) = D f∗(ẽ j )y = ∂ j {− 1

u(v)
(1, v)} = −u j

u
y − 1

u
e j , (38)

where ∂ j is a shorthand for ∂/∂v j . Thus

D f∗(ẽi ) f∗(ẽ j ) = D f∗(ẽi )D f∗(ẽ j )y

= ∂i∂ j {− 1

u(v)
(1, v)}

= ui j
u

(−y) +
u j

u2
ei +

ui
u2

e j + 2
uiu j

u2
y

= −ui
u

f∗(ẽ j ) − u j

u
f∗(ẽi ) +

ui j
cu

(−cy).

The first two terms are tangent to N , thus the last one gives the affine metric. From this
same expression it is easy to read the connection coefficients. The statements concerning
S and τ are trivial since D f∗(X)y = f∗(X).
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Now using Eq. (38) and ξ = −cy we observe that

| f ∗iξω|(ẽ1, . . . , ẽn) = |ω|(ξ, f∗(ẽ1), . . . , f∗(ẽn))

= |(−1

u
)nω(ξ, e1, . . . , en)|

= |(−1

u
)n(−c) ω(y0e0, e1, . . . , en)|

= |(−1

u
)n+1(−c) ω(e0, e1, . . . , en)|

= ρ|(−1

u
)n+1(−c)|,

while

|ωh |(ẽ1, . . . , ẽn) = √| det hi j | = √

ε det hi j ,

The vector ξ is the Blaschke normal and hence N is an affine sphere with affine mean
curvature H = c if and only if |ωh | = | f ∗iξω| which reads det ui j = ερ2( cu )n+2. ��
Remark 4. Let us consider an affine sphere on E with center p. Observe that the rescaled
affine sphere f → f ′ = λ( f − p) + p, λ > 0 is determined by the function u′ = u/λ

and from Eq. (36) it follows that it is still an affine sphere with affine mean curvature

H ′ = λ− 2n+2
n+2 H .

Without loss of generality we can study just affine spheres for which H = −1, 0, 1
since the others are obtained through rescaling. In the proper case the transverse vector
becomes either the position vector with origin p or its opposite.

Remark 5. Suppose that N ⊂ E is an affine sphere with mean curvature H for (E, |ω|)
and suppose to change the volume form to |ω̌| = α|ω|, α > 0. With the notation of
Theorem (4), ρ̌ = αρ. Equation (36) clarifies that N is still an affine sphere with mean
curvature Ȟ where

ρ̌2 Ȟn+2 = ρ2Hn+2. (39)

Thus the concept of elliptic or hyperbolic affine sphere makes sense irrespective of the
volume form and hence is well defined just on an affine space, while it is necessary to
specify a volume form to talk about affine mean curvature H of the affine sphere. In the
proper case one can choose ρ so as to get |H | = 1.

The next result is the crucial step which relates the affine sphere distributions with
measures over M .

Corollary 1. Given a proper affine sphere N ⊂ E there is a unique translational invari-
ant volume form on E such that |H | = 1.

Similarly, given a manifold M, and a point dependent distribution of proper affine
spheres x 	→ Nx ⊂ TxM (not necessarily centered at the origin of TxM), there is a
unique volume form on M for which the affine spheres satisfy |H | = 1.

Of course the regularity of the dependence of Nx on x will be related to that of the
volume form on x .

The metric (37) was first obtained by Loewner and Nirenberg [57] while searching
for projective invariant metrics on convex sets. Let p be the origin of TxM . Let {eα}
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be any basis of TxM and let eα̃ = Aβ

α̃
eβ be another basis then the coordinates (ũ, v ĩ )

are related to (u, vi ) as follows (here Aβ

α̃
Aα̃

γ = δ
β
γ , namely we are using a convention

common inmathematical relativity in which the distinction between coordinates inmade
at the level of indices)

−1

ũ
= A0̃

j

(

− v j

u

)

+ A0̃
0

(

− 1

u

)

,

−v ĩ

ũ
= Aĩ

j

(

− v j

u

)

+ Aĩ
0

(

− 1

u

)

,

which can be rewritten including also the transformation of the density under coordinate
changes

ũ = u
[

A0̃
j (x)v

j + A0̃
0(x)

]−1
, (40)

v ĩ = [

Aĩ
j (x)v

j + Aĩ
0(x)

] [

A0̃
j (x)v

j + A0̃
0(x)

]−1
, (41)

ρ̃ = ρ
(

det Aα̃
β(x)

)−1
. (42)

In this expression we have made explicit the dependence of the matrix A on the point
x ∈ M . If both frames are holonomic then Aα̃

β = ∂x α̃/∂xβ .
Since the metric (35) with hi j given by (37) and the Monge–Ampère equation (36)

hold irrespective of the starting basis {eα} chosen, these objects are invariant under the
projective changes (40)–(42).

2.2. Improper affine spheres. In this section we introduce convenient coordinates for
improper affine spheres [58]. They are chosen so as to simplify the Monge–Ampère
equation which describes these hypersurfaces. Let us notice that a (connected) hyper-
surface N ⊂ E which is transverse to a direction e0 ∈ V is a graph over a hyperplane
transverse to e0. We have

Theorem 5. Let {eα} be a basis of (V, |ω|), let ρ = |ω|(e0, . . . , en) > 0, let yα be
the induced coordinates on the vector space V and let us denote v = y. Let N be a
hypersurface which is a graph f : v → (−u(v), v) over the hyperplane y0 = 0. Let
c �= 0, then relative to the transverse vector field ξ := −c(1, 0) the affine metric is

h = hi j dvi dv j = 1

c
ui j dvi dv j , (43)

the connection coefficients are (∇)ki j = 0 and S = 0, τ = 0. The transverse field ξ is
the Blaschke normal and hence N is an improper affine sphere if and only if

det ui j = ερ2cn+2, (44)

where ε is the sign of the determinant of hi j (the parity of the negative signature of h).

Proof. Let us observe that (here ẽ j is the canonical basis of Rn)

f∗(ẽ j ) = D f∗(ẽ j )y = ∂ j (−u(v), v) = −u j e0 + e j , (45)
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where ∂ j is a shorthand for ∂/∂v j . Thus

D f∗(ẽi ) f∗(ẽ j ) = D f∗(ẽi )D f∗(ẽ j )y = ∂i∂ j (−u, v) = −ui j e0 = 1

c
ui j ξ.

There is no term tangent to N thus the connection coefficients vanish. The statements
concerning S and τ are trivial since D f∗(X)e0 = 0.

Now using Eq. (45) and ξ = −ce0 we observe that

| f ∗iξω|(ẽ1, . . . , ẽn) = |ω|(ξ, f∗(ẽ1), . . . , f∗(ẽn)) = |cω(e0, e1, . . . , en)| = |cρ|,
while

|ωh |(ẽ1, . . . , ẽn) = √| det hi j | = √

ε det hi j ,

The vector ξ is the Blaschke normal and hence N is an improper affine sphere if and
only if |ωh | = | f ∗iξω| which reads det ui j = ερ2cn+2. ��

2.3. Centroaffine embeddings and Finsler indicatrices. In this section we obtain some
results on the relationship between the Finsler metric at a given point x ∈ M and the
affine metric of the indicatrix.

Preliminarly, let us observe that the indicatrix is a centroaffine hypersurface with
respect to the origin of TxM because it is transverse to the position vector y. Indeed, by
positive homogeneity

dL (y) = ∂L

∂yα
yα = 2L = −1.

For the first statement of the next theorem see also [6,50], for the second statement
see also [73, Prop. 4.1].

Theorem 6. The vertical Finsler metric induces on the indicatrixI − a metric h which
coincides with the affine metric for the transverse field ξ = y. Thus, on Ωx Eqs. (9) and
(11) hold

g = −dF2 + F2h, h = −F−1d2F, F = √

2|L |. (46)

The Pick cubic form for the transverse field ξ is the restriction to the indicatrix of
the Cartan torsion, that is c = f ∗C. The Pick cubic form for the Blaschke transverse
field is the restriction to the indicatrix of the traceless part of the Cartan torsion: c�

B =
m� = ( f ∗M)�.

The indicatrix I −
x is an affine sphere with center at the origin of TxM iff the mean

Cartan torsion vanishes on it (and hence on Ωx ). In this case with respect to the trans-
lational invariant volume form |ω| = √| det gαβ | dn+1y (i.e. ρ = √| det gαβ |) the affine
mean curvature of the indicatrix is such that H = −1, thus in projective coordinates

det ui j = | det gαβ |
(

− 1

u

)n+2
. (47)

Observe that a zeromeanCartan torsion not onlymakes the indicatrix an affine sphere
but also, by Eq. (4) makes |ω| translational invariant and hence makes it possible to ask
for the affine mean curvature of the affine sphere with respect to this volume form. Also
notice that c and C provide the same information since C(y, ·, ·) = 0.
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Remark 6. Suppose that the Finsler Lagrangian is defined over the whole slit tangent
bundle. Then a completely analogous theorem could be given for the spacetime indicatrix
I + where, however, ξ = −y, g = dF2 + F2h, h = F−1d2F , the affine metric would
be Lorentzian and the affine mean curvature would be H = 1.

Proof. Let us contract dL with the Gauss equation DXY = ∇XY + h(X,Y )ξ where
X,Y ∈ TI −

x (here with some abuse of notation we identify X with f∗(X) where f is
the embedding of the indicatrix) and use positive homogeneity

dL (DXY ) = ∂L

∂yα

(

Xβ ∂Y α

∂yβ

)

= Xβ ∂

∂yβ

(
∂L

∂yα
Y α

)

− XβY α ∂2L

∂yα∂yβ
= −gy(X,Y ),

thus

−gy(X,Y ) = dL (DXY ) = h(X,Y )dL (y)

= 2L (x, y)h(X,Y )

= −h(X,Y ).

This calculation proves the first statement. By positive homogeneity the indicatrix is
g-orthogonal to ξ indeed if X ∈ TI −

x , g(X, ξ) = dL (X) = 0. The Eqs. (9) and
(11) follow from the just established equality between the affine metric and the induced
metric (hence the same symbol h).

Recalling that the induced metric is the affine metric we have for every X,Y, Z ∈
TI −

x

∇Zh(X,Y ) = ∇Z [h(X,Y )] − h(∇Z X,Y ) − h(X,∇ZY )

= DZ [g(X,Y )] − g(∇Z X,Y ) − g(X,∇ZY )

= DZ [g(X,Y )] − g(DZ X − h(X, Z)ξ, Y )

− g(X, DZY − h(X, Z)ξ)

= DZ [g(X,Y )] − g(DZ X,Y ) − h(X, DZY )

= (DZg)(X,Y )

Since the immersion is centroaffine, τ = 0, thus we have the equality between Pick
cubic form and pullbacked Cartan torsion [observe that the 1/2 factor must be present
in Eq. (28) since it is included in Eq. (3)].

Let y ∈ I −
x and let {Xi , i = 1, . . . , n} be a h-orthogonal basis at TyI −

x , then since
gy(y, y) = 2L (x, y) = −1, gy(y, Xi ) = 0,

tr [Y 	→ c�(Z ,Y )] =
∑

i

c(Z , Xi , Xi )

= (gy(y, y))
−1C(Z , y, y) +

∑

i

C(Z , Xi , Xi )

= f ∗(trgC)(Z) = I ( f∗(Z)),

where I is the mean Cartan torsion. From here the traceless part of the Pick cubic form,
namely the Pick cubic form for the Blaschke normal c.f. Theorem 3, is easily inferred
to be the pullback of the traceless part of the Cartan torsion.

If the mean Cartan torsion vanishes then the apolarity condition holds thus the trans-
verse field y is Blaschke’s up to a constant. But these normals generate lines which meet
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at the origin of TxM thusI − is an affine sphere. Conversely, ifI − is an affine sphere
with center the origin of TxM then ξ = −Hy, sgn(H) = −1, where the value of H
depends on the choice of volume form (Remark 5). Since y coincides with the Blaschke
normal up to a constant, the apolarity condition holds. As for every Z , I ( f∗(Z)) = 0
and I (y) = 0 we have I = 0.

Now, suppose that the volume form is
√| det gαβ | dn+1y. Let {χ i , i = 1, . . . , n} be

a coordinate system on I − and let χ0 = L . These definitions determine a coordinate
system χα′

on the cone generated by I − in such a way that the lines χ i = cnst pass
through the origin. The position vector on the indicatrix reads y = −∂/∂χ0 and Eq.
(46) reads

gα′β ′dχα′
dχβ ′ = 1

2χ0 (dχ0)2 − 2χ0hi j dχ i dχ j . (48)

Thus ω = √| det gα′β ′ | dχ0 ∧ dχ1 ∧ · · · ∧ dχn , and since {ξ, ∂/∂χ1, . . . , ∂/∂χn} has
the ω-orientation given by sgn(H) = −1, we have

ωh = −√| det hi j | dχ1 ∧ · · · ∧ dχn,

and finally

iξω = i−Hyω = H
√

| det gα′β ′ | dχ1 ∧ · · · ∧ dχn = −H |2χ0| n−1
2 ωh .

Since on the indicatrix |2χ0| = 1 we conclude that H = −1. ��
Remark 7. Obviously Theorem 6 admits a reformulation for positive definite g, it is
sufficient to take the transverse field ξ = −y.

We have established that the condition Iα = 0 characterizes those (Lorentz-)Finsler
spaces for which the indicatrix is an affine sphere centered at the origin. One might
ask what is the Finslerian characterization of an indicatrix which is an affine sphere
arbitrarily centered. This question is answered by the next theorem

Theorem 7. Let {yα} be canonical tangent coordinates on TxM, where (M,L ) is a
Lorentz–Finsler space and Ω̄ is the cone domain of L . The indicatrix is an affine
sphere (necessarily hyperbolic) centered at p ∈ TxM, if and only if the mean Cartan
torsion has the form

Iα = n + 2

2

√

−gy(y, y)

(

1 +
gy(y, p)

√−gy(y, y)

)−1

hαβ p
β

= n + 2

2

∂

∂yα
log

(

1 − ∂F

∂yβ
pβ

)

, with F =
√

−gy(y, y) (49)

with pβ independent of y. Let C ⊂ E be the cone generated by the convex hull of the
affine sphere with its center p. The vector p belongs to C̄ − p and the domain of the
Finsler Lagrangian is Ω̄ = C̄ − p. Finally, let μ be the translational invariant volume
form which assigns to the indicatrix the affine mean curvature H = −1, then

√| det gαβ | dn+1y =
(

1 − ∂F

∂yβ
pβ

)n+2
2

μ,

thus the y dependence is all on the first factor.
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Observe that p becomes a causal vector field over M if the dependence on x is
considered. It can be called the center vector field. If timelike it selects a privileged
observer on spacetime.

For Finsler spaces this result changes as follows.

