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Abstract

We consider Tchebycheffian spline spaces over planar T-meshes and we study their dimension. We
show that the structure of extended Tchebycheff spaces allows us to fully generalize the dimension
upper bounds known in the literature for polynomial spline spaces over T-meshes. Moreover, we
illustrate that the dimension of Tchebycheffian spline spaces over T-meshes can be unstable for certain
configurations of the T-mesh, for any choice of the underlying extended Tchebycheff space.

Keywords: Extended Tchebycheff spaces, Extended complete Tchebycheff spaces, Tchebycheffian
splines, T-meshes, dimension formula, dimension bounds, instability

1. Introduction

Tensor-product structures allow us to construct multivariate splines in a very simple and elegant
way from univariate splines, and they have been applied in different contexts. However, such a multi-
variate structure lacks adequate local refinement, which is imperative for both geometric modeling and
numerical simulation. This triggered the interest in alternative multivariate spline structures support-
ing local refinement but still preserving locally the simplicity of the tensor-product approach. T-splines
[11, 26], hierarchical splines [7, 8] and locally refined (LR-) splines [6] are examples of such structures.
All of them can be regarded as special instances of splines over T-meshes [5, 25].

Univariate Tchebycheffian splines are smooth piecewise functions with sections in extended Tcheby-
cheff (ET-) spaces [19, 24]. They share many important properties with the classical (algebraic)
polynomial splines but offer a more flexible framework, due to the wide variety of ET-spaces. As a
consequence, besides their theoretical interest, spline spaces with sections in ET-spaces are attractive in
several application areas ranging from geometric modeling to isogeometric analysis (see, e.g., [14, 19]).
Multivariate extensions of Tchebycheffian splines can be easily obtained via (local) tensor-product
structures.

Tchebycheffian spline spaces over T-meshes have been introduced in their full generality in [3]. Some
earlier generalizations of the polynomial setting towards the Tchebycheffian setting were considered in
[2, 4, 13]. Like in the polynomial case, a complete understanding of such Tchebycheffian spline spaces
requires the knowledge of the dimension of the spline space defined on a prescribed T-mesh for a given
smoothness. Unfortunately, the dimension of the spline space can be unstable (see [1, 9] for polynomial
spline spaces and [3] for trigonometric and hyperbolic spline spaces). This means that the dimension
may depend not only on combinatorial quantities of the T-mesh (such as number of vertices, edges
and faces), on the smoothness and on the dimensions of the underlying section spaces, but also on the
exact geometry of the T-mesh. Such instabilities complicate the derivation of an explicit dimension
formula for any T-mesh configuration, and only lower and upper bounds can be given in the most
general cases.

In [3] lower bounds for the dimension of Tchebycheffian spline spaces over T-meshes are provided
by generalizing the homological techniques and the results presented in [22] for polynomials. Explicit
upper bounds for the dimension are also obtained in [3] under a specific assumption on the underlying
ET-spaces: the so-called d-sum property.
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In this paper, we deepen the analysis and we complete the results of [3], aiming to understand the
influence of the considered ET-spaces on the dimension of Tchebycheffian splines over a given T-mesh.
We show that, without any assumption on the underlying ET-spaces,

(a) the lower and upper bounds for the dimension of Tchebycheffian spline spaces over T-meshes
provided in [3] hold. These bounds agree with those obtained in [22] for polynomial splines.

(b) there exist T-meshes such that the dimension of the “bi-quadratic” C1 Tchebycheffian spline
spaces is unstable and attains the lower or the upper bound depending on the exact geometry of
the T-mesh.

Consequently, the provided lower and upper bounds for the dimension are sharp for any choice of the
underlying ET-spaces. These bounds coincide on several relevant T-mesh configurations, resulting in
explicit expressions for the dimension of the corresponding Tchebycheffian spline spaces. Moreover,
the difference between the lower and the upper bound only depends on the T-mesh and not on the
considered ET-space. This gives evidence that all Tchebycheffian spline spaces over the same T-mesh
have a complete structural similarity, regardless of the ET-spaces we are dealing with.

A key ingredient in the paper is the possibility to represent any ET-space on a bounded closed
interval in terms of the so-called generalized power functions [12], which generalize the classical Taylor
basis for algebraic polynomials. Generalized power functions are used to obtain the instability results
(b). Suitable sets of generalized power functions generate the so called ready-to-blossom-like bases, an
important concept introduced in [16], whose existence turns out to be equivalent to the d-sum property.

The crucial fact that ready-to-blossom-like bases exist in any ET-space has been proved in [16,
Theorem 23] by using Wronskians, so as to establish existence and properties of blossoms [23] in
the considered spaces under the weakest possible smoothness assumption. Existence of such bases
in the space of algebraic polynomials has been previously proved in [21, Lemma 3] by linear algebra
arguments, in the context of total positivity of certain polynomial bases. Recently, the same result has
been proved again in [22, Proposition 1.8] by means of algebraic properties of the ring of polynomials.

The remainder of the paper is organized as follows. In Section 2 we define ET-spaces and focus on
the subclass of extended complete Tchebycheff (ECT-) spaces. In particular, we define the generalized
power functions and the ready-to-blossom-like bases, we recall some of their properties and we illustrate
their relation with the d-sum property. We note that it is not strictly necessary to mention ECT-spaces
because only closed bounded intervals are of interest to define spline spaces and on such intervals any
ET-space is an ECT-space [17]. However, for the sake of completeness and clarity, we prefer to
present the material related to generalized powers in terms of ECT-spaces [24]. Section 3 is devoted
to the definition of Tchebycheffian spline spaces over T-meshes. Section 4 contains the results on the
dimension bounds and discusses some of their consequences. Generalized power functions are used in
Section 5 to construct examples of instability in the dimension of C1 spline spaces over T-meshes for
any underlying ET-space of dimension 3. We end with some concluding remarks in Section 6.

Throughout the paper, the derivative operator will be denoted by D whenever it is clear on which
variable it operates. If this is not the case, we will use the notation Dx or Dy to avoid any confusion.

2. Extended Tchebycheff and extended complete Tchebycheff spaces

We first define ET-spaces on a real interval J (see, e.g., [24]).

