
Sebastiano Bagnara Riccardo Tartaglia · Sara Albolino Thomas Alexander · Yushi Fujita Editors

Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018)

Volume VII: Ergonomics in Design, Design for All, Activity Theories for Work Analysis and Design, Affective Design

Advances in Intelligent Systems and Computing

Volume 824

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

e-mail: kacprzyk@ibspan.waw.pl

The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within "Advances in Intelligent Systems and Computing" are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba

e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK

e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary

e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA

e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan

e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia

e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico

e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil

e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland

e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong

e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

Sebastiano Bagnara · Riccardo Tartaglia Sara Albolino · Thomas Alexander Yushi Fujita Editors

Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018)

Volume VII: Ergonomics in Design, Design for All, Activity Theories for Work Analysis and Design, Affective Design

Editors
Sebastiano Bagnara
University of the Republic of San Marino
San Marino, San Marino

Riccardo Tartaglia Centre for Clinical Risk Management and Patient Safety, Tuscany Region Florence, Italy

Sara Albolino Centre for Clinical Risk Management and Patient Safety, Tuscany Region Florence, Italy Thomas Alexander Fraunhofer FKIE Bonn, Nordrhein-Westfalen Germany

Yushi Fujita International Ergonomics Association Tokyo, Japan

ISSN 2194-5357 ISSN 2194-5365 (electronic) Advances in Intelligent Systems and Computing ISBN 978-3-319-96070-8 ISBN 978-3-319-96071-5 (eBook) https://doi.org/10.1007/978-3-319-96071-5

Library of Congress Control Number: 2018950646

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The Triennial Congress of the International Ergonomics Association is where and when a large community of scientists and practitioners interested in the fields of ergonomics/human factors meet to exchange research results and good practices, discuss them, raise questions about the state and the future of the community, and about the context where the community lives: the planet. The ergonomics/human factors community is concerned not only about its own conditions and perspectives, but also with those of people at large and the place we all live, as Neville Moray (Tatcher et al. 2018) taught us in a memorable address at the IEA Congress in Toronto more than twenty years, in 1994.

The Proceedings of an IEA Congress describes, then, the actual state of the art of the field of ergonomics/human factors and its context every three years.

In Florence, where the XX IEA Congress is taking place, there have been more than sixteen hundred (1643) abstract proposals from eighty countries from all the five continents. The accepted proposal has been about one thousand (1010), roughly, half from Europe and half from the other continents, being Asia the most numerous, followed by South America, North America, Oceania, and Africa. This Proceedings is indeed a very detailed and complete state of the art of human factors/ergonomics research and practice in about every place in the world.

All the accepted contributions are collected in the Congress Proceedings, distributed in ten volumes along with the themes in which ergonomics/human factors field is traditionally articulated and IEA Technical Committees are named:

- I. Healthcare Ergonomics (ISBN 978-3-319-96097-5).
- II. Safety and Health and Slips, Trips and Falls (ISBN 978-3-319-96088-3).
- III. Musculoskeletal Disorders (ISBN 978-3-319-96082-1).
- IV. Organizational Design and Management (ODAM), Professional Affairs, Forensic (ISBN 978-3-319-96079-1).
- V. Human Simulation and Virtual Environments, Work with Computing Systems (WWCS), Process control (ISBN 978-3-319-96076-0).

vi Preface

VI. Transport Ergonomics and Human Factors (TEHF), Aerospace Human Factors and Ergonomics (ISBN 978-3-319-96073-9).

- VII. Ergonomics in Design, Design for All, Activity Theories for Work Analysis and Design, Affective Design (ISBN 978-3-319-96070-8).
- VIII. Ergonomics and Human Factors in Manufacturing, Agriculture, Building and Construction, Sustainable Development and Mining (ISBN 978-3-319-96067-8).
 - IX. Aging, Gender and Work, Anthropometry, Ergonomics for Children and Educational Environments (ISBN 978-3-319-96064-7).
 - X. Auditory and Vocal Ergonomics, Visual Ergonomics, Psychophysiology in Ergonomics, Ergonomics in Advanced Imaging (ISBN 978-3-319-96058-6).

Altogether, the contributions make apparent the diversities in culture and in the socioeconomic conditions the authors belong to. The notion of well-being, which the reference value for ergonomics/human factors is not monolithic, instead varies along with the cultural and societal differences each contributor share. Diversity is a necessary condition for a fruitful discussion and exchange of experiences, not to say for creativity, which is the "theme" of the congress.

In an era of profound transformation, called either digital (Zisman & Kenney, 2018) or the second machine age (Bnynjolfsson & McAfee, 2014), when the very notions of work, fatigue, and well-being are changing in depth, ergonomics/human factors need to be creative in order to meet the new, ever-encountered challenges. Not every contribution in the ten volumes of the Proceedings explicitly faces the problem: the need for creativity to be able to confront the new challenges. However, even the more traditional, classical papers are influenced by the new conditions.

The reader of whichever volume enters an atmosphere where there are not many well-established certainties, but instead an abundance of doubts and open questions: again, the conditions for creativity and innovative solutions.

We hope that, notwithstanding the titles of the volumes that mimic the IEA Technical Committees, some of them created about half a century ago, the XX Triennial IEA Congress Proceedings may bring readers into an atmosphere where doubts are more common than certainties, challenge to answer ever-heard questions is continuously present, and creative solutions can be often encountered.

Acknowledgment

A heartfelt thanks to Elena Beleffi, in charge of the organization committee. Her technical and scientific contribution to the organization of the conference was crucial to its success.

Preface vii

References

Brynjolfsson E., A, McAfee A. (2014) The second machine age. New York: Norton.

Tatcher A., Waterson P., Todd A., and Moray N. (2018) State of science: Ergonomics and global issues. Ergonomics, 61 (2), 197–213.

Zisman J., Kenney M. (2018) The next phase in digital revolution: Intelligent tools, platforms, growth, employment. Communications of ACM, 61 (2), 54–63.

Sebastiano Bagnara Chair of the Scientific Committee, XX IEA Triennial World Congress Riccardo Tartaglia Chair XX IEA Triennial World Congress Sara Albolino Co-chair XX IEA Triennial World Congress

Organization

Organizing Committee

Riccardo Tartaglia Tuscany Region

(Chair IEA 2018)

Sara Albolino (Co-chair IEA 2018)

Giulio Arcangeli

Elena Beleffi

Tommaso Bellandi

Michele Bellani

Giuliano Benelli

Tuscany Region

Tuscany Region

Tuscany Region

Humanfactor^x

University of Siena

Lina Bonapace Macadamian Technologies, Canada

Sergio Bovenga FNOMCeO Antonio Chialastri Alitalia

Vasco Giannotti Fondazione Sicurezza in Sanità

Nicola Mucci University of Florence Enrico Occhipinti University of Milan

Simone Pozzi Deep Blue Stavros Prineas ErrorMed

Francesco Ranzani Tuscany Region
Alessandra Rinaldi University of Florence

Isabella Steffan Design for all

Fabio Strambi Etui Advisor for Ergonomics

Michela Tanzini Tuscany Region Giulio Toccafondi Tuscany Region Antonella Toffetti CRF, Italy

Francesca Tosi University of Florence

Andrea Vannucci Agenzia Regionale di Sanità Toscana Francesco Venneri Azienda Sanitaria Centro Firenze x Organization

Scientific Committee

Sebastiano Bagnara (President of IEA2018 Scientific Committee)

Thomas Alexander (IEA STPC Chair)

Walter Amado

Massimo Bergamasco Nancy Black

Guy André Boy

Emilio Cadavid Guzmán

Pascale Carayon Daniela Colombini Giovanni Costa

Teresa Cotrim

Marco Depolo Takeshi Ebara

Pierre Falzon Daniel Gopher Paulina Hernandez Sue Hignett

Erik Hollnagel

Sergio Iavicoli Chiu-Siang Joe Lin

Waldemar Karwowski Peter Lachman Javier Llaneza Álvarez

Francisco Octavio Lopez Millán

University of San Marino, San Marino

Fraunhofer-FKIE, Germany

Asociación de Ergonomía Argentina

(ADEA), Argentina

Scuola Superiore Sant'Anna di Pisa, Italy Association of Canadian Ergonomics (ACE), Canada

Human Systems Integration Working

Group (INCOSE), France

Sociedad Colombiana de Ergonomia

(SCE), Colombia

University of Wisconsin-Madison, USA

EPM, Italy

Clinica del Lavoro "L. Devoto," University

of Milan, Italy

Associação Portuguesa de Ergonomia (APERGO), University of Lisbon,

Portugal

University of Bologna, Italy

Japan Ergonomics Society (JES)/Nagoya City University Graduate School of Medical Sciences, Japan

CNAM, France

Israel Institute of Technology, Israel ULAERGO, Chile/Sud America

Loughborough University, Design School,

University of Southern Denmark and Chief Consultant at the Centre for Quality Improvement, Denmark

INAIL, Italy

Ergonomics Society of Taiwan (EST),

Taiwan

University of Central Florida, USA

CEO ISQUA, UK

Asociación Española de Ergonomia (AEE),

Sociedad de Ergonomistas de México, Mexico Organization xi

Donald Norman José Orlando Gomes Oronzo Parlangeli Janusz Pokorski Gustavo Adolfo Rosal Lopez

Gustavo Adono Rosai Lopez

John Rosecrance Davide Scotti Stefania Spada Helmut Strasser Gyula Szabò

Andrew Thatcher Andrew Todd

Francesca Tosi

Charles Vincent Aleksandar Zunjic University of California, USA

Federal University of Rio de Janeiro, Brazil

University of Siena, Italy

Jagiellonian University, Cracovia, Poland Asociación Española de Ergonomia (AEE),

