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Abstract: We investigate spacetimes whose light cones could be anisotropic. We prove
the equivalence of the structures: (a) Lorentz—Finsler manifold for which the mean Cartan
torsion vanishes, (b) Lorentz—Finsler manifold for which the indicatrix (observer space)
at each point is a convex hyperbolic affine sphere centered on the zero section, and (c)
pair given by a spacetime volume and a sharp convex cone distribution. The equivalence
suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-
metrical concept enters the definition. As a result, this work shows how the metric
features of spacetime emerge from elementary concepts such as measure and order. Non-
relativistic spacetimes are obtained replacing proper spheres with improper spheres, so
the distinction does not call for group theoretical elements. In physical terms, in affine
sphere spacetimes the light cone distribution and the spacetime measure determine the
motion of massive and massless particles (hence the dispersion relation). Furthermore,
it is shown that, more generally, for Lorentz—Finsler theories non-differentiable at the
cone, the lightlike geodesics and the transport of the particle momentum over them are
well defined, though the curve parametrization could be undefined. Causality theory
is also well behaved. Several results for affine sphere spacetimes are presented. Some
results in Finsler geometry, for instance in the characterization of Randers spaces, are
also included.
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1. Introduction

In recent years the Finslerian generalization of general relativity has made considerable
progress. Several results, including much of the edifice of causality theory and the famous
singularity theorems, have been generalized [1,63,64,66]. Only a few but important
difficulties still remain; this work is devoted to the solutions of some of those. As we
shall see, their resolution will make us look at the spacetime concept in some novel
ways.

In general relativity it is possible to recover the Lorentz metric from the spacetime
volume form and the light cone distribution. In fact, it is well known that in spacetime
dimension n + 1 > 3 two Lorentzian metrics on the same manifold share the same light
cones if and only if they are proportional, see e.g. [97, App. D]. The conformal factor
can then be fixed to one imposing the equality of the volume forms.

This very simple property has prominent importance because it shows that the grav-
itational phenomena is encoded in two simple concepts: the causal order and the space-
time measure. One could also add to this pair a further element, namely the spacetime
topology.

This observation has led several researchers to believe that the quantization of gravity
or better, of spacetime itself, must be formulated in terms of these structures. Among
the theories that embody these ideas we might mention Causal Set Theory [11] and
unimodular gravity [3,10,88].

We share the opinion that a fundamental theory should pass through the concepts
of order, measure and topology and so that once the manifold is given, one should be
able to recover the metric from a volume form and a cone structure. Unfortunately, this
correspondence is lost for the so far proposed Finslerian generalizations of Einstein’s
general relativity, so this work aims to solve this problem.

It is perhaps worth to recalling what is Finsler geometry before we become more
specific. We might say that Riemannian spaces can be obtained from differentiable
manifolds M introducing a point dependent scalar product g (Riemannian metric), which
has the effect of converting each tangent space 7, M into a (finite dimensional) Hilbert
space. Similarly, Finsler spaces can be obtained from manifolds M by introducing a point
dependent Minkowski norm F, or, which is the same, a Finsler Lagrangian .¥ = F2/2,
which converts each tangent space 7 M into a Minkowski space, namely into a Banach
space with strongly convex unit balls. These unit balls are also called indicatrices.

As the Minkowski ball is no more round (ellipsoidal), namely since it cannot be
brought to a sphere through a linear change of coordinates on 7 M, Finsler geometry is
essentially related to anisotropic features of the space.
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In Finslerian generalizations of Einstein’s theory there are further complications
related to the fact that the Finsler Lagrangian ., having Lorentzian Hessian, induces
non-compact unit balls (indicatrices).

We shall recognize that anisotropic theories of relativity can preserve the correspon-
dence,

Finsler Lagrangian < spacetime measure + light cone structure,

provided the Finsler indicatrix is an affine sphere, or equivalently, provided the mean
Cartan torsion (Tchebycheff form) vanishes:

Iy =0. (1)

This idea is the result of the physical interpretation of deep mathematical results by
several distinguished mathematicians including Pogorelov, Calabi, Cheng and Yau. We
shall also show that the coordinates introduced by Gigena to study affine spheres have a
transparent physical interpretation. In particular, inhomogeneous projective coordinates
should be used on the tangent space while homogeneous projective coordinates should
be used on the cotangent space; in this way the former can be interpreted as velocity
components while the latter as momentum components. The function u(v) solving the
Monge—Ampere equation of the affine sphere will receive the interpretation of observer
Lagrangian of the theory.

In order to fully understand this solution we will have to introduce some concepts
from affine differential geometry, as the reader might not be acquainted with this beautiful
mathematical theory [52,74]. Thus portions of the work will have a review character.
We do not claim particular originality in this exposition, saved perhaps for the Finslerian
point of view which at this stage is necessary in order to establish a connection with
current literature on anisotropic gravity theories.

We recall that affine differential geometry originated with Blaschke’s construction
of a natural transverse direction—the affine normal—to any point on a non-degenerate
hypersurface immersed on affine space. Remarkably, the construction does not require a
scalar product, a fact which, ultimately, will allow us to give a definition of spacetime free
from algebraic-metrical elements. For instance, the distinction between non-relativistic
and relativistic physics will be devoid of group theoretical characterizations and related
instead to the center of the affine sphere distribution, whether placed at infinity or not.

Since the vacuum equations of general relativity demand the proportionality between
the Ricci tensor and the metric, one might ask whether the condition 7, = 0 has a similar
characterization. We shall prove that the answer is affirmative in at least three different
ways as I, = 0 can be regarded as the Kihler—Einstein condition for the Lorentz—Finsler
metric (Theorem 2), as the Kéhler—Einstein condition for the Monge—Ampéere (Cheng-
Yau) Riemannian metric of the timelike cone (Theorem 1), and also as a kind of Einstein
condition for the Blaschke structure of the indicatrix (Proposition 2).