Definition 2.1 (Extended Tchebycheff space). Given an integer p ≥ 0 and an interval J , a space
Tp(J) ⊂ Cp(J) of dimension p + 1 is an extended Tchebycheff (ET-) space on J if any Hermite
interpolation problem with p + 1 data on J has a unique solution in Tp(J). In other words, for any
integer m ≥ 1, let x̄1, . . . , x̄m be distinct points in J and let d1, . . . , dm be nonnegative integers such
that p+1 =

∑m
i=1(di+1). Then, for any set {fi,j ∈ R}i=1,...,m, j=0,...,di there exists a unique q ∈ Tp(J)

such that
Djq(x̄i) = fi,j , i = 1, . . . ,m, j = 0, . . . , di.

Example 2.1. The space Pp of algebraic polynomials of degree less than or equal to p is an ET-space
on the real line.

Example 2.2. The space 〈cosx, sinx〉 is an ET-space on any interval [a, a+ π).

We now consider a particular subclass of ET-spaces, whose properties will be crucial later on.
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Definition 2.2 (Extended complete Tchebycheff space). Given an integer p ≥ 0 and an interval J ,
the space Tp(J) ⊂ Cp(J) of dimension p + 1 is an extended complete Tchebycheff (ECT-) space if
there exists a basis {u0, . . . , up} of Tp(J) such that every subspace 〈u0, . . . , uk〉 is an ET-space on J
for k = 0, . . . , p. The basis {u0, . . . , up} is called an ECT-system.

By [24, Theorem 9.1], the set {u0, . . . , up} of functions in Cp(J) is an ECT-system if and only if
their Wronskians

W (u0, . . . , uk)(x) := det
(
Diuj(x)

)k
i,j=0

, k = 0, . . . , p

are positive for all x ∈ J .

Example 2.3. The space Pp is an ECT-space on any interval of the real line. It can be regarded as
the span of the ECT-system {

1, x− c, (x− c)2

2
, . . . ,

(x− c)p

p!

}
, (2.1)

for any fixed c ∈ R. Indeed, the Wronskians of this system are all equal to one. The functions in (2.1)
form the classical Taylor basis for algebraic polynomials.

From Definition 2.2 it is clear that an ECT-space of dimension p + 1 on J is an ET-space of
dimension p+ 1 on J . The converse is not true. For instance, the space 〈cosx, sinx〉 is an ECT-space
on the interval (0, π) but not on [0, π), where it is an ET-space, see Example 2.2. The next theorem
shows that the two classes coincide in a very important case; for a proof we refer the reader to [17,
Corollary 2.12], see also [23, Theorem 1.3] and [18].

Theorem 2.1. If J is a bounded closed interval, then any ET-space on J is an ECT-space on J .

We now detail some properties of ECT-spaces that will be useful in the later sections. In view of
Theorem 2.1, any ET-space also enjoys such properties as long as the interval J we are interested in is
bounded and closed. This is the case when dealing with spline spaces.

According to [12], suppose J is a bounded interval and w1, . . . , wp are given continuous functions
on J . For x, y ∈ J we define the repeated integrals by

Ik(x, y;w1, . . . , wk) :=

∫ x

y

w1(t)Ik−1(t, y;w2, . . . , wk) dt, k ≥ 1, (2.2)

starting with I0(x, y) := 1.
From [12, Proposition 3.1] it is known that

Ip(x, y;w1, . . . , wp) =

p∑
k=0

(−1)p−kIk(x, c;w1, . . . , wk)Ip−k(y, c;wp, . . . , wk+1), c ∈ J. (2.3)

Moreover, if wk ∈ Cp−k(J), k = 1, . . . , p, then

Dr
xIk(x, y)|x=y = 0, r = 0, . . . , k − 1, (2.4)

Dk
xIk(x, y)|x=y 6= 0. (2.5)

The repeated integrals are used to define the so-called generalized power functions,

uk(x, c) := w0(x)Ik(x, c;w1, . . . , wk), k = 0, 1, . . . , p. (2.6)

Example 2.4. If w0 = · · · = wp = 1, then for k = 0, 1, . . . , p,

uk(x, c) = Ik(x, c;w1, . . . , wk) =
(x− c)k

k!
.

This motivates the term “generalized power functions”. In this case, the expression (2.3) reads

(x− y)p

p!
=

p∑
k=0

(−1)p−k
(x− c)k

k!

(y − c)p−k

(p− k)!
,

providing the well-known binomial expansion of (x− y)p/p!.
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The next theorem states that, with a proper choice of the functions w0, . . . , wp, the generalized
power functions provide a characterization of any ECT-space, see [24, Chapter 9].

Theorem 2.2. The space Tp(J) is an ECT-space of dimension p + 1 on J if and only if there are
positive functions wk ∈ Cp−k(J), k = 0, . . . , p such that for any c ∈ J the generalized power functions
(2.6) span Tp(J).

Example 2.5. The space 〈1, cosx, sinx〉 is an ECT-space on the interval J = (−π, π), with

w0(x) = cos2
(x

2

)
, w1(x) = w2(x) = 1

/
cos2

(x
2

)
.

Indeed, for x ∈ J and any fixed y ∈ J we find the following ECT-system spanning 〈1, cosx, sinx〉:

u0(x, y) = w0(x)I0(x, y) = cos2
(x

2

)
,

u1(x, y) = w0(x)I1(x, y;w1) = sinx− (1 + cosx) tan
(y

2

)
,

u2(x, y) = w0(x)I2(x, y;w1, w2) = 2 sin2

(
x− y

2

)/
cos2

(y
2

)
.

From (2.4) and (2.5) we have that for any c ∈ J , uk(x, c) vanishes exactly k times at c. Moreover,
denoting by Ψc

k any function in Tp vanishing exactly k times at c, (2.4) and (2.5) imply that

Ψc
k(x) =

p∑
j=k

ajuj(x, c), aj ∈ R, ak 6= 0, (2.7)

in a complete similarity with the polynomial case. A useful “multipoint” generalization of the basis in
(2.6) can be defined as follows, see [16]

Definition 2.3. Let x̄1, . . . , x̄m ∈ J be distinct points and −1 ≤ di < p, di ∈ N, i = 1, . . . ,m, such
that

∑m
i=1(p− di) = p+ 1. In a given p+ 1 dimensional space E ⊂ Cp(J) a ready-to-blossom-like basis

relative to x̄1, · · · , x̄m is a basis of the form

Ψx̄1

d1+1, . . . ,Ψ
x̄1
p , . . . ,Ψ

x̄m
dm+1, . . . ,Ψ

x̄m
p . (2.8)

In view of (2.7), for an ECT-space the existence of a ready-to blossom-like basis (2.8) is equiva-
lent to the fact that the generalized powers ud1+1(x, x̄i), . . . , up(x, x̄i), . . . , udm+1(x, x̄m), . . . , up(x, x̄m)
are linearly independent. In the polynomial case the ready-to-blossom-like bases exist and take the
elementary form which is proved in the following result.