Spain

State University of Colorado, USA

SAIPEM, Italy EurErg, FCA, Italy

University of Siegen, Germany

Hungarian Ergonomics Society (MET),

Hungary

University of Witwatersrand, South Africa

ERGO Africa, Rhodes University,

South Africa

Ergonomics Society of Italy (SIE); University of Florence, Italy

University of Oxford, UK

Ergonomics Society of Serbia (ESS),

Serbia

Contents

Ergonomics in Design An Analysis of Usability Issues on Fashion M-commerce Websites' Product Page 3 Carolina Bozzi and Claudia Mont'Alvão Ergonomics of Design - Problems in Making the Project a Reality 13 Thiago Alves de Oliveira, Paigy Costa Elaine Fernandes, Camila Mafalti Toledo, Henrique Mianovichi, Edgard de Oliveira Neto, Adreia Paparotti, Vilson Paulo Tauffer, Luiz Marcelo Marcondes Coelho de Oliveira, Thais Caroline de Barros, and José Eduardo Falcetti 27 Takevoshi Kaminishizono 33 Alessandro Naddeo, Nicola Cappetti, and Mariarosaria Vallone 47 Alexandra Kaplan From Rigid to Flexible – From Virtual to Tangible an Evolution of Human-Centered Design 54 Guy André Boy The Layout Evaluation of Man-Machine Interface Based 64 Qianxiang Zhou, Yang Cheng, Zhongqi Liu, Yuhong Chen, and Chenming Li The Factors that Influence Productivity During the Activity of Lining 76 Alinny Dantas Avelino, Andrezza Araújo Rodrigues da Silva, Marline Almeida Marques Inocencio, and Maria Christine Werba Saldanha

xiv Contents

Investigate the Effect of Age and Lights on Human Responses Chinmei Chou and Ruyu Huang	86
Creativity in Design of Green Workplaces	92
The Effect of Character Design on Character Identification for Mobile Games. Elena Carolina Li, Yen-Wei Liang, Hsin-Ni Lu, and Jin-Yu Chen	97
Test Technology Research on Immersion Thermal Manikin	107
Team Cognitive Walkthrough: Fusing Creativity and Effectiveness for a Novel Operation	117
Anthropometric and Geometrical Analysis to Design an Ergonomic Prototype in Jaggery (Panela) Industry Luis A. Saavedra-Robinson, Vincent S. Robinson-Luque, Carlos A. Andrade-Castro, and Cristian D. Molineros-Ospina	127
Study of HFE/UE Process Model in Medical Device Development Toru Nagao, Kazuo Misumi, and Daisaku Ikeda	139
Standardization of "Dynamic Sign" for Comfort and Safe Society Reiko Sakata, Akiko Imaishi, Naoki Furuhata, Masami Aikawa, Hiroshi Watanabe, Nana Ito, Hiroyasu Ujike, and Ken Sagawa	147
Human Factors and Ergonomics Design Principles and Guidelines: Helping Designers to Be More Creative Virginia Tiradentes Souto and Luciane Maria Fadel	152
Application of the Equid Methodology and the Principles of Macro Ergonomics in Seat Design	165
Conspicuity and Accidents: Data Versus Resource-Limited Differentiations	184
An Ergonomic Study and Analysis for the Porto Metro Driver Cabin Area	193
Trust and Human Factors in the Design of Healthcare Technology Simone Borsci, Peter Buckle, Simon Walne, and Davide Salanitri	207

Contents xv

Individual Differences in Contact Pressure on the Dorsal Surface of the Foot During Gait	216
Shin Takesue, Ping Yeap Loh, Satoshi Muraki, Shinsuke Hamanaka, Atsushi Yamada, Kouichi Ikegami, Kenki Wada, and Hiroshi Furutachi	210
Improving Airplane Boarding Time by Illumination Guidance Stefan Akkerman and Peter Vink	220
Thinking with Hands, Acting with Minds: Embodied Cognition and Creative Practice	225
Effective Wearable Design	235
Ergonomics of the Built Environment: Main Methodologies Used in Brazil and the Most Adequate Ones to Evaluate the Interaction Between the Elderly and Built Environment Maria de Lourdes Capponi Arruda Koehler, Flávio Anthero Nunes Vianna dos Santos, and Susana Cristina Domenech	245
On the Role of Ergonomics at the Interface Between Research and Practice	256
Evaluation of Usability of Two Therapeutic Ultrasound Equipment Sandra-Karina Castro-Luna, Sergio-Alberto Valenzuela-Gómez, and Marcelo Soares	264
Digitalization of the Ergonomic Assessment Worksheet – User Requirements for EAWS Digital Evaluation Functions	272
All the Real Man's Men	283
How to Implement a High-Fidelity Prototyping Approach in a Cardiac Surgery Device?	291
Situation Awareness in Future Autonomous Vehicles: Beware of the Unexpected	303
Impact of the 'Contributing Factors in Construction Accidents' (ConCA) Model	310

xvi Contents

Designing Solutions for Healthcare System Problems - LUFT Incentive Spirometer: Study of Case	320
Evaluation of Neck Motion Due to Change in Working Velocity Based on Feature Extraction with Motion Division	332
Characterization of the Dynamics of Sitting During a Sustained and Mentally Demanding Computer Task	338
Usability-Optimization of Inertial Motion Capture Systems	345
A Proposed Methods Framework and a Pilot Intervention for Workplace Design	356
Revisiting the Sociotechnical Principles for System Design (Clegg, 2000)	366
Influence of Driving Duration on Static Factors of Seating Comfort in Motorcycles	375
Creativity in Web Design	381
Creativity in Teaching Design: A Balance Between the Academic and Intuitive Approach, the AIRP Experiment Pierre-Henri Dejean, Elisabeth Brunier, and Michel Lechapellier	394
Integrating Ergonomics into Product Design Through the UCD Approach	401
Ergonomics Evaluation of Workstations for Mechanical Engineering Companies with Particular Attention to Older Workers Francesca Tosi and Mattia Pistolesi	410
Validity of Using Lab Based Set-Ups for Evaluation of Static Factors in Seating Comfort of Motorcycles	421

Gesturing on the Handlebar: A User-Elicitation Study for On-Bike Gestural Interaction	429
Maurizio Caon, Rico Süsse, Benoit Grelier, Omar Abou Khaled, and Elena Mugellini	
The role of Prototyping in Ergonomic Practice and Research to Anticipate New Products and Services	440
Design and Ergonomics in the Medical Sector: A Methodology to Evaluate the Ergonomics Performances for Anesthesia Workstations	449
Designing Urban Smart Furniture for Facilitating Migrants' Integration: The Co-design Workshop as Approach for Supporting Inclusive Design Alessandra Rinaldi, Maurizio Caon, Omar Abou Khaled, and Elena Mugellini	461
Natural Thumb Zone on Smartphone with One-Handed Interaction: Effects of Thumb Length and Screen Size	471
Interior Design Adequacy of Truck Sleeper Cabins in Brazil as to the Use as Temporary Dwelling	478
Workload II: A Future Paradigm for Analysis and Measurement Sarah Sharples	489
Design of an Auxiliary Implement for Classical Guitar Positioning from a Postural Analysis in Musicians	499
Ergonomics of a Children's Day Hospital	508
Cognitive Ergonomics in Architecture: Creativity and Ambience in Children's Healthcare Spaces	516
Enhancing the Usability of a Mobile App for Process Evaluation in a Participatory Ergonomics Healthcare Intervention	523

xviii Contents

Temporal Dispersion in Distributed Work	531
Iteration in Usabilty Testing: Instructive Interfaces of a Dietary Plan in Diabetics Carlos D. de Leon Zuloaga and Lilia Roselia Prado Leon	541
Exploring Packaging Lid Design Preferences Among Mexican University Students Paulina Manzano-Hernandez, David Vidana-Zavala, and Carlos Aceves-Gonzalez	551
An Ergonomic Solution for Ventilating Backpack Design	559
Keeping the Users in Mind: Investigations of Applicable Gaze Gesture Sets and Gaze Control Interaction Design Parameters Marcus Jenke and Thomas Maier	569
Enhancing Collaborative Creativity: Towards a New User-Centered Design Method, the Dynamic Persona Method	580
A 3D Printed Thermal Manikin Head for Evaluating Helmets for Convective and Radiative Heat Loss Shriram Mukunthan, Jochen Vleugels, Toon Huysmans, Tiago Sotto Mayor, and Guido De Bruyne	592
Effectiveness of Stability Evaluation by Acceleration and Angular Velocity While Operating Smartphones	603
The Development of an Adaptive Device for Children with a Hand Impairment	612
Applying a Theory of Situation Awareness to Idea Generation: Mitigation of Design Fixation	622
Home Environment and the Elderly: Objects and Products in Relation to the Physical Factors and Their Incidence on Early Dependence María J. Araya, Amaya Pavez, Isabel Torres, Fernanda Ramírez, and José M. Araya	629
Integrating Creativity and Human Factors in the Design of Engineering Curriculums	649

Contents xix

Bridging Gaps Between Ergonomics and Creative Design: A Pedagogical Experiment	653
Creativity in Design: Using Cognitive Metaphors to Unveil Knowledge	665
Extending System Design Tools to Facilitate Systemic Innovation in Prospective Ergonomics	672
Design Suggestions of the Clinical Upper Extremity Rehabilitation Equipment for Stroke Patients	682
Ergonomic Considerations for the Inclusive Communication of Low Vision People in Academic Spaces	688
"Bear an e-hand": Designing a Wearable Assistant for Single-Handed and Small Crew Sail Racing	699
How Does the Seat Cover Influence the Seat Comfort Evaluation? Maximilian Wegner, Shabila Anjani, Wenhua Li, and Peter Vink	709
An Interview Process to Anticipate Future Needs	718
User Innovation, Lead Users and Crowdsourcing for the Design of New Products and Services: Why, What and How?	730
The Research-Practice Gap: An Explanatory Factor for Automotive HMI Customers' Complaints?	744
Iterative Exploration of Token-Based Interaction for Enriched Audio Sequencing	756
Guido De Bruyne, and Regan Watts	
Design Methods for the Projection of Uses for Vulnerable People Elena Elias, Marc-Eric Bobillier Chaumon, and Michel Vacher	765

xx Contents

An Evaluation of Sit to Stand Devices for Use in Rehabilitation M. Fray, S. Hignett, A. Reece, S. Ali, and L. Ingram	774
How to Develop a HMI for an Agricultural Tractor Focusing on the Handling of Various Implements	784
Conceptual Design of E-health Services by, and for Support of, Home Care Staff	793
Electronic Voting for All: Co-creating an Accessible Interface Daan van Eijk, Johan Molenbroek, Lilian Henze, and Geert Niermeijer	800
Allocation of Function Revisited: The Use of Animals in Productive Processes and Systems	810
Creativity in Uncovering Customer Expertise for Affective Design Jouh Ching Goh and Martin G. Helander	824
Anthropometric Data of Chilean Male Workers H. I. Castellucci, C. A. Viviani, J. F. M. Molenbroek, P. M. Arezes, M. Martínez, V. Aparici, and S. Bragança	841
Functional Fashion and Co-creation for People with Disabilities Bruna Brogin and Maria Lucia Leite Ribeiro Okimoto	850
Evaluation of Colour Stereotype Profile of the Population of Eastern India	868
Belbin on Inspection: A 50-Year Retrospective	879
Integrated Product Gestalt Design Method for the Analysis and Definition of Interface Elements Regarding Exterior and Interior Daniel Holder, David Inkermann, Petia Krasteva, Thomas Vietor, and Thomas Maier	888
Wearable Devices and Smart Garments for Stress Management	898
Cognitive Engineer's Multifaceted Role in Participatory Design Processes	908

