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Quantitative estimates of strong unique
continuation for wave equations

S. Vessella∗

Abstract

The main results of the present paper consist in some quantitative
estimates for solutions to the wave equation ∂2

t u−div (A(x)∇xu) = 0.
Such estimates imply the following strong unique continuation

properties: (a) if u is a solution to the the wave equation and u is
flat on a segment {x0} × J on the t axis, then u vanishes in a neigh-
borhood of {x0}×J . (b) Let u be a solution of the above wave equation
in Ω × J that vanishes on a a portion Z × J where Z is a portion of
∂Ω and u is flat on a segment {x0} × J , x0 ∈ Z, then u vanishes in a
neighborhood of {x0} × J . The property (a) has been proved by G.
Lebeau, Comm. Part. Diff. Equat. 24 (1999), 777-783.

Mathematics Subject Classification (2010) Primary 35R25, 35L;
Secondary 35B60 ,35R30.

Keywords Stability Estimates, Unique Continuation Property, Hy-
perbolic Equations, Inverse Problems.

1 Introduction

The strong unique continuation properties and the related quantitative esti-
mates have been well understood for second order equations of elliptic ([AE],
[A-K-S], [Hö1], [Ko-Ta1]) and parabolic type ([Al-Ve], [Es-Fe], [Ko-Ta2]).
The three sphere inequalities [La], doubling inequalities [Ga-Li], or two-
sphere one cylinder inequality [Es-Fe-Ve] are the typical form in which such
quantitative estimates of unique continuation occur in the elliptic or in the
parabolic context. We refer to [Al-R-Ro-Ve] and [Ve1] for a more extensive
literature on these subjects. On the contrary, the strong properties of unique
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continuation are much less studied in the context of hyperbolic equations,
[Le], [Ma], [Ba-Za].

To the author knowledge there exits no result in the literature concerning
quantitative estimates of unique continuation in the framework of hyperbolic
equations. In this paper we study this issue for the wave equation

(1.1) ∂2t u− div (A(x)∇xu) = 0,

(div :=
∑n

j=1 ∂xj
) where A(x) is a real-valued symmetric n × n, n ≥ 2,

matrix whose entries are functions of Lipschitz class and satisfying uniform
ellipticity condition.

The quantitative estimates of unique continuation for the equation (1.1)
represent the quantitative counterparts of the following strong unique con-
tinuation property. Let u be a weak solution to (1.1) and assume that

sup
t∈J

∥u(·, t)∥L2(Br)
= CNr

N , ∀N ∈ N, ∀r < 1,

where CN is arbitrary and independent on r, J = (−T, T ) is an interval of
R. Then we have

u = 0 in U ,

where U is a neighborhood of {0} × J . The above property was proved by
Lebeau in [Le]. As a consequence of such a result and using the weak unique
continuation property proved in [Hö2], [Ro-Zu] and [Ta], see also [Is1], we
have that, if the entries of A are function in C∞(Rn) then u = 0 in the
domain of dependence of a cylinder Bδ×J , where Bδ is the ball of Rn, n ≥ 2,
centered at 0 with a small radius δ. Previously the strong unique continuation
property was proved by Masuda [Ma] whenever J = R and the entries of the
matrix A are functions of C2 class and by Baouendi-Zachmanoglou [Ba-Za]
whenever the entries of A are analytic functions. In both [Ma] and [Ba-Za],
the above property was proved also for first order perturbation of operator
∂2t u − div (A(x)∇u). Also, we recall here the papers [Che-D-Y], [Che-Y-Z]
and [Ra]. In such papers unique continuation properties are proved along
and across lower dimensional manifolds for the wave equation.

The quantitative estimate of strong unique continuation (in the interior)
that we prove is, roughly speaking, the following one (for the precise state-
ment see Theorem 2.1). Let u be a solution to (1.1) in the cylinder B1 × J
and let r ∈ (0, 1). Assume that

sup
t∈J

∥u(·, t)∥L2(Br)
≤ ε and ∥u(·, 0)∥H2(B1)

≤ 1,

where ε < 1. Then
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∥u(·, 0)∥L2(Bs0)
≤ C

∣∣log (εθ)∣∣−1/6
,(1.2)

where s0 ∈ (0, 1), C ≥ 1 are constants independent of u and r and

(1.3) θ = | log r|−1.

The estimate (1.2) are sharp estimate from two points of view:

(i) The logarithmic character of the estimate cannot be improved as it is
shown by a well-known counterexample of John for the wave equation, [Jo];

(ii) The sharp dependence of θ by r. Indeed it is easy to check that the
estimate (1.2) implies the strong unique continuation for the equation (1.1)
(see Remark 2.2 for more details).

As a consequence of estimate (1.2) and some reflection transformation
introduced in [AE] we derive a quantitative estimate of unique continua-
tion at the boundary (Theorem 2.3). Also, we extend (1.2) to a first order
perturbation of the wave operator (Section 4).

One of the main purposes that led us to derive the above estimates is their
applications in the framework of stability for inverse hyperbolic problems
with time independent unknown boundaries from transient data with a finite
time of observation. Some uniqueness results has been proved in [Is2]. In
the paper [Ve2] the most important tools that are used to prove a sharp
stability estimate are precisely the strong unique continuation (at the interior
and at the boundary) for the equation (1.1). The quantitative estimate
of strong unique continuation was applied for the first time to the elliptic
inverse problems with unknown boundaries in [Al-B-Ro-Ve]. Concerning the
parabolic inverse problems with unknown boundaries such estimates were
applied in [C-Ro-Ve], [CRoVe2], [Dc-R-Ve], [Ve1]. In both the cases, elliptic
and parabolic, the stability estimates that were proved are optimal [Dc-R]
and [Al] (elliptic case), [Dc-R-Ve] (parabolic case).

The proof of (1.2) follows a similar strategy and ingredients as the one
used in [Le]. In particular, in order to perform a suitable transformation of
the wave equation in a nonhomogeneous second order elliptic equation we use
the Boman transformation [Bo], then, to the obtained elliptic equation, we
use the Carleman estimate with singular weight, [A-K-S], [Hö1], [Es-Ve] and
the stability estimates for the Cauchy problem. The main difference between
our proof and the one of [Le] relies in the different nature of the results;
in our case the results are quantitative while in [Le] the results are only
qualitative. More precisely, in [Le] the parameter ε has the particular form

3
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ε = CNr
N while in the present paper ε is a free parameter. An important

consequence of this fact is that we need to control very accurately how much
the error ε affects the growth of the solution to (1.1) in order to reach the
above sharpness character (i) and (ii).

The plan of the paper is as follows. In Section 2 we state the main results
of this paper, in Section 3 we prove the theorems of Section 2, in Section 4
we consider the case of the more general equation q(x)∂2t u−div (A(x)∇xu) =
b(x) · ∇xu+ c(x)u.

2 The main results

2.1 Notation and Definition

Let n ∈ N, n ≥ 2. For any x ∈ Rn, we will denote x = (x′, xn), where

x′ = (x1, . . . , xn−1) ∈ Rn−1, xn ∈ R and |x| =
(∑n

j=1 x
2
j

)1/2
. Given x ∈ Rn,

r > 0, we will denote by Br, B
′
r B̃r the ball of Rn, Rn−1 and Rn+1 of radius r

centered at 0. For any open set Ω ⊂ Rn and any function (smooth enough)
u we denote by ∇xu = (∂x1u, · · · , ∂xnu) the gradient of u. Also, for the
gradient of u we use the notation Dxu. If j = 0, 1, 2 we denote by Dj

xu the
set of the derivatives of u of order j, so D0

xu = u, D1
xu = ∇xu and D2

xu is
the hessian matrix {∂xixj

u}ni,j=1. Similar notation are used whenever other
variables occur and Ω is an open subset of Rn−1 or a subset Rn+1. By Hℓ(Ω),
ℓ = 0, 1, 2 we denote the usual Sobolev spaces of order ℓ, in particular we
have H0(Ω) = L2(Ω).