Proposition 2.1. Let −1 ≤ di < p, di ∈ N, i = 1, . . . ,m, be given with
∑m
i=1(p − di) = p + 1. For

any set of m distinct points x̄1, . . . , x̄m ∈ R the functions

Ψx̄i
k (x) :=

(x− x̄i)k

k!
, i = 1, . . . ,m, k = di + 1, . . . , p, (2.9)

form a basis of Pp.

Proof. It suffices to prove that the p+1 functions in (2.9) are linearly independent. Since
∑m
i=1(p−di) =

p + 1, for i = 1, . . . ,m, j = 0, . . . , p − 1 − di, there exist polynomials φi,j ∈ Pp, solving the following
Hermite interpolation problems

Dlφi,j(x̄k) = δi,kδj,l, k = 1, . . . ,m, l = 0, . . . , p− 1− dk.

We define

u(x, y) :=

m∑
i=1

p−1−di∑
j=0

(−1)jφi,j(y)Ψx̄i
p−j(x).

Since Ψx̄i
p−j(x) = Dj (x−x̄i)p

p! we have that for k = 1, . . . ,m and l = 0, . . . , p− 1− dk,

Dl
yu(x, y)|y=x̄k =

m∑
i=1

p−1−di∑
j=0

(−1)jDlφi,j(x̄k)Ψx̄i
p−j(x) = (−1)lΨx̄k

p−l(x) = Dl
y

(x− y)p

p!

∣∣∣
y=x̄k

.
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These are p+1 Hermite conditions, thus from the uniqueness of Hermite interpolation in the y variable
we deduce that

(x− y)p

p!
= u(x, y) =

m∑
i=1

p−1−di∑
j=0

(−1)jφi,j(y)Dj (x− x̄i)p

p!
=

m∑
i=1

p−1−di∑
j=0

(−1)jφi,j(y)Ψx̄i
p−j . (2.10)

It can be easily verified that, for any sequence of p + 1 distinct points c0, . . . , cp in R, the functions
(x− c0)p, . . . , (x− cp)p form a basis for Pp, see also [21, Lemma 2]. Since relation (2.10) can be used
to represent the above set of basis functions, this implies concludes the proof.

Proposition 2.1 can be extended to any ECT space with the following result, which was proved in
[16, Theorem 23].

Theorem 2.3. An ET-space Tp(J) possesses a ready-to-blossom-like basis relative to each set of m
distinct points belonging to J , with 1 ≤ m ≤ p+ 1.

Ready-to-blossom-like bases can be seen as a generalization of Bernstein-like bases [15] and are
important tools for CAGD in the Tchebycheffian framework, because of their being so intimately
connected with blossoms [16] which, after [23], have become a relevant way to handle Tchebycheffian
spline curves. In particular, their use has been crucial for designing with ET-spaces under the weakest
possible differentiability assumptions, also permitting to describe all possible weights which can be
associated with a given ECT-space on a closed bounded interval [18]. They have since been extended
to larger frameworks, to achieve many important results with reference to blossoms, e.g., they are
strongly involved in the description of the largest class of geometrically continuous splines with pieces
taken from different ET-spaces which can be used for design (see [19]), along with the many applications
of this result in connection with [17] (see, e.g., [20] and references therein).

The existence of ready-to-blossom-like bases is also closely related to an important ingredient for
obtaining dimension results for Tchebycheffian spline spaces over T-meshes [3, Theorem 3.1], the so
called d-sum property.

Definition 2.4 (d-sum property). Consider an ET-space Tp(J) of dimension p + 1 on J . Let d :=
(d1, . . . , dm) with 0 ≤ di ≤ p, di ∈ N, i = 1, . . . ,m. We say that Tp(J) has the d-sum property if for
any set of m distinct points x̄1, . . . , x̄m ∈ J we have

dim

( m∑
i=1

ITp,di(x̄i)
)

= min

(
p+ 1,

m∑
i=1

p− di
)
,

where
ITp,d(x̄) :=

{
q ∈ Tp(J) : Dlq(x̄) = 0, l = 0, . . . , d

}
.

For an ET-space, it easy to see that any set of p − d functions of the form Ψx̄
d+1, · · · ,Ψx̄

p span

ITp,d(x̄), and that ITp,d(x̄) is the trivial space if d = p. Therefore, from Theorem 2.3 we immediately
obtain the following result.

Theorem 2.4. An ET-space has the d-sum property for any d := (d1, . . . , dm) with integers di such
that 0 ≤ di ≤ p for i = 1, . . . ,m and any m ∈ N.

3. Tchebycheffian spline spaces over T-meshes

We first recall the concepts and definitions related to T-meshes, using the notation given in [3] (see
also [2, 22]). We consider a domain Ω ⊂ R2 which is a finite union of closed axis-aligned rectangles,
called cells, whose interiors are pairwise disjoint. This domain Ω is assumed to be simply connected
and its interior Ωo is connected. We denote by [ah, bh]× [av, bv] the smallest rectangle containing Ω.

Definition 3.1 (T-mesh). A T-mesh T := (T2, T1, T0) on Ω is defined as:

• T2 is the collection of cells in Ω;

• T1 = T h1 ∪ T v1 is a finite set of closed axis-aligned horizontal and vertical segments in
⋃
σ∈T2 ∂σ,

called edges;
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• T0 :=
⋃
τ∈T1 ∂τ is a finite set of points, called vertices;

such that

• for each σ ∈ T2, ∂σ is a finite union of elements of T1;

• for σ, σ′ ∈ T2 with σ 6= σ′, σ ∩ σ′ = ∂σ ∩ ∂σ′ is a finite union of elements of T1 ∪ T0;

• for τ, τ ′ ∈ T1 with τ 6= τ ′, τ ∩ τ ′ = ∂τ ∩ ∂τ ′ ⊂ T0;

• for each γ ∈ T0, γ = τh ∩ τv where τh is a horizontal edge and τv is a vertical edge.