Theorem 8. Let {yα} be canonical tangent coordinates on TxM, where (M,L ) is a
Finsler space and where L has domain TxM\0. The indicatrix is an affine sphere
(necessarily elliptic hence an ellipsoid) centered at p ∈ TxM, if and only if the mean
Cartan torsion has the form

Iα = −n + 2

2

√

gy(y, y)

(

1 − gy(y, p)
√

gy(y, y)

)−1

hαβ p
β

= n + 2

2

∂

∂yα
log

(

1 − ∂F

∂yβ
pβ

)

, with F =
√

gy(y, y) (50)

with pβ independent of y. Let C ⊂ E be the ellipsoid generated by the convex hull of
the affine sphere with its center p. The vector p belongs to C̄ − p. Finally, let μ be
the translational invariant volume form which assigns to the indicatrix the affine mean
curvature H = 1, then

√

det gαβ dn+1y =
(

1 − ∂F

∂yβ
pβ

)n+2
2

μ,

thus the y dependence is all on the first factor.

Observe that p becomes a vector field overM if the dependence on x is considered. In
Eq. (49) we used Eq. (9), while in Eq. (50) we used the analogous equation h = F−1d2F
which is valid for Finsler spaces (cf. Remark 7).

Remark 8. For Finsler spaces the indicatrix can be an affine sphere (elliptic, parabolic
or hyperbolic) in other ways if the domain of L is a half space minus an open cone.
This happens when the affine sphere passes through the origin of TxM . The parabolic
case will be considered in Sect. 3.5. The elliptic case gives the Kropina Finsler spaces
while the hyperbolic case gives yet another Finsler Lagrangian.

Proof. We shall denote with y a point in the indicatrix and we shall give the proof in the
Lorentz–Finsler case, the Finsler case being obtained analogously for transverse fields
ξ = −y, ξ̄ = −(y − p).

Necessity. We make the change of transverse field from ξ = y to ξ̄ = y − p, and we
parametrize it as in (11)

ξ̄ = φξ + f∗(Z)

Both transverse fields are centroaffine thus the equiaffine condition holds τ = τ̄ = 0.
By assumption the indicatrix is an affine sphere with center p, so ξ̄ is, up to a constant,
the affine normal, hence the apolarity condition holds: t̄rc̄ = 0. From Eq. (32) we have

0 = tr c(W ) +
n + 2

2φ
h(Z ,W )
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which implies, denoting again with h the restriction of the metric g to the indicatrix, and
using (11)

0 = trC( f∗(W )) +
n + 2

2φ
h( f∗(Z), f∗(W ))

= trC( f∗(W )) +
n + 2

2φ
h(ξ̄ − φξ, f∗(W ))

= trC( f∗(W )) − n + 2

2φ
h(p, f∗(W )),

which, given the arbitrariness of W , proves the equation Iα = n+2
2 φ−1hαβ pβ with φ

to be determined. Now observe that f∗(Z) = ξ̄ − φξ = y − p − φy is tangent to
the indicatrix at y, thus gy( f∗(Z), y) = 0, which implies by positive homogeneity

φ = 1√−gy(y,y)

(

1 + gy(y,p)√−gy(y,y)

)

[recall that on the indicatrix gy(y, y) = −1 and hαβ is

positive homogeneous of degree −2 cf. Eq. (9)].

Sufficiency. Define φ = 1√−gy(y,y)

(

1 + gy(y,p)√−gy(y,y)

)

, ξ̄ = y − p, so that the equation

reads Iα = n+2
2 φ−1hαβ pβ , next observe that for y on the indicatrix the definition of φ

can be recasted in the form g(ξ̄ − φξ, y) = 0 which allows us to define a vector field Z
over the indicatrix so that f∗(Z) = ξ̄ − φξ . For every W we have 0 = trC( f∗(W )) −
n+2
2φ h(p, f∗(W )) and we can repeat the previous steps backwards till 0 = trc(W ) +
n+2
2φ h(Z ,W ) which shows by Eq. (11) that t̄rc̄ = 0, namely the transvese field ξ̄ is
centroaffine and satisfies the apolarity condition, thus the indicatrix is an affine sphere
centered at p.

Suppose that the vector p belongs to C̄ − p, then the domain of the Lagrangian is
Ω̄ = C̄ − p. For every y ∈ Ω , we have gy(y,p)√−gy(y,y)

= gŷ(ŷ, p) with ŷ belonging to the

indicatrix, moreover, the locus {w : gŷ(ŷ, w) > −1} is the half space which includes
the origin and is bounded by the hyperplane tangent to the indicatrix at ŷ. For every ŷ

this region includes the origin p of the affine sphere thus 1 + gy(y,p)√−gy(y,y)
> 0 and the

parenthesis in Eq. (49) is well defined for every y ∈ Ω .
If p /∈ C̄ − p then it is easy to see that there is a half line starting from 0 and tangent

to the affine sphere, which means that the affine sphere cannot be used in its entirety to
define a Finsler indicatrix. Furthermore, observe that if 0 stays on the indicatrix or on
the opposite side of the indicatrix compared to p then the space would be Finsler rather
than Lorentz–Finsler.

The statement on the volume forms is proved as follows. Let {χ i } be coordinates
on the indicatrix. We extend them in two different ways. First we impose that the sets
χ i = cnst are half lines passing through the origin of TxM , and add to the set the
coordinate χ0 = L so as to coordinatize Ω . The Finsler metric reads (cf. Eq. (48))

gα′β ′dχα′
dχβ ′ = 1

2χ0 (dχ0)2 − 2χ0hi j dχ i dχ j . (51)

Let ξ = − ∂
∂χ0 = y be the Finslerian centroaffine transverse field. We have

f ∗(iξ
√| det g| dχ0 ∧ dχ1 ∧ · · · dχn) = −√

det hi j dχ
1 ∧ · · · dχn . (52)
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Let us consider the similar equations that are obtained if the origin of TxM is moved
on p. The coordinates {χ i } are extended to coordinates χ ī in such a way that their level
sets are half lines originating from p. Adding as a further coordinate χ 0̄ := L̄ gives a
coordinatization of C . The barred Finsler metric reads

ḡᾱβ̄dχᾱdχβ̄ = 1

2χ 0̄
(dχ 0̄)2 − 2χ 0̄h̄ī j̄ dχ ī dχ j̄ . (53)

The affine normal is ξ̄ := − ∂

∂χ 0̄
= y − p thus at every point of the indicatrix we can

find a tangent vector Z such that ξ̄ = φξ + f∗(Z). We know from Theorem 6 that the
n + 1 form induced by ḡ is such that

f ∗(iξ̄
√

| det ḡᾱβ̄ |dχ 0̄ ∧ dχ 1̄ ∧ · · · ∧ dχ n̄) = ωh̄ = −
√

det h̄ī j̄dχ
1̄ ∧ · · · ∧ dχ n̄ .

However, on the indicatrix the coordinate χ i and χ ī coincide and moreover h̄ = h/φ,
cf. Eq. (24), thus

f ∗(φiξ
√

| det ḡᾱβ̄ |dχ 0̄ ∧ dχ 1̄ ∧ · · · ∧ dχ n̄) = ωh̄ = −φ−n/2
√

det hi jdχ
1 ∧ · · · ∧ dχn .

Let ϕ be the (y-dependent but necessarily positive homogeneous of degree zero) factor
such that in the canonical coordinates of the tangent bundle

√| det g| = ϕ
√| det ḡ| or

equivalently

√| det gαβ |dχ0 ∧ dχ1 ∧ · · · ∧ dχn = ϕ
√

| det ḡᾱβ̄ |dχ 0̄ ∧ dχ 1̄ ∧ · · · ∧ dχ n̄

then

f ∗( 1
ϕ

φ
n+2
2 ) f ∗(iξ

√| det gαβ |dχ0 ∧ dχ1 ∧ · · · ∧ dχn) = −√

det hi jdχ
1 ∧ · · · ∧ dχn,

which using Eq. (52) proves the claim. ��
Corollary 2. A Lorentz–Finsler space has an affine sphere indicatrix at TxM if and only
if the Finsler Lagrangian L : Ω → R satisfies the vertical Monge–Ampère equation

− det d2L = ρ2
(

1 +
1√−2L

∂pL

)n+2

(54)

where ρ dn+1y is the translational invariant measure which assigns to the indicatrix the
affine mean curvature H = −1 and where p ∈ Ω̄ is the center of the sphere.

A similar but less interesting version holds for Finsler spaces. In Eq. (54) the minus
signs have to be changed to plus signs, and the plus signs have to be changed to minus
signs.
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2.4. Obtaining Finslerian results from affine differential geometry. As mentioned pre-
viously, Theorem 6 admits a reformulation for positive definite g. Since the affine metric
and the Pick cubic form are the pullbacks of the Finsler metric and the Cartan torsion
respectively, it is possible to obtain several results in (Lorentz-)Finsler geometry from
results of affine differential geometry, and conversely.

For instance, the Maschke–Pick–Berwald theorem [74, Theor. 4.5] states that if the
Pick cubic form cB of the Blaschke structure vanishes, then the hypersurface (indicatrix)
lies in a hyperquadric. From Theorem 3 this means that if the traceless part of the Pick
cubic form c vanishes (independently of the transverse field used) then the indicatrix lies
in a hyperquadric (see also [82, p.43, Lemma 3.2], [74, Theor. 6.4]). Using Theorem 3
this result can be translated to (Lorentz-)Finsler geometry as

Theorem 9. Let M be a (Lorentz-)Finsler space of dimension n + 1 ≥ 3. If the traceless
part of the Cartan torsion, namely

Mαβγ := Cαβγ − 1

n + 2
(hαβ Iγ + hγα Iβ + hβγ Iα)

vanishes, then the indicatrix lies in a hyperquadric.

In the positive definite case it is necessarily an ellipsoid which need not be centered at
the origin of TxM , thus we have a Randers space if the origin of the tangent space lies
in the interior of the ellipsoid and a Kropina space if it lies on the boundary. In Finsler
geometry this result was stated by Matsumoto [60,62] but, as we have shown, it can
conveniently regarded as the translation of a classical theorem from affine differential
geometry. This observation can also be found in [73].

2.4.1. (Lorentz-)Randers and (Lorentz-)Kropina spaces. Observe that Theorem 9
applied to a metric g of Lorentzian signature gives that the indicatrix lies in a hyper-
boloid whose center is not necessarily the origin of TxM . Let C be the cone determined
by the hyperboloid and its center p. We have shown above that the indicatrix is the whole
hyperboloid only if p of is causal and future directed, namely p ∈ C̄ − p = Ω . This
type of causally translated hyperboloids define the indicatrix for the Lorentzian analogs
to the Randers and Kropina spaces.

The indicatrix is the locus {y : η(y − p, y − p) = −1, η(y, p) ≤ 0} where η is
a quadratic form of Lorentzian signature on TxM and p is causal, η(p, p) ≤ 0. The
domain of the Lagrangian is then Ω = {y : η(y, y) < 0, η(y, p) ≤ 0}.

Using Eq. (2) for 1+η(p, p) �= 0 we arrive at the generalized Lorentz–Randers space

F = η(p, y) +
√

η(p, y)2 − (1 + η(p, p))η(y, y)

1 + η(p, p)
, gener. Lorentz–Randers space

(55)

and for 1 + η(p, p) = 0 at

F = η(y, y)

2η(p, y)
, Lorentz–Kropina space.

Concerning the generalizedLorentz-Randers case, the argument of the square root is pos-
itive by the Lorentzian reverse Cauchy–Schwarz inequality η(p, y)2−η(p, p)η(y, y) >

0, while F is indeed positive independently of the sign of 1+η(p, p). In both generalized
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Randers and Kropina’s cases, the expression of F for Finsler spaces is analogous, it is
sufficient to replace η by −e, the minus Euclidean quadratic form.

It is interesting to observe that in the generalized Lorentz–Randers case the argument
in the square root of (55) is a minus Lorentzian quadratic form iff 1 + η(p, p) > 0, in
which case we define the Lorentzian quadratic form

η̄(y, y) = − 1

(1 + η(p, p))2
(

η(p, y)2 − (1 + η(p, p))η(y, y)
)

. (56)

We call the spaces in which 1 + η(p, p) > 0 Lorentz–Randers.
Similarly, for Randers spaces the argument e(p, y)2 + (1 − e(p, p))e(y, y) of the

square root to the equation analogous to (55) is a positive definite quadratic form (the
generalized Randers case can only be Randers since it is assumed 1 − e(p, p) > 0, for
otherwise the ellipsoid cannot be interpreted as indicatrix since the origin of TxM would
stay outside it) and we define

ē(y, y) = 1

(1 − e(p, p))2
(

e(p, y)2 + (1 − e(p, p))e(y, y)
)

(57)

In the Lorentz–Randers (Randers) case let us set p̄ = p(1 + η(p, p)) (resp. p̄ = p(1−
e(p, p))). Observe that η̄( p̄, p̄) = η(p, p) and η̄( p̄, y) = η(p, y)/(1 + η(p, p)) (resp.
ē( p̄, p̄) = e(p, p), ē( p̄, y) = e(p, y)/(1 − e(p, p))). The Lorentz–Randers (Randers)
case can be recognized as the function F reads

F = η̄( p̄, y) +
√−η̄(y, y)

(

resp. F = −ē( p̄, y) +
√

ē(y, y)
)

(58)

where −1 < η̄( p̄, p̄) ≤ 0 (resp. ē( p̄, p̄) < 1). Traditionally the Lorentz–Randers
spaces are those given by the previous expression [5,79,85]. However, the inequalities
constraining p̄ were not recognized and often the Lagrangian cone domain Ω had been
incorrectly identified with (half) the locus η̄(y, y) < 0 rather than with the smaller set
F > 0 obtainable as η(y, y) < 0, η(y, p) ≤ 0, where

η(y, y) = (

1 + η̄( p̄, p̄)
)(

η̄(y, y) + η̄( p̄, y)2
)

.

It is commonplace to regard particle Lagrangians of electromagnetic type as a mani-
festation of Finsler geometry. Our analysis shows that since the electromagnetic field
does not satisfy any causality condition, it is inappropriate to mention (Lorentz-)Finsler
geometry, for the indicatrix F = 1 is not a complete hyperquadric.

2.4.2. Relationship between connections. Let ∇ be the connection introduced in Eq.
(21) and let ∇h be the Levi–Civita connection of the affine metric h for the centroaffine
transverse field. In order to translate some results from affine differential geometry it
is necessary to establish how the connections ∇ and ∇h should be expressed in the
language of Finsler geometry. In fact we can pass from tensors living on the indicatrix
to tensors living on TxM by using positive homogeneity, and conversely we can restrict
Finslerian tensors to the indicatrix provided they annihilate the position vector y.

We have

Theorem 10. The connection∇ is just the usual derivative D (obtained throughordinary
differentiation ∂/∂yα on TxM) followed by the projection Pα

β = δα
β − yβ yα/gy(y, y)

on the tangent space to the indicatrix, namely ∇ = P ◦ D, while ∇h is just the vertical
Cartan covariant derivative ∇VC followed by the same projection, ∇h = P ◦ ∇VC .
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It is understood that the projection will act on every index of the derivative. We recall
here that the Cartan vertical derivative has connection coefficients Cγ

αβ in the canonical
coordinates of TxM .

