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Abstract

We refer to lattice positive paths as to paths in the discrete plane constituted by different kinds
of steps (north-east, east and south-east), starting from the origin and never going under the x-
axis. They have been deeply studied both from a combinatorial and an algorithmic point of view.
We propose some algorithms for the exhaustive generation of positive paths which are prefixes of
Dyck, Motzkin and q-coloured Motzkin paths, according to their length. For each kind of path we
define a recursive version as well an iterative one, specifying which path follows a given one in the
lexicographic order. Furthermore we study the complexity of these algorithms by using the relations
between the number of paths of given size and the number of north-east steps appearing in the final
rise.

1 Introduction

Random and exhaustive generation has a fundamental role in the study of parameters characterizing
different classes of combinatorial objects as well as for testing the algorithms operating on them. Many
classes of paths in the plane and other combinatorial objects have been studied from the point of view of
random generation [Alo95, Bac117, Bac217, Bar195, Duc04]. In their books [Rus03, Knu08], F. Ruskey
and D. Knuth propose many algorithms for the exhaustive generation of several combinatorial objects
according to their size. These algorithms can be classified into two main types: the recursive algorithms
and those based on the use of a (next) procedure able to generate the successor of any object according
to a fixed (usually lexicographic) order. In this paper we present some algorithms of both the above
mentioned kinds for the exhaustive generation of three classes of lattice paths in the discrete plane:
prefixes of Dyck, Motzkin and bicoloured Motzkin paths, also called Dyck, Motzkin and bicoloured
Motzkin positive paths. Furthermore we show that the proposed algorithms have the CAT (Constant
Amortized Time) property [Rus03], that is the average number of operations needed to generate any
object of a given size does not depend on the size itself but it is limited by a constant.

We consider three kinds of steps U = (1, 1), D = (1,−1), F = (1, 0), called rise, fall and flat steps.
An n-length Dyck (Motzkin) path is a path in Z2 made up of U and D steps (U , D and F steps) starting
from (0, 0), ending in (n, 0) and never going under the x-axis. If the flat steps can be coloured in q ≥ 2
different ways (that is we have q different flat step F1, F2, ..., Fq) we obtain q-coloured Motzkin paths
(called bicoloured when q = 2). Positive Dyck (Motzkin, q-coloured Motzkin) paths are prefixes of Dyck
(Motzkin, q-coloured Motzkin) paths, that is paths having the above mentioned properties but ending
at a point (n, h), where h ≥ 0 is called the height of the path.

We can establish a total order among the paths in the same class in a very natural way. If p = p1p2...pn
and r = r1r2...rn are two paths we say that p precedes r if there is an index k > 0 such that pi = ri for
i = 1, ..., k− 1 and the step pk lies under the step rk (for the flat steps of different colours we can choose
an order whatever, so we have D < F1 < F2 < ... < Fq < U). We will define some algorithms able to
exhaustively generate the paths having the same length according to the above order.
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2 Dyck prefixes

Dyck paths have been widely studied, both from a combinatorial and an algorithmic point of view, di-
rectly or in connection with the numerous combinatorial structures in bijection with them and enumerated
by Catalan numbers. Well-formed parenthesis, binary trees, parallelogram polyominoes, triangulations
of a polygon, chords on a circle, pattern avoiding permutations are only a few examples. The book of
Stanley [Sta15] presents 214 different kinds of objects counted by Catalan numbers and many others
enumerated by sequences related to them. In the literature there exist also many papers dealing with
exhaustive generation and Gray codes for structures enumerated by Catalan numbers (see for instance
[Bul98, Rus03, Rus08, Vaj06, Wal98]).