We denote by T o1 the set of interior edges, i.e., the edges intersecting Ωo. Analogously, T o0 represents
the set of interior vertices, i.e., the vertices in Ωo. The elements of the sets T1 \ T o1 and T0 \ T o0 are the

boundary edges and the boundary vertices, respectively. Moreover, T o,h1 and T o,v1 indicate the sets of

the horizontal and vertical interior edges of T , respectively, and we set T o1 := T o,h1 ∪ T o,v1 . Then, the
interior T-mesh is T o := (T2, T o1 , T o0 ).

A segment of T is a connected union of edges of T belonging to the same straight line. Given any
τ ∈ T o1 , we denote by ρ(τ) the maximal segment composed of edges of T o1 containing τ . Moreover,
we denote by ms(T ) the set of all such maximal segments, and by mis(T ) the set of all maximal
interior segments (MIS), that is the subset of ms(T ) whose elements do not intersect the boundary of
the T-mesh. The set of all horizontal (respectively vertical) maximal interior segments is denoted by
mish(T ) (respectively misv(T )). Given any γ ∈ T o0 , we define ρh(γ) := ρ(τh) and ρv(γ) := ρ(τv), such

that γ = τh ∩ τv and τh ∈ T o,h1 , τv ∈ T o,v1 .
Since we are going to deal with Tchebycheffian spline spaces over T-meshes, we also need to formalize

the concept of smoothness in this context.

Definition 3.2 (Smoothness). With each edge τ ∈ T o1 , we associate an integer r(τ) ≥ 0. We say
that f ∈ Cr(τ)(τ) if the partial derivatives of f up to order r(τ) are continuous across the edge τ .
We assume that r(τ) = r(τ ′) for all τ, τ ′ lying on the same straight line, and we refer to this as the
constant smoothness (along lines) assumption. A smoothness distribution on T is defined as

r := { r(τ), ∀τ ∈ T o1 },

and leads to the following class of smooth functions on Ω:

Cr(T ) := { f : Ω→ R : f ∈ Cr(τ)(τ), ∀τ ∈ T o1 }.

Given a smoothness distribution r on T , with each vertex γ ∈ T o0 , we associate two integers

rh(γ), rv(γ), where rh(γ) := r(τv) and rv(γ) := r(τh) such that γ = τh ∩ τv and τh ∈ T o,h1 , τv ∈ T o,v1 .
For each maximal segment ρ ∈ ms(T ) we set r(ρ) := r(τ), where τ is any interior edge belonging to ρ.

In the following, we denote by ` either h or v. Let p` ∈ N with p` ≥ 0, and let T`p`([a`, b`]) be an
ET-space of dimension p` + 1 on J` := [a`, b`]. Then, we define the tensor-product space

PT
p := Thph([ah, bh])⊗ Tvpv ([av, bv]), (3.1)

where p := (ph, pv) and T := (Th, Tv) := (Thph ,T
v
pv ). If the space (3.1) is the space of bivariate algebraic

polynomials of bi-degree p, then it is denoted by Pp. In analogy with the polynomial case, we call p
the bi-degree of the space PT

p .

Definition 3.3 (Tchebycheffian spline space over a T-mesh). Let T be a T-mesh with a smoothness
distribution r, and let ph, pv ∈ N with ph, pv ≥ 0. The Tchebycheffian spline space over the T-mesh
T , denoted by ST ,rp (T ), is defined as the space of functions in Cr(T ) such that, restricted to any cell

σ ∈ T2, they belong to PT
p , i.e.,

ST ,rp (T ) :=
{
s ∈ Cr(T ) : s|σ ∈ PT

p , σ ∈ T2

}
.

In particular, in the case of bivariate algebraic polynomials,

Srp(T ) :=
{
s ∈ Cr(T ) : s|σ ∈ Pp, σ ∈ T2

}
.

In the following, we will assume the usual condition on the smoothness (see [3, Section 2.2]):

r(τv) < ph, ∀τv ∈ T o,v1 , r(τh) < pv, ∀τh ∈ T o,h1 .

For some detailed examples of T-meshes and the related concepts, we refer the reader to [3, Section 2]
and [2, Section 2].
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4. Dimension formula for Tchebycheffian spline spaces over T-meshes

In [3] homological techniques were employed to obtain bounds for the dimension of Tchebycheffian
spline spaces defined over a T-mesh T . In this section we improve those results. Indeed, thanks to
Theorem 2.4, we are able to formulate the bounds, without any assumption on the relation between
the bi-degree of the space and its smoothness. Let us first recall some preliminary definitions and
concepts.

Definition 4.1 (r-sum property on T ). Given a smoothness distribution r on T , we say that T :=
(Thph ,T

v
pv ) has the r-sum property on T , if each of its components T`p`([a`, b`]) with ` = h, v has the

d-sum property (see Definition 2.4) for any subvector d of the vector r` := (r`(γ))γ∈T o0 .

Let ι be an ordering of mis(T ). For any ρ ∈ mis(T ), we denote by Γι(ρ) the set of vertices of ρ
which do not belong to ρ′ ∈ mis(T ) with ι(ρ′) > ι(ρ).

Definition 4.2 (Weight of MIS). Given an ordering ι of mis(T ), the weight of a maximal interior
segment ρ ∈ mis(T ) is defined as

ωι(ρ) :=

{∑
γ∈Γι(ρ)

(ph − rh(γ)), if ρ ∈ mish(T )∑
γ∈Γι(ρ)

(pv − rv(γ)), if ρ ∈ misv(T )
.

In the next theorem we collect the dimension results for Tchebycheffian spline spaces over T-meshes.
This theorem improves the results of [3] and fully generalizes the results known for the polynomial case
[22, Theorems 3.1 and 3.7].

Theorem 4.1. Let ST ,rp (T ) be a Tchebycheffian spline space over a T-mesh T . Then,

dim
(
ST ,rp (T )

)
=
∑
σ∈T2

(ph + 1)(pv + 1)−
∑

τ∈T o,h1

(ph + 1)(r(τ) + 1)−
∑

τ∈T o,v1

(r(τ) + 1)(pv + 1)

+
∑
γ∈T o0

(rh(γ) + 1)(rv(γ) + 1) +H0,
(4.1)

where

0 ≤ H0 ≤
∑

ρ∈mish(T )

(ph + 1− ωι(ρ))+ (pv − r(ρ)) +
∑

ρ∈misv(T )

(ph − r(ρ)) (pv + 1− ωι(ρ))+, (4.2)

and (x)+ := max(x, 0).