Proof. The first statement follows from theGauss formula (21). For the second statement
observe that ∇VC

γ yα = δα
γ and ∇VC

γ yβ = ∇VC
γ (gβα yα) = gβγ , ∇VC

γ (2L ) = 2yγ , as a

consequence the vertical derivative of h vanishes once projected, Pα
α′ P

β

β ′ P
γ

γ ′∇VC
γ hαβ =

0. Thus P ◦ ∇VC provides a symmetric connection compatible with the affine metric,
hence it is the Levi–Civita connection of h, namely ∇h . ��

Let hb and cb be the affine metric and Pick cubic form for the Blaschke normal. In
[21,35,36] it is proved that a hyperbolic affine sphere satisfies ∇hbcb = 0 if and only if
it is homogeneous (hence asymptotic to a symmetric cone). If the indicatrix is an affine
sphere centered at the origin (i.e. Iα = 0) the Blaschke structure coincides with the
centroaffine structure (Theorem 6), thus ∇hbcb = f ∗P ◦ ∇VCC where P ◦ ∇VCC is

Pμ′
μ Pα′

α Pβ ′
β Pγ ′

γ ∇VC
μ′ Cα′β ′γ ′ = Cαβγμ − CσβγC

σ
αμ − CασγC

σ
βμ − CαβσC

σ
γμ

+
1

gy(y, y)
(Cαβγ yμ + Cμβγ yα + Cαμγ yβ + Cαβμyγ )

As a consequence, we have the Finslerian result

Theorem 11. Let the Lorentz–Finsler space have hyperbolic affine sphere indicatrices
centered in the zero section. The indicatrix is homogeneous if and only if the previous
tensor in display vanishes. Under homogeneity the Lorentz–Finsler space is Berwald if
and only if it is Landsberg.

Proof. We need only to prove the last statement. Under the Landsberg assumption 0 =
Lαβγ = yμ∇H

μ Cαβγ thus by [63, Eq. (58)] Gαβγ δ = −yμ∇H
μ Cαβγ δ = −yμ∇H

μ (P ◦
∇VCC)αβγ δ . Under homogeneity the last tensor vanishes hence the thesis. ��

3. Applications to Anisotropic Relativity

In this section we apply some deep mathematical results on affine sphere theory to
spacetime physics.

3.1. Classification of affine spheres and cone structures. Anon-degenerate hypersurface
on affine space having positive definite affine metric is said to be affine complete if it
is complete with respect to the affine metric. A non-degenerate hypersurface on affine
space isEuclidean complete if it is completewith respect to the Euclideanmetric induced
by the coordinates placed on the affine space. Clearly, the latter notion is independent
of the chosen Cartesian coordinate system.

These two notions of completeness are independent but Trudinger and Wang proved
that for strictly convex smooth affine hypersurfaces and n ≥ 2 affine completeness
implies Euclidean completeness [91, Theor. 5.1].

Observe that the notion of affine completeness makes sense only for definite hyper-
surfaces. The classification of definite affine spheres has been completed thanks to the
work of several mathematicians. We refer the reader to the reviews by Trudinger and
Wang [92] and Loftin [58] for more details on the theory of affine spheres.

A result due to Blaschke [9] (n = 3) and Deicke [12,20] (any n) further extended by
Calabi [14], and Cheng and Yau [19] reads



774 E. Minguzzi

Theorem 12. Any definite elliptic affine sphere is an ellipsoid provided it satisfies any
among the following conditions: (a) compactness, (b) affine completeness, (c)Euclidean
completeness.

The classification of definite parabolic affine spheres is due to Jörgens [44], Pogorelov
[78], Calabi [13], Cheng and Yau [19]

Theorem 13. Any definite parabolic affine sphere is an elliptic paraboloid provided
it satisfies any among the following conditions: (a) it is a properly embedded convex
hypersurface, (b) affine completeness.

Finally, the classification of definite hyperbolic affine spheres was conjectured by
Calabi [14] and proved by Cheng and Yau [17,19] (see also Calabi and Nirenberg,
unpublished [19]). This proof was improved and clarified by Gigena [30], Sasaki [81]
and Li [51].

Theorem 14. For a definite hyperbolic affine sphere the following properties are equiv-
alent: (a) Euclidean completeness, (b) affine completeness, (c) properly embedded.2

Any such affine sphere N is asymptotic to the boundary ∂C of an open convex sharp
cone C given by the convex hull of N with its center. Conversely, any sharp open convex
cone C contains, up to rescalings, a unique properly embedded affine sphere N which
is asymptotic to ∂C.

This result is extremely important because it shows that (definite) hyperbolic affine
spheres and sharp convex cones are essentially the same object. It is based on Theorem
4 and on the next result by Cheng and Yau [17, Theor. 6]

Theorem 15. (Cheng and Yau). Let ρ > 0 and suppose that D is a bounded convex
domain in R

n. Then there exists a unique continuous convex function u on D̄ such that
u ∈ C∞(D), u satisfies det(ui j ) = ρ2(−1/u)n+2, and u = 0 on ∂D.

So suppose to have been given a cone Ωx ⊂ TxM and introduce coordinates {yα}
as in Theorem 4 in such a way that the hyperplane y0 = 1 cuts the cone in a section
(1, D), with D bounded convex domain. By Theorem 4 given the solution u on D̄, the
embedding

v 	→ f (v) = − 1

u(v)
(1, v), v ∈ D

is an affine sphere with affinemean curvature H = −1, which is asymptotic to ∂Ωx . The
corresponding Finsler Lagrangian is found imposing −1 = 2L (x, f (v)) = 2(− 1

u )2

L (x, (1, v)), which givesLx |(1,D) = −u2/2, where the left-hand side is the restriction
of the Finsler Lagrangian to the intersection between the hyperplane y0 = 1 and the
convex cone. By positive homogeneity the Finsler Lagrangian is then determined on
the whole cone Ω̄x . From this equation we read the regularity of L from that of u, in
particular Lx ∈ C∞(Ωx ) and it can be continuously extended setting L = 0 on ∂Ω .
The relationship between u and L is

L (x, (y0, y)) = −1

2
(y0)2u2( y/y0), (59)

u(x, v) = −√−2L (x, (1, v)). (60)

We can summarize this result as follows
2 The embedding is proper if the inverse image of compact sets is compact. Roughly, the hypersurface has

no ‘edge’. This is always the case for the indicatrices of Lorentz–Finsler geometry.
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Theorem 16. Given an open convex sharp cone Ωx ⊂ TxM and a (vertically transla-
tional invariant) measure μx = ρ(x)dn+1y there is one and only one Lorentz–Finsler
Lagrangian Lx on Ωx (so Lx < 0 on Ωx and it converges to zero at ∂Ωx ) having
vanishing mean Cartan torsion and such that − det d2Lx = ρ2. This Lagrangian is
C∞(Ωx ) and its indicatrix is an affine sphere with affine mean curvature H = −1 with
respect to μx .

In Lorentz–Finsler gravity theories one obtains most scalars and tensors of physical
interest from the Finsler Lagrangian. For instance, the proper time over a curve x : I →
M , t 	→ x(t), is

∫√−2L (x(t), ẋ(t)) dt . The minus proper time over a curve multiplied
by the mass of the particle gives the action of the particle (it is locally minimized over
geodesics). Let us write it for a unit mass particle

S =
∫

u(x(t), v(t)) dt. (61)

The projective coordinates v and the function u transform as in Eqs. (40)–(42) under
change of coordinates on M .

From the above equation we conclude that u is the Lagrangian per unit mass. It has to
be distinguished from the Finsler Lagrangian L . We shall return on this interpretation
in connection with the Legendre transform in Sect. 3.3.

Theorem 16 leaves open some interesting related questions:

(α) Can the regularity of L at the boundary be improved perhaps improving the regu-
larity of the convex cone?

(β) Can the Lorentz–Finsler Lagrangian be continuously extended beyond the cone Ω̄

preserving a vanishing mean Cartan torsion?
(γ ) Given a sufficiently regular convex cone is it possible to find a Lorentzian definite

affine sphere which is asymptotic to the cone and its opposite?

As we mentioned most of causality theory and mathematical relativity depends on
just the future causal cone. At first some regularity at the boundary of the cone seems
desirable if not necessary in order to define a notion of lightlike geodesic. However, there
are approaches that do not demand such regularity, for instance, lightlike geodesics could
be defined as limits of timelike geodesics, or taking limits of Lorentzian metrics [70,
Remark 2]. In Sect. 4 we shall show that it is possible to define the lightlike geodesics
for a sufficiently differentiable light cone distribution without making reference to the
differentiability of the Lagrangian at the boundary.

Nevertheless, it turns out that question (α) above receives a partly positive answer.
We recall first a result by Cheng and Yau [17, p. 53] according to which u ∈ C0,1/2(D̄)

for D strongly convex and with C2 boundary. Since u = 0 at ∂D this result implies that
L is Lipschitz at the boundary of the cone.

Stronger results can be obtained looking at the graph of u, v 	→ (v, u(v)). Lin and
Wang proved that though u is not C1 at ∂D, its graph is a C2,α , α ∈ (0, 1), hypersurface
with boundary whenever the boundary ∂D isC2,α [56, Theor. 4.6]. Recently, for smooth
boundary ∂D, Jian and Wang [42] proved that the graph of u is a Cn+2,α hypersurface
with boundary for every α ∈ (0, 1).

Now, we need

Proposition 3. If the graph of u is a Ck,1/2, k ≥ 3, hypersurface with boundary, then
Lx ∈ C1,1/2(Ω̄x ) and dLx |∂Ωx �= 0.
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Proof. Let us prove this fact near a point p ∈ ∂D at which the line parallel to the vn

axis is transverse to ∂D and vn grows inwardly (the general case follows rotating the
axes). Since the derivatives of u diverge the graph of u can be expressed as a graph
vn = f (v̄, z), where f is convex (due to the convexity of the epigraph of u) and such
that vn = f (v̄, u(v)), v̄ = (v1, . . . , vn−1), v = (v̄, vn), (see [56, Sect. 4]). By the
assumption on the hypersurface, f is Ck,1/2. In other words, the Ck,1/2 embedding can
be taken to be (v̄, z) 	→ (v̄, f (v̄, z), z). The Taylor expansion of f with respect to z
at (v̄, 0) gives Δvn := vn − w(v̄) = h(v̄)u(v) + R(v̄, vn)u2(v) where R is a bounded
Lagrange remainder which converges to ∂2z f (v̄, 0)/2 =: R(v̄, 0) for u → 0 and w(v̄)

is the Ck,α graphing function of ∂D on u = 0. Now, u(v) is not Lipschitz, for its
derivatives diverge, but we mentioned that u2(v) is Lipschitz, thus dividing by Δvn and
letting vn → w(v̄) we see that this identity can only hold with h = 0. Inserting back
h = 0 we also get that R(v̄, 0) �= 0. The argument proves that ∂z f (v̄, 0) = 0 while
∂2z f (v̄, 0) > 0, so we have f (v̄, z) = w(v̄) + b(v̄)z2 + z2c(v̄, z) where b, c ∈ Ck−2,1/2,
b > 0. Let d be defined by d(v̄, y) = yc(v̄,

√
y) so that ∂yd(v̄, 0) = Dv̄d(v̄, 0) = 0,

d ∈ C1,1/2.
The equation vn = w(v̄)+ b(v̄)y + d(v̄, y) with y = u2(v) can now be differentiated

giving

∂nu
2(v̄, vn) = [b(v̄) + Dyd(v̄, u2(v))]−1,

Dv̄u
2(v̄, vn) = −b−1(v̄)[Dv̄w(v̄) + (Dv̄b)u

2 + Dv̄d(v̄, u2)]
which are C0,1/2(D̄). Moreover, on the boundary u = 0 thus ∂nu2 = b−1 �= 0 which
implies dLx �= 0 there. ��

By the mentioned result by Jian, Lin and Wang, since on spacetime n ≥ 1, we have

Corollary 3. If the light cone ∂Ωx is a smooth hypersurface, then Lx ∈ C1,1/2(Ω̄x )

and dLx |∂Ωx �= 0.

Thus this result shows that some regularity of the Lagrangian at the light cone can be
accomplished taking sufficiently regular cones.

This regularity does not allow us to define the lightlike geodesics in the usual way.
An alternative and satisfactory method will be given in Sect. 4 where we shall show that
this regularity helps to define the affine parameter over lightlike geodesics.

Though the Lagrangian could be non-smooth at the cone, it would be nice if we could
work directly with a Lagrangian defined all over T M\0 for which the mean Cartan
torsion vanishes everywhere, since traditionally the theory of Finsler connections and
sprays has been developed on the slit tangent bundle (hence question γ ). As far as we
know this question has not been investigated, possibly because the Lorentzian affine
sphere asymptotically approaching the cones ∂Ωx and −∂Ωx from outside would be
described by a non-ellipticMonge–Ampère equation for which maximum principles are
not available.

The next result and its interpretation are the main objectives of this work.

Theorem 17. Over a manifold M the following three concepts are equivalent:

(a) Lorentz–Finsler Lagrangian with vanishing mean Cartan torsion,
(b) Volume form and sharp cone distribution over M,
(c) Affine complete, definite, hyperbolic affine sphere subbundle of the tangent bundle

with center in the zero section.
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The reader might want to check the next proof environment for details on the corre-
spondence.

Proof. Given (a) we obtain (c) taking the indicatrix subbundle I −. Conversely, given
(c) we obtain (a) using Eq. (2).

Given (c) we obtain (b) selecting first the volume form which assigns to the affine
sphere the affine mean curvature H = −1 according to Theorem 1. The sharp cone
distribution is that given by the asymptotic cones to the affine spheres as determined by
Theorem 14.

Conversely, given (b) we get (c) as follows. We determine a distribution of properly
embedded hyperbolic affine spheres up to rescalings thanks to Theorem 14, and among
those we select that for which H = −1 according to the volume form provided by (b).

From (a) we can also obtain directly the measure of (b) using Eq. (5). This possibility
follows from Theorem 6. ��

The problem of the determination of spacetime from a volume form and a cone
distribution is solved if we use in place of Lorentz–Finsler spacetimes the next more
specialized objects.

Definition 1. An affine sphere spacetime is any of the equivalent structures mentioned
in Theorem 17.

The primitiveness of this definition seems remarkable. Indeed, point (c) clarifies that
it relies on just the manifold structure of M , as not even a volume form is required.
Nevertheless, through the equivalence with (a) we can recover all the metrical aspects
which are needed in calculations: given the Finsler Lagrangian we can define the metric,
the length of timelike curves and hence the proper time of observers. We can define the
spray and its geodesics and so have a natural notion of free fall; we can construct tensors
over M , ask for the validity of generalized Einstein’s equations, and so on. Still at the
core of these algebraic objects there is just an affine sphere distribution.

The sharpness condition appearing in (b) is simply the request that the two-way speed
of light be finite in any direction. We shall see in a moment the physical meaning of the
affine completeness appearing in (c).

The spacetime of general relativity is recovered whenever one of the following equiv-
alent condition holds: (a) the Cartan torsion vanishes, (b) the cones are round, (c) at each
point the hyperbolic affine sphere is a quadric.