For any interval J ⊂ R and Ω as above we denote by

W (J ; Ω) =
{
u ∈ C0

(
J ;H2 (Ω)

)
: ∂ℓtu ∈ C0

(
J ;H2−ℓ (Ω)

)
, ℓ = 1, 2

}
.

We shall use the letters C,C0, C1, · · · to denote constants. The value
of the constants may change from line to line, but we shall specified their
dependence everywhere they appear.

2.2 Statements of the main results

Let A(x) = {aij(x)}ni,j=1 be a real-valued symmetric n × n matrix whose
entries are measurable functions and they satisfy the following conditions for
given constants ρ0 > 0, λ ∈ (0, 1] and Λ > 0,

(2.1a) λ |ξ|2 ≤ A(x)ξ · ξ ≤ λ−1 |ξ|2 , for every x, ξ ∈ Rn,

4
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(2.1b) |A(x)− A(y)| ≤ Λ

ρ0
|x− y| , for every x, y ∈ Rn.

Let q = q(x) be a a real-valued measurable function that satisfies

(2.2a) λ ≤ q(x) ≤ λ−1, for every x ∈ Rn,

(2.2b) |q(x)− q(y)| ≤ Λ

ρ0
|x− y| , for every x, y ∈ Rn.

Let u ∈ W ([−λρ0, λρ0];Bρ0) be a weak solution to

(2.3) q(x)∂2t u− div (A(x)∇xu) = 0, in Bρ0 × (−λρ0, λρ0).

Let r0 ∈ (0, ρ0] and denote by

(2.4) ε := sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Br0

u2(x, t)dx

)1/2

and

(2.5) H :=

(
2∑

j=0

ρj−n
0

∫
Bρ0

∣∣Dj
xu(x, 0)

∣∣2 dx)1/2

.

Theorem 2.1 (estimate at the interior). Let u ∈ W ([−λρ0, λρ0];Bρ0)
be a weak solution to (2.3) and let (2.1) and (2.2) be satisfied. There exist
constants s0 ∈ (0, 1) and C ≥ 1 depending on λ and Λ only such that for
every 0 < r0 ≤ ρ ≤ s0ρ0 the following inequality holds true

∥u(·, 0)∥L2(Bρ)
≤ C (ρ0ρ

−1)
C
(H + eε)(

θ log
(
H+eε

ε

))1/6 ,(2.6)

where

(2.7) θ =
log(ρ0/Cρ)

log(ρ0/r0)
.

The proof of Theorem 2.1 is given in section 3.
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Remark 2.2. Observe that estimate (2.6) implies the following property of
strong unique continuation. Let u ∈ W ([−λρ0, λρ0];Bρ0) be a weak solution
to (2.3) and assume that

sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Br0

u2(x, t)dx

)1/2

= O(rN0 ), ∀N ∈ N, as r0 → 0,

then

(2.8) u(·, t) = 0, for |x|+ λ−1s0|t| ≤ s0ρ0.

It is enough to consider the case t = 0. If ∥u(·, 0)∥L2(Bs0ρ0)
= 0 there is

nothing to proof, otherwise if

(2.9) ∥u(·, 0)∥L2(Bs0ρ0)
> 0,

we argue by contradiction. By (2.9) it is not restrictive to assume that
H = ∥u(·, 0)∥H2(Bρ0)

= 1. Now we apply inequality (2.6) with ε0 = CNr
N
0 ,

N ∈ N, and passing to the limit as r0 → 0 we have that (2.6) implies

∥u(·, 0)∥L2(Bs0ρ0)
≤ Cs−C

0 N−1/6, ∀N ∈ N,

by passing again to the limit as N → 0 we get, by (2.9), ∥u(·, 0)∥L2(Bρ)
= 0

that contradicts (2.9).

In order to state Theorem 2.3 below let us introduce some notation. Let
ϕ be a function belonging to C1,1

(
B′

ρ0

)
that satisfies

(2.10) ϕ(0) = |∇x′ϕ(0)| = 0

and

(2.11) ∥ϕ∥C1,1(B′
ρ0)

≤ Eρ0,

where

∥ϕ∥C1,1(B′
ρ0)

= ∥ϕ∥L∞(B′
ρ0)

+ ρ0 ∥∇x′ϕ∥L∞(B′
ρ0)

+ ρ20
∥∥D2

x′ϕ
∥∥
L∞(B′

ρ0)
.

For any r ∈ (0, ρ0] denote by

Kr := {(x′, xn) ∈ Br : xn > ϕ(x′)}

6
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and
Z := {(x′, ϕ(x′)) : x′ ∈ B′

ρ0
}.

Let u ∈ W ([−λρ0, λρ0];Kρ0) be a solution to

(2.12) ∂2t u− div (A(x)∇xu) = 0, in Kρ0 × (−λρ0, λρ0),

satisfying one of the following conditions

(2.13) u = 0, on Z × (−λρ0, λρ0)

or

(2.14) A∇xu · ν = 0, on Z × (−λρ0, λρ0),

where ν denotes the outer unit normal to Z.
Let r0 ∈ (0, ρ0] and denote by

(2.15) ε = sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Kr0

u2(x, t)dx

)1/2

and

(2.16) H =

(
2∑

j=0

ρj−n
0

∫
Kρ0

∣∣Dj
xu(x, 0)

∣∣2 dx)1/2

.

Theorem 2.3 (estimate at the boundary). Let (2.1) be satisfied. Let
u ∈ W ([−λρ0, λρ0];Kρ0) be a solution to (2.12) satisfying (2.15) and (2.16).
Assume that u satisfies either (2.13) or (2.14). There exist constants s0 ∈
(0, 1) and C ≥ 1 depending on λ, Λ and E only such that for every 0 < r0 ≤
ρ ≤ s0ρ0 the following inequality holds true

∥u(·, 0)∥L2(Kρ)
≤ C (ρ0ρ

−1)
C
(H + eε)(

θ̃ log
(
H+eε

ε

))1/6 ,(2.17)

where

(2.18) θ̃ =
log(ρ0/Cρ)

log(ρ0/r0)
.
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The proof of Theorem 2.3 is given in section 3.2.

Remark 2.4. By arguing similarly to Remark 2.2 we have that estimate (2.17)
implies the following property of strong unique continuation at the boundary.
Let u ∈ W ([−λρ0, λρ0];Kρ0) be a solution to (2.12) satisfying either (2.13)
or (2.14) and assume that

sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Kr0

u2(x, t)dx

)1/2

= O(rN0 ), ∀N ∈ N, as r0 → 0,

then
u(x, t) = 0, for x ∈ Kρ(t), t ∈ (−λρ0, λρ0),

where ρ(t) = s0 (ρ0 − λ−1|t|).

3 Proof of Theorems 2.1 and 2.3

3.1 Proof of Theorem 2.1

Observe that to prove Theorem 2.1 we can assume that u(x, t) is even with
respect to the variable t. Indeed defining

u+(x, t) =
u(x, t) + u(x,−t)

2
,

we see that u+ satisfies all the hypotheses of Theorem 2.1 and, in particular,
we have

u+(x, 0) = u(x, 0),

sup
t∈(−λρ0,λρ0)

(
ρ−n
0

∫
Br0

u2+(x, t)dx

)1/2

≤ ε,

and (
2∑

j=0

ρj−n
0

∫
Bρ0

∣∣Dj
xu+(x, 0)

∣∣2 dx)1/2

= H,

also, notice that the function of ε at the right hand side of (2.6) is not
decreasing. Hence, from now on we assume that u(x, t) is even with respect
to the variable t. Moreover it is not restrictive to assume ρ0 = 1.