Proof. The dimension formula (4.1) was shown in [3, Theorem 4.1] with H0 a specific homology term.
Furthermore, in [3, Theorem 3.1], it was proved that such homology term can be bounded by (4.2)
under the assumption that the considered couple of ET-spaces T = (Thph ,T

v
pv ) satisfies the r-sum

property on T . From Theorem 2.4 we know that this is the case for any T . This completes the
proof.

Example 4.1. Consider the T-mesh T in Figure 1. This mesh has 4 maximal interior segments,
namely mis(T ) = mish(T ) ∪ misv(T ) with mish(T ) = {ρ1, ρ3} and misv(T ) = {ρ2, ρ4}. The ordering
ι of mis(T ) is given by ι(ρj) = j, j = 1, 2, 3, 4. Note that

|T2| = 24, |T o,h1 | = |T o,v1 | = 22, |T o0 | = 21.

Moreover, let p = (ph, pv) = (2, 2) and let r be the constant smoothness distribution where r(τ) = 1
for all τ ∈ T o1 . Then,

ωι(ρ1) = 2, ωι(ρ2) = 3, ωι(ρ3) = 3, ωι(ρ4) = 4.

Theorem 4.1 implies that 0 ≤ H0 ≤ 1, and 36 ≤ dim
(
ST ,rp (T )

)
≤ 37 for T = (Th2 ,Tv2) where Th2 ,Tv2

are any ET-spaces of dimension 3 on the intervals [s0, s6] and [t0, t6], respectively.
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Figure 1: Example of an unstable T-mesh.

Theorem 4.1 gives an explicit and computable expression for the dimension of the space ST ,rp (T )
when the upper bound in (4.2) is zero. It is evident that such configurations are of practical interest,
and therefore the upper bound in (4.2) plays an important role in the design of T-mesh refinement
algorithms. This upper bound depends on the bi-degree, on the smoothness, and on the weights of
MIS with respect to any ordering of MIS. If the T-mesh is obtained by successive refinements, we can
use the following algorithm (Algorithm 4.1) to generate a naturally induced ordering of MIS, which
will be employed to construct a T-mesh refinement algorithm (Algorithm 4.2) ensuring H0 = 0.

Algorithm 4.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ (i.e., one or more consecutive edges). The ordering ι̃ of mis(T̃ ) is computed
as follows:

1. set ι̃(ρ̃) := ι(ρ̃) for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)} where ρ(τ) ∈ ms(T̃ ) is the maximal segment contain-
ing τ ;

2. if ρ(τ) ∈ mis(T̃ ):

(a) if ρ(τ) = ρ′ ∪ τ ∪ ρ′′ with ρ′, ρ′′ ∈ mis(T ), then ι̃(ρ(τ)) := min(ι(ρ′), ι(ρ′′));
(b) if ρ(τ) = τ ∪ ρ′ with ρ′ ∈ mis(T ), then ι̃(ρ(τ)) := ι(ρ′);
(c) if ρ(τ) = τ , then ι̃(τ) := 1 + maxρ′∈mis(T ) ι(ρ

′).

Figure 2 illustrates the different cases of inserting a new segment τ in Algorithm 4.1. Note that the
indices of the ordering of MIS produced by Algorithm 4.1 are not necessarily consecutive. As shown in
the next lemma, Algorithm 4.1 ensures that the weights of the already existing MIS do not decrease.

Lemma 4.1. Given a T-mesh T with an ordering ι of mis(T ), let T̃ be the T-mesh obtained after
inserting a new segment τ and let ι̃ be the ordering of mis(T̃ ) computed by Algorithm 4.1. Then, for
all ρ̃ ∈ mis(T̃ ) such that M(ρ̃) := {ρ ∈ mis(T ) : ρ ⊆ ρ̃} 6= ∅, there exists ρ̄ ∈ M(ρ̃) with ι(ρ̄) = ι̃(ρ̃)
and ωι(ρ̄) ≤ ωι̃(ρ̃).

Proof. Let us first focus on Step 1 in Algorithm 4.1. Since mis(T̃ ) \ {ρ(τ)} = mis(T̃ ) ∩ mis(T ), we
have M(ρ̃) = {ρ̃} for all ρ̃ ∈ mis(T̃ ) \ {ρ(τ)}. In such case, we set ρ̄ = ρ̃. When arriving at Step 2(a)
and considering ρ̃ = ρ(τ) ∈ mis(T̃ ), we have M(ρ̃) = {ρ′, ρ′′} and we set ρ̄ = ρ′ if ι(ρ′) < ι(ρ′′) and
ρ̄ = ρ′′ otherwise. Similarly, at Step 2(b), we have M(ρ̃) = {ρ′} and we set ρ̄ = ρ′. Note that we can
ignore Step 2(c) since M(ρ̃) = ∅.

For the above choices of ρ̄ it is clear from the algorithm that ι(ρ̄) = ι̃(ρ̃). In the last part of
the proof, we will show that Γι(ρ̄) ⊆ Γι̃(ρ̃), and this immediately implies ωι(ρ̄) ≤ ωι̃(ρ̃). Inserting τ
results in adding possible vertices belonging to the elements of mis(T ). Therefore, by the definition of
Γι,Γι̃ and ι(ρ̄) = ι̃(ρ̃), we have Γι(ρ̄) = Γι̃(ρ̃) if ι̃(ρ̃) < ι̃(ρ(τ)), and Γι(ρ̄) ⊆ Γι̃(ρ̃) otherwise, see also
Figure 2.
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ρ3

ρ4

ρ1

ρ2
ρ5

τ

(a) τ links two existing MIS (ρ(τ) = ρ1∪τ∪ρ2)

ρ3

ρ4

ρ1

ρ2
ρ5τ

(b) τ extends an existing MIS (ρ(τ) = τ ∪ ρ5)

ρ3

ρ4

ρ1

ρ2
ρ5

τ

(c) τ introduces a new MIS (ρ(τ) = τ)

ρ3

ρ4

ρ1

ρ2
ρ5

τ

(d) τ does not modify the set of MIS (ρ(τ) = τ)

Figure 2: Examples of the different cases of inserting a segment τ (indicated by dashed lines) in Algorithm 4.1.

We now detail a refinement strategy that generates a sequence of refined T-meshes such that the
upper bound in (4.2) is kept to be zero throughout the entire refinement process. It is a particular im-
plementation of the so-called (ph+1, pv+1)-weighted subdivision rule described in [22, Algorithm 4.4].
This rule was developed in the context of polynomial splines but is also valid in our more general
Tchebycheffian spline setting.

