
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Tool and Artifacts (TAR) Paper

Evaluation of Anomaly Detection algorithms made

easy with RELOAD

Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli

University of Florence, Department of Mathematics and Informatics, Viale Morgagni 65 – Florence (IT)
{tommaso.zoppi, andrea.ceccarelli, andrea.bondavalli}@unifi.it

Abstract — Anomaly detection aims at identifying patterns in

data that do not conform to the expected behavior. Despite

anomaly detection has been arising as one of the most powerful

techniques to suspect attacks or failures, dedicated support for

the experimental evaluation is actually scarce. In fact, existing

frameworks are mostly intended for the broad purposes of

data mining and machine learning. Intuitive tools tailored for

evaluating anomaly detection algorithms for failure and attack

detection with an intuitive support to sliding windows are

currently missing. This paper presents RELOAD, a flexible

and intuitive tool for the Rapid EvaLuation Of Anomaly

Detection algorithms. RELOAD is able to automatically i) fetch

data from an existing data set, ii) identify the most informative

features of the data set, iii) run anomaly detection algorithms,

including those based on sliding windows, iv) apply multiple

strategies to features and decide on anomalies, and v) provide

conclusive results following an extensive set of metrics, along

with plots of algorithms scores. Finally, RELOAD includes a

simple GUI to set up the experiments and examine results.

After describing the structure of the tool and detailing inputs

and outputs of RELOAD, we exercise RELOAD to analyze an

intrusion detection dataset available on a public platform,

showing its setup, metric scores and plots.

Keywords — anomaly detection, intrusion detection, tool,

RELOAD, algorithm, sliding windows, machine learning.

I. ANOMALY DETECTORS

Cyber-physical infrastructures or Systems of Systems are

composed of many different software layers and a multitude

of services. Due to the complexity, dynamicity and

governance of these systems, instrumenting each individual

service for monitoring purposes and characterizing all the

possible errors or attack that may manifest is often not

feasible [23], despite being widely acknowledged as crucial.

To such extent, anomaly detection [1] was proposed; it deals

with the problem of finding patterns in data that do not

conform to the expected behavior.

Patterns refer to alterations of the behavior of services or

systems that are caused by specific and non-random factors.

Pattern changes may be caused by ongoing attacks [2],

services misbehavior [23], or failures [3]. Anomaly

detectors characterize an expected behavior of a service or a

system and compare it with observed data to infer the health

of such system. Anomaly detection has been proven useful

to timely detect attacks and failures in a multitude of works;

for example, to support intrusion detection systems [2], [36],

detect side-channel attacks [34], identify occurring failures

in a critical application [11], detect faults in high-

dimensional data streams [21], achieve dependability

assurance in utility clouds [22] or Systems-of-Systems [49],

analyze production logs [47], or identify suspicious

behaviors of applications [23].

Four actions are crucial for the proper application of

anomaly detection solutions: i) selection of the relevant

features of the target system that should be monitored i.e.,

the features that are most appropriate to identify occurring

anomalies; ii) identification of the most suitable anomaly

detection algorithm, for a given system; iii) appropriate

tuning of algorithm parameters; and iv) proper identification

of voting strategies, to decide on anomalies based on the

information offered by the above-mentioned features.

To perform these activities, this paper presents the

RELOAD tool, a software solution that is specifically

crafted to support and automate the evaluation of

unsupervised anomaly detection algorithms intended for the

purpose of attack and failure detection. The tool offers an

automated methodology to: i) import data from data sets; ii)

select the most relevant features of the data set; iii) import

anomaly detection algorithms; iv) run algorithms on data

sets; v) evaluate multiple strategies to decide on anomalies

based on results from single features; vi) evaluate the

algorithms for different configurations i.e., suggest the most

suitable configuration of algorithms parameters; vii) present

results of the evaluation activity. RELOAD can also operate

with algorithms that are based on sliding windows e.g., [21],

[11]. As conclusive remark, RELOAD is easy to use: this

has been also confirmed by non-experts, which used the tool

for educational purposes.

This paper is structured as follows: Section II reports on

the available solutions for data mining and data analysis,

illustrating the contribution of the tool. Section III describes

the structure and methodology, while Section IV details the

GUI of the tool. Section V presents a case study in which

RELOAD is successfully applied. Section VI describes the

usability assessment that we performed with the aid of MSc

students. Finally, Section VII concludes the paper.