Remark 9 Physical meaning of affine completeness. In any Lorentz–Finsler theory the
affine metric coincides with the restriction of the Lorentz–Finsler metric to the indicatrix
(Theorem 6). We mentioned that this object measures the length of vectors tangent to
the indicatrix, namely the length of accelerations. Physically, the affine completeness of
the indicatrix reflects the fact that an ideal rocket having bounded proper acceleration
cannot reach the boundary of the indicatrix in a finite proper time, namely that the speed
of light cannot be experienced by massive particles, and hence that there is a meaningful
distinction between massive and massless particles. This requirement appears to be
physically motivated so it is natural to demand the affine completeness of the indicatrix
as in characterization (c).

We shall see later on that the cotangent space admits a dual indicatrix. Its affine
completeness represents the impossibility of reaching the speed of light by applying
a bounded force for a finite proper time. The physical equivalence of these condi-
tions is nothing but Newton’s second law: the proper acceleration (measured by a non-
accelerating local observer) is proportional to the force.
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Remark 10 Tangent and cotangent translated affine sphere spacetimes.A generalization
of the notion of affine sphere spacetime can be obtained introducing a causal vector
field as a further ingredient and translating the affine sphere distribution on the tangent
space as done in Theorem 8. These spaces might be called tangent translated affine
sphere spacetimes and have to be distinguished from the cotangent translated affine
sphere spacetimes, for which the translation takes place on the cotangent space. In
fact, the dual of a translated affine sphere (c.f. Sect. 3.3) is not necessarily a translated
affine sphere. If the affine sphere indicatrix is a quadric then the translation on the
tangent space induces a translation on the cotangent space and conversely. This restricted
family includes the Lorentz–Randers spaces. We expect that the real light cones could
be (possibly translated) affine spheres departing slightly from isotropy. The presence
of matter could in principle modify the affine sphere equation. We shall investigate the
relevant modifications in the next works.

Remark 11. Let V be a 1-dimensional vector space, and define a hyperbolic affine sphere
as any point p different from the origin. The cone generated by it is clearly one half
V + � p of the vector space. At the Lagrangian level the 0-dimensional hyperbolic affine
sphere is determined byL : V + → R whereL is positive homogeneous of degree two
and negative, then p is determined by −2L (p) = 1. Correspondingly, a 1-dimensional
affine sphere spacetime is any 1-dimensional manifold M endowed with a function
L (x, y) defined on one half of T M , positive homogeneous of degree two in y and
negative. Observe that its Hessian is negative definite so this is not a Lorentz–Finsler
spacetime. Still this extension of the affine sphere spacetime definition is useful when
considering Calabi products [14].

Let (M,L ) and (M ′,L ′) be pseudo-Finsler spaces. Let us consider a diffeomor-
phism f : M → M ′ which induces a diffeomorphism, denoted with abuse of notation
in the same way, f : E → E ′, (x, v) 	→ ( f (x), f∗(v)) where E denotes the slit tangent
bundle. A diffeomorphism f is said to be a conformal transformation if there is a posi-
tive function ϕ : M → R such that f ∗L ′ = ϕL that is, for every (x, y) ∈ Ω where Ω

is the conic domain of L , we have ( f (x), f∗(y)) ∈ Ω ′ and
L ′( f (x), f∗(y)) = ϕ(x)L (x, y), (62)

which is equivalent to3 f ∗g′ = ϕg. Observe that f ∗L ′ is a Finsler Lagrangian with the
same signature of the Hessian ofL ′. The map f is an isomorphism (or an isometry) if
ϕ = 1.

Theorem 18. Let f : M → M ′ be a diffeomorphism and suppose that (M,L ) and
(M ′,L ′) are affine sphere spacetimes. The map f preserves the cone structure, namely
for every x ∈ M, f∗(Ωx ) = Ω ′

x , if and only if f is a conformal transformation. It also
preserves the volume form if and only if it is an isometry.

Proof. Suppose that f preserves the cone structure, namely Ω ′ = f∗Ω . Since L ′
has vanishing mean Cartan torsion the same is true for f ∗L ′. The Lorentz–Finsler
LagrangiansL and f ∗L ′ have the same domain, vanish at the boundary ofΩ and have
vanishing mean Cartan torsion. As a consequence they have affine sphere indicatrices,
and since there is just one such indicatrix up to homotheties they are conformal. If the
volume form is preserved the scaling factor is fixed to one since for a given volume
form there is only one hyperbolic sphere with affine mean curvature −1. The converse
implication is trivial. ��

3 An observation due to Knebelman [45] shows that the definition of the conformal transformations with
this equation for ϕ dependent also on the fiber y brings no more generality.
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3.2. Physical interpretation of projective coordinates. At this stage we can also under-
stand the physical interpretation of the inhomogeneous projective coordinates v intro-
duced in Eq. (33) in the general framework of Lorentz–Finsler theories. First we say that
ŷ ∈ Ωx is a covariant velocity if it is on shell, namely if ŷ ∈ I −

x . Let ŷ ∈ I −
x and let Pŷ

be the hyperplane passing through the origin such that ŷ + Pŷ is tangent to the indicatrix
at ŷ. We can choose a gŷ-orthonormal frame so that e0 = ŷ. Since dL = gŷ(ŷ, ·) the
basis {ei , i = 1, . . . , n} spans Pŷ . The basis induces a coordinate system {yα} on TxM .
Notice that at ŷ, dL = −dy0, furthermore at ŷ we have det gαβ = −1.

The coordinates yα at TxM determine through the exponential map a local coordinate
system in a neighborhood of x which represents the coordinate system of the observer
ŷ. Let Dŷ be that subset of Pŷ such that ŷ + Dŷ = (ŷ + Pŷ) ∩ Ωx . The set Dŷ is an
open bounded convex set which represents the domain of allowed velocities of massive
particles as seen from observer ŷ. Its boundedness expresses the finiteness of the speed
of light as measured by the observer.

Since ŷ belongs to the indicatrix and y = − 1
u(v)

(1, v) over it, we havewith this choice
of coordinates u(0) = −1. Let x(s) be a timelike curve passing through x = x(0)where
the observer with covariant velocity ŷ is also passing. Let wα be the normal coordinates
constructed by the observer in a neighborhood of x . Let y ∈ I −

x be the covariant velocity
of the particle at x . If w0 changes of dt , w changes of vdt , thus v is the velocity of a
particle with covariant velocity y as seen from the observer ŷ.

The inhomogeneous projective coordinate v is just the velocity of the particle (see Fig.
1) as measured by the observer ŷ, Dŷ is the domain of allowed velocities for massive
particles as measured by ŷ, while u(v) plays the role of Lagrangian for the observer
ŷ (cf. Eq. (61)). This result holds in any Lorentz–Finsler theory, so it is remarkable
that these physically relevant coordinates are at the same time the best coordinates in
order to express the Monge–Ampère PDE for u for affine sphere spacetimes. In the
study of affine spheres they were introduced by Gigena [30], and their usefulness has
been advocated by Loftin [59]. The projective invariance of the affine sphere metric
emphasized in Loewner and Nirenberg’s work [57] is nothing but the well-posedness of
the affine sphere indicatrix geometry under projective changes, namely under changes
of observer. More precisely, a change of observer is given by (40)–(42) where, however,
the matrix Aαβ is not arbitrary since the basis {eα} for the observer has to satisfy some
conditions, namely it has to imply g̃αβ = ηαβ at ṽ = 0 (observe that gαβ = ηαβ at v = 0
as this is the observer condition on the coordinates).

We mentioned that in the observer coordinates of ŷ, det gαβ(ŷ) = −1. But in an
affine sphere spacetime this determinant is independent of the point thus det gαβ = −1.
In other words ρ = 1. Under a change of observer we also have det g̃αβ = −1, thus
det A = 1. As a consequence, for affine sphere spacetimes the changes between observer
coordinates are unimodular.

The expansion of the Lagrangian u in the observer coordinates is

u(v) = −1 +
v2

2
+
1

3
Ci jk(ŷ)v

iv jvk

+
1

4!
(

2Ci jkl(ŷ)v
iv jvkvl + 3(v2)2

)

+ · · · (63)

The quadratic term gives the usual classical kinetic energy for low speeds, see Eq. (61).
The observer coordinates can be characterized as those coordinates for which the Taylor
expansion up to second order of u is u(v) = −1 + v2/2 + · · · . The expansion of the
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Lagrangian can be more suggestively written

u(v) = −
√

1 − v2 +
1

3
Ci jk(ŷ)v

iv jvk

+
1

12
Ci jkl(ŷ)v

iv jvkvl + o(|v|4). (64)

The next result establishes that the isotropy of the speed of light is a property inde-
pendent of the observer.

Proposition 4. In an affine sphere spacetime if the velocity domain D is ellipsoidal at
least for one observer ŷ ∈ Ix , then the same is true for every observer.4 In fact, Ix
is actually the usual hyperboloid (a quadric) as in special relativity thus the velocity
domains in observer coordinates are balls.

In the hypothesis we do not require D to be centered at the origin v = 0.

Proof. This result follows from the uniqueness of the Cheng–Yau solution u, see The-
orem 15. The solution for a spherical domain of radius one centered at the origin is
u = −k

√
1 − v2 for some constant k > 0 (see also [69]). As a consequence, the solu-

tion for an elliptical domain centered at c is

u = −k
√

1 − a−2
1 (v1 − c1)2 + · · · + a−2

n (vn − cn)2.

The expansion in observer coordinates is −1 + v2/2 + o(v2) thus c = 0, k = 1, a = 1,
which proves that u = −√

1 − v2, the special relativistic solution. ��
Theorem 19. Suppose that the Taylor expansion of the Lagrangian u is that of non-
relativistic physics (and for the matter of special relativity) up to order |v|3 for any

observer, namely u(v) = −1 + v2

2 + o(v3), then the Lorentz–Finsler manifold is a
Lorentzian manifold.

Proof. Using Eq. (63) we have Ci jk(ŷ)viv jvk = 0 for every observer ŷ and v thus by
polarization the Cartan torsion vanishes on the indicatrix and hence on Ω . ��

We are going to give a similar characterization for affine sphere spacetimes. To that
end it is convenient to pass from the mass normalized Lagrangian u to an unnormalized
Lagrangian denoted in the same way by replacing u → u/m in the previous formulas.
In the normalized notation an affine sphere spacetime has an indicatrix having H = −1
thus satisfying Eq. (47). In the non-normalized formulation this equation reads

det ui j = |det gαβ |
(

− 1

u

)n+2
m2(n+1), (65)

thus we can identify −m
2(n+1)
n+2 with the non-normalized affine mean curvature H . Let us

continue working with the non-normalized notation till the end of this section.
Every observer ŷ in the observer coordinates determines a Lagrangian u(v), a Legen-

dre map v 	→ p := ∂vu and a mass matrix mi j := ∂2u
∂vi ∂v j . The normalized trace of the

mass matrix is 1
n δi jmi j and in the Lorentzian case it equals the mass of the particle

m (it would be 1 in the mass normalized approach). In Finslerian gravity theories this
constant is necessarily m for v = 0 but can run linearly in the velocity for small v.

4 By a similar argument, taking into account the results of [69] we have that in four spacetime dimensions
an analogous result holds for a domain of conical or tetrahedral shape.
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Theorem 20. If for every observer ŷ ∈ I the normalized trace of the mass matrix
is a constant m (the mass of the particle) up to quadratic corrections in v, then the
Lorentz–Finsler manifold is an affine sphere spacetime.

Proof. From (63) the mass matrix is mi j (v) = mδi j + m2Ci jk(ŷ)vk + o(v), thus its
normalized trace is m +m 2

n Ik(ŷ)v
k + o(v) where we used δi j = gi j + O(v), C0 jk(ŷ) =

C00k(ŷ) = 0. Since I0(ŷ) = 0, the assumption implies Iμ(ŷ) = 0 for every observer,
and hence all over Ωx . ��
Remark 12. In other words the theorem states that affine sphere spacetimes are charac-
terized by the property that for every test particle there is a constant m such that for
every close observer that looks at the test particle mi j −mδi j is traceless not only at the
zeroth order in v but also at the first order. The constant m is the rest mass of the par-
ticle. This characterization is reminiscent of the characterization of inertial coordinates
systems which are those for which the apparent force acting on the particle has no linear
contribution in v, however, this is really a condition on the kinematical structure of the
space.

Joining the assumptions of Proposition 4 and the previous theorem we obtain a
characterization of Lorentzian spacetimes in Lorentz–Finsler theory.

Proposition 5. If at every event all observers experience the non-relativistic character-
ization of mass as in the previous theorem, and if at least one observer measures an
ellipsoidal (e.g. isotropic) speed of light then the spacetime is Lorentzian.

Another characterization of Lorentzian spacetimes can be obtained looking at those
spacetimes which satisfy the relativity principle. These are the affine sphere space-
times for which the group of linear non-degenerate endomorphismsG(Ωx )which leaves
invariant Ωx is independent of x and acts transitively on Ωx . In other words the cone
Ωx is homogeneous [81]. The action descends to a transitive isometric action on the
affine sphere indicatrix Ix (if we had selected an arbitrary indicatrix, it would not be
the case). This property is the mathematical realization of the idea that all observers are
kinematically equivalent. The Finsler Lagrangian is really some power of the charac-
teristic function of the cone, but we shall not enter on this correspondence here. The
important point is that for homogeneous cones the domain of allowed velocities Dŷ
is really independent of ŷ (up to space rotations of the observer coordinates) and the
boundary ∂D is C2 only for the ellipsoid [8,43,95]. Physically, we can now interpret
this result as follows

Theorem 21. For an affine sphere spacetime which satisfies the relativity principle, the
speed of light has a C2 dependence on the direction if and only if the spacetime is
Lorentzian.

It can be shown that the spacetimes which satisfy the relativity principle have light cones
which depart verymuch from isotropy [69], so all these odd features on the speed of light
are not present in spacetimes which have light cones obtained from small perturbations
of the round cones. Of course, they will not satisfy the relativity principle, namely the
perturbation spoils the Lorentz group and without restoring any other symmetry groups
makes it possible to kinematically distinguish the observers.
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3.3. Legendre transform and dispersion relations. Let x ∈ M and let V = TxM (we
recall that we might write Ix for Ωx ). The Legendre map � : Ix → V ∗ is defined by

y 	→ gy(y, ·) = dL . (66)

A study in the context ofLorentz–Finsler geometry canbe found in [65].By theFinslerian
reverse Cauchy–Schwarz inequality [65] the Legendre map is a bijection between Ix and
the polar cone

I ∗
x = {p ∈ V ∗\0 : p(w) < 0 for every w ∈ Ix }. (67)

Since Ix is sharp and non-empty so is I ∗
x . Let gp (of components gαβ ) denote the inverse

of gy , where y ∈ Ix is such that �(y) = p. On the polar cone we define the Finsler
Hamiltonian

H (p) := 1

2
gp(p, p) = L (�−1(p)).