Algorithm 4.2. Given a T-mesh T with an ordering ι of mis(T ), two positive integers ph, pv, and a
smoothness distribution r such that ωι(ρ) ≥ ph + 1 for any ρ ∈ mish(T ) and ωι(ρ) ≥ pv + 1 for any
ρ ∈ misv(T ), we construct the refinement as follows for a segment τ to be inserted in T :

1. if τ does not extend an existing edge, then extend τ so that the maximal segment containing τ ,
say ρ(τ), intersects ∂Ω or satisfies

∑
ρ′∈Γρ(τ)

(pτ − r(ρ′)) ≥ pτ + 1, pτ :=

{
ph, if τ is horizontal,

pv, if τ is vertical,
(4.3)

where Γρ(τ) is the set of maximal segments ρ′ ∈ ms(T ) intersecting ρ(τ);

2. update the ordering ι according to Algorithm 4.1.

The next proposition shows that Algorithm 4.2 can be applied successively once a valid initial
T-mesh configuration is constructed. For instance, any tensor-product mesh leads to a valid initial
configuration because it does not contain MIS. Moreover, Algorithm 4.2 guarantees that H0 = 0 in
Theorem 4.1.
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Proposition 4.1. Let T̃ be the T-mesh generated by Algorithm 4.2 and let ι̃ be the corresponding
ordering of mis(T̃ ). We have

• ωι̃(ρ̃) ≥ ph + 1 for any ρ̃ ∈ mish(T̃ ) and ωι̃(ρ̃) ≥ pv + 1 for any ρ̃ ∈ misv(T̃ );

• H0 = 0.

Proof. Let τ be the segment to be inserted in T by means of Algorithm 4.2. If τ does not extend an
existing edge and ρ(τ) ∈ mis(T̃ ), then Algorithm 4.1 (Step 2(c)) gives ι̃(τ) := 1 + maxρ′∈mis(T ) ι(ρ

′).

Hence, Γι̃(ρ(τ)) is the set of interior vertices of T̃ belonging to ρ(τ), i.e., the intersections of ρ(τ)
with the elements in Γρ(τ). By Definition 4.2 and by the condition (4.3), we get ωι̃(ρ(τ)) ≥ ph + 1 if

ρ(τ) ∈ mish(T̃ ) and ωι̃(ρ(τ)) ≥ pv+1 if ρ(τ) ∈ misv(T̃ ). Moreover, from the properties of Algorithm 4.1
in Lemma 4.1 we know that the weight of any other MIS in T̃ , say ρ̃, is not decreased (because
M(ρ̃) 6= ∅). It follows that ωι̃(ρ̃) ≥ ph+ 1 for any ρ̃ ∈ mish(T̃ ) and ωι̃(ρ̃) ≥ pv + 1 for any ρ̃ ∈ misv(T̃ ).
By using the bounds in (4.2), this also implies that H0 = 0.

The refinement strategy detailed in Algorithm 4.2 and the corresponding explicit dimension formula
is completely in agreement with similar results given for polynomial LR B-splines in [6, Section 5].
Furthermore, the dimension formula is in agreement with the results and the examples for polynomial
spline spaces over T-meshes provided in [10, Section 4].

Theorem 4.1 also strengthens the relationship between Tchebycheffian and polynomial spline spaces
over T-meshes. For any couple of ET-spaces T , the difference between the dimensions of the Tcheby-
cheffian spline space ST ,rp (T ) and the related polynomial spline space Srp(T ) is bounded in terms of a
quantity that only depends on the mesh, see (4.2). In particular, such difference is zero if the mesh T
has been obtained by applying Algorithm 4.2.

5. Instability

In this section we show that the dimension of the Tchebycheffian spline space ST ,rp (T ) can depend
not only on the topological information of T but also on the geometry of the T-mesh. This particular
behavior is usually referred to as instability in the dimension of the considered space. Examples of
instability in the dimension of spline spaces over T-meshes are known for polynomial spline spaces
[1, 9] and for trigonometric and hyperbolic spline spaces [3].

We focus on the T-mesh in Figure 1, which is a mirrored version of the one already considered in
[3, 9]. We consider p = (2, 2) and a constant smoothness distribution r such that r(τ) = 1 for all
τ ∈ T o1 . Moreover, we set T = (T2,T2), where T2 is any ET-space of dimension 3 on a given bounded
closed interval. Note that T2 is an ECT-space on the same interval identified by some positive weights
w0, w1, w2 (see Theorem 2.1 and Theorem 2.2). From Example 4.1 we get

dim
(
ST ,rp (T )

)
= 36 +H0, 0 ≤ H0 ≤ 1. (5.1)

Following the same reasoning as in [3, Section 5], we also know that H0 = 12 −K0, where K0 is the
dimension of the space spanned by the rows of the following matrix

M :=



ψs4,2(x) 0 0 ψt3,2(y)
ψs1,2(x) 0 0 0
ψs2,2(x) 0 0 0
ψs3,2(x) ψt3,2(y) 0 0

0 ψt1,2(y) 0 0
0 ψt2,2(y) 0 0
0 ψt4,2(y) ψs3,2(x) 0
0 0 ψs2,2(x) 0
0 0 ψs5,2(x) 0
0 0 ψs4,2(x) ψt4,2(y)
0 0 0 ψt2,2(y)
0 0 0 ψt5,2(y)



. (5.2)

In this matrix, {ψz̄,i}2i=0 is a Taylor-like basis of the space T2, i.e.,

Dk
zψz̄,i(z̄) = δik, i, k = 0, 1, 2.
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For instance, in the polynomial case (i.e., T2 = P2) we have ψz̄,i(z) = (z − z̄)i/i!, i = 0, 1, 2, and
K0 is given by the dimension of the space spanned by the rows of the following matrix

MP2(s1, . . . , s5; t1, . . . , t5) :=



1 s4 s4
2 0 0 0 0 0 0 1 t3 t3

2

1 s1 s1
2 0 0 0 0 0 0 0 0 0

1 s2 s2
2 0 0 0 0 0 0 0 0 0

1 s3 s3
2 1 t3 t3

2 0 0 0 0 0 0
0 0 0 1 t1 t1

2 0 0 0 0 0 0
0 0 0 1 t2 t2

2 0 0 0 0 0 0
0 0 0 1 t4 t4

2 1 s3 s3
2 0 0 0

0 0 0 0 0 0 1 s2 s2
2 0 0 0

0 0 0 0 0 0 1 s5 s5
2 0 0 0

0 0 0 0 0 0 1 s4 s4
2 1 t4 t4

2

0 0 0 0 0 0 0 0 0 1 t2 t2
2

0 0 0 0 0 0 0 0 0 1 t5 t5
2



.