Much of this work will be devoted to the kinematics of the theory and to its interpre-
tation. The many proposed Finslerian gravitational dynamics [16,37-40,49,55,71,72,
76,80,83-87,93,96] can then be adapted to our kinematical model, adding the condition
I, = 0. A dynamics proposed by the author which first suggested to consider a vanishing
mean Cartan torsion can be found in [63]. There it was shown that the (hh-)Ricci tensor
R’fx up appearing in most dynamical proposals is symmetric if /, = 0, and also that these
spaces are weakly-Berwald and weakly-Landsberg.

In (positive definite) Finsler spaces the condition I, = 0 was already considered by
Cartan [15], but later Deicke [20] discovered that Finsler spaces satisfying this condition
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were Riemannian and hence isotropic. Of course, the interest in this condition faded,
since the many results obtained through its imposition were a consequence of the triviality
of the Finsler space. Early authors working in Finsler gravity did not pay much attention
to the signature of the metric, so some of them discarded this condition [39] although
Deicke’s theorem really holds only for positive definite metrics.

Exact solutions will not be considered in this work but in a related paper [69] we shall
provide examples of affine sphere spacetimes that reduce themselves to the Schwarz-
schild, Kerr, FLRW spacetimes in a suitable velocity limit, and hence which satisfy the
Lorentzian Einstein equations in the same limit. In general, the affine sphere condition
I, = 0 1is quite hard to solve though, as we shall recall, general theorems guarantee
the existence of solutions. Mathematicians are working to find new methods to generate
affine spheres in closed form [25,33]. A perturbative approach seems more amenable
but will be pursued in a different work.

This work is organized as follows. In the first section we recall some elements of
Lorentz—Finsler theory, we define the indicatrix and we introduce the quotient and the
induced metrics on the indicatrix. We introduce the canonical Hessian metric of the
timelike cone and relate the Finsler Lagrangian to the Kéhler potential of the cone. We
also give some arguments pointing to a null mean Cartan torsion, which can be added to
those already discussed in [63]. This condition makes it possible to identify the spacetime
volume form in the usual way and can be regarded as a Kihler affine condition of Ricci
flatness on the vertical degrees of freedom.

In the second section we introduce the mathematics of affine spheres, we characterize
affine spheres through the mean Cartan torsion /,,, we clarify the role of the volume form
on spacetime, we show how to convert affine sphere theoretical results into Finslerian
results (and conversely), and prove some theorems required for the physical interpretation
of affine spheres. We introduce both proper and improper spheres, the physical theory
constructed from those leading respectively to relativistic and non-relativistic physics.

The third section is devoted to the application of the results of the previous sections to
the geometrical and physical interpretation of Lorentz—Finsler spaces having vanishing
mean Cartan torsion. Here we use a deep mathematical theorem, first conjectured by
Calabi, in order to connect volume and conic order on spacetime with the affine sphere
distribution on the tangent bundle. We are then able to give a definition of affine sphere
spacetime that does not involve metrical or group theoretical elements.

In the fourth section we return to the broader framework of Lorentz—Finsler theories.
We show that the lightlike geodesic flow follows solely from the distribution of light
cones and so does the transport of the photon momenta along the geodesic. These results
are really independent of the Lagrangian and so do not use its differentiability at the light
cone. They require just differentiability and convexity conditions on the distribution of
light cones. Finally, we prove that the standard results of causality theory are preserved.

For space reasons the discussion of the relativity principle and a study of some models
satisfying it will be given in a different work [69].

1.1. Elements of Lorentz—Finsler theory. Concerning notation and terminology, the
Lorentz signature is (—, +, ..., +). The wedge product between 1-forms is defined by
aANfB =a®p — B Q. On an affine space E the Hessian metric of a function f
with respect to affine coordinates will be denoted, with some abuse of notation, d? f.
The inclusion is reflexive: X C X. The manifold M has dimension m = n +1 > 2 and
it will be physically interpreted as the spacetime. Greek indices take values 0, 1, ..., n
while latin indices take values in 1, ..., n. We shall often write y in place of y’. Local
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coordinates on M are denoted {x*} while the induced local coordinate system on 7 M
is {x*, y¥}, namely y*9/9x" € Ty M.

A point in the space TT M will be denoted with (x, y, X, ¥). Observe that the canon-
ical projection 7: TM — M, (x,y) — x, has pushforward w.: TTM — TM,
(x,y,x,y) — (x,x) so the vertical space VT M consists of the points (x, y, 0, y) and
it is naturally diffeomorphic to TM xj; T M (it can be easily checked calculating the
cocyle after a change of coordinates X = X (x) on the base [31,63]).

We start giving a quite general setting for Finsler spacetime theory, which we call
the rough model [4,70,77].

Let £2 be a subbundle of the slit tangent bundle, 2 C TM\0, such that £2, is an
open sharp convex cone for every x. A Finsler Lagrangian is amap .Z: 2 — R which
is positive homogeneous of degree two in the fiber coordinates

L(x,sy) = 2L (x, y), Vs>0.

It is assumed that the fiber dependence is at least C3(£2), that £ < 0 on £ and that &
can be continuously extended setting . = 0 on 9§2. We might denote .%; := Z|q, .
The matrix metric is defined as the Hessian of . with respect to the fibers

2.7
AyrayY’

g/l.v(-xv Y) =

This matrix can be used to define a metric in two different, but essentially equivalent
ways. The Finsler metric is typically defined as g = g, (x, y)dx*dx" and is a map
g: 2 — T*M®T*M.For any given x one could also use this matrix and the mentioned
diffeomorphism with the vertical space to define a vertical metric on 2, as follows
guv(x, y)dy*dyY. Most often we shall use the latter metric, but should nevertheless
be clear from the context which one is meant. In index free notation the metric will
be also denoted g, to stress the dependence on the fiber coordinates. Given a non-
linear connection one could also interpret these two metrics as two different restrictions,
horizontal or vertical, of the Sasaki metric on £2

gs = guv(x, y)dxtdx¥ + g, (x, y) Sy*8y”,

where §y* = dy* + N} (x, y)dx" and N .. are the coefficients of the non-linear connec-
tion.