It is the Legendre transform of L , it is positive homogeneous of degree two and its
Hessian is gp, a metric of Lorentzian signature. Clearly, � provides a bijection between
Ix and the dual indicatrix I ∗

x := {p : − 2H (p) = 1}.
Now, for every volume form μ = ρ(x)dn+1y on TxM there is a dual volume form

μ∗ = ρ−1(x)dn+1 p on T ∗
x M so that μμ∗ = |(dpμ ∧ dyμ)n+1|, is the canonical volume

form induced from the symplectic 2-form.
SinceH plays the same role for I ∗

x thatL plays for Ix , in order to establish whether
I ∗

x is an affine sphere we have just to calculate the mean Cartan torsion on (V ∗,H ) in
place of (V,L ). By analogy this is given by

(I ∗)α = 1

2

∂

∂pα

log |det gp| = −1

2

∂yβ

∂pα

∂

∂yβ
log |det gy | = −∂yβ

∂pα

Iβ = −I α. (68)

Taking into account Eq. (39) and Theorem 6 we have just provided a rather simple
Finslerian proof of the next duality result (known to Calabi [29,30,58])

Proposition 6. Ix is a hyperbolic affine sphere if and only if I ∗
x is a hyperbolic

affine sphere. In this case Ix has affine mean curvature H = −1 with respect to
μ = √| det gy |dn+1y and I ∗ has affine mean curvature H = −1 with respect to
μ∗ = √| det gp|dn+1 p. Given these volumes on V and V ∗ each affine sphere of affine
mean curvature H asymptotic to ∂ Ix is mapped by � to an affine sphere of affine mean
curvature H−1 asymptotic to ∂ I ∗

x .

Let us study the Legendre map using inhomogeneous projective coordinates (Sect.
2.1). Let {eα} be a basis of V so that e0 ∈ Ix and (e0 +Span{ei })∩ Ix is bounded, and let
yα be the induced coordinates on the vector space V . Let v be inhomogeneous projective
coordinates on {y ∈ V : y0 > 0} so that

y = (y0, y) = −1

u
(1, v). (69)

The indicatrixIx ⊂ Ix is a graphwhose radial graphing function is u(v), that is f : v 	→
− 1

u(v)
(1, v) is the hypersurface immersion of the indicatrix. Let p = gy(y, ·) = pμdyμ.

In order to calculate �(y) for y ∈ Ix we have to determine the value of pμ such that
p(y) = −1 and p( f∗(ẽ j )) = 0 where ẽ j is the basis of Rn . Recalling Eq. (38), namely
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−u f∗(ẽ j ) = u j y + e j , the latter condition reads p j = u j . Thus the former condition
reads p0 + v · p = u. That is p0 = −u∗, the minus Legendre transform of u.

Let us calculate the affine metric and affine connection for the immersion h : p 	→
(−u∗( p), p) on I ∗

x . Let ξ∗( p) = p. To start with we have h∗(e j ) = Dh∗(e j )ξ
∗ =

(− ∂u∗
∂p j

, e j ) = (−v j , e j ). Let us denote for shortness (u∗)i j = ∂2u∗
∂pi ∂p j

Dh∗(ei )h∗(e j ) = Dh∗(ei )Dh∗(e j )ξ
∗ = ∂2

∂pi∂p j
(−u∗( p), p) = − (u∗)i j

u
(u, 0)

= − (u∗)i j

u
{−(− p·v, p) + (−u∗, p)} = (u∗)i j

u
pkh∗(ek) − (u∗)i j

u
ξ∗.

Since the last equation is split into a term tangent to the dual indicatrix and a term
proportional to ξ∗, we can easily read the affine metric and connection coefficients.

Theorem 22. The dual indicatrix I ∗
x is the image of the immersion

h : p 	→ (−u∗( p), p) (70)

where u∗( p) is the Legendre transform of u(v). With respect to the transverse field given

by the position vector the affine metric is h∗ = − (u∗)i j
u dpidp j while the connection

coefficients, defined by ∇∗
e j
ei = (∇∗)i jk ek , are (∇∗)i jk = (u∗)i j

u pk .

The physical interpretation is obvious. We have seen that in observer coordinates
u(v) is the Lagrangian (per unit mass) and v is the velocity, thus p is the momentum
(per unit mass) and u∗( p) is the Hamiltonian (per unit mass). Thus the dual indicatrix is
the Cartesian graph of the minus energy. Since observer coordinates are characterized
by the expansion u(v) = −1 + v2/2 + · · · , they are also characterized by the expansion
u∗( p) = 1 + p2/2 + · · · . By the properties of the Legendre map, as u∗ is the energy
v = ∂E/∂ p, thus the dependence E( p) might also be called dispersion relation and the
usual velocity might be called group velocity.

Math. objects Meaning

L (x, y) Finsler Lagrangian
H (x, p) Finsler Hamiltonian
v Velocity with respect to observer
p Momenta as measured by observer
u(v) (Observer) Lagrangian
u∗( p) (Observer) Hamiltonian

Remark 13. Observe that coordinates v and p provide quite different parametrizations
of the indicatrix and its dual [compare Eqs. (34) and (70)]. The former are projective
inhomogeneous coordinateswhile the latter coordinates, beingCartesian,might be called
homogeneous. The coordinates v will be bounded while p certainly is not as the dual
indicatrix is asymptotic to the dual cone.

Historically, the first coordinates to be introduced in the study of affine spheres have
been the dual coordinates [14]. Of course,mathematically, one could use inhomogeneous
projective coordinates on T ∗

x M rather than TxM . Here it is the physical interpretation
which dictates to use inhomogeneous coordinates on TxM . In this way the boundedness
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of the domain D expresses the finiteness of the (direction dependent) speed of light.
Also observe that the sum of velocities, v +w, makes no sense since it is not projectively
covariant. In fact the sum of velocities does not have the classical mechanics interpreta-
tion of change of observer. However, the sum of momenta pα + qα must indeed be well
defined as we need it in order to express, for instance, the conservation of momentum in
the collisions of particles. Since the components pα are identified with the homogeneous
coordinates on the cotangent space, this addition operation is indeed well defined.

We can complement Definition 1 with

Proposition 7. An affine sphere spacetime is equivalently determined by:

(d) affine complete, definite, hyperbolic affine sphere subbundle of the cotangent bundle
with center in the zero section.

The relationship betweenH and u∗ is not as simple as that betweenL and u. Using
positive homogeneity of H it is easy to verify that H ((p0, p)) = − 1

2 s
2 where s > 0

is such that p0
s = −u∗( p

s ), however in general it is not possible to find s from this
equation.

In observer coordinates we can easily expand u∗. In fact we already know the expan-
sion up to quadratic order, and taking into account that (u∗)i j is the inverse of ui j we
get (here a, b, c = 1, 2, 3)

∂3u∗

∂pk∂p j∂pi
= ∂(u∗)i j

∂pk
= −(u∗)ia(u∗) jb ∂vc

∂pk

∂uab
∂vc

= −(u∗)ia(u∗) jb(u∗)kc ∂uab
∂vc

.

We are interested on this value for p = 0 for which (u∗)i j = δi j thus arguing similarly
for the fourth order term we arrive at the expansion (here s = 1, 2, 3 and the Cartan
torsion and curvature are evaluated at the observer ŷ)

u∗( p) =
√

1 + p2 − 1

3
Ci jk pi p j pk

+
1

4! (12CsilCs jk − 2Ci jkl)pi p j pk pl + o(| p|4). (71)

We recall that the we have used a mass normalized notation. In order to get the non-
normalized versions, it is necessary to replace u → u/m, p → p/m, u∗ → u∗/m in
the previous formulas.

3.3.1. Kähler–Einstein condition on the cotangent space. Proposition 7 implies the
validity of cotangent versions of the Kähler–Einstein characterizations of the affine
sphere condition, cf. Theorems 1 and 2.

It is convenient to define amap∗: Ω → Ω∗, as∗ = m�◦iI ,whereI is the indicatrix
of a Finsler Lagrangian onΩ , � is the Legendre map, and iI is an inversion with respect
to the indicatrix (for homogeneous cones this map was introduced by Vinberg [94]).
In other words, y∗ := m�(y)/[−2L (y)]. Since we have analogous ingredients in Ω∗,
we define p∗ := m�−1(p)/[−2H (p)]. It can be easily checked that ∗ is an involutive
bijection, that 4H (y∗)L (y) = m2, and that, defined theKähler potential ofΩ∗, log V ∗,
with V ∗ = (−2H

m )−m/2, we have V ∗(y∗)V (y) = 1.
The Cheng–Yau metric is defined as before through ĝp = d2 log V ∗, and the formula

analogous to (15), namely det ĝp = −(det gp)(V ∗)2 implies det ĝp|p=y∗ = (det ĝ)−1|y
(recall that g(sp) = g(p) for s > 0).
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From here we can introduce the Kähler Ricci tensor for both the Lorentzian and
Riemannian metrics

K ∗αβ := − ∂2

∂pα∂pβ
log | det gp|, K̂ ∗αβ := − ∂2

∂pα∂pβ
log det ĝp. (72)

then the analogous results to Theorems 1 and 2 state that the Kähler–Einstein condition
involving any of these tensors is equivalent to the affine sphere condition.

3.4. Group–phase duality. We have argued that the velocity v is an inhomogeneous
projective coordinate on the tangent space and that p is a homogeneous projective
coordinate on the cotangent space. This approach has given a description ofIx through
an observer Lagrangian u(v).

We might ask what is the description of the indicatrices if we introduce coordinates
with reversed roles: inhomogeneous on the cotangent space and homogeneous on the
tangent space.

Let us define

v̌ = (u∗( p))−1 p, phase velocity (73)

p̌ = −(u(v))−1v, phase momenta (74)

ǔ(v̌) = −(u∗( p))−1, phase Lagrangian (75)

ǔ∗( p̌) = −(u(v))−1, phase Hamiltonian (76)

so that ǔ∗, u∗ > 0; ǔ, u < 0. We recall that E = u∗ is the energy so the definition of
phase velocity is the usual one. The immersion of the dual indicatrix p 	→ (−u∗( p), p)
reads in the new coordinates

v̌ 	→ − 1

ǔ(v̌)
(−1, v̌) (77)

while the immersion of the indicatrix v 	→ − 1
u(v)

(1, v) reads in the new coordinates

p̌ 	→ (ǔ∗( p̌), p̌). (78)

Recalling the definition of polar cone I ∗
x , and noticing that pα yα < 0 iff v · v̌ < 1, we

arrive at

Theorem 23. Thephase velocity domain is Ď = D∗, where D∗ = {z : z·v < 1,∀v ∈ D}
is the dual of the velocity domain. In particular, the velocity is bounded if and only if the
phase velocity is bounded. This is so in the physical observer coordinates.

We recall that the domain D and hence D∗ depends on the choice of observer, namely
on the chosen point on the indicatrix, unless the indicatrix is homogeneous in which
case, up to rotations, all the domains D coincide.

It is not difficult to check (e.g. [69]) that for the isotropic theory the group-phase
duality is trivial: the phase quantities coincide with the usual (group) quantities. On the
contrary under anisotropy they differ and there will be directions for which the phase
velocity is larger than the (group) velocity and conversely.
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We showed in Proposition 6 thatIx is an affine sphere with affine mean curvature H
if and only if I ∗

x is an affine sphere with affine mean curvature H−1, thus in an affine
sphere spacetime we have the phase dual of Eq. (36)

det
∂2ǔ

∂v̌i∂v̌ j
= ρ−2

( 1

Hǔ

)n+2
, (79)

where ρ2 = | det gαβ | and in the mass normalized notation, H = −1.

3.4.1. Momentum of a photon. In this section we explain how to represent a photon. In
general Lorentz–Finsler theories themomentumof a photon is given by a point p ∈ ∂Ω∗

x ,
whereΩ∗

x is the polar cone ofΩx , the vertical domain of the Lorentz–Finsler Lagrangian
at x . In the observer coordinates of an observer ŷ, the momentum reads pμ = hν(−1, p̌)
where p̌ ∈ ∂D∗

ŷ , ν is the frequency and h is Planck’s constant. The frequency can also
be written −pμ ŷμ = hν. Observe that p̌ is not necessarily normalized unless the speed
of light is isotropic.

Suppose that the boundary ∂Ωx is C2 and with strongly convex sections. There is a
duality between the projective images of ∂Ω∗

x and ∂Ωx , in fact the hyperplane tangent
to ∂Ω∗

x at p defines the direction of a null vector belonging to ∂Ωx , and conversely.
In the last section we shall show that this is all is required in order to have a lightlike
geodesic flow on spacetime and a well defined transport of momenta.

If we have more than that, namely if g is defined and non-degenerate at the boundary
of Ωx , then the Legendre map establishes a one-to-one correspondence between ∂Ωx
and ∂Ω∗

x (cf. [65,70]), namely between lightlike vectors and lightlike momenta, which,
as we argue in the last section, is not really required for the observational interpretation
of the theory.

Suppose we have less than that. Strong convexity of the cone guarantees that at the
projective level the Legendre map P∂Ωx → P∂Ω∗

x is injective, and differentiability
guarantees that it is single valued. So ∂Ωx could be non-differentiable and so have edges
or have flat (or non-strongly convex in the projective sense of D) parts. Of course, the
coneΩ∗

x would have a dual behavior. As a consequence, in the rough theory a point on an
edge of ∂Ωx corresponds to many momenta, and a point on an edge of ∂Ω∗

x corresponds
to many velocities. In general, if there is still strong convexity of Ω∗

x the lack of non-
differentiability could be a minor problem since a convex function is almost everywhere
differentiable, so the pathological momenta would form a set of vanishing measure.
In any case in the general rough theory there is no more a one-to-one correspondence
between P∂Ωx and P∂Ω∗

x and the best way to represent a photon is probably as a
suitable equivalence class of pairs (p, y) ∈ ∂Ω∗

x × ∂Ωx with pμyμ = 0. These photons
can then be regarded as superpositions of extremal photons, which correspond to values
of p, y belonging to the extremal points of ∂Ω∗

x and ∂Ωx .
If one is interested in alternative models which retain most of the good features of

general relativity then the rough conemodels should be discarded at least on a first study.
In fact there are plenty of models with smooth but non-isotropic cones that might attract
the researcher’s attention. Roughmodels have been included in our analysis because they
make their appearance in the study of alternative Finslerian realizations of the relativity
principle [69] (see also Theorem 21).

3.5. Non-relativistic spacetimes are improper affine sphere bundles. The new formula-
tion of spacetime in terms of affine spheresmakes it possible to understand the difference
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between relativistic and non-relativistic spacetimes without making reference to invari-
ance groups.

Let us consider the dual affine indicatrix p 	→ (−u∗( p), p) in observer coordinates.
In the non-relativistic limit we can approximate u∗ = 1 + p2/2 thus the dual indicatrix
becomes p 	→ (−1 − p2/2, p) which is an improper affine sphere with affine normal
− ∂

∂p0
. This fact suggests to consider improper affine spheres in place of proper affine

spheres. In both the relativistic and non-relativistic theories the energy will be −p0, that
is, minus the zeroth component of the momenta in observer coordinates.