In order to prove Theorem 2.1 we proceed in the following way.
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First step. After a standard extension of u(·, 0) in H2(B2)∩H1
0 (B2) we

will construct, similarly to [Le], a sequence of function {vk(x, y)}k∈N, with
the following properties:
(i) for every k ∈ N the function vk belongs to H2(B2) ∩H1

0 (B2), in addition
vk(x, y) is even with respect to the variable y ∈ R,
(ii) the sequence {vk(·, 0)}k∈N approximates u(·, 0) in L2(B1), more precisely
we have

∥u(·, 0)− vk∥L2(B1)
≤ CHk−1/6.

Moreover, for every k ∈ N the function vk(x, y) is a solution to the elliptic
problem, {

q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

∥vk(·, 0)∥L2(Br0)
≤ ε,

where fk satisfies

∥fk(·, y)∥L2(B2) ≤ (C|y|)2k ∀k ∈ N.

Second step. Here we derive some stability estimates of Cauchy problem
for the above elliptic equation getting estimates vk in the ball of Rn+1 centered
at 0 with radius r0/4, (Proposition 3.6). Then we use Carleman estimates
with singular weight (Theorem 3.7) for the elliptic equation and the above
estimate of ∥u(·, 0)− vk∥L2(B1)

. Finally, we choose the parameter k and we
get the estimate (2.6).

FIRST STEP.
Let us start by introducing some notation and by giving an outline of the
proof of Theorem 2.1. Let ũ0 an extension of the function u0 := u(·, 0) such
that ũ0 ∈ H2 (B2) ∩H1

0 (B2) and

(3.1) ∥ũ0∥H2(B2) ≤ CH,

where C is an absolute constant.
Let us denote by λj, with 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · the eigenvalues

associated to the Dirichlet problem

(3.2)

{
div (A(x)∇xv) + ωq(x)v = 0, in B2,

v ∈ H1
0 (B2) ,

and by ej(·) the corresponding eigenfunctions normalized by
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(3.3)

∫
B2

e2j(x)q(x)dx = 1.

By (2.1a), (2.2) and Poincaré inequality we have for every j ∈ N

λj =

∫
B2

A(x)∇xej(x) · ∇xej(x)dx ≥ cλ2
∫
B2

e2j(x)q(x)dx = cλ2(3.4)

where c is an absolute constant. Denote by

(3.5) αj :=

∫
B2

ũ0(x)ej(x)q(x)dx,

and let

(3.6) ũ(x, t) :=
∞∑
j=1

αjej(x) cos
√
λjt.

Proposition 3.1. We have

(3.7)
∞∑
j=1

(
1 + λ2j

)
α2
j ≤ CH2,

where C depends on λ,Λ only. Moreover, ũ ∈ W (R;B2)∩C0 (R;H2 (B2) ∩H1
0 (B2))

is an even function with respect to the variable t and it satisfies

(3.8)


q(x)∂2t ũ− div (A(x)∇xũ) = 0, in B2 × R,

ũ(·, 0) = ũ0, in B2,

∂tũ(·, 0) = 0, in B2.

Proof. By (3.2) and (3.3) we have

λjαj =

∫
B2

ũ0(x)λjq(x)ej(x)dx = −
∫
B2

div (A(x)∇xũ0(x)) ej(x)dx.

Hence, by (2.1), (2.2) and (3.1) we have

∞∑
j=1

(
1 + λ2j

)
α2
j = ∥ũ0∥2L2(B2;qdx)

+

∥∥∥∥1qdiv (A∇xũ0)

∥∥∥∥2
L2(B2;qdx)

≤ CH2,

where C depends on λ,Λ only and (3.7) follows.
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Notice that, since ũ(·, 0) = u+(·, 0) and ∂tũ(·, 0) = 0 = ∂tu+(·, 0) in B1,
we have for the uniqueness to the Cauchy problem for equation (2.3), (see,
for instance, [Ev]),

(3.9) ũ(x, t) = u+(x, t), for |x|+ λ−1|t| < 1.

Let us introduce the following nonnegative, even function ψ such that

(3.10) ψ(t) =

{
1
2
(1 + cosπt) , for |t| ≤ 1,

0, for |t| > 1.

Notice that ψ ∈ C1,1, supp ψ = [0, 1] and

(3.11)

∫
R
ψ(t)dt = 1.

Let

(3.12) ψ̂(τ) =

∫
R
ψ(t)e−iτtdt =

∫
R
ψ(t) cos τtdt, τ ∈ R.

Since ψ has compact support, ψ̂ is an entire function. By (3.11) we have∣∣∣ψ̂(τ)∣∣∣ ≤ ∫
R
ψ(t)dt = 1, for every τ ∈ R,

and∣∣∣τ 2ψ̂(τ)∣∣∣ = ∣∣∣∣−∫
R
ψ(t)

d2

dt2
cos τtdt

∣∣∣∣ = ∣∣∣∣−∫
R
ψ

′′
(t) cos τtdt

∣∣∣∣ ≤ π2, for every τ ∈ R,

hence we have

(3.13)
∣∣∣ψ̂(τ)∣∣∣ ≤ min

{
1, π2τ−2

}
, for every τ ∈ R.

Let

(3.14) ϑ(t) = 4λ−1ψ(4λ−1t), t ∈ R.

In the following proposition we collect the elementary properties of ϑ that
we need.

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Proposition 3.2. The function ϑ is an even and positive function such that
ϑ ∈ C1,1, supp ϑ =

[
−λ

4
, λ
4

]
,
∫
R ϑ(t)dt = 1, ϑ̂(τ) = ψ̂

(
λτ
4

)
and

(3.15)

∫
R
|ϑ′(t)| dt = 8λ−1,

(3.16)
∣∣∣ϑ̂(τ)∣∣∣ ≤ min

{
1, 16π2(τλ)−2

}
, for every τ ∈ R,

(3.17)
∣∣∣ϑ̂(τ)− 1

∣∣∣ ≤ (λτ
4

)2

, for

∣∣∣∣λτ4
∣∣∣∣ ≤ π

2
,

(3.18)
1

2
≤ ϑ̂(τ), for

∣∣∣∣λτ4
∣∣∣∣ ≤ 1√

2
.

Proof. We limit ourselves to prove property (3.17) and (3.18), since the other
properties are immediate consequences of (3.12), (3.13) and (3.14). We have

(3.19)
∣∣∣ϑ̂(τ)− 1

∣∣∣ ≤ ∫ 1

−1

ψ(s)

(
1− cos

(
λsτ

4

))
ds.

Now, if s ∈ [−1, 1] and
∣∣λτ
4

∣∣ ≤ π
2
then

1− cos

(
λsτ

4

)
≤
(
λτ

4

)2

.

Hence by (3.19) we get (3.17). Finally (3.18) is an immediate consequence
of (3.17)

As usual, if f, g ∈ L1(R), we denote by (f ∗ g)(t) :=
∫
R f(t − s)g(s)ds.

Moreover we denote by f∗(k) := f ∗ f ∗(k−1), for k ≥ 2, where f ∗(1) := f .
Let us define

(3.20) ϑk(t) := (kϑ(kt))∗(k) , for every k ∈ N.