The manifold (M, %) is called a Finsler spacetime whenever g, is Lorentzian,
namely of signature (—, +, ..., +). By positive homogeneity we have ¥ = % g y)
and d.Z = g,(y, -). The usual Lorentzian-Riemannian case is obtained for .Z’ quadratic
in the fiber variables. The vectors belonging to §2, are called timelike while those belong-
ing to 92, \{0} are called lightlike. We shall also denote the former set with I} and the
latter set with E7, often dropping the plus sign. A vector is causal if it is either timelike
or lightlike, the set of causal vectors being denoted J;. The plus sign is introduced for
better comparison with notations of Lorentzian geometry and general relativity and can
be dropped in most parts of this work.

There are other approaches to Lorentz—Finsler geometry which are contrasted in [70].
For instance, one might start with a Finsler Lagrangian defined on the whole slit tangent
bundle T M\{0}, in which case it is possible to prove, for n > 2 and for reversible
Lagrangians .2 (x, —y) = Z(x, y), that the timelike set {<Z < 0} is the union of two
convex sharp cones [65] (see also [6,7,75]). A time orientability assumption allows
one to select a future I and a past I continuous cone distribution as in Lorentzian



754 E. Minguzzi

geometry. The present study applies to this framework as well provided the future cone
is identified with £2 and the Finsler Lagrangian is there restricted. Observe that we do
not demand the differentiability of the Finsler Lagrangian at the boundary E™, nor that
the metric can be continuously extended to it. This condition would make it possible
to replace the Finsler Lagrangian with an extension defined over the whole slit tangent
bundle [70].

The space indicatrix, or observer space, or simply the indicatrix is the set!

I ={x,y) € 2:2L(x,y) =—1}

Once again there will be no ambiguity in dropping the minus sign.
Due to positive homogeneity the Finsler Lagrangian can be recovered from the indi-
catrix as follows

L(x,y)=—s>/2, wheres > 0and y/s € .% . ()
The Cartan torsion is defined by

d

1
Caﬁy(xs y) = 5 ay_ygaﬁa 3)

it is symmetric and satisfies Cyg,, y¥ = 0. Its traceless part will be denoted with Mg, .
The Cartan curvature is Cogys = %Caﬁy. For every x the set £2, endowed with the

vertical metric g, (x, y)dy*dy" has Levi—Civita connection coefficients ng in the
coordinates {y*}. The mean Cartan torsion is

|
Iy = 'uvc;wa = EWlOg“ietguvlv (€]
where for the last equality we used Jacobi’s formula for the derivative of the determinant.
A well known problem in Finsler geometry is that of providing a natural notion of
manifold volume form. There have been several proposals, the most popular being the
Busemann’s and the Holmes—Thompson’s volume forms [2]. Unfortunately, none of
them can work in a Lorentz—Finsler framework since they rely on the compactness of
the indicatrix.
In pseudo-Riemannian geometry there is a simple volume form associated to any
metric. In a local coordinate system it is given by

dp = )mdxo Adx! A adx"] = /Tdet g [d"x. (5)

where | | reminds us that we are taking the equivalence class, that is, we are regarding
as equivalent any two n+1-forms differing by a sign.

Since in Physics there seems to be the need of a well defined spacetime volume we
find in Eq. (4) a first motivation for imposing the condition I, = 0. This is the simplest
condition which assures that a natural volume form on spacetime could be defined. In
fact, if it holds true we can adopt the usual pseudo-Riemannian expression for the volume
form.

1 Whenever the Lagrangian is defined over the whole slit tangent bundle it can be useful to define [70] the
light cone indicatrix #0 or the spacetime indicatrix #* obtained for .2 = 0 or 2. = 1. The names follow
from the signature of the induced metrics.
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1.2. Quotient and induced metrics. This section introduces the notion of quotient metric,
and of induced (angular) metric on the indicatrix. It is known material introduced here
just to fix the notation and terminology.

The pair (£2y, g) is a Lorentzian manifold. Let Q, be the quotient of §2, under the
action of homotheties. The bundle 7¢: £, — Q. is principal, the group action on it
being the group of dilations (R, +), where any homothety acts as y — ¢°y, for some
s € R. The one-parameter group of diffeomorphisms is generated by the Liouville vector
fieldk: : TxM — TT: M

k(y) =y = y"a/ay".

The positive homogeneity of the metric g, (x, sy) = guv(x, y) implies Lyg = 2g,
where L is the Lie derivative, thus £ is a Killing vector for the metric g/|2.%(x, y)|. The
principal bundle §2, can be endowed with a natural connection 1-form

gy(y,y)

Indeed, w satisfies the defining conditions of a connection 1-form on a principal bundle
[46] (recall that Lk = 0)

Lirw =0, wk) =1.
Let us define
F =/2|.Z]. )

The connection 1-form is integrable and the principal bundle is trivial because the con-
nection is exact

w=dlogF.

It is also possible to define a metric on Q, while working with vectors on 72, ~
T, M. This process is quite well known in relativity theory [27] and has been called
indicatorization in the literature on Finsler spaces [61].