HSI Implementation in Complex System Design Process Yakir Yaniv	918
Acceptability Beyond Usability: A Manufacturing Case Study S. Gilotta, S. Spada, L. Ghibaudo, M. Isoardi, and C. O. Mosso	922
A Technology Corner for Operator Training in Manufacturing Tasks	935
Optimizing the Design of a Workspace Using a Participatory Design Method	944
Ergonomic Intervention of the Risk Factors Related to Manual Handling of Loads in the Burial Tasks of 5 Park Cemeteries in Chile	956
Exploring New Usages of Journey Maps: Introducing the Pedagogical and the Project Planning Journey Maps	964
Evaluating Users' Creativity for Service and Needs Identification in the Field of Emerging Technologies: A Comparison of Two Methods and Two Production Conditions Dominique Decotter, Jean-Marie Burkhardt, and Todd Lubart	983
Studies on the Use of Variations of 'Brainstorming' in Creative Design Situations Nathalie Bonnardel and John Didier	990
Analyzing Interaction Dynamics at the Fuzzy Front-End of Innovation Projects: A Tool for Prospective Ergonomics Julien Nelson, Xavier Malon, and Nicolas Férey	1001
Sleep Quality, Job Stress and Job Performance in Middle Age Women	1008
Design for Empowerment, the Stigma-Free Design Toolkit K. Vaes	1012
Innovative Scenarios and Products for Sport Outdoor: The Challenge of Design for Citizens' Wellness and Health	1031

xxii Contents

Creativity in Design of Safety Helmet for Oil Palm Workers
Developing a Framework for a Participatory Ergonomics Design Processes: The MPEC Method
Claudia Ferreira Mazzoni, and Carla Aparecida Gonçalves Sirqueira
Second Cycle Education Program in Virtual Ergonomics and Design
Anna Brolin, Erik Brolin, and Dan Högberg
Ergonomics in Design: The Human-Centred Design Approach for Developing Innovative Motor Caravans Systems
Comparison of Questionnaire Based and User Model Based Usability Evaluation Methods
Ergonomic Design and Evaluation of Innovative MainStand of Motorcycle
Anisotropic Haptic Texture of Buttons for User Interfaces
Ergonomics Intervention of Workplaces Using SEANES Ergonomic Checkpoints
SIMS, Evaluating a Sustainable Design Process to Create Jewelry 1135 Luigi Ferrara, Paul McClure, and Nastaran Dadashi
The Effects of Passive Ankle-Foot Orthotic Devices' Stiffness – Application and Limitation of 2D Inverted Pendulum Gait Model 1143 Qianyi Fu, Thomas Armstrong, and Albert Shih
Evaluation of Smartwatch Inertia Measurement Unit (IMU) for Studying Human Movements
User-Centered Design: Ethical Issues

Ergonomics for Impartiality and Efficiency in the Law-Courts of Ancient Athens
Vassilis Papakostopoulos, Dimitris Nathanael, and Nicolas Marmaras
Creativity in Measuring Trust in Human-Robot Interaction Using Interactive Dialogs
UCD, Ergonomics and Inclusive Design: The HABITAT Project 1191 Giuseppe Mincolelli, Michele Marchi, Gian Andrea Giacobone, Lorenzo Chiari, Elena Borelli, Sabato Mellone, Carlo Tacconi, Tullio Salmon Cinotti, Luca Roffia, Francesco Antoniazzi, Alessandra Costanzo, Giacomo Paolini, Diego Masotti, Paola Mello, Federico Chesani, Daniela Loreti, and Silvia Imbesi
A Usability Study of an Enterprise Resource Planning System: A Case Study on SAP Business One
State of Research in the Design and Development of Emergency Response Vehicles and Equipment: A Scoping Review
An Approach to Inject HFE into Existing Design Standards
Design for the Lower Limbs. A Study for the Development of an Assistive Robotic System for Sensorimotor Rehabilitation After Stroke
Ergonomic Design of a Drumstick Plucker
Design Intervention Direction for Brick Kiln Industry Based on Ergonomic Study
Ergonomics and Design: Neonatal Transport Incubator for Premature or Pathological Newborn Transportation
The Emotion of Light Instrument for Wellness
6Ws in Ergonomics Workplace Design

xxiv Contents

Selection of Convenient Locations for the Placement of Push- and Rotary-Type Controls
Adapting Furniture to the Child – Ergonomics as a Main Tool in a Design Project
Systemic Body: Ergonomics of the Prevention
The Role of Design in Use in Agriculture: The Case of Brazilian Crops
Do Virtual Environments Unleash Everyone's Creative Potential? 1328 S. Bourgeois-Bougrine, P. Richard, T. Lubart, J. M. Burkhardt, and B. Frantz
The Guided Imaginary Projection, a New Methodology for Prospective Ergonomics
Ergonomics and Standard
A Comparison Between Representative 3D Faces Based on Bi- and Multi-variate and Shape Based Analysis
Using Prospective Ergonomics to Identify Opportunities from Recent Technological Advances in AI: The Case of a West African Bank 1365 Francois Aubin and Marie-Claude Prevost
My Pain Coach: A Mobile System with Tangible Interface for Pain Assessment
Experiencing Sound Through Interactive Jewellery and Fashion Accessories
Design for All
Cities and Population Aging: A Literature Review

Contents xxv

Fhe Use of Standards for Identifying, Codifying and Transmitting Expert Ergonomic Knowledge
Analysis of Methods for Evaluation of Assistive Technologies Focused on Computational Access of People with Cerebral Palsy
A Tactile Tag to Identify Color of Clothes for People with Visual Disabilities
Creating Personas with Identified Accessibility Issues for People with Disabilities: Refrigerator Usage Case
Ergonomics in the Built Environment: Survey of the Factors Related to the Corporate Work Environment Linked to Activities of High Concentration
The United States' Journey to Achieve Accessibility of Medical Devices
Investigation of Accessibility Issues for Visually Impaired People When Using Washing Machines
A Survey of User Experience of Two Wheeler Users In Long-Term Interactions
User-Centered Development of a Support-System for Visually Handicapped People in the Context of Public Transportation
Ergonomic Design of Interfaces for People with Dementia
Shaping Ethical, Legal and Social Implications of the Digital Revolution Through Participation: The New Interdisciplinary Research Paradigm of Aachener DenkfabrEthik

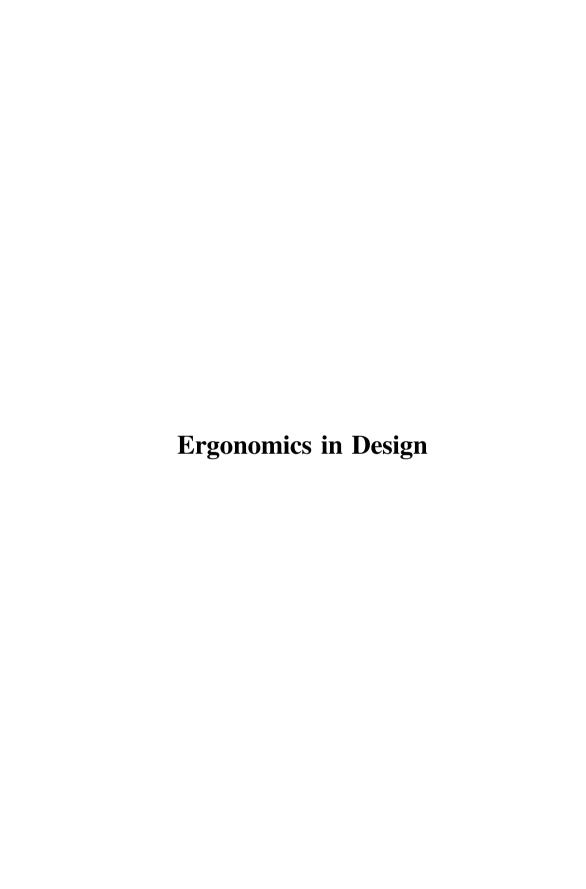
xxvi Contents

Accessibility and Standards in Japan —Historical Overview and the Future—
Nana Itoh and Ken Sagawa
EU Standardization. Mandate 420 - Accessibility in the Built Environment Following a Design for All Approach
Awards as Tools to Implement Inclusion and Accessibility in the Built Environment
Scientific Courses on Ergonomics in Austria
Design and Communication
Accessibility of Products and Services Following a Design for All Approach in Standards
Accessible-Design Standards for Consumer Products Developed in ISO/TC 159/SC 4/WG 10
Inclusive Human-Centered Design: Experiences and Challenges to Teaching Design Engineering Students
Walking Works Wonders: A Workplace Health Intervention Evaluated Over 24 Months
Ergonomic Accessibility Assessment in Mixed-Use Buildings 1579 Juliane Calvet and Júlia Abrahão
Ergonomics and Emergency Response: An Inclusive Approach 1593 Giuseppe Romano, Angelo Porcu, Luca Manselli, Marcella Battaglia, and Stefano Zanut
Diversity, Inclusion and Safety in case of Fire
Accessibility at University Campus in Historical Center