Notice that ϑk ≥ 0, supp ϑk ⊂
[
−λ

4
, λ
4

]
,
∫
R ϑk(t)dt = 1, for every k ∈ N and

(3.21) ϑ̂k(τ) =
(
ϑ̂(k−1τ)

)k
, for every k ∈ N, τ ∈ R.
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Moreover, by (3.17) we have

(3.22) lim
k→+∞

ϑ̂k(τ) = 1, for every τ ∈ R.

For any number µ ∈ (0, 1] and any k ∈ N let us set

(3.23) φµ,k = (ϑk ∗ φµ) ,

where

(3.24) φµ(t) = µ−1ϑ
(
µ−1t

)
, for every t ∈ R.

We have supp φµ,k ⊂
[
−λ(µ+1)

4
, λ(µ+1)

4

]
, φµ,k ≥ 0 and

∫
R φµ,k(t)dt = 1.

Now, let us define the following mollified form of the Boman transforma-
tion of ũ(x, ·), [Bo],

(3.25) ũµ,k(x) =

∫
R
ũ(x, t)φµ,k(t)dt, for x ∈ B2.

Proposition 3.3. If k ∈ N and µ = k−1/6 then the following inequality holds
true

(3.26) ∥u(·, 0)− ũµ,k∥L2(B1)
≤ CHk−1/6,

where C depends on λ only.

Proof. Let µ ∈ (0, 1]. By applying the triangle inequality and taking into
account (3.11) and (3.24) we have

∥u(·, 0)− ũµ,k(·)∥L2(B1)
≤(3.27)

≤

(∫
B1

dx

∫ λµ/4

−λµ/4

|u(x, 0)− ũ(x, t)|2 φµ(t)dt

)1/2

+

+

(∫
B1

dx

∫ λ(µ+1)/4

−λ(µ+1)/4

|ũ(x, t)|2 dt

)1/2

∥φµ − φµ,k∥L2(R) := I1 + I2.

In order to estimate I1 from above we observe that by the energy inequality,
(3.1), and taking into account that ∂tũ(x, 0) = 0, we have
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∫
B2

|∂tũ(x, t)|2 dx ≤
∫
B2

(
|∂tũ(x, t)|2 + |∇xũ(x, t)|2

)
dx ≤

≤ λ−2

∫
B2

(
|∂tũ(x, 0)|2 + |∇xũ(x, 0)|2

)
dx ≤ CH2,

where C depends on λ only. Therefore

I21 ≤ 2

∫
B1

dx

∣∣∣∣∣
∫ λµ/4

0

∂ηũ(x, η)dη

∣∣∣∣∣
2

≤ λµ

2

∫
B1

dx

∫ λµ/4

0

|∂ηũ(x, η)|2 dη ≤ CH2µ2.

Hence

(3.28) I1 ≤ CHµ,

where C depends on λ only.
Concerning I2, first we observe that by using Poincaré inequality, by

energy inequality, and by (3.1) (recalling that µ ∈ (0, 1]), we have∫ λ(µ+1)/4

−λ(µ+1)/4

dt

∫
B1

|ũ(x, t)|2 dx ≤
∫ λ/2

−λ/2

dt

∫
B2

|ũ(x, t)|2 dx ≤(3.29)

≤ C

∫ λ/2

−λ/2

dt

∫
B2

|∇xũ(x, t)|2 dx ≤ CH2,

where C depends on λ only.
In order to estimate from above ∥φµ − φµ,k∥L2(R) we recall that φ̂µ(τ) =

ϑ̂(µτ) and φ̂µ,k(τ) = ϑ̂(µτ)
(
ϑ̂(k−1τ)

)k
, hence the Parseval identity and a

change of variable give

(3.30) 2π ∥φµ − φµ,k∥2L2(R) =
1

µ

∫
R

∣∣∣∣(ϑ̂((µk)−1τ)
)k

− 1

∣∣∣∣2 ∣∣∣ϑ̂(τ)∣∣∣2 dτ.
By (3.16), (3.17) and (3.18) and by using the elementary inequalities 1−e−z ≤
z, for every z ∈ R, and log s ≤ s − 1, for every s > 0, we have, whenever∣∣∣ λτ
4µk

∣∣∣ ≤ 1√
2
,

(3.31) 0 ≤ 1−
(
ϑ̂((µk)−1τ)

)k
= 1− ek log ϑ̂((µk)−1τ) ≤ λ2τ 2

8µ2k
.
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Now let δ ∈ (0, 1] be a number that we shall choose later and denote
β = 4µk√

2λ
δ. By (3.30), (3.16) and (3.31) we have

2π ∥φµ − φµ,k∥2L2(R) =
1

µ

∫
|τ |≤β

∣∣∣∣(ϑ̂((µk)−1τ)
)k

− 1

∣∣∣∣2 ∣∣∣ϑ̂(τ)∣∣∣2 dτ+(3.32)

+
1

µ

∫
|τ |≥β

∣∣∣∣(ϑ̂((µk)−1τ)
)k

− 1

∣∣∣∣2 ∣∣∣ϑ̂(τ)∣∣∣2 dτ ≤

≤ 1

µ

∫
|τ |≤β

(
λ2τ 2

8µ2k

)2

dτ +
1

µ

∫
|τ |>β

(
32π2

λ2τ 2

)2

dτ ≤ C

(
k3δ5 +

1

δ3µ4k3

)
,

where C depends on λ only. If µ2k3/5 ≥ 1, we choose δ = (µ2k3)−1/4 and by
(3.32) we have

(3.33) ∥φµ − φµ,k∥L2(R) ≤ C
(
k3/5µ2

)−5/8
,

where C depends on λ only. Hence recalling (3.29) we have

I2 ≤ CH
(
k3/5µ2

)−5/8
.(3.34)

By (3.27), (3.28) and (3.28) we obtain

(3.35) ∥u(·, 0)− ũµ,k∥L2(B1)
≤ CH

(
µ+

(
k3/5µ2

)−5/8
)
.

Now, if µ = k−
1
6 , k ≥ 1 then (3.35) implies (3.26).

From now on we fix µ := k−
1
6 for k ≥ 1 and we denote

(3.36) ũk := ũµ,k.

Let us introduce now, for every k ∈ N an even function gk ∈ C1,1(R)
such that if |z| ≤ k then we have gk(z) = cosh z, if |z| ≥ 2k then we have
gk(z) = cosh 2k and such that it satisfies the condition

(3.37) |gk(z)|+ |g′k(z)|+ |g′′k(z)| ≤ ce2k, for every z ∈ R,

where c is an absolute constant.

The following proposition is the main result of this first step.
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Proposition 3.4. Let

(3.38) vk(x, y) :=
∞∑
j=1

αjφ̂µ,k

(√
λj

)
gk

(
y
√
λj

)
ej(x) , for (x, y) ∈ B2 × R.

We have that vk(·, y) belongs to H2 (B2) ∩H1
0 (B2) for every y ∈ R, vk(x, y)

is an even function with respect to y and it satisfies

(3.39)

{
q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

vk(·, 0) = ũk, in B2.

and

(3.40) ∥vk(·, 0)∥L2(Br0)
≤ ε.

where

(3.41) fk(x, y) =
∞∑
j=1

λjαjφ̂µ,k

(√
λj

)(
g′′k

(
y
√
λj

)
− gk

(
y
√
λj

))
ej(x).

Moreover we have

(3.42)
2∑

j=0

∥∂jyvk(·, y)∥H2−j(B2) ≤ CHe2k, for every y ∈ R,

(3.43) ∥fk(·, y)∥L2(B2) ≤ CHe2k min
{
1,
(
4πλ−1|y|

)2k}
, for every y ∈ R,

where C depends on λ and Λ only.

Proof. First of all observe that

(3.44)
∣∣∣φ̂µ,k

(√
λj

)∣∣∣ ≤ ∥φµ,k∥L1(R) = 1.