II. RELATED WORKS AND CONTRIBUTION

A. Existing Solutions and Limitations

Understanding the role of tools to evaluate and compare

anomaly detection algorithms is intuitive. In fact, it is

generally difficult to perform an extensive experimental

campaign without supporting frameworks that automate

execution of experiments and data analysis.

For data mining purposes, frameworks such as ELKI [4],

WEKA [7], RapidMiner [5], or libraries such as Scikit [6]

and Pandas were created that allow comparing the

performance of essentially any data mining and machine

learning algorithm following specific methodologies. ELKI

and WEKA provide Java-based executables with built-in

algorithms including anomaly detection ones, while Scikit

2

and Pandas are a Phyton libraries for data mining that

include anomaly-based techniques such as Random Forests

[35] or Gradient Boosting [10]. Despite these solutions

allow extending their functionalities, they require extensive

customization to execute algorithms for determined

purposes and settings, and in general their full set of

functionalities is not intuitive to grasp. Instead, RapidMiner

[5] is an enterprise suite that offers graphical support with a

complete user interface, but adding algorithms is rather

complicated and the tool is not free to use.

Summarizing, these powerful solutions already include

some anomaly detection algorithms, and new ones can be

added. As a drawback, we observe that features, settings and

usage are not always easy to understand and do not offer a

complete support to the experimental evaluation of

unsupervised anomaly detection algorithms in the domain of

dependable and secure systems. In particular, the following

requirements can be achieved – when possible – with the

above solutions only through extensive customization and

experience:

 Focus on unsupervised algorithms, which are often

acknowledged as the most suitable way to identify

unknown vulnerabilities as zero-day attacks [1], [36],

[49]: implementations of unsupervised algorithms are

scattered in the above-mentioned frameworks (e.g.,

Isolation Forests [30] can be found only in [7]).

 Provide support for sliding windows algorithms, that are

often relevant in this domain [21], [11].

 Integrate different feature selection techniques, allowing

also to sequentially executing a pool of the above

techniques. This way, it is possible to define a subset of

relevant features to be monitored, and evaluate voting

strategies to decide on anomalies on the basis of the

scores from such features. This is important to maximize

detection efficacy and minimize resource consumption.

B. RELOAD Characteristics

The peculiarities and characteristics of RELOAD can be

described along the following lines.

Domain. RELOAD provides functionalities specific for the

evaluation of anomaly detection algorithms intended for

detecting unknown attacks or errors. In fact, extensive

support is offered for unsupervised and sliding window

algorithms, automated tailoring of features, profiling of

algorithms parameters, and voting strategies.

Input/output data. Our tool can load data from different

kinds of data sources, that may either be i) text files, or ii)

MySQL databases, while a support for data streams is

currently under development. In addition, it provides

outputs results in CSV files that can be easily manipulated.

Currently, it contains loaders to the attack data sets

KDDCup99 [15], NSL-KDD [12], ADFA-LD [16],

ISCX2012 [13], and UNSW-NB15 [14], and to the failure

data set available in [37].

Feature Selection. Once datasets are loaded, the user may

and should apply feature selection techniques [19], to filter

out features that will not provide actionable data for the

purpose of identifying errors or attacks. While some built-in

strategies were implemented, e.g., Variance, Pearson

correlation [19], a big pool of feature selection strategies as

the one based on Information Gain are derived from the

implementations in the WEKA [7] framework.

Algorithms. RELOAD is able to integrate existing

algorithms as well as novel algorithms written by RELOAD

users. Further, it offers the opportunity to run different

algorithms on data sets and collect metric scores. To

facilitate comparison, RELOAD includes 10 algorithms,

selected among those already used in research works for

failure and intrusion detection. The algorithms are selected

from the six main families [1], [18]: clustering (K-Means

[4]), statistical (HBOS [25]), classification (SVM [28],

Isolation Forest [30]), neighbour-based (kNN [27], ODIN

[26]), density-based (LOF [24], COF [31]) and angle-based

(ABOD [29], FastABOD [29]). Some of the algorithms

were implemented by RELOAD users, while most of them

were imported from ELKI and WEKA. In addition, the tool

embeds 6 sliding window algorithms such as SPS [11].

Metrics. The tool computes the most relevant metrics for

evaluating anomaly detectors [9], selected by surveying

research papers. Built-in metrics are reported and discussed

in Section III. This offers a comprehensive evaluation with

the default configuration of RELOAD. New metrics can be

defined if needed.