In order to understand the following construction let us recall the transformation rules
for kinetic energy (over mass) and momentum (over mass) in classical physics under
change of reference frame. Suppose to be in a reference frame K and to change to the
frame K ′ which moves with velocity v0 with respect to K . If p and T = p2/2 denote
the momentum and kinetic energy of a particle in K , then those measured in K ′ can be
obtained with the affine transformation

p′ = p − v0, (80)

T ′ = T − p · v0 + v20
2

. (81)

Coordinates (−T, p) can be thought to be determined by a frame in a n +1-dimensional
affine space. The equation T = p2/2, being preserved by the frame change, defines an
elliptic paraboloid on the affine space.

It is convenient to define the notion of non-relativistic spacetime in analogy with the
characterization (d) (Proposition 7) for the relativistic case. The idea is to replace the
proper affine spheres with improper affine spheres. While the former have a center and
hence can be thought to belong to a vector space (or to an affine space with a selected
special point) here we must necessarily work on an affine space.

Furthermore, it is necessary to work on the cotangent space rather than in the tangent
space, for a parabolic affine sphere on the latter would determine a special vector field
on M given by the affine normal. This vector field would be interpreted as a privileged
observer, a feature not present in classical theories. On the cotangent space the affine
normal determines instead a one-form field ψ which, if exact, could be written ψ = dt
where t is the classical time foliation of M . Of course on the level sets t = cnst. we
would like to have defined a Riemannian (space) metric. This ingredient will be again a
consequence of the parabolic sphere on the cotangent bundle.

Another difference is that proper affine spheres might be used to fix a volume form
through the normalization condition H = −1, which is why the volume form does not
appear in (d). For improper spheres H = 0, thus the volume form cannot be removed
using this trick. Furthermore, parabolic affine spheres on the cotangent bundle obtained
from each other by translations along the affine normal will be regarded as equivalent.
Physically, this is related to the fact that in classical theories the energy is defined only
up to an arbitrary constant.

We recall that every affine space E is associated to a vector space V , and every
vector space has a natural structure of affine space. Analogously, every affine bundle is
associated to a vector bundle, and every vector bundle can be regarded itself as an affine
bundle. We also recall that a reference frame on E is given by a pair (p, {eα}) where
p ∈ E and {eα} is a basis on V , then every point q ∈ E can be written q = p + xαeα

where {xα} are the coordinates determined by the frame. In the next definition the affine
cotangent bundle is the cotangent bundle regarded as an affine space, or better said it is
the affine bundle associated with the cotangent bundle.
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Definition 2. A non-relativistic spacetime is a pair given by (a) a volume form on M ,
and (b) an affine complete, definite, parabolic affine sphere subbundle of the affine
cotangent bundle (two parabolic affine spheres are regarded as equivalent if they are
obtained through translation along the affine normal).

Let E∗ denote the affine bundle and let E∗
x be its fiber at x ∈ M . E∗

x is an affine
space associated with T ∗

x M . The volume form on M induces a dual volume form
ρ−1(x)dp0dp1 · · · dpn on T ∗

x M . We know from Jörgens–Calabi–Pogorelov–Cheng–
Yau’s Theorem 13 that the affine sphere is an elliptic paraboloid. We now choose a
frame on E∗

x . Let p belong to the elliptic paraboloid and let {eα} be a basis of T ∗
x M

such that −e0 is the affine normal (it is defined using the dual volume form). Denot-
ing with pα the induced coordinates on Ex we have that the affine sphere is a graph
p0 = bi pi − 1

2 c
i j pi p j . Applying some linear transformations which consist in a redef-

inition of ei , i = 1, . . . , n, we can always bring the equation of the elliptic paraboloid to
the form p0 = − 1

2 p
2. As the affine normal is −∂/∂p0, Eq. (44) is satisfied with ρ = 1,

thus in observer coordinates the dual volume form is |dp0dp1 · · · dpn|.
Any coordinate system on E∗

x which brings the equation of the paraboloid to this
canonical form is called observer coordinate system (see Fig. 1). Clearly, the origin
of the coordinate system belongs necessarily to the parabolic sphere since the choice
p0 = p = 0 satisfies the equation p0 = − 1

2 p
2.

Proposition 8. Any two observer coordinate systems on E∗
x with origin on the same

point of the paraboloid are related by p0̃ = p0, pĩ = Oi
ĩ
pi where O is an orthogonal

transformation.

Proof. For fixed origin observer coordinates are uniquely determined up to orthogonal
transformations of the spatial part. To see this observe that any two choices, coming
from the respective choices for the basis, are linearly related. The affine normal and the
affine metric of the parabolic sphere are independent of the coordinate system chosen.
Since the affine normal is an invariant we must have for any two choices of observer
coordinates ∂/∂p0 = ∂/∂p0̃ which implies ∂pĩ/∂p0 = 0 and ∂p0̃/∂p0 = 1. Similarly
∂pi/∂p0̃ = 0. Since p0̃ = p0 + bi pi it must be bi = 0 otherwise we would have that
the affine sphere graph p0̃( p̃) has a linear term contrary to the definition of observer
coordinates. Thus p0 and p0̃ coincide. The spatial components linearly transform among

themselves. Since the affinemetric is invariant, we have δi jdpidp j = δ ĩ j̃dpĩdp j̃ , which
implies that the transformation p̃( p) is an orthogonal transformation. ��

The affine sphere represents once again the space of observers (massive particles)
and the coordinate system depends furthermore on the orientation of the comoving
laboratory. The just found O(n) invariance of the canonical form of the paraboloid
is expression of its isotropy. Contrary to the relativistic case there is no anisotropic
non-relativistic theory since there is just one possible observer space, and this space is
isotropic. This fact is a consequence of Theorem 13 and physically should be expected.
In fact if the speed of light is finite then its value can differ in different directions. On
the contrary if it is infinite then it is isotropically so.

So far we have only obtained the kinematical aspects of the theory at the single point.
We observe that the normal to the paraboloid ψ = −e0 = −∂/∂p0 ∈ T ∗

x M and the
metric γ := δi jdpidp j ∈ TxM ⊗M TxM , where {pi } are observer coordinates, are well
defined as independent of the reference frame (γ is an extension of the affine metric
obtained imposing γ (·, e0) = 0). We have therefore a triple (M, γ, ψ) where γ is a
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contravariant metric andψ is a non-vanishing one-form such that γ αβψβ = 0. Any such
triple is called Galilei structure [22–24,47,48,89,90] and is precisely the geometrical
structure at the basis of classical (non-relativistic) physics. The fact that given a Galilei
structure it is possible to reconstruct a paraboloid on the cotangent space (and hence
on the affine space associated to it) is pretty obvious using coordinates {pα} which
diagonalize γ and such that ψ = −∂/∂p0.

Proposition 9. The non-relativistic spacetime given by Definition 2 is equivalent to a
Galilei structure (M, γ, ψ).

Once again we see that the definition through affine spheres does not involve metrical-
algebraic concepts.

The metric γ is equivalent to a metric on the quotient space T ∗
x M/ψ , which gives an

inversemetric a on its dual (T ∗
x M/ψ)∗. This dual is the vector space of linear functionals

on T ∗
x M/ψ , namely it is the vector space of linear functionals on T ∗

x M which vanish on
ψ . This is precisely Sx := kerψ ⊂ TxM . Thus themetric γ is equivalent to ametric a on
Sx called space metric. Finally, if ψ is locally (globally) exact then the Galilei structure
is said to be locally (globally) integrable. There is a function t : U → R, U ⊂ M , such
that ψ = dt . This function is the classical time of the theory.

Remark 14 Kählerian characterization of non-relativistic spacetimes. We know that in
the relativistic case the (local) affine sphere condition is equivalent to the (vertical)
Kähler-Ricci flatness of the cotangent space (Sect. 3.3.1). We have also argued that the
cotangent indicatrix must be affine complete (Remark 9), otherwise it would be possible
to reach the maximum speed in finite proper time. These elements determined the char-
acterization (c) of relativistic affine sphere spacetimes. Can non-relativistic spacetimes
be characterized with similar conditions? The Kähler-Ricci flatness condition cannot
be imposed at the level of a Lorentz–Finsler Hamiltonian H , since working with an
indicatrix asymptotic to a cone would imply an assumption on the finiteness of the speed
of light. In the non-relativistic theory we do not have such Finsler Hamiltonian. Still we
have the classical Hamiltonian u∗ which is used to express the indicatrix as a graph. As
a consequence, we expect that the next result should hold

Theorem 24 Assume that the Blaschke (affine) metric5 of the strictly convex smooth
indicatrix p 	→ (−u∗( p), p) is complete and the Kähler–Ricci flatness condition

∂2

∂pi∂p j
log det

∂2u∗

∂pi∂p j
= 0 (82)

holds, then the indicatrix is an elliptic paraboloid.

In short the condition on the parallel nature of the Blaschke normals used in the
Definition 2 of non-relativistic spacetime, and related to the existence of a ‘local space’
kerψ , can be replaced by the Kähler–Ricci flatness condition. In fact, this theorem
along with many of the previously physically motivated result has been proved. It can be
found in a recent work by Li and Xu [53,54,98] in which they generalized the classical
Jörgens at al. theorem (Theorem 13). It would be nice if one could replace the condition
on the affine completeness of the metric with the requirement of unboundedness of
the velocity, namely with the request that the map p 	→ v := ∂u∗( p) is surjective.
This is again possible, see [54, Main Th.]. It is even possible to remove the condition

5 The Blaschke metric is [det(u∗)i j ]−1/(n+2)(u∗)i j , since the indicatrix is a graph, see [74, Ex. 3.3].
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on the unboundedness of the velocity provided u → ∞ as we approach the maximum
velocity. This condition roughly is demanding that though in principle the velocity could
be bounded in some directions, the dual indicatrix should not be contained in any cone,
namely the ‘relativistic’ Finslerian framework should not apply.

Remark 15 Minimal kinematical data. It is convenient to take one step back and con-
sider a minimal set of data which clarifies the connection between relativistic and non-
relativistic theories. Let us consider a smooth strictly convex hypersurface I ∗

x on the
affine cotangent space. We assume that there are no distinct parallel hyperplanes tan-
gent to I ∗

x . Let Ωx be the collection of y ∈ TxM such that for some q ∈ T ∗
x M ,

I ∗
x ⊂ q + {p ∈ T ∗

x M, y(p) < 0}. In other words, we are considering all the tangent
hyperplanes to I ∗

x using those to construct a cone of vectors on the tangent space. To
every point p ∈ I ∗

x corresponds a half line (passing through the origin) in Ωx given by
those vectors whose kernel on T ∗

x M is parallel to the hyperplane tangent to I ∗
x at p.

Conversely, to every half-line in Ωx corresponds a momenta onI ∗
x obtained (Hilbert’s

trick) translating the kernel of the vector till it touchesI ∗
x . It is also not difficult to show

that Ωx is open and convex. The strict convexity and smoothness of I ∗
x implies that

there is a bijection between momenta, i.e. points ofI ∗
x , and velocities, i.e. half-lines of

Ωx . Observe that so far Ωx could be non-sharp and even an half-space. The cone Ωx
gives the set of allowed directions for the timelike curves on M . The bijection withI ∗

x
provides (for unit mass particles) the momenta of the particle moving on such worldline.
An hypersurfaceI ∗ ⊂ T ∗M with the properties given above might be called aminimal
spacetime.

We are going to show that in both relativistic and non-relativistic spacetimes I ∗
x is

regarded as an equiaffine hypersurface, the difference being that in the former case the
center is ‘finitely placed’ on the cotangent space while in the latter case it is at infinity.
The affine sphere condition implies that there is just one natural choice of center. To see
this let us introduce affine coordinates on the cotangent affine space so that I ∗

x is the
image of a graph p 	→ (−u∗( p), p), u∗ > 0, (observe that we have not yet introduced a
star operation, this is just notation). The vector which corresponds to p = (−u∗( p), p)
is y = s(1, ∂u∗) =: s(1, v), s > 0. This is a half-line. If we want to select just a
representative we need to find an hypersurface I ⊂ Ωx transverse to the rays which
serves as normalization.

If the hypersurface I ∗
x is regarded as centroaffine with ‘finitely placed’ center and

we had wisely selected the affine coordinates so that the center corresponds to the origin,
then, since p is transverse to I ∗

x , the most natural normalization is obtained imposing
y(p) = −1, namely s = −1/u. In this way we get the representation of the relativistic
indicatrix v 	→ − 1

u(v)
(1, v). If instead the center is at infinity then the affine coordinates

are chosen so that e0 = ∂/∂p0 points towards the center, and since it is transverse toI ∗
x

the most natural normalization is y(e0) = 1 which gives the non-relativistic indicatrix
v 	→ (1, v). Observe that even in the non-relativistic case the domain of v could be
bounded since it is just a section of Ωx . Note also that there could be several choices of
center forI ∗

x . It is the affine sphere (or the Kähler) condition which implies that there is
a natural choice. In the non relativistic case it implies thatΩx is an half space, which will
allowus to interpretI as the first Jet bundle (see below).Another role of the affine sphere
condition is the following: on a minimal spacetime given the distribution x 	→ Ωx we
cannot recoverI ∗

x (up to translations), in fact any strictly convex compact deformation
of I ∗ would give the same light cone distribution. The affine sphere condition makes
it possible to recover the minimal data.
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Remark 16. There is a subtle pointwhich requires some clarification. It iswell known that
v 	→ (−u(v), v) is a parabolic affine sphere onRn+1 if and only if p 	→ (−u∗( p), p) is a
parabolic affine sphere on the dual spaceRn+1, where u∗ and u are Legendre transform of
each other. This fact is rather elementary as the Hessian of u is the inverse of the Hessian
of u∗, and the parabolic affine sphere equation is a condition on the unimodularity for
the Hessian (44). One might therefore suspect that a parabolic affine sphere on the affine
cotangent bundle should determine a parabolic affine sphere on the affine tangent bundle
and conversely. We have seen a similar result in the hyperbolic case. This expectation
is incorrect, for one reason, while in the proper affine sphere case one can work in dual
vector spaces rather than in affine spaces, and the correspondence can bemade coordinate
independent as it is evident in the Legendre approach passing through L and H , see
Eq. (66), here the duality map would depend on the coordinate systems placed on the
affine cotangent space and is therefore, ill defined.

Still there is one question left. The observer space in the hyperbolic case can be
given a geometrical interpretation using either a tangent or a cotangent approach. Here,
in the non-relativistic parabolic theory we have given only the cotangent version of the
observer space. What is the tangent counterpart?

The 1-form field ψ not only determines its kernel Sx , it also determines the locus
Ix = {y ∈ TxM : ψ(y) = 1}which is an affine space modeled over the vector space Sx .
Given Ix one has a unique one form ψ such that Ix = ψ−1(1). The triple (M, γ, ψ)

is therefore equivalent to a triple (M,I , a) where x 	→ Ix is a distribution of affine
subspaces of the slit tangent bundle, and a is a metric over them. The observer space in
the tangent approach isIx . Ifψ is exact we have a time fibration t : M → T , T ⊂ R, and
Ix is nothing but the Jet space J 1x (R, M), of sections (classical motions) s : T → M .