For the sake of brevity, in what follows we shall omit k from vk.
In order to prove that v(·, y) ∈ H2 (B2)∩H1

0 (B2) for y ∈ R, letM,N ∈ N
such that M > N and let us denote by

(3.45) VM,N(x, y) :=
M∑

j=N+1

αjφ̂µ,k

(√
λj

)
gk

(
y
√
λj

)
ej(x).
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By (3.37) and (3.44) we have, for every y ∈ R,

λ

∫
B2

|∇xVM,N(x, y)|2 dx ≤
∫
B2

A(x)∇xVM,N(x, y) · ∇xVM,N(x, y)dx =

=
M∑

j=N+1

(∫
B2

A(x)∇xej(x) · ∇xVM,N(x, y)dx

)
φ̂µ,k

(√
λj

)
gk

(
y
√
λj

)
αj =

=
M∑

j=N+1

λjα
2
j φ̂

2
µ,k

(√
λj

)
g2k

(
y
√
λj

)
≤ ce4k

M∑
j=N+1

λjα
2
j .

Therefore, since VM,N(·, y) ∈ H1
0 (B2) we have

(3.46) ∥VM,N(·, y)∥2H1
0 (B2)

≤ ce4k
M∑

j=N+1

λjα
2
j , for every y ∈ R.

The inequality above and (3.7) gives

∥VM,N(·, y)∥H1
0 (B2) → 0, as M,N → ∞, for every y ∈ R,

hence v ∈ H1
0 (B2).

In order to prove that v ∈ H2 (B2), first observe that by (3.37), (3.44)
and (3.45) we have

∥div (A∇xVM,N) ∥2L2(B2)
≤ cλ−1e4k

M∑
j=N+1

λ2jα
2
j , for every y ∈ R,

then by the above inequality and standard L2 regularity estimate [G-T] we
obtain

∥D2
xVM,N(·, y)∥2L2(B2)

≤(3.47)

≤ C∥div (A∇xVM,N) ∥2L2(B2)
≤ e4k

M∑
j=N+1

λ2jα
2
j , for every y ∈ R,

where C depends on λ and Λ only. Hence v ∈ H2 (B2). Moreover by (3.7),
(3.46) and (3.47) we have

∥v(·, y)∥L2(B2) + ∥∇xv(·, y)∥L2(B2) + ∥D2
xv(·, y)∥L2(B2) ≤(3.48)

≤ CHe2k, for every y ∈ R,
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where C depends on λ and Λ only. Similarly we have ∂yv(·, y), ∂2yv(·, y), ∂y∇xv(·, y) ∈
L2 (B2) and

(3.49)
2∑

j=1

∥∂jyD2−j
x v(·, y)∥L2(B2) ≤ CHe2k, for every y ∈ R,

where C depends on λ and Λ only.
By (3.38) we have immediately that the function v is an even function.

Moreover by straightforward calculations it is simple to check that v satisfies
(3.39) and (3.41). Inequality (3.49) and (3.48), yields (3.42). By (3.38) we
have immediately that the function v is an even function and it satisfies
(3.39).

Concerning (3.40), we have by ∥φµ,k∥L1(R) = 1, by Schwarz inequality, by
(2.4) and by (3.25),

∥vk(·, 0)∥2L2(Br0)
=

∫
Br0

|ũk(x)|2 dx ≤

≤
∫ λ(µ+1)/4

−λ(µ+1)/4

(∫
Br0

|u(x, t)|2 dx

)
φµ,k(t)dt ≤ ε2.

Concerning (3.43), first observe that by the definition of gk we have that
g′′k(y

√
λj) − gk(y

√
λj) = 0, for |y|

√
λj ≤ k and

∣∣g′′k(y√λj)− gk(y
√
λj)
∣∣ ≤

ce2k, for |y|
√
λj ≥ k. Hence, taking into account (3.16) and (3.21), we have,

for every y ∈ R and for every k ∈ N,

∣∣∣g′′k(y√λj)− gk(y
√
λj)
∣∣∣ ∣∣∣φ̂µ,k(

√
λj)
∣∣∣ ≤(3.50)

≤ ce2k
∣∣∣ϑ̂(k−1

√
λj)
∣∣∣k χ{y:|y|

√
λj≥k} ≤

≤ ce2k sup

{∣∣∣ϑ̂(k−1
√
λj)
∣∣∣k : |y|√λj ≥ k

}
≤ ce2k min

{
1,
(
4πλ−1|y|

)2k}
.

By (3.42) and (3.50) we have

∥fk(·, y)∥L2(B2) ≤ ce2k min

{
1,
(
4
√
2πλ−1|y|

)2k}( ∞∑
j=1

λ2jα
2
j

)1/2

, for every y ∈ R.

By the above inequality and by (3.7) we obtain (3.43).
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SECOND STEP.

In what follows we shall denote by B̃r the ball of Rn+1 of radius r centered
at 0. In order to prove Proposition 3.6 stated below we need the following
Lemma.

Lemma 3.5. Let r be a positive number and let w ∈ H2
(
B̃r

)
be a solution

to the problem

(3.51)

{
q(x)∂2yw(x, y) + div (A(x)∇xw(x, y)) = 0, in B̃r,

∂yw(·, 0) = 0, in Br,

where A satisfies (2.1) and q satisfies (2.2).
Then there exist β ∈ (0, 1) and C ≥ 1 depending on λ and Λ only such

that

(3.52)

∫
B̃r/4

w2dxdy ≤ C

(∫
B̃r

w2dxdy

)1−β
(
r

∫
Br/2

w2(x, 0)dx

)β

.

Proof. After scaling, we may assume r = 1. By [Al-R-Ro-Ve, Theorem 1.7]
we have

(3.53) ∥w∥L2(B̃1/4) ≤ C
(
∥w∥L2(B̃1)

)1−β̃ (
∥w∥H1/2(B1/2)

)β̃
,

where C and β̃ ∈ (0, 1) depend on λ and Λ only. Now, by the interpolation
inequality, the trace inequality and standard regularity for elliptic equation
[G-T] we have

∥w∥H1/2(B1/2) ≤ C∥w∥2/3
L2(B1/2)

∥w∥1/3
H3/2(B1/2)

(3.54)

≤ C∥w∥2/3
L2(B1/2)

∥w∥1/3
H2(B̃3/4)

≤ C ′∥w∥2/3
L2(B1/2)

∥w∥1/3
L2(B̃1)

,

where C ′ depends on λ and Λ only. By (3.53) and (3.54) we get (3.52) with

β = 2β̃
3
.

Proposition 3.6. Let vk be defined in (3.38) and let r0 ≤ λ
8
. Then we have

(3.55) ∥vk∥L2(B̃r0/4)
≤ C

√
r0

(
ε+H (C0r0)

2k
)β (

He2k +H (C0r0)
2k
)1−β

.

where β ∈ (0, 1), C depend on λ and Λ only and C0 = 4πeλ−1.
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Proof. Let wk ∈ H2
(
B̃r0

)
be the solution to the following Dirichlet problem

(3.56)

{
q(x)∂2ywk + div (A(x)∇xwk) = fk, in B̃r0 ,

wk = 0, on ∂B̃r0 .

Notice that, since fk is an even function with respect to y, by the uniqueness
to the Dirichlet problem (3.56) we have that wk is an even function with
respect to y.