Usability. The tool has an intuitive GUI to select the target

algorithms, define configuration parameters, and choose

data sets. It does not need relevant expertise; for example, it

was successfully used by MSc students with limited

experience on experimental evaluation (see Section VI).

Extensibility. RELOAD can be modified to add new

algorithms, metrics or voting strategies. It is open source,

developed in Java to increase portability, available at [20].

C. Contribution and Relevance of RELOAD

The tool itself does not provide novel technologies,

algorithms or techniques, but instead adopts state-of-the art

findings in an orchestrated and intuitive fashion. As opposed

to existing tools and web portals as ELKI, WEKA, Scikit

(and Pandas), RapidMiner and others, RELOAD embeds

the following characteristics (see also Table I).

 Easy to use, since it embeds known techniques by

hiding many implementation details and variants to the

final user, which is requested to select just a few inputs.

Indeed, it is a powerful artifact to be used as a teaching

support for bachelor or masters’ degrees.

 Open source, since code is available on online public

repositories and free to use.

 Lightweight and portable, given that Java 8+ is

installed in the target machine.

TABLE I. COMPARING RELOAD WITH EXISTING FRAMEWORKS. ✔INDICATES

OPTIMAL MATCHING, * IDENTIFIES A PARTIAL OR SUB-OPTIMAL MATCHING.

Framework GUI
Open

Source
Extensible

Unsupervised

Algorithms

Sliding

Windows

WEKA ✔ ✔ * ✔

ELKI ✔ ✔ ✔ * *

RapidMiner ✔ * ✔ ✔

Scikit-Pandas ✔ ✔ ✔ *

RELOAD ✔ ✔ ✔ ✔ ✔

3

 Easily extensible by adding new algorithms, with built-

in interfaces to embed algorithms and other techniques

e.g., feature selection strategies, depending on the needs

of the user.

 Shaped for anomaly detection, selecting relevant

unsupervised algorithms from different frameworks and

including a full – but almost transparent to the user –

support to sliding windows (see “Unsupervised

Algorithms” and “Sliding Windows” in Table I).

III. THE RELOAD TOOL

We describe the inputs, the most relevant components of the

tool, and the main relationships between software modules,

while the methodology is presented at the end of the section.

A. Inputs

Data set, data streams and features. In this paper we use

the term features to identify the monitored values that are

collected observing the target system. Examples of features

are the used memory [32], number of cache accesses [34], or

number of network packets received in a time interval [33].

We use the term data point to refer to the set of values

observed, for all the features and for a given data set, at a

given instant of time. For example, in a log file, usually a

data point corresponds to a row. We also distinguish

between Training Data (TD) and the rest of the data set, that

we call Evaluation Data (ED). Further, we consider only

labelled data sets i.e., anomalous data points are explicitly

marked. Such labels are not fed to algorithms during

training, but are instead needed to compare the effectiveness

of different algorithms once trained, or the effectiveness of

different parameters’ setup for a given algorithm.

Data sets are read using loaders, configuration files that

contain information about the data sets. Through the loaders,

RELOAD gathers raw data and metadata from the data set.

At the current state of the implementation, default loaders

allow connecting to i) CSV files, ii) ARFF text files, and ii)

MySQL databases, as they are commonly used in most

applications. A loader should specify the data sets type,

structures, and the way the dataset is partitioned into TD and

ED. RELOAD could also operate with data streams through

the setup of dedicated loaders, which are currently under

development. For simplicity, we will only consider data sets

in the rest of the discussion.

Feature Selection Strategy(ies). The user should choose

one or more strategies for feature selection that he/she wants

to apply when gathering data. At the current state of the

implementation, the tool allows selecting features through

Variance, Pearson Correlation, Information Gain strategies,

while learner-based alternatives as the ones based on

Random Forests are currently under development. Multiple

feature selection strategies can be applied sequentially.

Algorithms. Currently, RELOAD includes 10 unsupervised

anomaly detection algorithms and 6 sliding window

algorithms. The hierarchical organization of super-classes

shown in Figure 1 helps adding a new algorithm. Interfaces

are built in the tool, allowing the user to extend existing

abstract classes mainly implementing two methods

responsible of i) how the algorithm performs its initial

training (if empty, no training is performed), and ii)

calculating the anomaly score for a given data point. Since

several algorithms were taken from existing frameworks as

ELKI and WEKA, wrappers to call and execute such

algorithm e.g., DataSeriesElkiAlgorithm class in Figure 1

are already deployed into the tool. When the user chooses

which algorithms to execute, he/she can also propose

various i) configuration parameters (e.g., number k of

relevant neighbours for neighbour-based algorithms [26],

[29]) and ii) decision functions [48], to convert numeric

scores into boolean, through a configuration file. RELOAD

will test all parameters combinations and report on

individual scores, ultimately pointing out the more

convenient parameters combination.