Let us consider the metric on £2,

1 gy()” )®gy(y’ )
h = - ) (8)
778 () )
which in coordinates {y*} reads
1 1 1
by = M(-ﬁffu,v - gzuf,v) =~ Fuw €))

then
h(yv ')20, hyy:hy, fOI‘S >O,

where the last property can be written L2 = 0. Thus 4 depends only on the point of

0O, and annihilates the radial position vector y, so it defines a metric 4 on the quotient
0O, through

hy(wi, wa) := hy (Wi, W),
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where wi, wy € T5 Q. Here y € £2; is any vector such that nQ(y) =y,and W, W €

Ty M are representatives of wi, wy € T5Qy in the sense that JT*Q(Wi) =w;, i =1,2.
Since & is homogeneous of zero degree and annihilates y, the defining expression is well
posed as it is independent of the choice of representatives (y, Wi, W»). Observe that
h = 72*h but in what follows we might not be too rigorous in distinguishing between
h and h.

Remark 1. The metric (9) is also the induced metric on the indicatrix .~ since there
2% = —1, and the vectors tangent to the indicatrix annihilate d., so over vectors
tangent to the indicatrix s, = £, ,. In Finsler geometry it is called angular metric
but in Lorentz—Finsler theory the name acceleration metric seems more appropriate.

From (8) the metric g reads
g=|2$|(—w®w+h). (10)

Since g is Lorentzian, & is Riemannian over .# ~. This decomposition can also be written
in polar form

g=—dF*+ F’h. (11)

1.3. Riemannian Hessian metric on the timelike subbundle. The Lorentz—Finsler struc-
ture .Z on §2, induces a Lorentzian metric on each fiber §2,, which is in one-to-one corre-
spondence with a Riemannian Hessian structure on §2, induced by a m-logarithmically
homogeneous potential.

Let us construct this correspondence (compare with recent work in [26,34]). From
the previous section, the metric on £2, can be written

1 1
— ¥ = — (d.¥)? 2PV = —dF? 2 ¥ — __F?
g=d 2$(d ) @ (—=2.L)h dF-+ F~h, 2F.

This Lorentz metric is positive homogeneous of degree two. If we look for a scale
invariant complete Riemannian metric on 2, it is natural to consider the Hessian (Kéhler
affine) metric (im = n + 1)

§=m[(2g)2 (d$)2@h] = m[(dlog F)2 & h] = d*log V (12)
where
()

Here the denominator has been chosen so as to get Eq. (15). The function log V' is the
Kaihler potential [18]. It is (—m)-logarithmically homogeneous, namely

log V(sy) =logV(y) —mlogs.

Conversely, let log V be (—m)-logarithmically homogeneous with complete positive
definite Hessian metric on 2, for every x, then it is possible to define a Lorentz—Finsler
structure on £2 inverting (13).
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Writing g in place of / in (12)

2
o = dg 2 ]7 14
d=nlagn @’ e 50 (a4
and using the rank one update of the determinant we get
det §y = —(det g,)V?, (15)
thus
19 3% logV
Ii==—log (Vv 2det =2 ) (16)
2 dyH dy*ayh
By positive homogeneity of degree —1 of I, this identity is equivalent to
Kop = Kap + 28,0 (17)

Here we have introduced the Kéhler Ricci tensor of a Kéhler affine metric (it is not the
usual Ricci tensor) for both the Lorentzian and Riemannian metrics

2
0
Ko := R log | det gy| = —2W1,3, (18)
2
logdet gy. (19)

T Tt

This definition is inspired by analogous definitions in Kédhler geometry [18]. The connec-
tion with complex Kéhler geometry can be made more precise introducing a tube domain,
but this approach will not be pursued here. The Hessian metric g is Kéhler—Einstein if

Kap = R (x, Y)Zap- (20)
Observe that both Ieaﬂ and g,p are Hessian metrics, thus their vertical derivative is
a symmetric tensor. A simple observation by Knebelman [45], originally conceived

for Finsler metrics but perfectly valid for Hessian metrics, shows that & is actually
independent of y, thus the previous equation is equivalent to

log V2+a+bay°‘,

| x>

—logdet g, =

for some a, b, independent of y. However, (15) shows that logdet ¢, and log V2 are

(—2m)-logarithmically homogeneous, thus b, = 0 and ¥ = —2, namely det g, =

e~ V2 The comparison of this equation with (15) shows that det gy does not depend

on y. Conversely, if det g, does not depend on y then (20) holds true, just use Eq. (17).
We conclude

Theorem 1. The complete, Riemannian, Hessian metric § on 2y is Kihler-Einstein if
and only if the mean Cartan torsion vanishes: 1y = 0. In this case k = —2 and

8% log V
et o8 = aVz, a = —det gyup.
dy* 9y
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If this equation is satisfied, g is called the Monge—Ampére or the Cheng-Yau metric of
the cone £2,.

We have a similar result for the Einstein condition, Ky = «(x, y)gap, on the
Lorentzian metric (compare [41, Sect. 5]).

Theorem 2. The Lorentzian Hessian metric g on $2, is Kahler—Einstein if and only if
the mean Cartan torsion vanishes: 1, = 0. In this case k = 0.

Proof. Once again Knebelman observation implies that ¥ does not depend on y. Thus
multiplying the Einstein condition by y* and using the positive homogeneity of degree
—1 of I, 2Ig = k(x)ys. Applying yY -2 to both sides gives —2Ig = kyg thus

ayY
I, =0. O

2. Preliminaries on Affine Spheres and Indicatrices

Letus consider a pair (E, w) where E is an affine space modeled over a n+ 1-dimensional
vector space V and w is a non-trivial alternating multilinear n+1-form over V, sometimes
called determinant (not to be confused with the determinant of an endomorphism). In
short we are considering an affine space with a translational invariant notion of oriented
volume.

Next let f: N — E be a C? immersion where N is a n-dimensional manifold.
The manifold N is termed hypersurface and f is called hypersurface immersion. Let
§&:N — TE, p — &, be a vector field over f(N) and transverse to it. We have for
PEN,

TripE = fi(TpN) @ (§)).