Another way to reach the same conclusion is as follows. The observer space is an
elliptic paraboloid on the cotangent affine space E∗

x . The quotient E
∗
x/ψ where ψ is the

affine normal is in one-to-one correspondence with the paraboloid. It is an affine space
modeled over the vector space T ∗

x M/ψ . As a consequence, since the latter is nothing
but the dual space to Sx and γ /ψ provides a bijection between the former and the latter,
the observer space can be identified with an affine space Ix associated to Sx .

Let p ∈ Ix denote an observer. We can find a basis {eα} of the tangent space such
that e0 = p, ei ∈ Sx and a(ei , e j ) = δi j . Then every element of the tangent space can be
written y = (u, v1, . . . , vn) where the locusIx reads u = 1. This choice of coordinates
is an observer coordinate system, and it is clear that any two choices for the same observer
p differ only for the orientation of the axes, namely for an orthogonal transformation of
v. Changes of coordinates between different observers are linear, and since they must
preserve both the equation y0 = 1 and the diagonal form of a they are necessarily of the

form u′ = u, v ĩ = Oĩ
j (v

j − v
j
0u). Let qα be coordinates in T ∗

x M dual to yα , then the

coordinate change induces a coordinate change −q0̃ = −q0 + v0 · q, qĩ Oĩ
j = q j , which

is the linear part of the affine change (80)–(81) where affine coordinates are used. We
remark that there is no Legendre connection between u and −p0.

We have established that the velocity space is given by a hyperplane Ix parallel to
Sx on TxM . The cone of the relativistic theory degenerates to the open half space Ix
containing Ix . A curve, s 	→ x(s) is timelike if its tangent vector belongs to Ix(s) for
every s. The following result is pretty easy to prove (take a piecewise timelike curve
which approximates a parallelogram whose opposite sides belong to the integral lines
of two vector fields in kerψ)
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Proposition 10. The non-relativistic spacetime is locally chronological if and only if
kerψ is locally integrable, namely dψ ∧ ψ = 0.

In this work we considered just the kinematical aspects of the relativistic and non-
relativistic theories. We can add further structure as follows. In order to compare the
kinematical structure at different spacetime points we shall need a connection. In the
classical case a natural possibility could be given by a torsionless linear connection ∇
of the tangent bundle such that ∇γ = ∇ψ = 0, namely a connection that respects the
kinematical structure [47,89]. Let T (X,Y ) = ∇XY − ∇Y X − [X,Y ], since

dψ(X,Y ) = X (ψ(Y )) − Y (ψ(X)) − ψ([X,Y ])
= ψ(T (X,Y )) + (∇Xψ)(Y ) − (∇Yψ)(X) = 0,

the one-form ψ is closed and hence locally exact. Thus the existence of a classical time
is really an outcome of the theory.

4. Geodesic Flow on the Light Cone Bundle and Causality

Let N = ∂Ω be the hypersurface of T M\0 given by the lightlike vectors. In this section
we assume that

(�) N is C2,1 and the open sharp cones Ωx are strongly convex6

and prove that these differentiability conditions guarantee a well defined notion of light-
like geodesic on spacetime.

Observe that due to the low regularity of L at the boundary of the cone, we cannot
expect to construct the lightlike spray from the metric as done in the Lorentz–Finsler
theories for whichL is C2 and Lorentzian on Ω̄ (for other results related to the differ-
entiability of the Lagrangian at the light cone see [70]).

Proposition 11. Assume (�). There exist maps L̂ : U → R, U open set, N ⊂ U,
L̂ |N = 0, dL̂x |N �= 0, L̂ < 0 on Ω ∩U, L̂ is positive homogeneous of degree two in
the fiber and it has the degree of differentiability of N .

Here L̂x (y) = L̂ (x, y) and it is understood that dL̂x = ∂L̂
∂yμ dyμ while dL̂ =

∂L̂
∂yμ dyμ + ∂L̂

∂xμ dxμ, thus we have also dL̂ �= 0 on N .

Notice that L̂ is not asked to define affine spheres on Ω , in fact its domain is just an
open neighborhood of N , nor it is demanded to have invertible Hessian onU . Of course,
there will be many functions with these properties; they might be called subsidiary
Lagrangians. We denote with L̂ the family of such functions.

Proof. Take a smooth section x 	→ Px ∩ N of the light cones introducing a distribution
of affine hyperplanes Px on T M (in suitable local coordinates this distribution x → Px
reads y0 = 1). By the existence of tubular neighborhoods we can introduce a function
û2 near the section so that it has the same degree of differentiability of N , vanishes and
has non-zero differential on Px ∩ N . The function L̂ is obtained using Eq. (59). ��

6 Actually we could just demandC1,1 differentiability in the x variable, andC2,1 differentiability in mixed
or vertical variables. The convexity assumption means that the local graph of a section of Nx , being C2,
has positive second order term in the Taylor expansion. The convexity requirement on the cone has strong
implications for differentiability (by Alexandrov’s theorem convexity implies twice differentiability a.e.) so
these conditions are likely to be relaxable.
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The affine sphere Lagrangian L in general does not belong to L̂ . Here the idea
is to define a dynamics through L̂ and show that it is really independent of L̂ . As
consequence, the dynamics follows solely from the distribution of cones N . The result
is analogous to the general relativistic result according towhich unparametrized lightlike
geodesics depend only on the light cone distribution. In that case the result is immediate
given the fact that this distribution determines the conformal class of the metric. Here
the proof is totally different since we have the added difficulties of anisotropy and lack
of twice differentiability at the cone.

As a first result we prove that every function in L̂ has Lorentzian Hessian at N .

Lemma 1 (Asssume (�)). Every element of L̂ has Lorentzian vertical Hessian on N.

Proof. For y ∈ Nx , let gy := ∂2L̂
∂yμ∂yν (x, y)dyμdyν . By positive homogeneity gy(y, y) =

2L̂ = 0 which proves that the signature of gy has some zeros or both plus and minus
signs. Let w ∈ TyNx , w �∝ y, and let y(t) be a curve on Nx , where y = y(0), w = ẏ(0).
Since L̂x (y(t)) = 0 we have differentiating twice and setting t = 0, gy(w,w) +
dL̂x (ÿ(0)) = 0. But since the cone is convex ÿ(0) points towards the interior namely
dL̂x (ÿ(0)) < 0 thus gy(w,w) > 0 which shows that the signature has at least n−1 plus
signs since any n − 1-dimensional subspace which stays on ker dL̂x |y and is transverse
to y is a positive subspace for the Hessian. For the other two signs we are left with
the possibilities (−,+), (−,−) (0, 0), (±, 0) since they are the only ones that admit
a vector with null gy-square. However, (+, 0) and (0, 0) are not acceptable since there
the vectors with null gy-square necessarily annihilate gy , while we have by positive
homogeneity gy(·, y) = dL̂x |y �= 0 since y ∈ Nx . The choice (−,−) is not acceptable
since we have just shown that gy restricted to ker dL̂x |y has signature (0,+, . . . ,+),
while for this choice there is no n-dimensional subspace with this signature (for this
type of arguments it is useful to keep in mind Cauchy interlacing theorem). The choice
(−, 0) is not acceptable since again we have just shown that gy restricted to ker dL̂x |y
has signature (0,+, . . . ,+) where y annihilates the restricted quadratic form. Here we
do have a n-dimensional subspace with this signature but the only possibility is that
y annihilates gy , which is impossible since gy(·, y) = dL̂x |y �= 0. Thus the only
possibility is that gy is Lorentzian. ��

Let L̂ ∈ L̂ , any C2 solution t 	→ x(t) of the Lagrange equation

d

dt

∂L̂

∂yμ
− ∂L̂

∂xμ
= 0, yμ = dxμ

dt
, (83)

is such that d
dt L̂ (x(t), ẋ(t)) = 0, thus it belongs to N if any of its points belongs to it.

This equation really defines a flow on N , in fact since the vertical Hessian is Lorentzian
and hence invertible on N it can be written in the (spray) form

dyμ

dt
+ gμσ

y

(

∂2L̂

∂xν∂yσ
yν − ∂L̂

∂xσ

)

= 0, yμ = dxμ

dt
.

which is a Lipschitz vector field over N . Existence and uniqueness of the solution is now
standard from the theory of ODEs [32]. The map t 	→ x(t) will be at least C2,1; more if
N has stronger differentiability properties. We now show that this unparametrized flow
depends solely on the distribution of light cones.
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Proposition 12. Assume (�). The unparametrized lightlike solutions to (83) do not
depend on the choice of L̂ ∈ L̂, and so depend solely on the distribution of light
cones N.

Proof. Let L̂ ′ ∈ L̂ be another choice. Since L̂ and L̂ ′ vanish on the hypersurface N
and are negative on Ω we must have dL̂ = φ dL̂ ′ for some positive function φ on N .
This means that for (x, y) ∈ N ,

∂L̂

∂xμ
= φ

∂L̂ ′

∂xμ
,

∂L̂

∂yμ
= φ

∂L̂ ′

∂yμ
. (84)

(the latter equation and the positive homogeneity of both L̂ and L̂ ′ prove that φ is
positive homogeneous of degree zero.) From (83) it is immediate that L̂ is conserved
and so that ẋ is lightlike for every t , namely (x(t), ẋ(t)) ∈ N . Then over the curve

0 = d

dt

∂L̂

∂yμ
− ∂L̂

∂xμ
= φ

((
d

dt
logφ

)
∂L̂ ′

∂yμ
+

d

dt

∂L̂ ′

∂yμ
− ∂L̂ ′

∂xμ

)

(x(t), ẋ(t))

Let t ′(t) be another parametrization to be determined. Since L̂ ′ is positive homogeneous
of degree two in y, so is it partial derivative with respect to x , while the partial derivative
with respect to y is positive homogeneous of degree one, thus from
((

d

dt
logφ

)
dt ′

dt

∂L̂ ′

∂yμ
+

d

dt

((
dt ′

dt

)
∂L̂ ′

∂yμ

)

−
(
dt ′

dt

)2
∂L̂ ′

∂xμ

)
(

x ′(t ′), dx ′
dt ′ (t

′)
)

= 0,

where x ′(t ′) := x(t), we get

(
dt ′

dt

)−1 (
d

dt
log

(

φ
dt ′

dt

))
∂L̂ ′

∂yμ
+

d

dt ′
∂L̂ ′

∂yμ
− ∂L̂ ′

∂xμ
= 0

The choice

t ′ =
∫

1

φ(x(t), ẋ(t))
dt (85)

shows that the reparametrization x ′(t ′) satisfies (83) with L̂ replaced by L̂ ′ and t
replaced by t ′. ��

We conclude

Theorem 25. Assume (�), then we have a natural definition of lightlike geodesic which
coincides with that for a subsidiary Lagrangian vertically C2,1 at the light cone.

Let x(t) be a lightlike solution to (83), we say that t is a L̂ -parametrization of
the unparametrized geodesic x . Since L̂ is positive homogeneous of degree two, any
two L̂ -parametrizations are affinely related. We say that the L̂ -parametrization t is
syntonized with the L̂ ′-parametrization t ′ if at every point of x

dt = φ dt ′ where φ is given by dL̂ = φ dL̂ ′

The two parametrizations are syntonized at one event if they are at every event.
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Theorem 26. Parametrizations relative to different Lagrangians in L̂ assign the same
momenta to the lightlike geodesic if and only if they are syntonized.

Proof. It follows from the identity

∂L̂

∂yμ
(x(t), dx

dt (t)) = φ
∂L̂ ′

∂yμ
(x(t), dx

dt (t))

= φ
dt ′

dt

∂L̂ ′

∂yμ
(x ′(t ′), dx ′

dt ′ (t
′)) (86)

��
4.0.1. Transport of momenta. The notion of affine parameter on the lightlike geodesic
might appear to be necessary for the physical interpretation of the theory. However, this
is not so, what is mandatory is the possibility of transporting the momenta, while there
could be no bijection between momenta and vectors. In fact, observations are obtained
coupling a momenta relative to a massive/massless particle with a velocity space vector
(hence timelike) representing an observer. Null vectors are really just intermediate tools
in theories like general relativity, used to express important concepts such as lightlike
geodesics and momenta. They can be used because in those metrical theories there
happen to be a one to one correspondence with lightlike momenta, a correspondence
which is purely accidental and related to the fact that g makes sense at the boundary of
the cone. This correspondence is now lost in our theory without, however, leading to
any loss of physical content. This is really a good feature of our theory as it helps us to
identify and remove unnecessary mathematical constraints.

Let us elaborate on this important point. We have seen that each Lagrangian L̂ has
Lorentzian Hessian on the light cone, thus there is a bijective map from lightlike vectors
to lightlikemomenta. However, this map depends on L̂ and so is not physically relevant.
Without a Lagrangian we have just a bijection between lightlike momenta directions and
lightlike vector directions, a map which follows from the duality between the strongly
convex C2 cone Ωx ⊂ TxM\0, and its polar Ω∗

x ⊂ T ∗
x M\0. It turns out that this is all

we need for moving the momenta of a lightlike particle along its geodesic.
So suppose we are given a photon of momenta p at some event. We find first the

lightlike direction that corresponds to it using the duality of the cones, then the unpara-
metrized lightlike geodesic. We choose an element L̂ ∈ L̂ and a starting velocity which
is mapped to p by the Legendre map of L̂ . This assigns a parametrization to the lightlike
geodesic. If we were to choose a different element of L̂ we would still get a syntonized
parametrization by Theorem 26, thus since parametrizations that are syntonized at one
event remain syntonized, by the same theorem the momenta assigned to the other points
of the lightlike geodesic does not depend on the choice of L̂ .

We conclude

Theorem 27. Assume (�). There is a natural unparametrized flow on N∗ such that every
integral curve γ projects on an unparametrized lightlike geodesic σ . If (x, p) ∈ γ and
y is tangent to σ at x then pμyμ = 0.

4.0.2. Affine parameter. Some results and constructions might still require some notion
of affine parameter. In order to introduce this concept the next argument could be of
value. Suppose to have been given not just the distribution of light cones but a Lorentz–
Finsler Lagrangian which is Lipschitz on N (this is basically the case of affine sphere
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relativity provided we assume that the x dependence is not problematic and the vertical
Lipschitz constant is locally uniform in x ; recall the mentioned result by Cheng and Yau
[17, p. 53] which assures Lipschitzness in the vertical variable, or Corollary 3). We want
to show that there is a natural parametrization on the lightlike geodesics determined up
to affine transformations. Let x(t) be a lightlike geodesic parametrized accordingly to
the Lagrangian L̂ ∈ L̂ . The differential dLx exists almost everywhere7 on Nx , thus we
can find a locally bounded almost everywhere positive measurable function ϕ : N → R

such that at every x and almost every y ∈ Nx , dLx = ϕdL̂x . Defining

λ =
∫

ϕ(x(t), ẋ(t))dt

we obtain a parametrization which up to affine transformations it is independent of
L̂ ∈ L̂ as it follows from Eqs. (84) and (85). If L is just Lipschitz at the cone this
parameter is defined only on almost every geodesic, since it is required that dL̂x exists
on almost every point of the geodesic. The lightlike geodesic with images that do not
comply with this requirement can be still approximated by lightlike geodesics for which
the affine parameter is defined.