Except SPS, sliding windows algorithms are simulated

sliding versions of existing algorithms LOF, KNN, ABOD,

IsolationForests, KMeans, since no public implementations

were made available in [42], [43], [44], [45], [46]. Every

time a new data point is added to the window, we run the

corresponding non-sliding algorithm by using the content of

the window as training set. Despite not being optimal in

terms of execution time this simulation allows estimating

the detection capabilities of non-sliding algorithms when

applied to sliding windows.

Metrics. RELOAD includes a broad range of metrics to

measure the effectiveness of anomaly detectors [9]. Metrics

are correct detections (true positives, TP, and true negatives,

TN), missed detections (false negatives, FN), and wrong

detections (false positives, FP), as well as the aggregated

metrics, precision (P), recall (R), false positive rate (FPR),

accuracy (A), F-measure (F1), Matthews coefficient (MCC)

and area under ROC curve (AUC). As it can be observed in

Figure 2, to introduce a metric, a user must create a new

class overriding either BetterMaxMetric (the higher, the

better), or BetterMinMetric interfaces, and adding a field

with the metric name to the enum MetricType. All available

metrics are computed whenever RELOAD is executed with

its default configuration, while a target metric should be

always selected by the user to rank algorithms and their

effectiveness in detecting anomalies.

B. Main Software Components

This section reports on the main modules that execute

and evaluate anomaly detection algorithms. GUI, Anomaly

Checkers Manager, Policies Selector and Voter modules are

highlighted in Figure 3 by red bold-font labels.

Figure 2. Class Diagram portion: some Metrics used by RELOAD.

Figure 1. Class Diagram portion: Management of Algorithms in RELOAD.

4

Anomaly Checkers Manager. It generates and operates a

set of anomaly checkers: we define an anomaly checker as a

unique couple <feature, algorithm>. For each data point, an

anomaly checker is able to decide if an anomaly is raised

i.e., the anomaly checker produces an anomaly score.

The features used by anomaly checkers can also be

composed features [37]. In fact, the Anomaly Checkers

Manager operates to aggregate features using given

relations. For example, two features as bytes sent per second

and bytes received per second may be aggregated creating a

composed feature as the byte sent/byte received rate per

second. Filtered features may be aggregated depending on

specific rules e.g., always aggregate all the filtered features

into a unique composed feature, or if specific properties are

met e.g., two filtered features are highly or loosely coupled

[19]. Strategies to create composed features in RELOAD are

described in Section IV.A.

Policies Selector. This component evaluates anomaly

checkers according to a metric. More in detail, each

anomaly checker is first applied on a data set (using the

Anomaly Checker Manager), and then used to compute a

score for a given metric to decide on the most effective

ones. As selection policies, the Policies Selector includes

and applies by default the metrics in [37]:

 BEST x: the x anomaly checkers that have the best

ranking according to a specific metric;

 FILTERED y: the y anomaly checkers with the best

ranking, filtered to avoid more than one anomaly

checker built using the same feature;

 THRESHOLD z: all the anomaly checkers that reach a

threshold z, for a given metric e.g., recall > 0.6.

Additional selection policies can be included by

updating a configuration file.

Voter. The Voter combines the outputs of a given set of m

anomaly checkers. The Voter applies a voting strategy [17],

and identifies a data point as anomalous if at least n out of m

anomaly checkers raise an anomaly. The value n can be

defined through a configuration file; alternatively, the voter

contains the following default voting strategies [37]:

 ALL: the data point is considered anomalous only if all

the anomaly checkers identifies an anomaly;

 QUARTER/THIRD/HALF: the data point is considered

anomalous only if a quarter/third/half of the m anomaly

checkers identifies an anomaly;

 ONE/1: the data point is evaluated as anomalous if at

least one of the m anomaly checker raises an anomaly.

GUI. A simple and intuitive Graphical User Interface (GUI)

allows importing inputs and showing outputs; details can be

found in Section IV.