Furthermore, on E we have a natural derivative D due to its affine structure. Let X, Y
be vector fields on N (so fi(X) and f,(Y) are tangent to f(N)). The next formulas are
obtained splitting the left-hand side by means of the direction determined by &

Dyx) f+«(Y) = fi(VxY) +h(X,Y)§,  (Gauss) (2D

Dy x)§ = — f+(S(X)) + 1(X)§. (Weingarten) (22)

They define a torsion-less connection V, a symmetric bilinear form % (the affine metric),
an endomorphism S of the tangent bundle 7N (the shape operator) and a one-form t
over N. These objects satisfy some differential equalities (Gauss, Codazzi) which the

reader can find in [74, Theor. 2.1].
Under a change of transverse field

E=¢8+ fu(2) (23)
these objects change as follows [74, Prop. 2.5]

_
h=—h, 24
" (24)

- 1
VxY =VyxY — E h(X,Y)Z, (25)

f:t+%h(z, ) +dlog ||, (26)
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S=¢S—V.Z+7()Z. 27)

Observe that /4 is definite if f(N) is the boundary of a convex set. The change of
transverse field redefines & through multiplication by a conformal factor, thus the non-
degeneracy of & including the absolute value of its signature is really a property of N.
In what follows we shall assume that N is non-degenerate. With some abuse of notation
we shall often identify N with f(N) and p with f(p) in the next formulas. This is not
source of confusion when f is an embedding.

The affine metric induces a n-form w, on N. Let{e;,i = 1,...,n} beabasis of T, N
such that (§, fi(e1), ..., fx(ey)) is w-positively oriented. Defined h;; = h(e;, e;) let

wp = /I dethi|0' A A",

where {0%,i = 1, ..., n} is the dual basis of {e;}.

Blaschke has shown that it is possible to select a special transverse field on every
non-degenerate hypersurface. The Blaschke or affine normal is determined up to a sign
by the conditions

(i) T =0, (equiaffine condition)
(ii) wp = f*(igw).

If & is definite the sign of & is fixed so as to make % positive definite. If /4 is Lorentzian
up to a sign, it is fixed in such a way that the signature is (—, +, ..., +). Given the
Blaschke normal the formulas of Gauss and Weingarten determine a Blaschke metric,
shape operator and torsion-less connection. The scalar H = % trS is called affine mean
curvature. It can be shown that the equiaffine condition is equivalent to V[ f*(izw)] = 0
(see the next Proposition 1 or [74, Prop. 1.4]).

So far we have given a traditional introduction to affine differential geometry. Actu-
ally, it is interesting to notice that the affine normal can be defined already for the
weaker structure given by (E, |w|) where || is a volume form rather than a n+1-form.
It is sufficient to replace (ii) with

(ii’) |owp| = | f*(izw)], (the affine volume equals the induced volume)

where w is any local representative of |w|. In fact (ii) is not able, in any case, to fix the
sign of &.
The Pick cubic form is a symmetric tensor on N defined by

c(X,Y,Z2)= %[(Vxh)(Y, Z)+t(X)h(Y, Z2)], (28)

where X, Y, Z € T,N and where the symmetry follows from the Codazzi equations.
Actually, the usual definition from affine differential geometry does not include the 1/2
factor. We included it for consistency with a related Finslerian definition (cf. Theorem
6). Let c* be the tensor on N defined by h(X, c*(Y, Z)) = (X, Y, Z), from Eq. (28) it
follows that the Levi—Civita connection of % is given by

1
VEY = VxY +F(X,Y) = ET(X)Y. (29)

‘We shall need
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Proposition 1. On N we have

Vywp = {tr[Y — *(X, Y)] —nt(X)/2} wp, (30)
Vx fHliw) = 1(X) f* iz w). (31)

Proof. Let Ex be the endomorphism ¥ +— ¢*(X,Y) — %‘L’(X)Y

(Vxop) (Y1, ..., Yy) = dxop (Y1, ..., Yy) —th(-~-,VXYi,-~-)
i
= ox{on(Y1, ..., Y} = D on(..., ViYi,--)
i

+th(. L Ex(Xy), ..

= (VEop)(Y1, ..., V) + (WEx) op (Y1, ..., Yy).
Concerning the second equation
Vx [ igw) = fH(Df.x)iew) = [ig Dy, x)@ +iDy, )5 ®)-
Since w is translational invariant D 7, (xyw = 0, thus Eq. (31) follows from (22). O

Observe that the equiaffine condition is preserved redefining & — S& where 8 # 0
is a constant while w;, and f*(igw) can be made coincident with a suitable choice of
B provided they differ by a multiplicative constant. Furthermore, in the equiaffine case
they differ by a multiplicative constant iff Ve, = 0 iff

(iii) tr[Y — (-, Y)] = 0 (apolarity condition)

Thus the transverse field is Blaschke’s up to a constant provided (i) and (iii) hold.

If the lines on E generated by the Blaschke normals to N meet at a point o, N is said
to be a proper affine sphere with center o, while if they are parallel it is an improper affine
sphere [74, Def. 3.3]. If S = HI then H is constant over N and N is an affine sphere,
proper if H # 0 and improper if H = 0. The converse also holds: if N is an affine
sphere S o /. An affine sphere is called elliptic, parabolic or hyperbolic depending on
the sign of H, respectively positive, zero or negative. For a proper affine sphereif y € N
then §(y) = —H(y — o).

Now suppose to have been given a pair (M, |w|) where M is a n+1-dimensional
manifold and |w| is a volume form. Then (7T M, |w||;) is a pair given by an affine
space (actually a vector space) and a translational invariant volume form. Thus we can
introduce, up to a sign, the affine normal to any non-degenerate immersions N, in 7y M.
However, T, M is not an affine space but a vector space thus there is a point which plays
a special role: the origin. The initial structure (M, |w|) naturally suggests to consider
distributions x +— N, of proper affine spheres with center the origin of the tangent
spaces Ty M.