Dyck prefixes correspond to ballot sequences and the number of n-length Dyck prefixes is

dn =

(
n

bn2 c

)
(sequence A001405 in [Slo]). From this we can easily obtain that

d2n = 2d2n−1

and

d2n+1 =
2n + 1

n + 1
d2n < 2d2n

These relations have a very simple interpretation. Any odd length path has a strictly positive height,
so we can add at its end either a rise or a fall step. As a result from any (2n− 1)-length path we obtain
two 2n-length different paths. The even length paths include also 0-height paths, that is Dyck paths
enumerated by Catalan numbers (Cn), and only a rise step can be added at the end of these paths. As
a results from the 2n-length paths we obtain 2d2n − Cn different (2n + 1)-length paths.

In order to exhaustively generate the n-length paths according to the natural order above defined,
we represent them by means of n-length words on the alphabet {0, 1}, by associating 1 to each rise step
and 0 to each fall step, and then generate the words in lexicographic order.

The first n-length word is first(n) = (10)
n
2 if n is even and first(n) = (10)b

n
2 c1 if n is odd. The last

one is always 1n. Furthermore we define first(n) = ε when n ≤ 0. We denote by h(w) the difference
between the number of 1’s and the number of 0’s in the word w, that is the height of the corresponding
path. Let w = v0, then the following word w′ is v1 and h(w′) = h(w) + 2. If w = v01p then w′ = v10kz
where k is the maximum number of 0’s that can be added after v1, that is k = min{p, h(w) − p + 2}
because h(v1) = h(w)−p+2, and z = first(p−k). Furthermore, h(w′) = h(w)−2p+2 if p < h(w)−p+2
and h(w′) = h(z) otherwise.

As a result, in order to obtain the successor of a word w it is necessary to scan w from right to left
till the rightmost 0 is detected and then modify w from this position to the end as described above. This
can be achieved by the procedure next() (described in Algorithm 1 in a Java style). We suppose that a
is a global array containing w in the entries 1..n, a[0] = 0 is a flag for recognizing the last word, h is a
global variable containing the height of the path represented in a and finish a global boolean variable
whose value becomes true when the procedure recognizes the last sequence. After initializing a with
first(n), h with h(first(n)) and finish with false, the procedure is used into a do-while cycle which
stops when finish becomes true.

In order to evaluate the complexity of the algorithm it is easy to see that the number of elements
tested and modified for generating the next sequence from w = v01p is equal to p + 1. Let tn be the
total number of final 1’s in all the n-length words (that is the number of 1’s which take part in the 1p

suffixes). The following relation holds tn = tn−1 +dn−1 because an element 1 can be added at the end of
any (n− 1)-length word and the final 1’s are still final 1’s. So the total number of operations necessary
to generate all the n-length words is tn + dn and the average number for each word is
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Algorithm 1 procedure next for Dyck prefixes

void next ( ){
int j , p=0;
while ( a [ n−p]==1) p=p+1;
i f (p==n) f i n i s h=true ;
else {

a [ n−p ]=1;
h=h−p+2;
j=n−p+1;
while (h>0 && j<=n){ a [ j ]=0; j=j +1; h=h−1;}
while ( j<n) {a [ j ]=1; a [ j +1]=0; j=j +2;}
i f ( j==n) {a [ n ]=1; h=h+1;}

}
}

avgn =
tn + dn

dn
=

tn
dn

+ 1

So the quantity rn = tn
dn

must be evaluated.

r2n =
t2n
d2n

=
t2n−1 + d2n−1

2d2n−1
=

1

2
(r2n−1 + 1)

r2n+1 =
t2n+1

d2n+1
=

t2n + d2n
2n+1
n+1 d2n

=
t2n−1 + d2n−1 + 2d2n−1

2 2n+1
n+1 d2n−1

=
n + 1

2(2n + 1)
(r2n−1 + 3)

If r2n−1 < 2 then

r2n+1 <
n + 1

2(2n + 1)
5 =

5n + 5

4n + 2
< 2

for n > 1.

Since r1 < 2 we can conclude that rn < 2 for n ≥ 1 and avgn < 3, so the algorithm has the CAT
property.