C. Methodology and Workflow of the Tool

The workflow of RELOAD is depicted in Figure 3. From

left to right, we can observe four phases, namely initial,

training, optimization and evaluation. A background

process automates the execution of such steps, invoking the

components described in Section III.B when needed.

Initial Phase. The operations in the initial phase are

performed once, when setting up the tool. Training data TD

is an input of this phase, as well as the feature selection

strategies FSS the user wants to apply. The features are

automatically filtered according to FSS, removing those not

useful for anomaly detection. Filtered features may then be

combined creating composed features; filtered features and

composed features build the selected features in Figure 3.

Only the resulting set of filtered features will be used in

the following steps of the methodology. Algorithms are also

an input of this phase: anomaly checkers are built using the

selected algorithms and the filtered features. This phase is

realized by the Anomaly Checkers Manager and GUI.

Training Phase. The training phase produces the list of

Scored Anomaly Checkers (SAC) using the TD. First, the

input metrics are imported. A specific metric, that we call

target metric, is selected by the user (through the GUI). It is

up to the user to understand the target metric that is more

relevant for the system under analysis. Then, multiple

instances of each anomaly checker are generated, one for

each possible value of algorithm’s parameter(s).

At this stage, RELOAD partitions the TD in two sets:

checkers_train and checkers_test e.g., 70%-30% split. Then,

it uses the checkers_train to train the anomaly checkers, and

it uses the checkers_test as evaluation of the performance of

the anomaly checkers, according to the target metric. This

allows associating quantitative values to each anomaly

checker: they are now scored anomaly checkers (SAC) and

can be ordered by score. For example, consider an

experiment were two selected features F1 and F2 are

considered and used by kNN algorithm with possible sizes

of the neighbourhood k ϵ {3, 5, 10}. RELOAD generates

two anomaly checkers, AC1 = <F1, kNN> and AC2 = <F2,

Figure 3. Workflow of the RELOAD tool.

5

kNN>, and each checker is instantiated three times: AC1 =

{<F1, kNN(3)>, <F1, kNN(5)>, <F1, kNN(10)>} and AC2

= {<F2, kNN(3)>, <F2, kNN(5)>, <F2, kNN(10)>}. Each

instance of kNN is trained using checkers_train; then,

instances of each anomaly checker AC1 and AC2 are scored

using checkers_test to extract the instance of AC1 and AC2

that guaranteed higher scores according to the target metric.

As a final remark, the user may tune the k parameter in

Figure 3 to manage the above process through k-fold cross

validation [38], which is largely adopted in the machine

learning domain to reduce biases derived by overfitting the

model to the training set.

Optimization Phase. RELOAD users may want to apply

selection policies and voting strategies to understand i) the

optimal set of the scored anomaly checkers, and ii) the best

voting strategy to decide if a data point is anomalous. This is

achieved from the optimization phase, which is optional. It

is skipped if RELOAD users are satisfied with executing all

the scored anomaly checkers on the ED with no

aggregations i.e., having individual results for all the scored

anomaly checkers. During optimization, selection policies

are applied on the scored anomaly checkers. This allows

identifying sets of scored anomaly checkers that satisfy the

selection policies. Each of these sets is then matched to the

voting strategies. The optimization phase terminates with

the definition of pairs <set of scored anomaly checkers,

voting strategy>. This phase is mostly realized thanks to the

Policies Selector and the Voter components.

Evaluation Phase. Lastly, all the pairs <set of scored

anomaly checkers, voting strategy> are exercised on the

ED, to investigate which data points are anomalous.

Resulting anomaly scores are compared with the true labels

in the ED, to compute metric scores. This phase is

performed mostly by background processes, and the GUI,

that shows results.

D. Methodology and Workflow with Sliding Windows

When using sliding windows, the initial phase is the same

as in Section III.C, with the dimension of the window as an

additional input.

After the initial phase, the training phase is started.

Typically, sliding window algorithms use a window of w

data points, and continuously learn whenever a novel data

point is progressively acquired. This means that many

sliding windows algorithms may not have an initial training

phase, and instead they continuously train using the novel

data points progressively acquired.

More in detail, sliding windows algorithm are exercised

in RELOAD as follows. If the optimization phase is not

requested, the training and the evaluation phases are iterated

in sequence, to add a novel data point to the sliding window,

perform the learning phase, decide on the presence of

anomalies and compute metrics scores. If the optimization

phase is requested, the above procedure is first exercised on

the TD to acquire the information for the optimization

phase. Then, the optimization phase is executed. After, the

algorithm performs as above: the learning phase is

performed for all the novel data points on the ED, and the

evaluation phase is executed to decide on anomalies and

compute metrics scores. This iteration continues for the

entirety of the data set or until the data stream is closed.