Remark 2. Let V and h be the connection and affine metric induced by the Blaschke
transverse field (one speaks of Blaschke structure), and let RicY be the Ricci tensor of
the connection V on N. A characterization of the affine sphere condition is given by

Proposition 2. N is an affine sphere if and only if the Blaschke structure satisfies Ric¥ o
h, in which case Ric¥ = H(n — 1)h, where H is the affine mean curvature of the affine
sphere.
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We remark that the condition involved in this statement is not the usual Einstein
condition since in general V does not coincide with V7.

Proof. For any Blaschke structure [74, Prop. 3.4]
Ric¥(Y,Z) =tuSh(¥, Z) — h(S(Y), Z).

The conclusion is easily reached upon taking the trace. O

The next result, which will turn out to be useful in the next section, does not seem to
have been previously noticed or stressed in the literature. Let m be the traceless part of
the cubic form ¢ (where the trace is taken with /), namely

mW,X,Y) =c(W,X,Y)

P {re(W)h(X, Y) + tre(Y)h(W, X) + tre(X)h(Y, W)},

we have

Theorem 3. The tensor defined by h(X, m*(Y, Z)) = m(X, Y, Z) does not depend on
the transverse field used to define c and h. It coincides with the (one index raised) Pick

cubic form cﬁB for the Blaschke normal.

Proof. Let us consider a change of transverse field parametrized as in (11). Using the
mentioned transformation rules and the corrected (Finslerian) definition of cubic form
we arrive at

c(W,X,Y)= %C(W, X,Y)

1

+ m{h(Z, WYh(X,Y)+h(Z,Y)h(W, X))+ h(Z, X)h(Y, W)}

taking the trace
__ n+2
tre(W) = tre(W) + Wh(z, W) (32)

From here we arrive at m(W, X,Y) = ém(W, X,Y), and the first statement follows
from (24). The Pick cubic form for the Blaschke normal is traceless (apolarity condition),
thus m? coincides with c%. ]

2.1. Proper affine spheres. Any embedding on a vector space which does not pass
through the origin and which is transverse to the position vector at every point is called
centroaffine [74]. It is instructive to prove the next known result on centroaffine embed-
dings making particular attention to the role of the volume form. The parametrization of
the affine sphere there introduced is due to Gigena [30,58]. We shall see later on that v
will be interpreted as observed velocity, while u(v) will be the observer Lagrangian of
our theory.
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Theorem 4. Let {e,} be a basis of (V, |w]), let p = |w|(eg, ...,e,) > 0, and let y*
be the induced coordinates on the vector space V. Let v be inhomogeneous projective
coordinates on {y € V : y° > 0} so that

1
y=0%y = —=(1,v). (33)

Let N be a centroaffine hypersurface with respect to the position vector with origin
p € E, then identifying V with E — p, let

1
fiv— —m(l,v), (34)

be its local hypersurface immersion. Let ¢ # 0, then relative to the transverse vector
field & .= —cy the affine metric is

h=hi;dvidv = 'Z—Z dvidvl, (35)

the connection coefficients are (V)i-‘j = —%(u,-c?’]‘- + uj8l’-‘), the shape operatoris S = cl,
and © = 0. The transverse field & is the Blaschke normal and hence N is a proper affine
sphere with affine mean curvature H = c and center p if and only if

H\n+2
detu;; =ep2<7)n . (36)

where € is the sign of the determinant of h;j, i.e. the parity of the negative signature of
h (thus € = 1 if h is positive definite and ¢ = —1 if Lorentzian). In particular, in the
positive definite case

p* N\ 1
h'-:( )"*— 37
7 \dety;) w2 37)

Remark 3. If E = T,y M and p is not the origin of E then {y“} are not canonical coordi-
nates on the tangent bundle at x.

Proof. Let us observe that (here ¢; is the canonical basis of R")

u; 1
(lvv)}z__y__ej’ (38)
u u

- 1
f«(€j) = Dy, ;)y = 31'{—@

where 9; is a shorthand for 9/ v/. Thus
Dy f«€)) = D@Dy

1
= 3i3j{—m (1, v)}
Uil

—uij( y)+uje +uie +2 y
u u? u2’ u?

=Y f@p - f@n+ 2 ey,
u u cu

The first two terms are tangent to N, thus the last one gives the affine metric. From this
same expression it is easy to read the connection coefficients. The statements concerning
S and 7 are trivial since Dy, (x)y = f+(X).
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Now using Eq. (38) and & = —cy we observe that

1
= |(_—)na)(€:,61, ceey el’l)l
u
1 n 0
= I(—;) (—a)w(y eo, €1, ..., en)l
1 n+l
=|(—;) (—c)w(eo, e, ..., en)l

1 n+l
= pl(==)" (=),
u

while

|a)h|(51,...,én) = \/|dethij| = \/edethij,

The vector £ is the Blaschke normal and hence N is an affine sphere with affine mean
curvature H = c if and only if |w;| = | f*izw| which reads det u;; = epz(ﬁ)””. O

Remark 4. Let us consider an affine sphere on E with center p. Observe that the rescaled
affine sphere f — f' = A(f — p) + p, » > 0 is determined by the function u’ = u/A

and from Eq. (36) it follows that it is still an affine sphere with affine mean curvature
2n+2

H / = A,_ n+2 H

Without loss of generality we can study just affine spheres for which H = —1,0, 1
since the others are obtained through rescaling. In the proper case the transverse vector
becomes either the position vector with origin p or its opposite.

Remark 5. Suppose that N C E is an affine sphere with mean curvature H for (E, |o|)
and suppose to change the volume form to |@| = a|w|, @ > 0. With the notation of
Theorem (4), p = ap. Equation (36) clarifies that N is still an affine sphere with mean
curvature H where

v2 Hn+2

0 — ,OZH’H—Z. (39)

Thus the concept of elliptic or hyperbolic affine sphere makes sense irrespective of the
volume form and hence is well defined just on an affine space, while it is necessary to
specify a volume form to talk about affine mean curvature H of the affine sphere. In the
proper case one can choose p so as to get |H| = 1.