Needs and Use of the Information in the Environment by People with Visual Impairment
John Rey-Galindo, Libertad Rizo-Corona, Elvia Luz González-Muñoz, and Carlos Aceves-González
A Step Towards Inclusive Design: Comfortable Maximum Height of a Bus Step for the Elderly Mexican Population
Accessibility and Visual Contrast: A Proposal for a Better Evaluation of This Physical Quantity
Evaluation of Human-Robot Interaction Quality: A Toolkit for Workplace Design
Interpretability of Surround Shapes Around Safety Symbols: Cross-Cultural Differences Among Migrant Farmworkers
Antonio Franco Market: Case Study on Accessibility in Public Buildings
Information for Tactile Reading: A Study of Tactile Ergonomics of Packaging for Blind People
Inclusive Design Strategies to Enhance Inclusivity for All in Public Transportation - A Case Study on a Railway Station
Fashion Design Methodology Tools in Products' Development for People with Disabilities and Low Mobility
Look with the Eyes of Others: Accessibility in Hospital Environments
Recommendations for the Development of Accessible Games for People with Down Syndrome

xxviii Contents

"Design for All" Manual: From Users' Needs to Inclusive Design Strategies
Erica Isa Mosca, Jasmien Herssens, Andrea Rebecchi, Hubert Froyen, and Stefano Capolongo
Activity Theories for Work Analysis and Design
Past and Future Challenges for Railway Research and the Role of a Systems Perspective
Rebecca Andreasson, Anders A. Jansson, and Jessica Lindblom
Passengers with Disabilities, Elderly and Obese in Brazilian Air Transportation: Contradictions in the Activity Systems
Ergonomic and Psychosocial Aspects of Electrical Energy Maintenance Activities on Transmission Lines
From Micro to Macro Dimension: An Inverted Way to Think Solution in Designs
Adson Eduardo Resende, Iara Sousa Castro, and Fausto Mascia
Design as a Reflection of User Experience
Building a Dialogical Interface: A Contribution of Ergonomic Work Analysis to the Design Process
The Use of Circular Causality Networks: A Prerequisite for the Development of Efficient Psychosocial Risk Prevention and Management Plans
Methodologies and Observation Tools in the Practical Exercise of Research-Intervention in Ergonomics. Impressions from Chile 1789 Fabiola Maureira, Felipe Meyer, and Jorge Espinoza
The Real Richness in the Semi-jewel Production
Turning Activity into a Lever for Integrating Humans into the Workplace: A Transversal Approach for Innovative Projects 1806 Arnaud Tran Van and Thierry Morlet


Organization of an Experimental Workshop Workspace on the Example of ITMO University FabLab
The Role and Positioning of Observation in Ergonomics Approaches: A Research and Design Project
Developing a Methodology for a Participatory Ergonomics Evaluation Process: Human Performance and Productivity Cycle
Training Ergonomists in Portugal: 32 Years of Experience
Observation Methods in the Context of Interactive Research 1845 Jörgen Eklund
Design and Implementation of High Reliability Organizing Based Performance Metrics in the Context of the EU H2020 Research Project TARGET, Aiming at Developing VR/AR Training Environment for Security Critical Agents
Observations Between Quantitative and Qualitative Methods: Shared Contributions from an Ergonomist and an Occupational Psychologist
The Human Transition to Ergonomics of Ubiquitous Autonomous Work
Conceptual Principles as Intermediary Object: Case of an Industrial Unit
Mini-User Testing Practice During Agile Development: The Results of a Survey Conducted with User Centric Specialists
Innovation at Work, Lessons Learned from a "Design for Use - Design in Use" Approach

xxx Contents

Physical Work Capacity in Pregnant Women 1895 Enrique de la Vega-Bustillos, Francisco Lopez-Millan, Alejandro Coronado Rios, and Diana Lagarda
The SIN-DME Questionnaire (Symptoms of INcomfort Associated with Muscle Skeletal Disorders)
Workspace Lab: Planning Participatory Design
Ergonomics and Architectural Programming: A Possible Articulation?
eSports: Opportunities for Future Ergonomic Studies
Supporting Professional Transitions in Innovative Projects 1949 Valérie Pueyo and Pascal Béguin
Simulation, Prototyping and Experimentation - The Potential of the Maker Labs to Achieving a Design-Driven HFE
Innovative Labs and Co-design
Designing Therapeutic Projects Within Multiprofessional Health Teams: Integrating the Dimension of Work
The Collective Work in the Subsea Integrated Operations Centre: The Ad Hoc Teams in the Solution of Unexpected Situations 1978 N. C. Maia and F. Duarte
Co-conception Spaces: New Organizations to Support Participatory Projects
Serious Games as Creative Tools to Approach Design
Contributions of Ergonomics to the Development of Prevention Projects: The Role of Intermediate Prevention Objects

Contents xxxi

The Influences of the Ergonomic Work Analysis in Activities of a Center of Equine Therapy
Marcelo Dondelli Boaretto, Jullia Maria Rodrigues Zullim Rodrigues,
Bruno Sobral Moreschi, and Maria de Lourdes Santiago Luz
Affective Design
The Study of Ergonomics Evaluation Method on Hardware and Software of Mobile Phones
Yongweijian Yu, Lijun Jia, Zhihao Liu, Meijue Lu, Qi Li, Yuting Xiong, Xiaowei Dong, and Li Ding
Industrial Design Modeling for Smart Jewelry
Exploring the Fit Between Materials' Expressive Values and the Self-expression of the End-User
The Effect of Age to the Perception of Apparent Usability and Affective Quality on Prototype Mobile Phones
Emotions as a System Regulator for Sustainability: Designing a Tangible Device Capable to Enable Connections
Emotional Attributes of Urban Furniture
How Designers Can Contribute to Education
Evaluation of Attributes of Cosmetic Bottles Using Model of Kawaii Feelings and Eye Movements
Proposal of a Methodological Model for the Design of a Complex Dynamic Working Environment in the Forestry Sector, to Generate an Emotionally Light Habitat
Form of the Space in Between Objects
Author Index

Wearable Devices and Smart Garments for Stress Management

Alessandra Rinaldi^(⊠), Claudia Becchimanzi, and Francesca Tosi

Laboratory of Ergonomics and Design, Department of Architecture, University of Florence, Via Sandro Pertini 93, Calenzano, 50041 Firenze, Italy {alessandra.rinaldi, claudia.becchimanzi, francesca.tosi}@unifi.it

Abstract. Wearables are the cutting edge of electronic devices; as they are miniaturized, people can directly wear them, generating a continuous interaction with computers. The implementation of wearables in everyday life is going to change completely human behaviours. These devices create human-computer interaction potentialities that can be addressed to several directions: taking care of people, leading people to a different behaviour model for changing social dynamics, turning these ubiquitous computers into a "collective wearable".

There is a global adoption of the preventive approach to health: it consists of measures taken for disease prevention, as opposed to disease treatment. There is also an increasing attention to security and to risk management in the sanitary field in terms of products, ergonomic communication and innovation of processes. Moreover, users demand to know their real wellness status, independently of the individual perception. It's necessary to inform users about the biofeedback recorded by wearable devices, but it is essential to effectively communicating them to caregivers or patients.

This paper, presenting some results of interaction design research for human wellbeing and healthcare, explores tangible interfaces focused on biomedical fields: it concerns security, stress management, collection of biofeedback for preventive healthcare and also emotional issues connected with the human-computer interaction.

Keywords: Interaction design · Smart garments · Wearable computers

1 Introduction

The demographic change and the progressively ageing population are generating new challenges for designing adaptive working and living environments for elders, impaired people or with chronical diseases. Because of this trend it is necessary to change the design perspective and to improve preventive interventions.

Medical Sciences had a *healing* approach to diseases. Nowadays there is a tendency to apply a different approach defined as *preventive*. The *preventive* approach is aimed to actuating strategies to reduce disease risks or to invert its degenerative process.

Likewise, at European and extra-European level, there is a growing attention to security and risk management issues in working and living environments, in terms of

[©] Springer Nature Switzerland AG 2019

S. Bagnara et al. (Eds.): IEA 2018, AISC 824, pp. 898–907, 2019.

intrinsic quality of products, of ergonomics in design, communication and technology area and of process-system innovation.

In this context, the contribute of the research becomes essential to improve persons' awareness about their health status and their stress levels, by sensing and collecting their physiological parameter, beyond an unconscious or individual perception.

"The appreciation of being over-stressed often comes too late, when health problems already manifest themselves: people's ability to recall, recognize and understand their stress may be hampered by their life style, with multiple tasks and responsibilities encountered every-day" [1].

The Research contribution represents the basis to identify stress management solutions and to adopt best practices to reduce stress levels.

In addition to information about collected biofeedback, it is important to have an effective communication of measured data not only to the monitored person but also to all those which are involved, such as colleagues or relatives. The health and stress level self-awareness, both physical and mental, and the knowledge of strategies aimed at preventing any potential bad consequence in working contexts, are a primary need to enhance workers' security and a method to improve the working quality and to reduce any kind of risk in these contexts. Security and psycho-physical well-being in work-places, both in terms of stress management and of effective immediate communication, are fundamental factors to disease prevention and risk or error reduction in working environments. This is a cross-cutting sector study, in which the risk evaluation and the definition of intervention strategies request a high interrelation between medical, managerial, sociological, psychological and design expertise.

The following research project is aimed to give contributions in this direction.

2 Methodological Approach

The research is based on the design and innovation methodologies of Human-Centred Design and Ergonomics in Design. These methodologies have been used to survey users' needs and expectations, within the design process and development of two different product-service systems for the stress management.

The first system is aimed to the achievement of realistic and verifiable benefits to identify longevity measures in workplaces, with a flexible and sustainable approach. The identified user group includes experts over 50, for whom are necessary strategies aimed to define a workplace which allows users to complete autonomously and safely the required tasks.

The second system is aimed to stress management through digital wearable solutions, in working and recreational environments, in which the devices can allow to keep a wellness condition for experts in healthcare and clinical risk area, autonomously and independently from external devices such as computers, tablets or docking stations.

In this context of use, which is the healthcare area, the product usability and security, the quality of the provided information and the satisfaction of users' needs are essential factors to prevent errors and reduce risks, both for doctors and for healthcare professionals and patients.

For both projects, the biofeedback acquisition through electrode and textile sensors has been tested. The usability and safety testing methods were based on collecting data about how the human-product interaction is performed within the investigated context of use: they allowed to identify and analyse users' behaviour, needs, the error incidence and the different kinds of error that users' can make during execution of required tasks. The collected data have been used both to define the products brief and to evaluate the prototypes. The user trials methods are:

- direct observation of users' activities;
- interviews aimed to understanding decisional process;
- task analysis based on the breakdown and analysis of required tasks;
- *time line analysis* aimed to analyse the task sequences and the methods with which the tasks are executed;
- layout analysis used for evaluating the graphic interfaces; it was based on four criteria: functional classification, contents relevance, sequence of use, frequency of use.

The *User trials* conducted throughout the whole design process, allowed us to define users' needs and expectations, in terms of efficacy, efficiency and satisfaction related to the usability of the devices.

The emotional aspects of User Experience during the interaction with the product, such as the *pleasure in use*, that is the measurement of the sensorial quality satisfaction, were also considered.

With a users' sample of different gender and age, were conducted trials on the signal validation of the acquired biofeedback and the correct correspondence between inputs and feedbacks transmitted by devices to users.

The aim was to validate the correspondence between the signals collected by textile sensors and those collected by standard devices, such as Biopac.