A recursive version can also be defined. The array a and h have the same meaning and do not
necessitate any initialization. The array a is filled from left to right: the first parameter of the procedure
dyckR is the next position j to be defined and the second parameter indicates the height of the Dyck
prefix represented in the first j − 1 entries of a. If the value of the first parameter in a call is greater
than n, a new prefix is contained in a and it can be displayed (or elaborated). Otherwise the prefix is
not yet completed: a fall step is added (a[j] = 0) and a recursive call with parameters j + 1 and h − 1
is generated only if h > 0, while a rise step can always be added (a[j] = 1) followed by a recursive call
with parameters j + 1 and h + 1. The initial call is dyckR(1, 0).

In order to evaluate the complexity we can consider the total number of recursive calls made for
generating all the n-length words, because any call makes a constant number of operations. We can
slightly modify the procedure in such a way that any call outputs a new word or generate exactly two
recursive calls. In this way the recursion tree is a binary tree with dn leafs and dn − 1 internal nodes
and, as a result, we have that the average number of calls for a word is less than 2 and the algorithm is
CAT. When we add a fall step, the height of the prefix decreases by 1. So if the height was 1 it becomes
0 and at a successive call only a rise step can be added. So when the height is equal to 1 and we add a
fall step in position j, if j < n, we add also a rise step in position j + 1 and make a call with parameters
j + 2 and 1. As a result, the only calls with h = 0 are those with j = n and in the recursion tree any
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Algorithm 2 recursive procedure for Dyck prefixes

void dyckR ( int j , int h){
i f ( j>n) { pr in t ( a ) ; }
else {

i f (h>0) {a [ j ]=0; dyckR ( j +1, h−1);}
a [ j ]=1; dyckR ( j +1, h+1);

}
}

internal node has exactly two sons. In this case the initial call should be dyckRC(2, 1), after initializing
a[1] = 1.

Algorithm 3 improved recursive procedure for Dyck prefixes

void dyckRC( int j , int h){
i f ( j>n) { pr in t ( a ) ; }
else {

a [ j ]=0;
i f (h==1 && j<n) {a [ j +1]=1; dyckRC( j +2, 1 ) ;}
else dyckRC( j +1, h−1);
a [ j ]=1; dyckRC( j +1, h+1);

}
}

3 Motzkin prefixes

Motzkin numbers [Aig98, Don77] enumerate many combinatorial structures which are very close to
those enumerated by Catalan numbers [Sta15]. Motzkin prefixes have been deeply studied mainly due to
their relation with directed animals and percolation [Bar94, Gou88]. They are enumerated by sequence
A005773 in [Slo]. There is no closed formula for the number mn of n-length Motzkin prefixes, but for
our sakes the recurrence relation (18) [Bar91]:

mn = 2mn−1 + 3
n− 1

n + 1
mn−2,

with the conditions m0 = 1 and m1 = 2, is sufficient to state that

mn > 2mn−1.

In order to exhaustively generate the n-length Motzkin prefixes we represent them by means of n-
length words on the alphabet {0, 1, 2}, by associating 2 to each rise step, 1 to each flat step and 0 to
each fall step. In this way the natural order for the paths defined in the introduction corresponds to the
lexicographic order on the words.

The first n-length word is 1n and the last one is 2n. We denote by h(w) the height of the path coded
by w, that is the difference between the number of 2’s and the number of 0’s in the word w.

Let w = v0 (w = v1), then the following word w′ is v1 (w′ = v2) and h(w′) = h(w) + 1. If
w = v02p then w′ = v10k1p−k where k is the maximum number of 0 that can be added after v1, that
is k = min{p, h(w) − p + 1} because h(v1) = h(w) − p + 1. Furthermore, h(w′) = h(w) − p + 1 − k.
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In an analogous way, if w = v12p then w′ = v20k1p−k where k is the maximum number of 0’s that can
be added after v2, that is k = min{p, h(w) − p + 1} because h(v2) = h(w) − p + 1. In this case too,
h(w′) = h(w)− p + 1− k.