The next result is the crucial step which relates the affine sphere distributions with
measures over M.

Corollary 1. Given a proper affine sphere N C E there is a unique translational invari-
ant volume form on E such that |H| = 1.

Similarly, given a manifold M, and a point dependent distribution of proper affine
spheres x +— N, C TyM (not necessarily centered at the origin of Ty M), there is a
unique volume form on M for which the affine spheres satisfy |H| = 1.

Of course the regularity of the dependence of N, on x will be related to that of the
volume form on x.

The metric (37) was first obtained by Loewner and Nirenberg [57] while searching
for projective invariant metrics on convex sets. Let p be the origin of 7, M. Let {e,}
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be any basis of T, M and let e = Aﬂ&elg be another basis then the coordinates (i, v;)

are related to (u, v') as follows (here AP & A&y = 85 , namely we are using a convention
common in mathematical relativity in which the distinction between coordinates in made
at the level of indices)

which can be rewritten including also the transformation of the density under coordinate
changes

i = u[ A% ()07 + A 0], (40)
o = [AT; v + Al ] [A% (0w + A% )] (41)
p=p(detA%(0) " (42)

In this expression we have made explicit the dependence of the matrix A on the point
x € M. If both frames are holonomic then A&ﬂ = 9x%/0xP.

Since the metric (35) with h;; given by (37) and the Monge—Ampere equation (36)
hold irrespective of the starting basis {ey} chosen, these objects are invariant under the
projective changes (40)—(42).

2.2. Improper affine spheres. In this section we introduce convenient coordinates for
improper affine spheres [58]. They are chosen so as to simplify the Monge—Ampere
equation which describes these hypersurfaces. Let us notice that a (connected) hyper-
surface N C E which is transverse to a direction ¢y € V is a graph over a hyperplane
transverse to e¢p. We have

Theorem 5. Let {ey} be a basis of (V, |wl|), let p = |wl|(eg, ...,e;) > 0, let y* be
the induced coordinates on the vector space V and let us denote v = y. Let N be a
hypersurface which is a graph f: v — (—u(v), v) over the hyperplane y° = 0. Let
¢ # 0, then relative to the transverse vector field & := —c(1, 0) the affine metric is

idv) = Y dvidol
h:hijdv dv :Euijdv dv N (43)

the connection coefficients are (V)i.‘/. =0and S = 0,1t = 0. The transverse field & is
the Blaschke normal and hence N is an improper affine sphere if and only if

detu;; = ep>c™?, (44)
where € is the sign of the determinant of h;j (the parity of the negative signature of h).

Proof. Let us observe that (here ¢; is the canonical basis of R")

f*(éj) = Df*(gj)y = Bj(—u(v), v) = —ujep +e]', (45)
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where 0, is a shorthand for 9/ dv/. Thus

3 1
Dy, @ f+(€)) = Dy@Dyepy = 0i9j(—u. v) = —uijeo = —uij§.

There is no term tangent to N thus the connection coefficients vanish. The statements
concerning S and  are trivial since Dy, (x)eo = 0.
Now using Eq. (45) and £ = —cep we observe that

| frigwl(@r, ..., en) = |olE, fu@), ..., fu(én) = |cwleo, e, ..., en)| = cpl,

while

lwp| (1, ..., én) = /I dethj| = /e deth;;,

The vector £ is the Blaschke normal and hence N is an improper affine sphere if and
only if |wy| = | f*igw| which reads detu;; = ep?c"™2. O

2.3. Centroaffine embeddings and Finsler indicatrices. In this section we obtain some
results on the relationship between the Finsler metric at a given point x € M and the
affine metric of the indicatrix.

Preliminarly, let us observe that the indicatrix is a centroaffine hypersurface with
respect to the origin of T, M because it is transverse to the position vector y. Indeed, by
positive homogeneity

dZ(y) = 3—%y“ =29 =-—1.
y

For the first statement of the next theorem see also [6,50], for the second statement
see also [73, Prop. 4.1].

Theorem 6. The vertical Finsler metric induces on the indicatrix %~ a metric h which
coincides with the affine metric for the transverse field ¢ = y. Thus, on §2, Egs. (9) and
(11) hold

g=—dF*+F*h, h=—-F'd’F, F=2|2]. (46)

The Pick cubic form for the transverse field & is the restriction to the indicatrix of

the Cartan torsion, that is ¢ = f*C. The Pick cubic form for the Blaschke transverse

field is the restriction to the indicatrix of the traceless part of the Cartan torsion: cﬁB =

m? = (f*M)*.
The indicatrix .9, is an affine sphere with center at the origin of Ty M iff the mean
Cartan torsion vanishes on it (and hence on 2y ). In this case with respect to the trans-

lational invariant volume form |w| = /| det gug| A"y (i.e. p = /] det 8apl) the affine

mean curvature of the indicatrix is such that H = —1, thus in projective coordinates

1\n+2
detu;; = |detga5|(— —) . (47)
u

Observe that a zero mean Cartan torsion not only makes the indicatrix an affine sphere
but also, by Eq. (4) makes |w| translational invariant and hence makes it possible to ask
for the affine mean curvature of the affine sphere with respect to this volume form. Also
notice that ¢ and C provide the same information since C(y, -, -) = 0.
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Remark 6. Suppose that the Finsler Lagrangian is defined over the whole slit tangent
bundle. Then a completely analogous theorem could be given for the spacetime indicatrix
#* where, however, £ = —y, g = dF? + F2h, h = F~1d?F, the affine metric would
be Lorentzian and the affine mean curvature would be H = 1.