Among scientific literature, there are no standard guidelines concerning the procedure for measuring the skin conductance. So, the trials were improved and adjusted, during their own development: the procedure was changed according to the different microcontrollers and electronics used; it also required variations concerning the breathing-stimulus lasting and the relaxing period.

During the prototyping phase, the 'stimulation by picture' method was; it showed that signals were correctly acquired, both by standard electrodes and by textile electrodes. The pictures used (pictures of people, animals, objects, nature, events and so on), were chosen among those recommended by the International Affective Picture System (IAPS) [2].

The IAPS was developed by University of Florida to provide a sequence of emotional stimuli which can be used in emotion and attention experimentations; the system aims to develop a wide range of standard pictures to evoke emotions and that are universally accessible, which includes coloured photographs concerning several semantic fields.

Emotional state changes were produced by viewing standard images from the IAPS [3]. Each picture used in the system has been extensively tested and rated for valence (its subjective impact ranging from extremely negative to extremely positive) and arousal [4].

The IAPS setting-up assumes that emotions can be defined by a coincidence of values on a number of different strategic dimensions. Factor analyses indicated that the variance in emotional assessments are accounted for by three major dimensions:

- affective valence (ranging from pleasant to unpleasant);
- arousal (ranging from calm to excited);
- dominance or control [4].

2.1 Wearable Devices for Healthy Ageing in Working Place

Digital solutions can support people to stay healthy and active, both in their professional and in their private live, as long as possible.

The strategies for a preventive approach could be: (i) adopting ICT into working and living environments, to make the contexts more fitting to user' needs and more adaptive to the elderly; (ii) designing devices for monitoring and improving the life quality and the health status.

Wearable computers and smart garments actually represent the new age of electronic devices; they are compact, miniaturized and they produce a constant user-computer interaction. The adoption of wearable technologies in everyday life is changing people's behaviour.

The possibility to make users able to interact with living contexts and other people at any time and everywhere, lead to new opportunities which catalyse a new research field: the persuasive technology. Persuasive technology focuses on the formalization of project and is aimed to design digital products able to change attitudes or behaviours of the users.

The possibilities of the interaction between people and ubiquitous and pervasive computing systems, that the wearable devices offer, can be addressed forward several directions: helping and assisting people, nudging users to adopt new behaviours, changing social dynamics, until the possibility to turn wearable systems into a "collective wearable", a globally extended super-system of interactive digital assistants [7].

In the coming years, our everyday life will be appreciably influenced by smart products and many of them will be wearable devices, including e-textiles and smart garments. The current trend of wearable computing consists in directly integrating technology into garments without adding further components in close contact with the body: computing systems are embedded into garments or accessories, such as clothes, shirts, eyeglasses, wristbands and watches.

Clothing, shoes, eyeglasses, wristbands and watches are becoming smarter, embedding seamlessly computing resources and increasingly powerful communication technologies, and our interaction with these devices is becoming more intuitive [5, 6, 8].

Wearable technologies have huge potentialities to increase human skills and the production of smart garments and textiles is going to open new opportunities for the design. Designers' vision can highly push forward new technological progresses and turn them into several categories of emerging products, giving singular points of view both in problem solving and in problem setting. It has been evaluated that the growth of wearables, in terms of market value, is increasing. It will be essential to focus attention on aesthetics, functionalities and, most of all, on the 'good looking technology' linked to the 'context awareness' [5, 6].

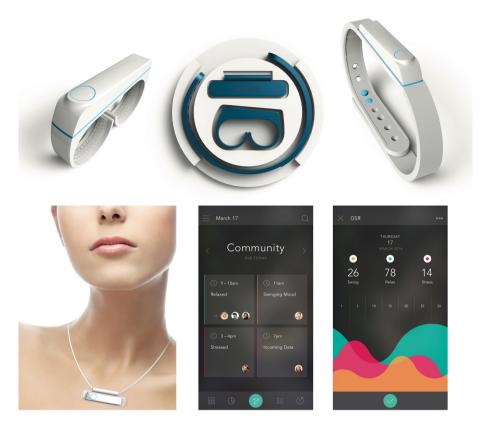
3 Results

The research conducted by the team of University of Florence consist on the design of two different digital product-service systems. The products aim to point out and forecast working stress conditions, in relation to the tasks to carry out and the context in which they are achieved. Those allow an easy stress measurement and improve the awareness of users themselves, and of the workers and companies with whom they interact.

Data collection allows to immediately activate security measures, aimed to solve detected problems which, if ignored, could have heavy consequences for workers themselves or lead to human error with bad impacts on third persons.

Design proposal are based on a transdisciplinary research, which involves sociological, psychological, medical and design disciplines.

3.1 S.A.M. (Scan – Alter Ego – Monitoring)


S.A.M. (Scan – Alter Ego – Monitoring) is a wearable device for improving stress management. It is placed in the wellness achievement and health preservation context, according to the WHO definition of "wellness": "Wellness is the optimal state of health of individuals and groups. It is a state of complete physical, mental, and social wellbeing, and not merely the absence of disease or infirmity. Wellness is a conscious, self-directed and evolving process of achieving full potential" [9].

S.A.M. represents a combination between medical devices, smart bands and wearable technologies. It was developed starting from the GSR (Galvanic Skin Response) biofeedback collection – also defined as Electrodermal Activity (EDA) [10], which has many areas of applicability. The acquiring of GSR signals allows to verify a physiological reaction of the body to stressful events or external inputs [11]. S.A.M. provides light and sensorial feedbacks in real time. Light signals (LED based) and tactile signals (buzz-motor based) enable users to know how high it is their body stress level.

Moreover, the device help relaxing with the body natural response to rhythm: according to autogenic training theories, the device can support people to prevent heavy consequences of stress, improving people's health status and supporting an active aging in working and living environments.

Due the possibility to acquire the GSR signal only by specific areas of the non-dominant hand and wrist, the design solution fell on a modular system of product.

S.A.M. was designed as a system of interchangeable products: a smart band, a double ring and a smart necklace. Users can choose three different positions according to the function they want to use: the necklace detects specific physical parameters; but by rotating and wearing S.A.M. as a smart band, other biofeedback can be acquired; the device can also be worn as a double ring, which has magnetic conductors and additional functions (Fig. 1).

Fig. 1. S.A.M. (Scan – Alter Ego – Monitoring): wearable device for improving stress management. Design by Claudia Becchimanzi, and Mattia Paoli. The system includes a mobile application to register and share GSR data with users' network.

The device includes microelectronics, textile electrodes and sensors produced, by Smartex¹. Thanks to textile sensors, S.A.M. can be flexible and adaptable for a wide range of users: its use is easy and intuitive for people of every age, social and cultural background. Its development has scientific relevance in the field of design, specifically in the area of design for health, of medical and clinical risk prevention in working environments.

Electronics. At the first stage of data collection they've been used custom-built board and non-textile sensors. At the second stage of data collection, aimed to a rapid prototyping of the device, they've been used textile sensors and Arduino compatible boards.

¹ Smartex is a SME and its core business is the research and development in the field of wearable solution for comfortable monitoring, integration of electronics solution and devices with textile, used both as support and sensor.

Acquired data post-production has been made by Matlab software environment for computing and graphics, which allows to manipulate matrixes, visualize data functions and implement algorithms. During the experimentations for the device development they've been used two different electronic configurations. At a first step, electronics have been custom-built by Adatec², which developed the Physio system, specifically designed to collect physiological data. Physio is made up of four modules: ECG (interbeat interval, motor activity level), BRE (breathing rate, motor activity level), EDR (electrodermal activity, motor activity level), HUB USB (battery recharge, download of acquired data).

For S.A.M. tests they've only been used EDR module and its related software for signal visualization.

Design requirements have been defined by these tests: (i) to have a custom-built miniaturized board, dedicated to computing the GSR signal; (ii) the possibility to have a flexible microcontroller; (iii) to see in real time the acquired data; (iv) to validate the acquired signal by textile sensors; (v) to allow the microcontroller to communicate with light actuators; (vi) to customize the data management and system feedbacks.

The protocol at the first stage consisted in short-term tests, aimed to define guidelines for signal behaviour. During the prototyping phase they've been used textile sensors and Arduino compatible boards to satisfy the above mentioned six requirements.

The GSR acquisition was actuated by the development of a circuit, including textile sensors, to collect data by distal phalanges of index and middle finger of the non-dominant hand.

Small sizes of the GSR module and microcontroller make them suitable for a wearable device prototyping. The light feedback is generated by a Led: it lights up red in stressful status, green in average-stress status, blue in relax status. The rhythm feedback is generated by the Grove module – Vibrator Motor. It senses the stress and supports the achievement of relaxation levels through relaxing rhythm.

The device functioning was tested by several experimental trials. Every test session was represented by graphics which allowed to view the EDR signal tendency. Moreover, Processing software allowed to see in real time the signal tendency, during the testing sessions. Before testing the acquisition of the GSR signal, it has been necessary to set a specific protocol, based on different stimuli experimentations and on different kinds of electrodes (RedDot and textiles) and electronics.

Tests and experimentations were conducted at Smartex, on a wide range of individuals from both genders and without diseases. Tests have shown a direct relation between individuals' breath and the GSR growth. The protocol consisted of deep inspirations at regular intervals as stimuli. The GSR signal had the same behaviour in every test: during the inspiration it rapidly reaches the peak (phasic component) and transmits high values. During the absence of stimuli, GSR values takes twice the time to stabilise and return to the initial balance (tonic level).

² Adatec is a spin-off the University of Pisa, which does research and development on the field of electronic engineering, informatics and biomedical devices.

GSR signal has been acquired by distal phalanges of index and middle finger of the non-dominant hand. Additional tests consisted in acquiring the GSR signal both by the wrist and by the single distal phalange of the index finger and the two outer points of the palm of non-dominant hand. Tests have shown that GSR signal is optimally acquired by distal phalanges of index and middle finger of the non-dominant hand.

During the last test, it has been used the following electronics: Grove module-GSR Sensor, Pro Trinket 3V, Smartex textile electrodes.

3.2 Smart Garments for Aged People at Work

The main aim of this research concerns design and development of a system of smart uniform for healthcare professionals, independent from external devices, non-invasive and able to provide adaptive feedback for the individual response, in relation to users' needs and to the tasks they have to accomplish.

The research is grounded in the context of stress at work, which "has become a serious problem affecting many people of different professions, life situations, and age groups. The workplace has changed dramatically due to globalization of the economy, use of new information and communications technologies, growing diversity in the work- place, and increased mental workload. In the 2000 European Working Conditions Survey (EWCS) [12], work-related stress was found to be the second most common work-related health problem across the EU. 62% of Americans say work has a significant impact on stress levels. 54% of employees are concerned about health problems caused by stress. One in four employees has taken a mental health day off from work to cope with stress (APA Survey 2004)" [13].