By standard regularity estimates we have

(3.57) ∥wk∥L2(B̃r0)
+ r0∥∇x,ywk∥L2(B̃r0)

≤ Cr20∥fk∥L2(B̃r0)
,

where C depends on λ only. By the above inequality and by the trace in-
equality we get

∥wk(·, 0)∥L2(Br0/2)
≤(3.58)

≤ C
(
r
−1/2
0 ∥wk∥L2(B̃r0)

+ r
1/2
0 ∥∇x,ywk∥L2(B̃r0)

)
≤ Cr

3/2
0 ∥fk∥L2(B̃r0)

,

where C depends on λ only.
Now, denoting

(3.59) zk = vk − wk,

by (3.43), (3.40), (3.57) and (3.58) we have

(3.60) ∥zk(·, 0)∥L2(Br0/2)
≤ ε+ Cr20H (C0r0)

2k ,

and

(3.61) ∥zk∥L2(B̃r0)
≤ Cr

1/2
0 H

(
e2k + r20 (C0r0)

2k
)
,

where C depends on λ only.
Now by (3.56) we have{

q(x)∂2yzk + div (A(x)∇xzk) = 0, in B̃r0 ,

∂yzk(·, 0) = 0, on Br0 ,

hence by applying Lemma 3.5 to the function zk and by using (3.42), (3.59),
(3.60) and (3.61) the thesis follows.
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In order to prove Theorem 2.1 we use a Carleman estimate with singular
weight, proved for the first time by [A-K-S]. In order to control the depen-
dence of the various constants, we use here the following version of such a
Carleman estimate that was proved, in the context of parabolic operator, in
[Es-Ve]. First we introduce some notation. Let P be the elliptic operator

(3.62) P := q(x)∂2y + div (A(x)∇x) .

Denote

(3.63) σ(x, y) =
(
A−1(0)x · x+ (q(0))−1 y2

)1/2
,

(3.64) B̃σ
r =

{
(x, y) ∈ Rn+1 : σ(x, y) ≤ r

}
, r > 0,

Notice that

(3.65) B̃σ√
λr

⊂ B̃r ⊂ B̃σ
r/

√
λ

, for every r > 0.

Theorem 3.7. Let P be the operator (3.62) and assume that (2.1) and (2.2)
are satisfied. There exists a constant C∗ > 1 depending on λ and Λ only such
that, denoting

(3.66a) ϕ(s) = s exp

(∫ s

0

e−C∗η − 1

η
dη

)
,

(3.66b) δ(x, y) = ϕ
(
σ(x, y)/2

√
λ
)
,

for every τ ≥ C∗ and U ∈ C∞
0

(
B̃σ

2
√
λ/C∗

\ {0}
)
we have

τ

∫
Rn+1

δ1−2τ (x, y) |∇x,yU |2 dxdy + τ 3
∫
Rn+1

δ−1−2τ (x, y)U2dxdy ≤(3.67)

≤ C∗

∫
Rn+1

δ2−2τ (x, y) |PU |2 dxdy.

Conclusion of the proof of Theorem 2.1
Set

r1 =

√
λr0
16

21

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



by (3.55) we have

(3.68) ∥vk∥L2(B̃σ
4r1
) ≤ C

√
r1Sk,

where C depends on λ and Λ only and

(3.69) Sk =
(
ε+H (C1r1)

2k
)β (

He2k +H (C1r1)
2k
)1−β

,

where C1 = 16C0/
√
λ, recall that C0 has been introduced in Proposition 3.6.

Denote
δ0(r) := ϕ(r/2

√
λ) , for every r > 0

and

R =

√
λ

C∗
.

Let us consider a function h ∈ C2
0 (0, δ0 (2R)) such that 0 ≤ h ≤ 1 and

h(s) = 1, for every s ∈ [δ0 (2r1) , δ0 (R)] ,

h(s) = 0, for every s ∈ [0, δ0 (r1)] ∪ [δ0 (3R/2) , δ0 (2R)] ,

r1 |h′(s)|+ r21 |h′′(s)| ≤ c, for every s ∈ [δ0 (r1) , δ0 (2r1)] ,

|h′(s)|+ |h′′(s)| ≤ c, for every s ∈ [δ0 (R) , δ0 (3R/2)] ,

where c is an absolute constant.
Moreover, let us define

ζ(x, y) = h (δ(x, y)) .

Notice that if 2r1 ≤ σ(x, y) ≤ R then ζ(x, y) = 1 and if σ(x, y) ≥ 2R or
σ(x, y) ≤ r1 then ζ(x, y) = 0.

For the sake of brevity, in what follows we shall omit k from vk and fk.
By density, we can apply (3.67) to the function U = ζv and we have, for
every τ ≥ C∗,

τ

∫
B̃σ

2R

δ1−2τ (x, y) |∇x,y (ζv)|2 + τ 3
∫
B̃σ

2R

δ−1−2τ (x, y) |ζv|2 ≤(3.71)

≤ C

∫
B̃σ

2R

δ2−2τ (x, y) |f |2 ζ2 + C

∫
B̃σ

2R

δ2−2τ (x, y) |Pζ|2 v2+

+C

∫
B̃σ

2R

δ2−2τ (x, y) |∇x,yv|2 |∇x,yζ|2 := I1 + I2 + I3,
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where C depends λ and Λ only.
Estimate of I1.
Notice that

(3.72)

√
|x|2 + y2

2C2

≤ δ(x, y) ≤
C2

√
|x|2 + y2

2
for every (x, y) ∈ B̃2,

where C2 > 1 depends on λ and Λ only.
By (3.43), (3.65) and (3.72) we have

∫
B̃σ

2
√
λ/C∗

δ2−2τ (x, y) |f |2 ζ2dxdy ≤
∫
B̃2

(
2C2|y|−1

)−2+2τ |f |2 dxdy ≤(3.73)

≤
∫ 2

−2

[(
2C2|y|−1

)−2+2τ
∫
B2

|f(x, y)|2 dx
]
dy ≤ CH2

∫ 2

−2

(
2C2|y|−1

)−2+2τ
(C0|y|)4k dy,

where C depends on λ and Λ only.
Now let k and τ satisfy the relation

(3.74)
τ − 1

2
≤ k.

By (3.73) and (3.74) we get

(3.75) I1 ≤ CH2 (C3)
4k ,

where C3 = 2C0C2.

Estimate of I2
By (3.42) and (3.68) and (3.71) we have

I2 ≤ Cr−4
1

∫
B̃σ

2r1
\B̃σ

r1

δ2−2τ (x, y)v2dxdy + C

∫
B̃σ

3R/2
\B̃σ

R

δ2−2τ (x, y)v2dxdy ≤

≤ C
(
r−3
1 δ2−2τ

0 (r1)S
2
k + e4kH2δ2−2τ

0 (R)
)
,

hence (3.72) gives

(3.76) I2 ≤ C
(
δ−1−2τ
0 (r1)S

2
k + e4kH2δ−1−2τ

0 (R)
)
,

Estimate of I3
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By (3.71) we have

I3 ≤ Cr−2
1 δ2−2τ

0 (r1)

∫
B̃σ

2r1
\B̃σ

r1

|∇x,yv|2 dxdy+(3.77)

+Cδ2−2τ
0 (R)

∫
B̃σ

3R/2
\B̃σ

R

|∇x,yv|2 dxdy.