It is clear that rank(MP2
(s1, . . . , s5; t1, . . . , t5)) ≥ 11. The matrix MP2

(s1, . . . , s5; t1, . . . , t5) has been
analyzed in [9] where it has been proved that it is singular if and only if

(s3 − s1)(s5 − s4)

(t3 − t1)(t5 − t4)
=

(s4 − s1)(s5 − s3)

(t4 − t1)(t5 − t3)
, (5.3)

and, in particular, if si = ti for all i. Hence, for T = (P2,P2) we get

H0 =

{
1, if (5.3) holds,

0, otherwise.

As a consequence, the dimension of the C1 bi-quadratic polynomial spline space over the T-mesh in
Figure 1 depends on the geometry of T according to the validity of (5.3).

Let us now consider a general ET-space T2. From Theorem 2.2 and from (2.4), (2.6) it follows that
(possibly up to a constant) the Taylor-like basis function ψz̄,2 is given by

u2(x, z̄) = w0(x)I2(x, z̄;w1, w2).

Since w0 > 0, the matrix in (5.2) has the same rank as the matrix

M :=



I2(x, s4;w1, w2) 0 0 I2(y, t3;w1, w2)
I2(x, s1;w1, w2) 0 0 0
I2(x, s2;w1, w2) 0 0 0
I2(x, s3;w1, w2) I2(y, t3;w1, w2) 0 0

0 I2(y, t1;w1, w2) 0 0
0 I2(y, t2;w1, w2) 0 0
0 I2(y, t4;w1, w2) I2(x, s3;w1, w2) 0
0 0 I2(x, s2;w1, w2) 0
0 0 I2(x, s5;w1, w2) 0
0 0 I2(x, s4;w1, w2) I2(y, t4;w1, w2)
0 0 0 I2(y, t2;w1, w2)
0 0 0 I2(y, t5;w1, w2)



.

Using (2.3) we can write for i = 1, . . . , 5,

I2(x, si;w1, w2) = I2(si, s1;w2, w1)− I1(x, s1;w1)I1(si, s1;w2) + I2(x, s1;w1, w2),

and a similar expression holds for I2(y, ti;w1, w2). Since {1, I1(x, s1;w1), I2(x, s1;w1, w2)} (and also
{1, I1(y, t1;w1), I2(y, t1;w1, w2)}) are linearly independent, K0 is given by the dimension of the space
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spanned by the rows of the following matrix

MT2
(s1, . . . , s5; t1, . . . , t5) :=



1 S
(1)
4 S

(2)
4 0 0 0 0 0 0 1 T

(1)
3 T

(2)
3

1 S
(1)
1 S

(2)
1 0 0 0 0 0 0 0 0 0

1 S
(1)
2 S

(2)
2 0 0 0 0 0 0 0 0 0

1 S
(1)
3 S

(2)
3 1 T

(1)
3 T

(2)
3 0 0 0 0 0 0

0 0 0 1 T
(1)
1 T

(2)
1 0 0 0 0 0 0

0 0 0 1 T
(1)
2 T

(2)
2 0 0 0 0 0 0

0 0 0 1 T
(1)
4 T

(2)
4 1 S

(1)
3 S

(2)
3 0 0 0

0 0 0 0 0 0 1 S
(1)
2 S

(2)
2 0 0 0

0 0 0 0 0 0 1 S
(1)
5 S

(2)
5 0 0 0

0 0 0 0 0 0 1 S
(1)
4 S

(2)
4 1 T

(1)
4 T

(2)
4

0 0 0 0 0 0 0 0 0 1 T
(1)
2 T

(2)
2

0 0 0 0 0 0 0 0 0 1 T
(1)
5 T

(2)
5



,

(5.4)
where

S
(1)
i := I1(si, s1;w2) =

∫ si

s1

w2(v) dv, S
(2)
i := I2(si, s1;w2, w1) =

∫ si

s1

w2(v)

∫ v

s1

w1(u) dudv,

T
(1)
i := I1(ti, t1;w2) =

∫ ti

t1

w2(v) dv, T
(2)
i := I2(ti, t1;w2, w1) =

∫ ti

t1

w2(v)

∫ v

t1

w1(u) dudv.

In the case w1 = w2, the rank of this matrix behaves very similar to the polynomial case.

Proposition 5.1. If w1 = w2 then the matrix (5.4) is singular if and only if(
S

(1)
3 − S(1)

1

)(
S

(1)
5 − S(1)

4

)(
T

(1)
3 − T (1)

1

)(
T

(1)
5 − T (1)

4

) =

(
S

(1)
4 − S(1)

1

)(
S

(1)
5 − S(1)

3

)(
T

(1)
4 − T (1)

1

)(
T

(1)
5 − T (1)

3

) . (5.5)

Proof. Let w := w1 = w2. By a symmetry argument we immediately get

S
(2)
i :=

∫ si

s1

w(v)

∫ v

s1

w(u) dudv =
1

2

(∫ si

s1

w(v) dv

)2

=
1

2

(
S

(1)
i

)2

.

The result follows by comparing the matrices MT2
(s1, . . . , s5; t1, . . . , t5) and MP2

(s1, . . . , s5; t1, . . . , t5)
and from (5.3).

Proposition 5.1 shows that, in the case w1 = w2, the dimension of the Tchebycheffian spline space
over the T-mesh in Figure 1 depends on the geometry of T according to the validity of (5.5). We now
deal with the general case of (possibly different) positive weights w1, w2.

Proposition 5.2. We have

det
(
MT2(s1, s2, s3, s4, s5; s1, s2, s3, s4, s5)

)
= 0.

Moreover, for any pair w1, w2 there exists t̃5(w1, w2) > s5 such that for any t5 with s5 < t5 < t̃5(w1, w2)
we have

det
(
MT2

(s1, s2, s3, s4, s5; s1, s2, s3, s4, t5)
)
6= 0.