Security and psycho-physical wellness of healthcare professionals and doctors, in terms of stress management and effective and efficiency communication of the detected health status, are essential factors for prevention and reduction of clinical risks and human error, which can have serious consequences both for workers and for patients.

This is a cross-cutting sector study, in which the risk evaluation and the definition of intervention strategies request a high interrelation between medical, managerial, sociological, psychological and design expertise.

In this context, the design of a system of smart uniform for healthcare professionals and doctors, in terms of smart garments and smart wearable devices, aimed to acquire several biofeedback, to manage stress level and to communicate the results in real time.

At the same time, it is planned a study concerning the design of a product-service system, which can support the interaction between uniforms, and between uniform, healthcare professionals and patients, according to Internet of Things parameters.

The uniforms aim to manage stress, to communicate individuals' health status, to have an active role in preventing user's stress-related disease. It is important their improvement in terms of technology, visual communication, materials and support for risk situations or high stressful workplaces. The system is able to give users feedback about their physiological needs and stress levels, but it also provides a clear communication when high risk situations occur, supporting an effective stress management and improving an appropriate concentration.

The technological background concerning the wearable system and data collection is constantly evolving and enhancing, providing several solutions for this research

project. In particular, the biofeedback required for the stress recognition are the Galvanic Skin Response (GSR), the Heart Rate Frequency (HRF) and the Respiratory Rate.

The general aim of the research concerns the achievement and support of a higher quality of life and wellness for workers, more specifically for older workers, in comparison to their current status, so that they can stay active, independent and involved in working context as long as possible or they can come back to work, after diseases.

The descripted system will improve comfort, security, accessibility, functionality, safety and health on working and living environments for older persons or people with chronic diseases, to prevent other ageing and stress-related illness.

The wearable system will be appositely designed for sensing data about users and the context in which they operate. It aims to nudge persons towards a better quality of their work, also according with the best practices suggested by WHO [9], with general suggestions and individual feedbacks about safe working rhythms, physical activity, right posture and personalized tips that can improve their working life quality.

Research results will provide a scientific methodological and innovative analysis for the transdisciplinary approach concerning individuals' health status evaluation and an efficacy stress management in healthcare areas.

At this time, in our knowledge, there are no systems which allow to guarantee the highest autonomy of usage, security and the better adaption to the users' real needs.

The research impact concerns companies which main core is the production and distribution of high-technological innovative products, companies in the healthcare sector and law enforcement agencies in the security at workplaces area, such as the Department of Health and the European Union (EU). The general aim is to guarantee a support for stress management, also in terms of communication of the health status, in order to prevent any stress-related risks.

4 Discussion and Conclusion

The research results can have relevance in design area and in the healthcare sector, both for large and for small or medium enterprises. This research is specifically addressed to older workers (over 50), for which it is essential to improve the working conditions in order to prevent stress related diseases or security related risks. For companies the aim is to involve older people in the working places as long as possible. In fact, older workers represent an added value in terms of know-how and experience. Another fundamental point concerns the importance of active ageing in workplaces, to improve older workers' skills: mental growth, strategic thinking, judgment, perspicacity, rationalization, holistic perception and language skills are strengthened over the years.

References

- Kocielnik R, Sidorova N, Maggi FM, Ouwerkerk M, Westerink JH (2013) Smart technologies for long-term stress monitoring at work. In: 2013 IEEE 26th international symposium on computer-based medical systems (CBMS), pp 53–58. IEEE
- Lang P, Bradley MM (2007) The international affective picture system (IAPS) in the study
 of emotion and attention. In: Handbook of emotion elicitation and assessment, p 29. Oxford
 University Press, New York
- Lang PJ, Bradley MM, Cuthbert BN (1997) International affective picture system (IAPS): technical manual and affective ratings, pp 39–58. NIMH Center for the Study of Emotion and Attention
- Brown R, James C, Henderson L, Macefield VG (2012) Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images. Front Physiol 3:394
- Rinaldi A (2016) Il Design dell'interazione. In: Tosi F (a cura di) La professione dell'ergonomo nella progettazione dell'ambiente, dei prodotti e dell'organizzazione. FrancoAngeli, Milano
- 6. Rinaldi A (2016) II design dei prodotti connessi. Rivista Italiana di Ergonomia 13(2016):18–27
- 7. Rinaldi A (2016) Design e interazione: dall'interazione uomo-macchina all'interazione con gli oggetti connessi. In: Rivista Italiana di Ergonomia, vol. special issue 1, pp 277–282
- 8. Rinaldi A (2015) Computer indossabili e indumenti smart per il design di prodotti per uno stile di vita attivo e sano per tutti. Rivista Italiana di Ergonomia 10:44–52
- 9. Smith BJ, Tang KC, Nutbeam D (2006) WHO health promotion glossary: new terms. Health Promot Int 21(4):340–345. Oxford University Press (2006)
- 10. Boucsein W (2012) Electrodermal activity. Springer Science & Business Media
- Sharma N, Gedeon T (2012) Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput Methods Programs Biomed 108 (3):1287–1301
- 12. Paoli P, Merlié D (2001) Third European survey on working conditions 2000 Dublin. In: European foundation for the improvement of living and working conditions
- Bakker J, Holenderski L, Kocielnik R, Pechenizkiy M, Sidorova N (2012) Stress@work: from measuring stress to its understanding prediction and handling with personalized coaching. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium, pp 673–678. ACM

A	Aubin, Francois, 1365
Abd Wahib, Khairul Nazri, 1044	Avelino, Alinny Dantas, 76
Abrahão, Júlia, 1579, 1916	Azevedo, Flávia, 320
Abu Bakar, Shariman, 1044	
Aceves-González, Carlos, 499, 551, 1558,	В
1622, 1634	Baber, Chris, 225
Achalakul, Tiranee, 2108	Backhaus, Claus, 1483
Adaramola, Samson, 1348	Bagagiolo, Giorgia, 1663
Aikawa, Masami, 147	Balkanskii, Andrei, 1814
Akkerman, Stefan, 220	Banerjee, Monalisha, 868
Albayrak, Armagan, 1081	Barbosa, Maria Lilian de Araújo, 1682
Alfarano, Gianpiero, 1274	Barbosa, Maria Lilian, 1160
Alfonsetti, Federico, 1530	Barthe, Béatrice, 1821
Ali, S., 774	Bastien, Christian, 744
Allinc, Anaïs, 1340	Battaglia, Marcella, 1593, 1601
Amado, Giuseppe, 320	Becchimanzi, Claudia, 898
Andrade-Castro, Carlos A., 127	Béguin, P., 1967
Andreasson, Rebecca, 1737	Béguin, Pascal, 1773, 1949, 1972
Andruchow, Robert, 964	Bellucci, Stefano, 449
Angelini, Leonardo, 1372	Belussi, Simone Emmanuelle Alves Costa,
Anjani, Shabila, 709	1316
Anthero, Flávio, 1411	Bénech, Pierre, 964
Antoniazzi, Francesco, 1191	Bezerra Gemma, Sandra F., 1798
Aparici, V., 841	Bittencourt, J. M., 1989
Apolonio, Justin Joseph M., 2067	Boaretto, Marcelo Dondelli, 2017
Araya, José M., 629	Boccara, Vincent, 1821
Araya, María J., 629	Boileau, Michelle, 1224
Arezes, P. M., 841	Bollen, Xavier, 291
Armstrong, Thomas, 1143, 1154	Bonnardel, Nathalie, 580, 990
Arruda Koehler, Maria de Lourdes Capponi,	Borelli, Elena, 1191
245	Borsci, Simone, 207
Arunachalam, M., 1099	Bourgeois-Bougrine, S., 1328
Asao, Takafumi, 603	Boy, Guy André, 54
Ashizawa, Shoko, 1420	Bozzi, Carolina, 3
Aston, J. H., 193	Braatz, Daniel, 1048, 1958

© Springer Nature Switzerland AG 2019 S. Bagnara et al. (Eds.): IEA 2018, AISC 824, pp. 2135–2141, 2019. https://doi.org/10.1007/978-3-319-96071-5

Bragança, S., 841	Choong, Soo Li, 2039	
Brandl, Christopher, 1493	Chou, Chinmei, 86	
Brangier, Blandine, 718	Chu, V. H. Y., 559	
Brangier, Eric, 291, 718	Chua, Kenny Wei Liang, 117	
Brischetto, Alessia, 1031, 1066	Cinotti, Tullio Salmon, 1191	
Brittes, José Luiz Pereira, 1757	Claudia Isabel, Rojas R., 688	
Broberg, Ole, 1910	Clausse, Julien, 718	
Brogin, Bruna, 850, 1160	Clemes, Stacy, 1571	
Bröhl, Christina, 1493	Coelho, R., 193	
Brolin, Anna, 1058	Conceição, Carolina, 1910	
Brolin, Erik, 1058	Cosquer, Mathilde, 1882	
Brunier, Elisabeth, 394	Costa, Angelina Dias Leão, 1705	
Buckle, Peter, 207	Costa, Patricia, 1937	
Bullinger, Angelika C., 272	Costanzo, Alessandra, 1191	
Burkhardt, Jean-Marie, 983, 1328, 1340	Cotrim, Teresa, 1839	
Busciantella Ricci, Daniele, 1031	Cremasco, Margherita Micheletti, 1663	
Busri, Saharudin, 2039	Cruz, Luciana, 320	
	Cubillos-Rojas, Angela P., 1867	
C		
Caffaro, Federica, 1663	D	
Cahour, Béatrice, 1340	da Silva Santos, Rubens Luiz, 1613	
Calvet, Juliane, 1579	da Silva, Andrezza Araújo Rodrigues, 76	
Camarotto, João Alberto, 1747	da Silva, Larissa Scarano Pereira Matos, 1613	
Campos, Mônica Vieira Garcia, 1048, 1829	1673, 1705	
Cantele, Cristiane Nonemacher, 165, 1432	da Silva, Talita Naiara Rossi, 1747	
Caon, Maurizio, 429, 461, 1372	Dadashi, Nastaran, 1135	
Caple, David, 92	Dainty, Andrew, 310	
Capolongo, Stefano, 1724	de Almeida, Danillo Crúz, 1613	
Cappetti, Nicola, 33	de Barros, Thais Caroline, 13	
Cardellini, Uberto, 1530	De Bruyne, Guido, 592, 756	
Carvalhais, José, 1839	de Carvalho, Windson, 1712	
Castellucci, H. I., 841	de Kraker, Heleen, 1829	
Castillo-Martínez, Juan A., 1867, 1904	de la Vega-Bustillos, Enrique, 1895	
Castro, Iara Sousa, 1761	de Leon Zuloaga, Carlos D., 541	
Castro, Jimena Alarcón, 2119	de Lourdes Bernartt, Maria, 1395	
Castro-Luna, Sandra-Karina, 264	de Lourdes Santiago Luz, Maria, 2017	
Cavallo, Eugenio, 1663	de Macedo Guimarães, Lia Buarque, 2087	
Chalandon, Xavier, 744	de Melo Pinheiro, Mariel, 1673	
Charoy, François, 531	de Oliveira Neto, Edgard, 13	
Chatigny, Céline, 1860	de Oliveira, Luiz Marcelo Marcondes Coelho,	
Chaumon, Marc-Eric Bobillier, 765	13	
Chávez-Sánchez, Ileana, 1634	de Oliveira, Suelyn Maria Longhi, 1395	
Chen, Guanling, 523	de Oliveira, Thiago Alves, 13	
Chen, Jin-Yu, 97	de P. A. Lima, Francisco, 1876	
Chen, Mei-Hsiang, 682	de Souza, Jerusa Barbosa Guarda, 1747	
Chen, Yuhong, 64	Decotter, Dominique, 983	
Chen, Zhi Xuan, 1008	Dejean, Pierre-Henri, 394	
Cheng, Yang, 64	Delgoulet, Catherine, 1821	
Chesani, Federico, 1191	Dempsey, Patrick G., 256	
Chiari, Lorenzo, 1191	Denninghaus, Marie, 1516	
Chihara, Takanori, 332	Deuff, Dominique, 1882	
Chim, Justine M. Y., 1282	Dhara, Prakash, 868	
Chin, Winnie, 523	Di Salvo, Andrea, 2077	
Choi, Byounghyun, 622	Diaz, A., 956	