IV. DETAILS ABOUT THE GUI

The RELOAD GUI helps setting parameters, selecting

algorithms and data sets, and checking results. Here we

report details about i) setup see Figure 4, and ii) results

GUIs. The rest of the RELOAD interaction with the user is

limited to configuration files e.g., the loaders, and to output

files with results.

A. Setup GUI

Setup Box: From top to bottom, the user performs the

following actions. First, the user selects the target metric.

Second, the output format is selected: the default option null

provides textual information, while the option GRAPH

creates summarizing graphs. We do not detail on this feature

for brevity, but it just creates bar charts with the x-axis

containing the data points, and the y-axis reporting the

number of anomaly checkers raising an anomaly (a chart is

created for each combination of algorithm, data set, voting

strategy and selection policy). The Feature Selection

Strategies button opens the window in Figure 5. It describes

the available feature selection strategies, allowing the user

to choose the ones that suit the problem the most. Selecting

more strategies leads applying each strategy sequentially

according to the order specified by the user in the table.

Strategies to aggregate the features that were selected at

Figure 4. GUI to setup RELOAD.

6

the previous step include: i) NONE, that does not combine

selected features, ii) UNION, the aggregation of all the

selected features as a composed feature, iii) SIMPLE, that

considers selected features individually (as in NONE) and

also the UNION feature, and iv) PEARSON, that considers

selected features individually and creates a composed

feature if the Pearson correlation index between two or

more features exceeds a given threshold set by the user.

Training phase heavily relies on the setup of the k

parameter for k-fold validation [38]. Furthermore, if the

analysis targets sliding window algorithms, the size of the

sliding window should be set (field Window Size). The

Sliding Policy field explains how to manage the sliding

window, or rather how to decide if we want to add a novel

data point and which data point in the window should be

discarded. At the moment, two options are implemented: i)

FIFO, the window always slides, replacing the oldest data

point with the current one data set is read from top to

bottom, and ii) FIFO_Normal, that blocks the sliding

mechanism if the current data point is evaluated as

anomalous by the algorithm. This last strategy avoids

polluting the sliding window with anomalous data points.

Lastly, the selection policies and voting strategies are

configured by opening a configuration file with the button

Open Optimization Preferences: this file enlists the policies

to apply e.g., BEST 3, FILTERED 10, along with the voting

strategies e.g., ALL, HALF.

Paths Box: First, the user defines the path of the input

folder, that is the root of all the configuration files and

folders described below. Then, the user selects the folders: i)

output , which will contain all the results in CSV format; ii)

configuration, which contains the loaders and the metrics

configuration files; iii) datasets, that specifies where textual

files (if any) of datasets are placed, and iv) setup, that

contains the data sets. Finally, the score folder is identified:

it is used only for temporary storage of ranked anomaly

checkers during computations.

Data Analysis Box: The user selects the algorithms, among

the implemented ones, and the data sets, among those in the

setup folder and that have a loader. When a new data loader

has to be defined, as it is the case pressing the “Create

Loader” button in the “Data Analysis” box allows to choose

a file name and opens a GUI to specify key items of loaders.

Depending on the type of the loader e.g., file, database,

RELOAD allows the user to choose relevant items to extract

data from the chosen data source. Once the data loader is

defined, the user can choose the algorithms he wants to

apply on such dataset(s). By clicking the “Add Algorithm”

button, RELOAD opens a window to allow choosing

amongst all available algorithms. Multiple algorithms, and

combinations of two or more algorithms, may be selected

through the GUI showed in Figure 6. When one or more

sliding window algorithms are selected, RELOAD will

examine such sliding window algorithm(s) considering the

sliding policy and window size values that the user can set

through the GUI showed in Figure 4, box “Setup”. On the

bottom of the GUI, the Update button is used to refresh the

interface whenever a configuration is modified, while the

Run button starts the experiments.