Proof. Since si = ti, we have T
(1)
i = S

(1)
i , T

(2)
i = S

(2)
i , for i = 1, 2, 3, 4. Assuming t5 = s5 + ε5 for some

ε5 ≥ 0, we get

T
(1)
5 = S

(1)
5 + ε(1), T

(2)
5 = S

(2)
5 + ε(2),

where

ε(1) =

∫ s5+ε5

s5

w2(v) dv, ε(2) =

∫ s5+ε5

s5

w2(v) dv

∫ s5

s1

w1(u) du+

∫ s5+ε5

s5

w2(v)

∫ v

s5

w1(u) dudv. (5.6)
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A direct computation gives

det
(
MT2

(s1, s2, s3, s4, s5; s1, s2, s3, s4, t5)
)

=(
S

(1)
1 S

(2)
3 − S(1)

2 S
(2)
3 + S

(1)
2 S

(2)
1 − S(1)

1 S
(2)
2 − S(1)

3 S
(2)
1 + S

(1)
3 S

(2)
2

)(
−S(1)

4 S
(2)
1 + S

(1)
4 S

(2)
2 + S

(1)
1 S

(2)
4 − S(1)

2 S
(2)
4 + S

(1)
2 S

(2)
1 − S(1)

1 S
(2)
2

)(
−S(1)

3 S
(2)
4 + S

(1)
2 S

(2)
4 + S

(1)
4 S

(2)
3 − S(1)

2 S
(2)
3 + S

(1)
3 S

(2)
2 − S(1)

4 S
(2)
2

)(
ε(1)
(
S

(2)
5 − S(2)

2

)
− ε(2)

(
S

(1)
5 − S(1)

2

))
,

and so det
(
MT2

(s1, s2, s3, s4, s5; s1, s2, s3, s4, s5)
)

= 0.
Suppose now ε5 > 0. We can rewrite the determinant as follows

det
(
MT2(s1, s2, s3, s4, s5; s1, s2, s3, s4, t5)

)
= −

(
S

(1)
2 − S(1)

1

)(
S

(1)
3 − S(1)

1

)(
R1,3 −R1,2

)(
S

(1)
2 − S(1)

1

)(
S

(1)
4 − S(1)

1

)(
R1,4 −R1,2

)(
S

(1)
3 − S(1)

2

)(
S

(1)
4 − S(1)

2

)(
R2,4 −R2,3

)
ε(1)
(
S

(1)
5 − S(1)

2

)(
R2,5 − ε(2)/ε(1)

)
,

where

Ri,j :=
S

(2)
j − S

(2)
i

S
(1)
j − S

(1)
i

, i 6= j.

Note that Ri,j is well defined because w2(x) > 0, and

Ri,j =

∫ sj
s1
w2(v)

∫ v
s1
w1(u) dudv −

∫ si
s1
w2(v)

∫ v
s1
w1(u) dudv∫ sj

si
w2(v) dv

=

∫ sj
si
w2(v) dv

∫ si
s1
w1(u) du+

∫ sj
si
w2(v)

∫ v
si
w1(u) dudv∫ sj

si
w2(v) dv

=

∫ si

s1

w1(u) du+ F (si, sj),

where

F (x, y) :=

∫ y
x
w2(v)

∫ v
x
w1(u) dudv∫ y

x
w2(v) dv

. (5.7)

Similarly, from (5.6) we obtain

ε(2)

ε(1)
=

∫ s5

s1

w1(u) du+ F (s5, s5 + ε5).

It is clear that S
(1)
j − S

(1)
i > 0 for si < sj . Moreover, since F (x, y) is increasing with respect to y for

any fixed x, x < y (see Lemma 5.1), we deduce for si < sj < sk,

Ri,k −Ri,j = F (si, sk)− F (si, sj) > 0,

and for sufficiently small but positive ε5, we get

R2,5 −
ε(2)

ε(1)
= F (s2, s5)−

∫ s5

s2

w1(u) du− F (s5, s5 + ε5) 6= 0.

Summarizing, there exists t̃5(w1, w2) > s5 such that for any t5 with s5 < t5 < t̃5(w1, w2) all the factors
in det

(
MT2

(s1, s2, s3, s4, s5; s1, s2, s3, s4, t5)
)

are different from 0. This concludes the proof.

Lemma 5.1. Let F be defined as in (5.7) and x < y. Then, for any fixed x we have

lim
y→x

F (x, y) = 0,

and F is a positive, monotone increasing function of y.
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Proof. Using L’Hôpital’s rule and taking into account that the weights are positive, we get

lim
y→x

F (x, y) = lim
y→x

w2(y)
∫ y
x
w1(u) du

w2(y)
= 0.

Moreover, for x < y, it is clear that F (x, y) > 0 and

d

dy
F (x, y) =

w2(y)
∫ y
x
w1(u) du

∫ y
x
w2(v) dv − w2(y)

∫ y
x
w2(v)

∫ v
x
w1(u) dudv(∫ y

x
w2(v) dv

)2
=
w2(y)

∫ y
x
w2(v)

∫ y
v
w1(u) dudv(∫ y

x
w2(v) dv

)2 > 0.

From Proposition 5.2 it follows that the T-mesh in Figure 1 is an example of unstable T-mesh for
C1 Tchebycheffian spline spaces with T = (T2,T2) and T2 is any ET-space of dimension 3.

Taking into account Example 4.1, the results of this section show that the bounds for the dimension
of Tchebycheffian spline spaces provided in Theorem 4.1 are sharp.

6. Conclusions

By exploiting the properties of ET-spaces on closed bounded intervals we have improved and com-
pleted the dimension results of [3]. More precisely, we have stated explicit upper bounds for the
dimension of any Tchebycheffian spline space over a planar T-mesh, without any assumption on the
underlying ET-spaces. The provided bounds lead to explicit expressions for the dimension of Tcheby-
cheffian spline spaces on several relevant T-mesh configurations (where lower and upper bounds coin-
cide). Besides their intrinsic theoretical interest, this opens the door for a full generalization to the
Tchebycheffian setting of the construction of LR-splines by providing a proper tool to analyze their
linear independence (see, e.g., [2, 6]).

Furthermore, we have analyzed instability in the dimension of Tchebycheffian spline spaces over
T-meshes, and we have shown that there exist T-meshes such that the corresponding C1 spline spaces
have unstable dimension for any underlying ET-space of dimension 3. This shows that the provided
dimension bounds are sharp, regardless of the ET-spaces we are dealing with.
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