As a result, it is necessary to scan a word w from right to left till the rightmost element different from
2 is detected and then modify w from this position to the end as described above, in order to obtain its
successor. This can be achieved by the procedure next() (described in Algorithm 4 in a Java style). We
suppose that a is a global array containing w in the entries 1..n, a[0] = 0 is useful for recognizing the last
word, h is a global variable containing the height of the path represented in a and finish a global boolean
variable whose value becomes true when the procedure recognizes the last sequence. After initializing a
with 1n, h with 0 and finish with false, the procedure is used into a do-while cycle which stops when
finish becomes true.

Algorithm 4 procedure next for Motzkin prefixes

void next ( ){
int j , p=0;
while ( a [ n−p]==2) p=p+1;
i f (p==n) f i n i s h=true ;
else {

a [ n−p]=a [ n−p ]+1;
h=h−p+1;
j=n−p+1;
while (h>0 && j<=n) {a [ j ]=0; h=h−1; j=j +1;}
while ( j<=n) {a [ j ]=1; j=j +1;}

}
}

In order to evaluate the complexity of the algorithm we remark that the number of elements tested
and modified for generating the next sequence from w = v02p or w = v12p is equal to p + 1. Let tn be
the total number of final 2’s in all the n-length words (that is the number of 2’s which take part in the
2p suffixes). The following relation holds tn = tn−1 + mn−1 because an element 2 can be added at the
end of any (n − 1)-length word and the final 2’s are still final 2’s. So the total number of operations
necessary to generate all the n-length words is tn + mn and the average number for each word is

avgn =
tn + mn

mn

It is easy to verify that tn < mn. This is true for n = 1, and if we assume that tk < mk for k ≤ n−1,
we obtain

tn = tn−1 + mn−1 < 2mn−1 < mn.

As a result

avgn =
tn + mn

mn
<

mn + mn

mn
= 2.

So this algorithm too has the CAT property.

A recursive version can be defined in this case too. The array a and h have the same meaning and
do not necessitate any initialization. The array a is filled from left to right: the first parameter of the
procedure motzR is the next position j to be defined and the second parameter indicates the height of
the Motzkin prefix represented in the first j − 1 entries of a. If the value of the first parameter in a call
is greater than n, a new prefix is contained in a and it can be displayed (or elaborated). Otherwise the
prefix is not yet completed: a fall step is added (a[j] = 0) and a recursive call with parameters j + 1 and
h− 1 is generated only if h > 0, while a flat and a rise step can always be added (a[j] = 1 and a[j] = 2)
followed by a recursive call with parameters j + 1 and h for the flat step and parameters j + 1 and h+ 1
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Algorithm 5 recursive procedure for Motzkin prefixes

void motzR( int j , int h){
i f ( j>n) { pr in t ( a ) ; }
else {

i f (h>0) {a [ j ]=0; motzR( j +1, h−1);}
a [ j ]=1; motzR( j +1, h ) ;
a [ j ]=2; motzR( j +1, h+1);

}
}

for the rise step, respectively. The initial call is motzR(1, 0).

In order to evaluate the complexity we can consider the total number of recursive calls made for
generating all the n-length words, because any call makes a constant number of operations. We remark
that any call outputs a new word or generate at least two recursive calls. The recursion tree is a tree
with mn leafs and a number of internal nodes less than mn − 1 and, as a result, the average number of
calls for a word is less than 2 and the algorithm is CAT.

4 q-coloured Motzkin prefixes

q-coloured Motzkin paths [Bar295] are a natural generalization of Motzkin paths obtained by allowing
q different colours be used for flat steps. When q = 2, bicoloured Motzkin paths are enumerated by
Catalan numbers, while their prefixes are counted by the binomial coefficients dn =

(
2n+1
n+1

)
(sequence

A001700 in [Slo]).