Didier, John, 990	Ghibaudo, Lidia, 922, 935
Dinet, Jérôme, 531	Giacobone, Gian Andrea, 1191
Ding, Li, 2029	Gilotta, S., 922
do Carmo Alonso, Carolina Maria, 1972	Gilotta, Silvia, 935
Domenech, Susana Cristina, 245	Ginja, Luis Miguel, 2128
Dong, Xiaowei, 2029	Giustetto, Ambra, 1663
Douwes, Marjolein, 1829	Go, Ailea Kamille L., 2067
Drivalou, Sotiria, 908	Goh, Jouh Ching, 824
Drury, Colin G., 879	Gontijo, Leila Amaral, 401
Du, Bronson, 1224, 1230	González-Muñoz, Elvia Luz, 1622
Duarte, F., 1967, 1978	González-Torres, Paula, 1634
Duarte, Francisco, 1773, 1972	Goossens, Richard H. M., 1355
Duncan, Myanna, 1571	Gore, Rebecca, 523
	Goto, Lyè, 1355
E	Grelier, Benoit, 429
Eason, Ken, 366	Grillo, Pedro, 1937
Eklund, Jörgen, 356, 1845	Guan, Ng Yee, 1044
Elias, Elena, 765	Guibourdenche, Julien, 699
Els, Du Bois, 2045	
Elsen, Catherine, 653	Н
Endsley, Mica R., 303	Hamanaka, Shinsuke, 216
Erlingsdóttir, Gudbjörg, 793	Han, JeongSu, 1456
Espinoza, Jorge, 1789	Hancock, P. A., 184
	Haring, E., 612
F	Harvey, Eleanor, 310
Fadel, Luciane Maria, 152	Haslam, Cheryl, 1571
Falcetti, José Eduardo, 13	Helander, Martin G., 824, 1125, 1175
Fedele, Giuseppe, 1031	Henze, Lilian, 800
Feigusch, Gregorio, 1642	Herssens, Jasmien, 1724
Férey, Nicolas, 1001	Hignett, S., 774
Fernandes, Paigy Costa Elaine, 13	Hiranai, Kazuki, 332
Ferrara, Luigi, 1135	Högberg, Dan, 1058
Ferreira, J. L., 193	Holder, Daniel, 888
Ferrer, Nicole, 508, 516	Huang, Fei-Hui, 1465
Fischer, Steven, 1224, 1230	Huang, Lan-Ling, 682
Folcher, Viviane, 1888	Huang, Ruyu, 86
Fontes, Andrea Regina Martins, 1958	Huysmans, Toon, 592, 1355
Frantz, B., 1328	
Fray, M., 774	I
Freire, R. P., 193	Iacono, Ester, 1259
Froyen, Hubert, 1724	Iacono, Iolanda, 1382
Fu, Qianyi, 1143, 1154	Ibarboure, Raphaël, 699
Furuhata, Naoki, 147	Ibenthal, Elisabeth, 1483
Furutachi, Hiroshi, 216	Ikeda, Daisaku, 139
_	Ikegami, Kouichi, 216
G	Imaishi, Akiko, 147
Gaillard, Irène, 1821	Imbesi, Silvia, 1191
Galbat, Mariane, 699	Ingram, L., 774
Galey, Louis, 2008	Ingrid, Moons, 2045
Gardner-Bonneau, Daryle, 1448	Inkermann, David, 888
Garrigou, Alain, 2008	Inocencio, Marline Almeida Marques, 76
Gemma, Sandra F. Bezerra, 1757	Ip, B. M. H., 559

Isoardi, Monica, 922, 935	Lee, HoJin, 1456
Ito, Nana, 147	Lee, JiHwan, 1456
Itoh, Nana, 1498	Lee, Joong Hee, 1428, 1456
	Lee, Kok Hoo, 117
J	Lee, Kyoung-Jun, 1456
Jansson, Anders A., 1737	Lee, Wonsup, 1355
Jenke, Marcus, 569	Leite, Victoria Oliveira Santos, 1673
Jeong, Young-Ju, 1456	Lemanceau, Sébastien, 699
Ji, Yong Gu, 471	Leon, Lilia Roselia Prado, 541
Jia, Lijun, 2029	Li, Chenming, 64
Johansson, Gerd, 793	Li, Ding, 107
Ju, Seok Ho, 1428	Li, Elena Carolina, 97
Judon, Nathalie, 2008	Li, Meng, 1081
Junior, Eduardo Penteado Lacusta, 1757	Li, Q. C., 559
Junior, Raimundo Lima, 1712	Li, Qi, 2029
	Li, Wenhua, 709
K	Liang, Yen-Wei, 97
Kaminishizono, Takeyoshi, 27	Liem, André, 440, 672
Kaplan, Alexandra, 47	Liew, Wei Shiung, 1175
Karlovic, Kristian, 345	Lima, Francisco, 1773, 1967
Karmakar, Sougata, 1099	Lin, Shu-Renn, 1465
Kaufmann, Andreas, 784	Lindblom, Jessica, 1737
Kazi, Aadil, 1571	Linot, Béatrice, 531
Khaled, Omar Abou, 429, 461, 1372	Lipovaya, Viktoriya, 1773, 1937
Khalid, Halimahtun, 1125, 1175	Liu, Zhihao, 2029
Kim, Hyo Chang, 471	Liu, Zhongqi, 64
Kim, Yong Min, 1428	Löffler, Diana, 665
Klenovec, Monika Anna, 1506	Loh, Ping Yeap, 216
Kobayashi, Daiji, 1112	Lopez-Millan, Francisco, 1895
Kogi, Kazutaka, 1125	Lore, Veelaert, 2045
Koh, Danny Shu Ming, 117	Loreti, Daniela, 1191
Könemann, Reinier, 1829	Lotti, Giuseppe, 1066
König, Christina, 1473	Lu, Hsin-Ni, 97
Kopp, Steve, 718	Lu, Meijue, 2029
Korpan, Lidia, 1814	Lubart, Todd, 983, 1328
Kotani, Kentaro, 603	Luximon, Y., 559
Krasteva, Petia, 888	Edition, 1., 33)
Krause, Frank, 1829	M
Kuhlang, Peter, 272	Madeleine, Pascal, 338
Kundu, Amar, 1249	Maia, N. C., 1978
Kurakata, Kenji, 1553	Maier, Thomas, 345, 569, 784, 888
Kurowski, Alicia, 523	Maldar, Masood, 730
Kwan, S. H. T., 559	Malon, Xavier, 1001
Kwan, 5. 11. 1., 557	Manselli, Luca, 1593, 1601
L	Mantelet, Fabrice, 944
	Manzano-Hernandez, Paulina, 551
Lagarda, Diana, 1895 Landa-Avila, Irma C., 1558	Marache-Francisco, Cathie, 718
Laohakangvalvit, Tipporn, 2108	Marandi, Ramtin Zargari, 338 Marchi, Michele, 1191
Lau, K. C. K., 559	
Lechapellier, Michel, 394	Marchi, Sandra Regina, 1160
Ledermann, Katharina, 1372	Marins, C. M., 1989
Lee, Dong Wook, 1428	Marmaras, Nicolas, 1165