Now in order to estimate from above the righthand side of (3.77) we use the
Caccioppoli inequality, (3.42), (3.43) and (3.68) and we get

I3 ≤ Cδ2−2τ
0 (r1)

(
r−4
1

∫
B̃σ

4r1
\B̃σ

r1/2

v2dxdy +

∫
B̃σ

4r1
\B̃σ

r1/2

f2dxdy

)
+(3.78)

+Cδ2−2τ
0 (R)

∫
B̃σ

3R/2
\B̃σ

R

|∇x,yv|2 dxdy ≤

≤ C
(
S2
k +H2 (C1r1)

4k
)
δ−1−2τ
0 (r1) + CH2e4kδ1−2τ

0 (R) := Ĩ3

Now let r1 ≤ R
2
and let ρ be such that 2r1√

λ
≤ ρ ≤ R√

λ
and denote by

ρ̃ =
√
λρ. By estimating from below trivially the left hand side of (3.71) and

taking into account (3.78) we have

(3.79) δ1−2τ
0 (ρ̃)

∫
B̃σ

ρ̃
\B̃σ

2r1

|∇x,yv|2 + δ−1−2τ
0 (ρ̃)

∫
B̃σ

ρ̃
\B̃σ

2r1

|v|2 ≤ I1 + I2 + Ĩ3.

Now let us add at both the side of (3.79) the quantity

δ1−2τ
0 (ρ̃)

∫
B̃σ

2r1

|∇x,yv|2 + δ−1−2τ
0 (ρ̃)

∫
B̃σ

2r1

v2,

by using standard estimates for second order elliptic equations and by taking
into account that δ0(ρ̃) ≥ δ0(r1), we have

(3.80) ρ2
∫
B̃σ

ρ̃

|∇x,yv|2 +
∫
B̃σ

ρ̃

v2 ≤ δ1+2τ
0 (ρ̃)

(
I1 + I2 + CĨ3

)
,

where C depends on λ and Λ only.
Now by (3.72), (3.75), (3.76), (3.78) and (3.80) it is simple to derive that

if (3.74) is satisfied then we have

ρ2
∫
B̃λρ

|∇x,yv|2 +
∫
B̃λρ

v2 ≤(3.81)

≤ C

[
S2
k

(
δ0(ρ̃)

δ0(r1)

)1+2τ

+H2Ck
4

(
δ0(ρ̃)

δ0(R)

)1+2τ
]
,
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where C4 > 1 depends on λ and Λ only.
Now, by applying a standard trace inequality and by recalling that v(·, 0) =

ũk(·, 0) in B2 (where ũk is defined by (3.36)) we have

∫
Bλρ/2

|ũk(·, 0)|2 ≤(3.82)

≤ Cρ−1

[
S2
k

(
δ0(ρ̃)

δ0(r1)

)1+2τ

+H2Ck
4

(
δ0(ρ̃)

δ0(R)

)1+2τ
]
.

By Proposition 3.3, by (3.69) and (3.82) we have, for r1 ≤ R
2

ρ

∫
Bλρ/2

|u(·, 0)|2 ≤ C
(
Hk,τ +H2k−1/3

)
+(3.83)

+C

[
Ck

5

(
δ0(ρ̃)

δ0(r1)

)1+2τ

H2(1−β)ε2β +H2Ck
4

(
δ0(ρ̃)

δ0(R

)1+2τ
]
,

where

Hk,τ := H2

(
δ0(ρ̃)

δ0(r1)

)1+2τ

Ck
5 r

4βk
1 .

and C, C5 depend on λ,Λ only.
Now let us choose τ = 4βk−1

2
. We have that (3.74) is satisfied and by

(3.72), (3.83) we have that there exist constants C6 > 1 and k0 depending
on λ and Λ only such that for every k ≥ k0 we have

ρ

∫
Bλρ/2

|u(·, 0)|2 ≤ C6H
2
1

[(
C6ρr

−1
1

)4βk
ε2β1 + (C6ρ)

4βk + k−1/3
]
,(3.84)

where
H1 := H + eε and ε1 :=

ε

H + eε
.

Now, let us denote by

k :=

[
log ε1
2 log r1

]
+ 1,

where, for any s ∈ R, we set [s] := max {p ∈ Z : p ≤ s}. If k ≤ k0 we choose
k = k so that by (3.84) we have, for ρ ≤ 1/C6,

(3.85) ρ

∫
Bλρ/2

|u(·, 0)|2 ≤ C2H
2
1

(
ε2βθ01 +

(
2 log(1/r1)

log(1/ε1)

)1/3
)
,
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where

(3.86) θ0 =
log(1/C6ρ)

2 log(1/r1)
.

Otherwise, if k < k0 then multiplying both the side of such an inequality by
log(1/C6ρ) and by (3.86) we get θ0 log(1/ε1) ≤ k0 log(1/C6ρ). Hence

(H + eε)2βθ0 ≤ (C6ρ)
−2βk0ε2βθ0 .

By this inequality and by (2.5) we have trivially∫
Bλρ/2

|u(·, 0)|2 ≤ (H + eε)2 =(3.87)

(H + eε)2(1−βθ0)ε2βθ0 ≤ (H + eε)2(1−βθ0)(C6ρ)
−2βk0ε2βθ0 .

Finally by (3.85) and (3.87) we obtain (2.6). �

3.2 Proof of Theorem 2.3

First, let us assume A(0) = I where I is the identity matrix n×n. Following
the arguments of [AE] or [Al-B-Ro-Ve] we have there exist ρ1, ρ2 ∈ (0, ρ0]
such that ρ1

ρ0
, ρ2
ρ0

depend on λ,Λ, E only and we can construct a function

Φ ∈ C1,1(Bρ2(0),Rn) such that

(3.88a) Φ (Bρ2) ⊂ Bρ1 ,

(3.88b) Φ(y′, 0) = (y′, ϕ(y′)), for every y′ ∈ B′
ρ2
,

(3.88c) Φ
(
B+

ρ2

)
⊂ Kρ1 ,

(3.88d) C−1
1 |y − z| ≤ |Φ(x)− Φ(z)| ≤ C1|y − z|, for every y, z ∈ Bρ2 ,

(3.88e) C−1
2 ≤ |detDΦ(y)| ≤ C2, for every y ∈ Bρ2 ,

(3.88f) |detDΦ(y)− detDΦ(z)| ≤ C3|y − z|, for every y, z ∈ Bρ2 ,

where C1, C2, C3 ≥ 1 depend on λ,Λ, E only.
Denoting
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A(y) = |detDΦ(y)|(DΦ−1)(Φ(y))A(Φ(y))(DΦ−1)∗(Φ(y)),

(3.89) v(y, t) = u(Φ(y), t),

we have

(3.90a) A(0) = I

(3.90b) ank(y′, 0) = akn(y′, 0) = 0, k = 1, . . . , n− 1.

Moreover, we have that the ellipticity and Lipschitz constants of A depend
on λ,Λ, E only. For every y ∈ Bρ2(0), let us denote by Ã(y) = {ãij(y)}ni,j=1

the matrix with entries given by

ãij(y′, |yn|) = aij(y′, |yn|), if either i, j ∈ {1, . . . , n− 1}, or i = j = n,

ãnj(y′, yn) = ãjn(y′, yn) = sgn(yn)a
nj(y′, |yn|), if 1 ≤ j ≤ n− 1.

We have that Ã satisfies the same ellipticity and Lipschitz continuity condi-
tions as A.

Now, if u satisfies the boundary condition (2.13) then we define

U(y, t) = sgn(yn)v(y
′, |yn|, t), for (y, t) ∈ Bρ2 × (−λρ2, λρ2),

q̃(y) = |detDΦ(y′, |yn|)|, for y ∈ Bρ2 ,

we have that U ∈ W ((−λρ2, λρ2);Bρ2) is a solution to

(3.91) q̃(y)∂2tU − div
(
Ã(y)∇U

)
= 0, in Bρ2 × (−λρ2, λρ2).

Moreover, by (3.88d) we have that

Kr/C1 ⊂ Φ
(
B+

r

)
⊂ KC1r , for every r ≤ ρ2.