The discussion relative to Motzkin prefixes can be easily extended to the prefixes of q-coloured
Motzkin paths. They can be represented by words on the alphabet Σq = {0, 1, ..., q, q + 1} where q + 1
corresponds to a rise step, 0 to a fall step and 1, 2 ,..., q to the different flat steps. The first n-length
word is 1n and the last one (q + 1)n. If w = vx(q + 1)p, where x ∈ Σq and x < q + 1, then the successive
word is w′ = vx′0k1p−k, where x′ = x + 1 and k is the maximum number of 0’s that can be added after
vx′. We have that h(vx′) = h(vx) = h(w)− p if 0 < x < q + 1, because we only change the colour of a
flat step, and h(vx′) = h(vx) + 1 = h(w) − p + 1 otherwise, because we transform a fall step in a flat
step or a flat step in a rise step. As a result, k = min{p, h(vx′)}.

In order to obtain w′ it is again necessary to scan w from right to left till the rightmost element
different from q + 1 is detected and then modify w starting from this position as described above. This
is achieved by the procedure next() (Algorithm 6). The variables, their meaning and initialization and
the use context of the procedure are the same as for Motzkin prefixes.

As far as the complexity of the algorithm is concerned, we remark that the number of elements tested
and modified for generating the next sequence from w = vx2p, where x < q + 1, is equal to p + 1. Let
cn,q be the number of n-length q-coloured Motzkin prefixes. We have that cn,q > (q + 1) · cn−1,q because
a rise or any flat step can always be added to an (n− 1)-length q-coloured prefix.

The total number tn,q of final (q + 1)’s in all the n-length words again satisfies the relation tn,q =
tn−1,q + cn−1,q because an element (q + 1) can be added at the end of any (n− 1)-length word and the
final (q + 1)’s are still final (q + 1)’s. So the total number of operations necessary to generate all the
n-length words is tn,q + cn,q.

In this case too, we can verify that tn,q < cn,q. This is true for n = 1, as a matter of fact t1,q = 1
and c1,q = q + 1. By assuming that tk,q < ck,q for k ≤ n− 1, we obtain

tn,q = tn−1,q + cn−1,q < 2cn−1,q < cn,q.
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Algorithm 6 procedure next for q-coloured Motzkin prefixes

void next ( ){
int j , p=0;
while ( a [ n−p]==q+1) p=p+1;
i f (p==n) f i n i s h=true ;
else {

a [ n−p]=a [ n−p ]+1;
h=h−p ;
i f ( a [ n−p]==1 | | a [ n−p]==q+1) h=h+1;
j=n−p+1;
while (h>0 && j<=n) {a [ j ]=0; h=h−1; j=j +1;}
while ( j<=n) {a [ j ]=1; j=j +1;}

}
}

As a result the average number of elements tested and modified in to generate each word is

avgn =
tn,q + cn,q

cn,q
<

cn,q + cn,q
cn,q

= 2

and this algorithm too has the CAT property.

We can also define a recursive procedure with the same parameters used for Motzkin prefixes. This
procedure (Algorithm 7) adds in position j, corresponding to the first parameter, a fall step (if the
height h of the prefix so long defined is positive), a flat step of any colour, and a rise step. Obviously
the recursion stops when j > n.

Algorithm 7 recursive procedure for q-coloured Motzkin prefixes

void qmotzR( int j , int h){
int i ;
i f ( j>n) { pr in t ( a ) ; }
else {

i f (h>0) {a [ j ]=0; qmotzR( j +1, h−1);}
for ( i =1; i<=q ; i=i +1) {a [ j ]= i ; qmotzR( j +1, h ) ; }
a [ j ]=q+1; qmotzR( j +1, h+1);

}
}

Any call of such procedure produces a new sequence or generate at least q + 1 recursive calls. As
result this version too has the CAT property,

5 Further developments

Recently binary words avoiding one or more patterns [Bil112] have been employed in order to construct
sets of words constituting a non-overlapping code [Bla15], in particular Dyck words and Motzkin words
were used in [Bil212] and [Bar16]. Their exhaustive generation and Gray code were tackled in [Ber14,
Ber115, Ber215, Ber17]. It would be interesting to establish similar procedures for prefixes of words
avoiding those patterns.
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