Marti, Patrizia, 1382	Nunes Vianna dos Santos, Flávio Anthero, 245
Martinez, M., 841	Nybacka, Moa, 1689
Martins, Laura Bezerra, 1699, 1712	
Martin-Sölch, Chantal, 1372	0
Mascia, Fausto, 1761	O'Ferrall, Elizabeth, 1543
Masotti, Diego, 1191	O'Neill, David, 810
Mateev, Céline, 944	Oga, Yuki, 603
Maureira, Fabiola, 1789, 2119	Ohkura, Michiko, 2108
Mautner, Yvonne M. M., 1767	Okimoto, Maria Lúcia Leite Ribeiro, 850,
Mayor, Tiago Sotto, 592	1160, 1682
Mazzoni, Cláudia Ferreira, 1048, 1829	Okudera, Saori, 1420
McClure, Paul, 1135	Ornstein, Sheila W., 1767
Mello, Ana Paula Scabello, 478	
Mello, Paola, 1191	Osvalder, Anna-Lisa, 1689
Mellone, Sabato, 1191	
Menegon, Nilton Luiz, 1747	P
Mertens, Alexander, 1493	Pacheco, Nathalia, 320
Meyer, Felipe, 1789	Paolini, Giacomo, 1191
Meylan, Sylvain, 1821	Papakostopoulos, Vassilis, 1165
Mianovichi, Henrique, 13	Paparotti, Adreia, 13
Mincolelli, Giuseppe, 1191	Paravizo, Esdras, 1048, 1958
Misumi, Kazuo, 139	Park, Donggun, 1428
Misuta, Milton Shoiti, 1757	Park, Woojin, 622
Mohd Suadi Nata, Dayana Hazwani, 1044	Patesson, René, 291
Moiselet, Laurent, 744	Patti, Isabella, 1995
Molenbroek, J. F. M., 841	Pavez, Amaya, 629
Molenbroek, Johan F. M., 1355	Persson, Johanna, 793
Molenbroek, Johan, 800	Pessa, Sergio Luiz Ribas, 1395
Molineros-Ospina, Cristian D., 127	Pichot, Nicolas, 580
Mont'Alvão, Claudia, 3	Pintus, Pinky, 653
Montagner, Flavio, 2077	Pistolesi, Mattia, 410, 449, 1031
Moreschi, Bruno Sobral, 2017	Pizzato, Gabriela Zubaran, 2087
Morlet, Thierry, 1806	Polancos, Ronaldo V., 1203
Mosca, Erica Isa, 1724	Pomiersky, Philipp, 345
Mosso, C. O., 922	Pompeu, Nathália, 320
Moura Duarte, Francisco J. C., 1876	Porcu, Angelo, 1593, 1601
Mugellini, Elena, 429, 461, 1372	Poupard, Marion, 944
Mukunthan, Shriram, 592	Prevost, Marie-Claude, 1365
Muraki, Satoshi, 216	Primo, Renan, 1757
	Puesta, Katrina Anne G., 2067
N	Pueyo, V., 1967
Naddeo, Alessandro, 33	Pueyo, Valérie, 1949, 1972
Nagao, Toru, 139	Punnett, Laura, 523
Nakayama, Gabriela Y., 1699	
Nanjo, Nobuki, 1112	Q
Narimoto, Lidiane Regina, 1316	Qian, Wang, 107
Nascimento, Lízie Sancho, 1712	Quendler, Elisabeth, 1524
Nathanael, Dimitris, 1165	Quirijnen, L., 612
Natsume, Gary Shigeru, 235	Ç, =., v==
Nelson, Julien, 1001	R
Niermeijer, Geert, 800	Rahman, Rizal, 1044
Nonemacher, Giovanna, 165, 1432	Ramírez, Fernanda, 629
Norheim, Kristoffer Larsen, 338	Rasche, Peter, 1493
1 tornerin, ixiotoner Euroch, 550	1 Cuberre, 1 Ctor, 1773

Ray, Gaur G., 1241, 1249	Seo, Akihiko, 332
Ray, Gaur Gopal, 375, 421	Seva, Rosemary R., 649, 2067
Rebecchi, Andrea, 1724	Shalin, Valerie L., 531
Reece, A., 774	Shamsul Bahri, M. T., 1044
Reinert, Fabíola, 401	Sharples, Sarah, 489
Resende, Adson Eduardo, 1761, 1767, 1876	Shchekoldin, Aleksei, 1814
Rey-Galindo, John Alexander, 499	Shih, Albert, 1143, 1154
Rey-Galindo, John, 1622, 1634	Shin, Gee Won, 1428
Ribeiro, Gisele Yumi Arabori, 1160, 1682	Shinde, Dhanashri B., 1241
Richard, P., 1328	Silva, Marta Mesquita, 1798
Rinaldi, Alessandra, 461, 898, 1031, 1259	Simões, Anabela, 1839
Rios, Alejandro Coronado, 1895	Simões, J. A., 193
Rizo-Corona, Libertad, 1622	Simonet, Pascal, 1860
Roberge, Jacynthe, 964	Sirqueira, Carla Aparecida Gonçalves, 1048,
Robert, Jean-Marc, 730	1829
Robinette, Kathleen M., 235	Smithe, Kelli, 1160
Robinson-Luque, Vincent S., 127	Soares, Marcelo, 264
Rocha, Daniela, 1916	
	Sofía, Luna Rodríguez A., 688
Rodrigues, Julia Maria Rodrigues Zullim,	Sommer, Sarah, 1649
2017 Poffer Lyan 1101	Sopina, Aleksandra, 1937
Roffia, Luca, 1191	Souto, Virginia Tiradentes, 152
Rolfö, Linda, 356	Spada, St., 922
Rollè, L., 283	Spada, Stefania, 935
Romano, Giuseppe, 1593, 1601	Spennato, Alessandro, 1274
Rosen, Patricia H., 1649	Sperano, Isabelle, 964
Roucayrol, Lalou, 699	Spitzhirn, Michael, 272
Rydenfält, Christofer, 793	Steffan, Isabella Tiziana, 1506, 1516, 1642
~	Stockinger, Christopher, 1473
S	Stoehr, Ingmar, 784
Saavedra-Robinson, Luis A., 127	Sugama, Atsushi, 332
Safin, Stéphane, 653	Süsse, Rico, 429
Sagawa, Ken, 147, 1420, 1498	Suzuki, Satoshi, 603
Sagona, S., 283	
Sai Praveen, Velagapudi, 375	T
Sakata, Reiko, 147	Tacconi, Carlo, 1191
Salanitri, Davide, 207	Takesue, Shin, 216
Saldanha, Maria Christine Werba, 76	Tamborrini, P. M., 283
Salembier, Pascal, 699	Tamborrini, Paolo, 2077
Salvador, Cristina, 1294	Tan, Angela Li Sin, 117
Samani, Afshin, 338	Taraghi, Mitra, 730
Sanchez, L., 956	Tauffer, Vilson Paulo, 13
Sang, Raymond Lu Cong, 699	Tavares, Carolina Savioli Marques, 1411
Santana, Gabriela Pires, 1673	Teixeira, Carla Fernanda Barbosa, 1613
Santos, Joana, 2098	Tejada-Gutiérrez, Andrea, 1634
Sapuan, S. M., 1044	Theis, Sabine, 1493
Schäfer, Katharina, 1493	Thianche, Emmanuelle, 744
Schaffernicht, Sophie, 1524	Tittarelli, Michele, 1382
Schempp, Timo, 784	Toledo, Camila Mafalti, 13
Schenatto, Fernando José, 1395	Toriizuka, Takashi, 665
Schmid, Markus, 784	Torres, Isabel, 629
Scoz, Murilo, 1411	Tosi, Francesca, 410, 898, 1031, 1066, 1259
Seffah, Ahmed, 730	Toso, Francesca, 1236
Seinsch, Tobias, 1493	Toyoda, Wataru, 1287
Sengupta, Piyali, 868	Tran Van, Arnaud, 1806

Trgalova, Jana, 964	W
Truijen, S., 612	Wada, Kenki, 216
Tscharn, Robert, 665	Wahib, Khairul Nazri, 2039
Tschimmel, Katja, 2098	Walne, Simon, 207
Tummers, Mathias, 291	Watanabe, Hiroshi, 147
Twumasi, Ricardo, 1571	Waterson, Patrick, 310, 366
	Watts, Regan, 756
U	Wegner, Maximilian, 709
Ujike, Hiroyasu, 147	Werner, Coppieters, 2045
	Whitney, Gill, 1405
V	Wierts, Kayla, 1224
Vacher, Michel, 765	Wille, Matthias, 1493
Vaes, K., 612, 1012	Wischniwski, Sascha, 1649
Valenzuela-Gómez, Sergio-Alberto, 264, 499	Wu, Chih-Fu, 1008
Vallone, Mariarosaria, 33	
Van Camp, Marieke, 756	X
Van Campenhout, Lukas, 756	Xiong, Yuting, 2029
van Eijk, Daan, 800, 1081	Along, Tuting, 2029
Van Nuffel, M., 612	
Velagapudi, Sai Praveen, 421	Y
Verlinden, Jouke, 756	Yamada, Atsushi, 216
Verwulgen, S., 612	Yang, Hye Soon, 1428
Victor, Georgia, 1306	Yang, Zengyao, 1081
Vidal, Renaud, 1850	Yaniv, Yakir, 918
Vidana-Zavala, David, 551	Yazdani, Amin, 1224, 1230
Vieira, Rafael Lima, 1682	Ying, Xu, 107
Vietor, Thomas, 888	Yinsheng, Tian, 107
Vigoroso, Lucia, 1663	You, NaKyoung, 1456
Villarouco, Vilma, 508, 516, 1712	Yu, Yongweijian, 2029
Vink, Peter, 220, 709	Yun, Myung Hwan, 1428, 1456
Viviani, C. A., 841	
Vleugels, Jochen, 592	Z
Voirol, Christian, 1782	Zaidi, Fares, 744
Volosiuk, Aleksandr, 1937	Zanut, Stefano, 1593, 1601
Voong, Bin Sheng, 1175	Zara-Meylan, Valérie, 1821
Vora, Pawan, 381	Zhang, Yu, 1081
Vuillerme, Nicolas, 338	Zhou, Qianxiang, 64
,	, <u> </u>

La Sottoscritta **Alessandra Rinaldi**, nata a Viterbo il 23/01/1962, residente a Firenze, via Suor Maria Celeste 13, e-mail: alessandra.rinaldi@unifi.it

La Sottoscritta **Claudia Becchimanzi**, nata a Napoli il 17/09/1991, residente a Pisa, Vicolo Scaramucci 26, e-mail: claudia.becchimanzi@unifi.it

La Sottoscritta **Francesca Tosi**, nata a Firenze il 04/10/1961, residente a Firenze, via Cavour 104, e-mail: francesca.tosi@unifi.it

DICHIARANO

che i contenuti scientifici del contributo "Wearable Devices and Smart Garments for Stress Management", presentato al 20th Congress of the International Ergonomics Association "Ergonomics in Design, Design for All, Activity Theories for Work Analysis and Design, Affective Design", tenutosi a Firenze, il 26-30 Agosto 2018, pubblicato da Springer, ISBN 978-3-319-96070-8, https://doi.org/10.1007/978-3-319-96071-5, sono il risultato di una ricerca, condotta dalle autrici.

Nonostante ciò, il paragrafo 1. Introduction è da attribuirsi a Francesca Tosi; i paragrafi 2. Methodological Approach, 3.2 Smart Garments for Aged People at Work, 4. Discussion and Conclusion sono da attribuirsi ad Alessandra Rinaldi; il paragrafo 3.1 S.A.M. (Scan – Alter Ego – Monitoring) è da attribuirsi a Claudia Becchimanzi.

Offine let

(Landia) Beeching

Transero dei

Alessandra Rinaldi

Claudia Becchimanzi

Francesca Tosi