4.0.3. Causality theory. We know that the limit of an accumulating sequence of Finsler
causal curves is still a Finsler causal curve, the argument being that given in [70, Remark
2]. Let yn ∈ TxM , yn → y, where yn are timelike and y is lightlike. We did not prove
that the timelike geodesics with starting velocity yn converge in the limit to the lightlike
geodesicwith starting velocity y.Wewere not able to do so since the non-differentiability
of the Lagrangian might imply that the limit is chronal though causal. Still the body
of causality theory does not depend on this result but rather on the local achronality of
lightlike geodesics (for instance, this property assures thatCauchyhorizons are generated
by lightlike geodesics). Here we prove that the lightlike geodesics previously introduced
are locally achronal (with respect to the timelike curves defined byL ).

Proposition 13. Assume (�). The subsidiary Lorentzian LagrangianL : U → R, N ⊂
U, can be chosen so that U = T M\0, it has Lorentzian Hessian and the same degree
of differentiability of N .

Proof. On TxM let us consider the parametrization of the indicatrix of L̂ (defined near
the light cone) through the function u (see Eq. (60)). Here u is defined just on a half
neighborhood U = {v ∈ D̄ : −ε < u(v) ≤ 0}, ∂D ⊂ U ⊂ D̄, where u = 0 on
∂D. The Lorentzian nature of the Hessian of L̂ is equivalent to the convexity of u (see
Eqs. (37) and (46)). So we want to show that the C2 function u can be extended to
the whole D preserving convexity and its degree of differentiability. Due to a theorem
by Min Yan [99, Theor. 3.2] we have just to show that u is convex on U (which means
u(αv1+βv2) ≤ αu(v1)+βu(v2) forα, β ≥ 0,α+β = 1,whenever the linear combination
belongs to U ). Let h be the extension of u obtained setting h = −ε inside the region
bounded by ∂U . Its epigraph is convex since it is locally convex and connected (Tietze-
Nakajima’s theorem) thus u|U was convex (alternatively apply directly the theorem by
Ghomi [28]). We have extended the subsidiary Lagrangian to Ω̄x . The extension over
TxM follows from the main result of [70]. ��

7 It is really defined everywhere if the cones are smooth, see Corollary 3.
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Let N beC3,1. As the original and the subsidiary Lagrangian share the same timelike
cones and lightlike geodesics the causality of our original Finsler theory coincides with
that of the subsidiary Lagrangian. Causality theory for Lagrangians C3,1 defined on
T M\0 has been developed in [64] where we proved that lightlike geodesics are achronal
[64, Theor. 6]. Thus the same holds for the present theory.

Corollary 4. The lightlike geodesics just introduced are locally achronal with respect
to the chronological relation determined by the light cones.

As a consequence, standard results of causality theory follow (e.g. [64, Lemma 2]).
Actually, we have shown that causality theory does not depend on a Lagrangian as its
main results follow just from the definition of N .

5. Conclusions

Finsler gravity theory has proved successful in generalizing some standard results of
causality theory including singularity theorems. In this work we have argued that the
family of Finsler spacetimes might be too broad. We showed that in order to estab-
lish a one-to-one correspondence with the family of pairs given by (a) sharp convex
cone structure and (b) spacetime volume form, we have to restrict ourselves to affine
sphere spacetimes, namely to Finsler spacetimes having affine sphere indicatrices, or
equivalently, having vanishing mean Cartan torsion. Only through this restriction can we
preserve the deep correspondence between spacetimes and pairs of spacetime measures
and conic orders.

We obtained this result taking advantage of some deep mathematical theorems on
affine differential geometry proved in the sixties and seventies by Calabi, Cheng, Yau
and other mathematicians. In particular, we showed that for a consistent physical inter-
pretation projective coordinates should be used on the tangent bundle and homogeneous
coordinates should be used on the cotangent bundle. These are the coordinate systems
that simplify the Monge–Ampère equation of the affine sphere and which admit the
simplest physical interpretation in terms of velocity and momentum variables. We have
also shown that the non-relativistic theory admits the same formulation; it is sufficient
to replace proper affine spheres with improper affine spheres. In fact, we have shown
that improper affine sphere spacetimes are equivalent to Galilei structures, namely to the
kinematical structures representing non-relativistic physics.

In the last section we have returned to the more general context of Lorentz–Finsler
theories.Wehave shown that the unparametrized lightlike geodesic flowand the transport
of lightlike momenta over lightlike geodesics can be consistently defined without using
the differentiability of the Lagrangian at the cone, but using just differentiability and
convexity conditions on the distribution of light cones. In fact, we have shown that
the lightlike geodesics and the transport of lightlike momenta depend solely on the
light cone distribution, not on the Lagrangian. This is a surprising and very satisfactory
result. The affine parameter could be defined in some cases but we argued that it does
not seem necessary for most of the physical interpretation of the theory. Finally, we
have shown that the basic results of causality theory do not depend on some Lagrangian
differentiability condition at the light cone.

Much of the difficulties connected with the Finslerian generalization of general rel-
ativity are due to an overabundance of mathematical objects. Fortunately, in the last
years a less tensorial, more geometrical approach has helped to clarify several aspects
of this theory. Its ability to involve some beautiful but somewhat overlooked chapters of
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mathematics, such as affine differential geometry, might signal that we could be on the
right path for the development of a physical extension of general relativity. Indeed, the
overall feeling is that we might be rapidly progressing towards a mature gravitational
theory.

Acknowledgements. I thank Xu-Jia Wang for suggesting to pass through the regularity of the graph of u to
estimate the regularity of u2 (cf. Proposition 3). I announced the main idea of this work in [67], and explored
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References

1. Aazami, A.B., Javaloyes, M.A.: Penrose’s singularity theorem in a Finsler spacetime. Class. Quantum
Grav. 33, 025003 (2016)

2. Álvarez Paiva, J.C., Thompson, A. C.: Volumes on normed and Finsler spaces. In: A sampler of Riemann–
Finsler geometry, vol. 50, pp. 1–48. CambridgeUniv. Press, Cambridge.Math. Sci. Res. Inst. Publ. (2004)

3. Anderson, J.L., Finkelstein, D.: Cosmological constant and fundamental length. Am. J. Phys. 39, 901–
904 (1971)

4. Asanov, G.S.: Finsler geometry, relativity and gauge theories. D. Reidel PublishingCo, Dordrecht (1985)
5. Basilakos, S., Kouretsis, A.P., Saridakis, E.N., Stavrinos, P.: Resembling dark energy andmodified gravity

with Finsler-Randers cosmology. Phys. Rev. D. 88, 123510 (2013)
6. Beem, J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035–1039 (1970)
7. Beem, J.K.: On the indicatrix and isotropy group in Finsler spaces with Lorentz signature. Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 54(8), 385–392 (1974) (1973)
8. Benoist, Y.: Convexes divisibles. C. R. Acad. Sci. Paris Sér. I Math. 332, 387–390 (2001)
9. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Rel-

ativitätstheorie. Band II., Affine Differentialgeometrie. J. Springer, Berlin (1923)
10. Bock, R.D.: Local scale invariance and general relativity. Int. J. Theor. Phys. 42, 1835–1847 (2003)
11. Bombelli, L., Lee, J.-H., Meyer, D., Sorkin, R.D.: Space-time as a causal set. Phys. Rev. Lett. 59, 521–

524 (1987)
12. Brickell, F.: A new proof of Deicke’s theorem on homogeneous functions. Proc. Am.Math. Soc. 16, 190–

191 (1965)
13. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jör-

gens. Michigan Math. J. 5, 105–126 (1958)
14. Calabi, E.: Complete affine hyperspheres. I. In: Symposia Mathematica, Vol. X (Convegno di Geometria

Differenziale, INDAM, Rome, 1971), pp. 19–38. Academic Press, London (1972)
15. Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première par-

tie). Ann. Sci. École Norm. Sup. (3) 40, 325–412 (1923)
16. Castro, C.: Gravity in curved phase-spaces, Finsler geometry and two-times physics. Int. J. Mod. Phys.

A. 27, 1250069 (2012)
17. Cheng, S.-Y. Yau S.-T.: On the regularity of the Monge-Ampère equation det(∂2u/∂xi ∂x j ) =

F(x, u). Comm. Pure Appl. Math. 30, 41–68 (1977)
18. Cheng, S.Y., Yau, S.-T.: The real Monge-Ampère equation and affine flat structures. In: Proceedings of

the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing,
1980), pp. 339–370. Science Press, Beijing (1982)

19. Cheng, S.-Y., Yau, S.-T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Comm.
Pure Appl. Math. 39, 839–866 (1986)

20. Deicke, A.: Über die Finsler–Räume mit Ai = 0. Arch. Math. 4, 45–51 (1953)
21. Dillen, F., Vrancken, L.: Calabi-type composition of affine spheres. Diff. Geom. Appl. 4, 303–328 (1994)
22. Dixon, W.G.: On the uniqueness of the Newtonian theory as a geometric theory of gravitation. Commun.

Math. Phys. 45, 167–182 (1975)
23. Duval, C., Burdet, G., Künzle, H.P., Perrin, M.: Bargmann structures and Newton–Cartan theory. Phys.

Rev. D 31, 1841–1853 (1985)
24. Duval, C., Gibbons, G.W., Horvathy, P.A., Zhang, P.M.: Carroll versus Newton and Galilei: two dual

non-Einsteinian concepts of time. Class. Quantum Grav. 31 (2014)
25. Fox, D.J.F.: Functions dividing their Hessian determinants and affine spheres. Asian J. Math. 20(3), 503–

530 (2016)
26. Fox, D.J.F.: A Schwarz lemma for Kähler affine metrics and the canonical potential of a proper convex

cone. Annali di Matematica 194, 1–42 (2015)
27. Geroch, R.: Amethod for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–923 (1971)



800 E. Minguzzi

28. Ghomi, M.: The problem of optimal smoothing for convex functions. Proc. Am. Math. Soc. 130, 2255–
2259 (2002) (electronic)

29. Gigena, S.: Integral invariants of convex cones. J. Diff. Geom. 13, 191–222 (1981)
30. Gigena, S.: On a conjecture by E. Calabi. Geom. Dedicata 11, 387–396 (1981)
31. Godbillon, C.: Géométrie différentielle et mécanique analytique. Hermann, Paris (1969)
32. Hartman, P.: Ordinary differential equations. Wiley, New York (1964)
33. Hildebrand, R.: Analytic formulas for complete hyperbolic affine spheres. Contrib. Algebra

Geometr. 55, 497–520 (2014)
34. Hildebrand, R.: Canonical barriers on convex cones. Math. Oper. Res. 39, 841–850 (2014)
35. Hildebrand, R.: Centro-affine hypersurface immersions with parallel cubic form. Contrib. Algebra

Geometr. 56, 593–640 (2015)
36. Hu, Z., Li, H., Vrancken, L.: Locally strongly convex affine hypersurfaces with parallel cubic form. J.

Differ. Geom. 87, 239–308 (2011)
37. Horváth, J.I.: A geometrical model for the unified theory of physical fields. Phys. Rev. 80, 901 (1950)
38. Horváth, J.I., Moór, A.: Entwicklung einer einheitlichen feldtheorie begründet auf die finslersche geome-

trie. Z. Physik 131, 544–570 (1952)
39. Ikeda, S.: On the theory of gravitational field in Finsler spaces. Lett. Nuovo Cimento 26, 277–281 (1979)
40. Ishikawa, H.: Einstein equation in lifted Finsler spaces. Il Nuovo Cimento 56, 252–262 (1980)
41. Ishikawa, H.: Note on Finslerian relativity. J. Math. Phys. 22, 995–1004 (1981)
42. Jian, H., Wang, X.-J.: Bernstein theorem and regularity for a class ofMonge–Ampère equations. J. Differ.

Geom. 93, 431–469 (2013)
43. Jo, K.: Quasi-homogeneous domains and convex affine manifolds. Topol. Appl. 134, 123–146 (2003)
44. Jörgens, K.: Über die Lösungen der Differentialgleichung r t − s2 = 1. Math. Ann. 127, 130–134 (1954)
45. Knebelman, M.S.: Conformal geometry of generalized metric spaces. Proc. N. A. S. 15, 376–379 (1929)
46. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. vol. I of Interscience tracts in pure and

applied mathematics. Interscience Publishers, New York (1963)
47. Künzle, H.P.: Galilei and Lorentz structures on space-time: comparison of the correspondig geometry

and physics. Ann. Inst. H. Poincaré Phys. Theor. 17, 337–362 (1972)
48. Künzle, H.P.: Covariant Newtonian limit of Lorentz space-times. Gen. Rel. Grav. 7, 445–457 (1976)
49. Lämmerzahl, C., Perlick, V., Hasse, W.: Observable effects in a class of spherically symmetric static

Finsler spacetimes. Phys. Rev. D. 86, 104042 (2012)
50. Laugwitz, D.: Geometrical methods in the differential geometry of Finsler spaces. In: Geometria del

calcolo delle variazioni, pp. 173–226. Springer, Heidelberg, Fondazione C.I.M.E., Florence, vol. 23 of
C.I.M.E. Summer Sch. (2011) (Reprint of the 1961 original)

51. Li, A.-M.: Calabi conjecture on hyperbolic affine hyperspheres. II. Math. Ann. 293, 485–493 (1992)
52. Li, A.M., Simon, U., Zhao, G.S.: Global affine differential geometry of hypersurfaces. Vol. 11 of de

Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1993)
53. Li, A.-M., Xu, R.: A cubic form differential inequality with applications to affine kähler–ricci flat mani-

folds. Res. Math. 54, 329–340 (2009)
54. Li, A.-M., Xu, R.: A rigidity theorem for an affineKähler–Ricci flat graph. Res.Math. 56, 141–164 (2009)
55. Li, X., Chang, Z.: Exact solution of vacuum field equation in Finsler spacetime. Phys. Rev. D. 90, 064049.

arXiv:1401.6363v1 (2014)
56. Lin, F.H.,Wang, L.: A class of fully nonlinear elliptic equations with singularity at the boundary. J. Geom.

Anal. 8, 583–598 (1998)
57. Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective trans-

formations. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245–272.
Academic Press, New York (1974)

58. Loftin, J.: Survey on affine spheres. In: Handbook of geometric analysis, No. 2., pp. 161–191. Int. Press,
Somerville, MA, vol. 13 of Adv. Lect. Math. (ALM) (2010)

59. Loftin, J.C.: Riemannianmetrics on locally projectively flat manifolds. Am. J.Math. 124, 595–609 (2002)
60. Matsumoto, M.: On c-reducible Finsler spaces. Tensor 24, 29–37 (1972)
61. Matsumoto, M.: On the indicatrices of a Finsler space. Period. Math. Hung. 8, 187–191 (1977)
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