Now we can apply Theorem 2.1 to the function U and then by simple changes
of variables in the integrals we obtain (2.17). In the general case A(0) ̸= I
we can consider a linear transformation G : Rn → Rn such that setting
A′(Gx) = GA(x)G∗

detG
we have A′(0) = I. Therefore, noticing that

B√
λr ⊂ G (Br) ⊂ B√

λ−1r, for every r > 0,

it is a simple matter to get (2.17) in the general case.
If u satisfies the boundary condition (2.14) then we define

V (y, t) = v(y′, |yn|, t), for (y, t) ∈ Bρ2 × (−λρ2, λρ2),

and we get that V is a solution to (2.12). Therefore, arguing as before we
obtain again (2.17).�
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4 Concluding Remark - A first order pertur-

bation

In this subsection we outline the proof of an extension of Theorems 2.1, 2.3
for solution to the equation

(4.1) q(x)∂2t u− Lu = 0, in Bρ0 × (−λρ0, λρ0).

where

(4.2) Lu = div (A(x)∇xu) + b(x) · ∇xu+ c(x)u,

and A, q satisfy (2.1), (2.2), b = (b1, · · · , bn) bj ∈ C0,1(Rn), c ∈ L∞(Rn).
Moreover we assume

(4.3a) |b(x)| ≤ λ−1ρ−1
0 , for every x ∈ Rn,

(4.3b) |b(x)− b(y)| ≤ Λ

ρ20
|x− y| , for every x, y ∈ Rn.

and

(4.4) |c(x)| ≤ λ−1ρ−2
0 , for every x ∈ Rn.

In what follows we assume ρ0 = 1.
First of all we consider the case in which

(4.5) b ≡ 0

and we set

(4.6) L0u = div (A(x)∇xu) + c(x)u,

Let us denote by λj, with λ1 ≤ · · · ≤ λm ≤ 0 < λm+1 ≤ · · · ≤ λj ≤ · · ·
the eigenvalues associated to the problem

(4.7)

{
L0v + ωq(x)v = 0, in B2,

v ∈ H1 (B2) ,

and by ej(·) the corresponding eigenfunctions normalized by
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(4.8)

∫
B2

e2j(x)q(x)dx = 1.

In this case the main difference with respect to the case considered above is
the presence of non positive eigenvalues λ1 ≤ · · · ≤ λm. In what follows we
indicate the simple changes in the proof of Theorem 2.1 in order to get the
same estimate (2.6) (with maybe different constants s0 and C). Let ε and H
be the same of (2.4) and (2.5)

Likewise the case c ≡ 0, the proof can be reduced to the even part u+
with respect to t of solution u of equation (4.1). Moreover denoting again by

(4.9) ũ(x, t) :=
∞∑
j=1

αjej(x) cos
√
λjt,

it is easy to check that instead of Proposition 3.1 we have

Proposition 4.1. We have

(4.10)
∞∑
j=1

(
1 + |λj|+ λ2j

)
α2
j ≤ CH2,

where C depends on λ,Λ only. Moreover, ũ ∈ W (R;B2)∩C0 (R;H2 (B2) ∩H1
0 (B2))

is an even function with respect to variable t and it satisfies

(4.11)


q(x)∂2t ũ− L0ũ = 0, in B2 × R,

ũ(·, 0) = ũ0, in B2,

∂tũ(·, 0) = 0, in B2.

Similarly to (3.9), the uniqueness to the Cauchy problem for the equation
q(x)∂2t u− L0u = 0 implies

ũ(x, t) = u+(x, t), for |x|+ λ−1|t| < 1.

Likewise the Section 3 we set

ũk := ũµ,k,

where µ := k−
1
6 , k ≥ 1 and ũµ,k is defined by (3.25). In the present case we

set, instead of (3.38),

vk(x, y) := v
(1)
k (x, y) + v

(2)
k (x, y),(4.12)
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where
(4.13a)

v
(1)
k (x, y) =

m∑
j=1

αjφ̂µ,k

(
i
√

|λj|
)
cos

(√
|λj|y

)
ej(x) , for (x, y) ∈ B2 × R

(4.13b)

v
(2)
k (x, y) =

∞∑
j=m+1

αjφ̂µ,k

(√
λj

)
gk

(
y
√
λj

)
ej(x) , for (x, y) ∈ B2 × R.

and gk(z) is the same function introduced in Section 3, in particular it satisfies
(3.37).

Instead of Proposition 3.4 we have

Proposition 4.2. Let vk be defined by (4.12). We have that vk(·, y) belongs
to H1 (B2)∩H1

0 (B2) for every y ∈ R, vk(x, y) is an even function with respect
to y and it satisfies

(4.14)

{
q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

vk(·, 0) = ũk, in B2.

and

(4.15) ∥vk(·, 0)∥L2(Br0)
≤ ε.

where

(4.16) fk(x, y) =
∞∑

j=m+1

λjαjφ̂µ,k

(√
λj

)(
g′′k

(
y
√
λj

)
− gk

(
y
√
λj

))
ej(x).

Moreover we have

(4.17)
2∑

j=0

∥∂jyvk(·, y)∥H2−j(B2) ≤ Ceλ
√

|λ1|He2k, for every y ∈ R,

(4.18) ∥fk(·, y)∥L2(B2) ≤ CHe2k min
{
1,
(
4πλ−1|y|

)2k}
, for every y ∈ R,

where C depends on λ and Λ only.

Instead of Proposition 3.6 we have
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Proposition 4.3. Let vk be defined in (4.12). Then there exists a constant
c, 0 < c < 1, depending on λ only such that if r0 ≤ c, we have
(4.19)

∥vk∥L2(B̃r0/4)
≤ C

√
r0e

λ
√

|λ1|
(
ε+H (C0r0)

2k
)β (

He2k +H (C0r0)
2k
)1−β

.

where β ∈ (0, 1), C depend on λ and Λ only and C0 = 4πeλ−1.

With propositions 4.1, 4.2, 4.3 at hand and by using Carleman estimate
(3.67), the proofs of estimates (2.6) and (2.17) are straightforward, whenever
(4.5) is satisfied.

In the more general case we use a well known trick, see for instance [La-O],
to transform the equation (4.1) in a self-adjoint equation. Let z be a new

variable and denote by A0(x, z) =
{
aij0 (x, z)

}(n+1)

i,j=1
the real-valued symmetric

(n+ 1)× (n+ 1) matrix whose entries are defined as follows. Let η ∈ C1(R)
be a function such that η(z) = z, for z ∈ (−1, 1), and |η(z)|+ |η′(z)| ≤ 2λ−1

aij0 (x, z) = aij0 (x), if i, j ∈ {1, . . . , n},

a
(n+1)j
0 (x, z) = a

j(n+1)
0 (x, z) = η(z)bj(x), if 1 ≤ j ≤ n,

a
(n+1)(n+1)
0 (x, z) = K0

where K0 = 8λ−3 + 1. We have that A0 satisfies

λ0|ζ|2 ≤ A0(x, z)ζ · ζ ≤ λ−1
0 |ζ|2, for every ζ ∈ Rn+1

and

|A0(x, z)− A0(y, w)| ≤ Λ0 (|x− y|+ |z − w|) , for every (x, z), (y, w) ∈ Rn+1

where λ0 depends on λ only and Λ0 depends on λ,Λ only. Denote

LU := divx,z (A0(x, z)∇x,zU) + c(x)U

It is easy to check that if u(x, t) is a solution of (4.1) (ρ0 = 1) then
U(x, z, t) := u(x, t) is solution to

q(x)∂2tU − LU = 0, in B̃1 × (−λ, λ).

Therefore we are reduced to the case considered previously in this sub-
section and again the proofs of estimates (2.6) and (2.17) are now straight-
forward.
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