B. Summary and Detailed GUI

RELOAD provides a Summary GUI, while producing

many files to expand on specific aspects. More in detail,

RELOAD creates, for each <dataset, algorithm> couple,

files that report on i) the selected features, and the scores

they reached on each feature selection strategy, ii) the

combined features created, iii) the ranked anomaly checkers,

the optimal voting strategy and anomaly threshold, if

optimization is executed, and iv) a detailed list of the

anomaly scores provided by each anomaly checker used for

evaluation, along with the anomaly evaluation generated by

the ensemble of anomaly checkers by applying voting

strategy and anomaly threshold. In addition, RELOAD

creates detailed views of each combination of data loader

and algorithm the user selected for the experiment. This

Detailed GUI shows metric scores of the algorithm on a

given dataset by varying selection policy and voting

strategy, both for training (and, when selected, optimization)

and evaluation phases. Screenshots can be found in Section

V.F, along with plots of algorithms’ scores.

V. EXERCISING RELOAD

RELOAD was applied to different case studies, especially

regarding data logs of service-oriented systems [37], [39].

The tool turned out to be helpful in identifying the more

fitting algorithms, either for error or intrusion detection. To

show the steps that a generic user has to follow for using the

tool, in this section we refer to an entirely new dataset

obtained by querying “intrusion detection” and sorting

results by “relevance” in the Kaggle [40] datasets portal.

Figure 6. GUI for choosing Algorithms.

Figure 5. GUI for setup of Feature Selection Strategies.

7

A. Checking prerequisites

 Java 1.8.0_152 is already installed on our machine. In

this case, since we want to download our dataset and the

tool from their online repositories [40], [20], we also need

internet connection. We remark here that, once the

executable and the dataset have been downloaded, the tool is

fully standalone and does not require external connections.

B. Analyzing and Refining Dataset

The dataset is partitioned in two CSV files, one for

training (TD) and the other one for evaluation (ED). The

structure of the two files is the same, except for an

unlabelled column in the training set – the first one – that we

remove due to the lack of information. The resulting data is

structured in 42 columns, with respectively 125.973 and

10.000 data points for train and test set. The last column

shows the label for each data point, that can be either

normal (43.3% of the test set), or representing an attack dos

(33.3%), probe (10.5%), r2l (12.0%), or u2r (0.9%).

Information on the attacks are not reported in the portal, we

assume that they cover the same categories as their

KDDCup [15] and NSL-KDD [12] datasets. All but 2

columns are numeric, meaning that RELOAD can process

them without needing further categorizations.

C. Downloading and Running RELOAD

RELOAD can be downloaded as a ZIP archive from

[20]. The ZIP archive includes three items: the JAR file of

RELOAD, a preferences file and a folder that contains

configuration files. Once files are extracted from the

archive, RELOAD can be launched from command line as

java -jar RELOAD.jar.

D. Configuring RELOAD

Once started, RELOAD shows the GUI in Figure 2.

Setup Box. Starting from the “Setup” box, we first want to

define the reference metric e.g., F-Measure in Figure 4, and

strategies to select features and aggregate them to create

composed features. For this case study we selected

VARIANCE(3) and INFORMATION_GAIN(0.05) feature

selection strategies. The other options of the “Setup” box

allow choosing how to create composed features, which we

execute whenever the Pearson correlation index between

two or more selected features is more than 0.8 –

PEARSON(0.8) -, and to choose which of the phases in

Figure 3 the user wants to execute. To the sake of this case

study, we will run all the phases of RELOAD, checking all

the Feature Selection, Training, Optimization and

Evaluation checkboxes. We also proceed with a 10-fold

validation of the training set as widely suggested [38] in the

literature.

Path Box. The “Path” box does not require further

adaptations. Only note that the default folder for datasets is

specified as a “datasets” subfolder of the current directory.

If the datasets the user wants to analyse is located in another

folder, the user should either i) change the default path of

RELOAD through GUI, or ii) move the files.

Data Analysis Box. Here the user i) defines the data

loader(s), and ii) selects algorithms.

A new data loader can be defined by pressing the

“Create Loader” button in the “Data Analysis” box. This

allows to choose a file name and opens the GUI in Figure 7.

We filled the fields of the id_kaggle.loader loader in the

figure as follows. The CSV files were put in

datasets/intrusion_detection_kaggle folder: we specified

train and test file in the TRAIN_CSV_FILE and

VALIDATION_CSV_FILE items. Then, we chose to

analyse the performances of RELOAD in identifying probe

attacks in this dataset. Therefore, we set the

FAULTY_TAGS fields to “probe” and the SKIP_ROWS

fields to “dos”, “u2r”, “r2l”, or rather the remaining attacks

we are not interested in. We select 50 batches both for

training and for validation i.e., RUN_IDS fields, considering

batches of 200 data points, as specified by

EXPERIMENT_ROWS. Lastly, we specified the true label

in the LABEL_COLUMN field, and the columns to be

skipped (SKIP_COLUMNS in Figure 7).