Proof. Let us contract d.Z with the Gauss equation DxY = VxY + h(X, Y)& where
X,Y e T.Z (here with some abuse of notation we identify X with f,(X) where f is
the embedding of the indicatrix) and use positive homogeneity

9.7 ay® 9 (0% 92y
dZ(DyY) =— (x# =xfF— =y - xPy“ = —g,(X,Y),
Ay« dyB ayB \ 9y dy*dyP

thus

—&y(X,Y) =dZL(DxY) = h(X,Y)dZL(y)
= 2.2(x, Vh(X,Y)
= —h(X,Y).

This calculation proves the first statement. By positive homogeneity the indicatrix is
g-orthogonal to £ indeed if X € T/, g(X, &) = d.Z(X) = 0. The Egs. (9) and
(11) follow from the just established equality between the affine metric and the induced
metric (hence the same symbol /).

Recalling that the induced metric is the affine metric we have for every X, Y, Z €
T

Vzh(X,Y) =Vz[h(X,Y)] - h(VzX,Y) — h(X,VzY)
=Dz[g(X, V)] —g(VzX,Y) —g(X,VzY)
=Dz[g(X,Y)] —g(DzX — h(X, 2)§,Y)

—8(X,DzY — h(X, Z)§)
= Dz[g(X,Y)] - g(DzX,Y) — h(X, DzY)
= (Dzg)(X,Y)

Since the immersion is centroaffine, T = 0, thus we have the equality between Pick
cubic form and pullbacked Cartan torsion [observe that the 1/2 factor must be present
in Eq. (28) since it is included in Eq. (3)].

Lety € # andlet {X;,i =1, ..., n} be a h-orthogonal basis at 7),.#,", then since
gy(y,y) =221, y) =—1,8,(y, X;) =0,

oY > HZ. V) =D e(Z, Xi, X))

1

= (&, ) ICZ, y, )+ D C(Z, Xi, Xi)

1

= [H(r,C)(Z) = I(f:(2)),

where [ is the mean Cartan torsion. From here the traceless part of the Pick cubic form,
namely the Pick cubic form for the Blaschke normal c.f. Theorem 3, is easily inferred
to be the pullback of the traceless part of the Cartan torsion.

If the mean Cartan torsion vanishes then the apolarity condition holds thus the trans-
verse field y is Blaschke’s up to a constant. But these normals generate lines which meet
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at the origin of Ty M thus .# ~ is an affine sphere. Conversely, if .# ~ is an affine sphere
with center the origin of 7, M then § = —HYy, sgn(H) = —1, where the value of H
depends on the choice of volume form (Remark 5). Since y coincides with the Blaschke
normal up to a constant, the apolarity condition holds. As for every Z, I (f«(Z)) =0
and I (y) = 0 we have I = 0.

Now, suppose that the volume form is ,/| det gug| d™ly. Let {x',i =1,...,n} be
a coordinate system on .# ~ and let x° = .Z. These definitions determine a coordinate
system x"‘/ on the cone generated by .# ~ in such a way that the lines x/ = cnst pass
through the origin. The position vector on the indicatrix reads y = —d/9x° and Eq.
(46) reads

/ / 1 . .
gupdx®dx’ = m(ﬁi}(o)2 —2x hijdx dy’ . (48)

Thus @ = /[detgupdx® Adx' A--- Adx", and since {£,3/dx1, ..., d/dxn) has
the w-orientation given by sgn(H) = —1, we have

W, = —‘/|deth,~.,~|d)(1 A ndy”,

and finally
Igw =i_pgyw = H‘/|detgarﬁ/|d)(1 A Ndy" = —H|2X0|%wh.
Since on the indicatrix |2x°] = 1 we conclude that H = —1. 0O

Remark 7. Obviously Theorem 6 admits a reformulation for positive definite g, it is
sufficient to take the transverse field &€ = —y.

We have established that the condition I, = 0 characterizes those (Lorentz-)Finsler
spaces for which the indicatrix is an affine sphere centered at the origin. One might
ask what is the Finslerian characterization of an indicatrix which is an affine sphere
arbitrarily centered. This question is answered by the next theorem

Theorem 7. Let {y*} be canonical tangent coordinates on Ty M, where (M, L) is a
Lorentz—Finsler space and $2 is the cone domain of £. The indicatrix is an affine
sphere (necessarily hyperbolic) centered at p € Tx M, if and only if the mean Cartan
torsion has the form

-1
n+2 8y, p)
Iy =—— /-0 |1+ === happ”
T2 ' J o)
n+2 9 oF
i _ 2 B i S
> oy log (l 8yﬁp ) , WithF = gy, y) (49)

with pP independent of y. Let C C E be the cone generated by the convex hull of the
affine sphere with its center p. The vector p belongs to C — p and the domain of the
Finsler Lagrangian is 2 = C — p. Finally, let u be the translational invariant volume

form which assigns to the indicatrix the affine mean curvature H = —1, then
oF ,\'T
Vldetgepld™y = (1 — —pFf :
|det gapl d™"y ol ) M

thus the y dependence is all on the first factor.
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Observe that p becomes a causal vector field over M if the dependence on x is
considered. It can be called the center vector field. If timelike it selects a privileged
observer on spacetime.

For Finsler spaces this result changes as follows.

Theorem 8. Let {y*} be canonical tangent coordinates on T,y M, where (M, %) is a
Finsler space and where £ has domain T, M\O. The indicatrix is an affine sphere
(necessarily elliptic hence an ellipsoid) centered at p € T,y M, if and only if the mean
Cartan torsion has the form

—1
n+2 gy, p)
Iy = — VOOl ——F——) h pP
¢ 2 Y \/gy(y’y) aﬂ
nt2 9 (1 2F s ithF = Jg.(y.y) (50)
= — 10 _—— N W, = N
2 oy 4 8yﬁ 1 gy\y, Yy

with pP independent of y. Let C C E be the ellipsoid generated by the convex hull of
the affine sphere with its center p