To show the versatility of the tool, for this example we

selected different algorithms as HBOS, KMeans and ODIN,

a sliding window algorithm (SPS), and a combination of two

algorithms such as HBOS and KMeans.

E. Running RELOAD

When everything is set, the user presses the RELOAD!

button on the bottom of the GUI. This will start the process

of selecting algorithms and executing anomaly detection.

When the process completes, RELOAD will open a window

that summarizes results, as shown in Figure 8.

F. RELOAD Summary and Detailed GUI

Summary and Detailed GUIs are reported in Figure 8

and Figure 9.

Summary GUI. The first tab to be seen is the “Summary”

tab: RELOAD shows a row for each couple <algorithm,

data set> analysed. Each row reports on i) the data set, ii)

the algorithm, iii) the most performing pair of selection

policy and voting strategy, according to the target metric, iv)

the percentage of labelled anomalies over all data points in

the ED, and v) the score of the target metric. This view

Figure 7. GUI for setting up Loaders.

8

allows to see which algorithm reached higher metric scores,

or rather the optimal algorithm for the dataset or the system

under investigation. In addition, for each sliding window

algorithm the user selected (SPS in the example), RELOAD

will show metric scores for each combination of selection

policy and window size the user set through GUI. As a side

note, we can observe how in this case combining anomaly

checkers using either HBOS or KMEANS allowed

improving metric scores (see mark “A” in Figure 8) with

respect to executing either HBOS or KMEANS

independently (marks “B” and “C” in the figure). In

addition, by looking at SPS results, it is easy to observe that

the usage of wider sliding windows does not help SPS in

identifying attacks i.e., the wider the window, the lower the

F-Measure as pointed out by mark “D” in Figure 8.

Detaied GUI. The GUI shows detail of combinations of

data sets and algorithms for the different selection policies

and voting strategies. An example is in Figure 9: given the

HBOS and KMEANS algorithm on our case study, it shows

the metrics computed for the selection policies BEST 3,

FILTERED 5, FILTERED 10 and the voting strategies

ALL, HALF, 1. It is worth noticing that the voting strategy

severely impacts the performance of the algorithm under

evaluation. As it is marked as “E” in Figure 9, the 1 strategy

reduces the amount of false negatives (FN); instead,

achieving consensus among several anomaly checkers

composing the ensemble, e.g., the ALL strategy, reduces the

number of false alarms (FP), see “F” mark in the figure.

This can also be verified from the FN and FP columns in

Figure 9 – see FILTERED 5 – ALL that does not have FPs,

while FILTERED 5 – 1 does not have FNs.

Plots. Ultimately, Figure 10 shows two bar charts that

RELOAD outputs when the user presses the “Plot Results”

button in Figure 9. More in detail, the figure shows the

scores that ODIN algorithm assigns to each data point in the

evaluation set. Such scores are grouped in 50 bars, which

partition the interval defined by maximum (1.68 in Figure

10) and the minimum ODIN value (0). The height of the

bars represents the amount of data points that were scored

by ODIN with a value that falls in a given interval.

The bar chart on the left of Figure 10 depicts algorithm

scores by painting columns with different colours depending

on their true label in the dataset. Then, by using the

dropdownlist marked as “G” in the figure is it possible to

select a decision function out of the commonly used ones

[48] to convert numeric scores into boolean and to calculate

TP, TN, FP, FN and related metrics (see mark “H” in Figure

10). This view on the right of Figure 10, painting TP, TN,

FP, FN with different patterns, is useful to understand the

impact that the choice of the correct decision function has

on the final evaluation of algorithm scores.

VI. USER ASSESSMENT

We estimated the usability of the tool by understanding the

perceived difficulties of non-expert users. We involved 16

students of our MsC in Computer Science in a 3-hours

experiment. Students have only fundamental knowledge on

quantitative assessment of dependable and secure systems.

We organized the 16 students in 8 groups. After that, we

provided subsets of the attack data sets KDDCup99, NSL-

KDD, ADFA-LD, ISCX2012, and UNSW-NB15. We asked

each group to use the first 45 minutes of the experiment to

Figure 8. GUI to summarize results of RELOAD.

Figure 9. GUI to expand on the results of the application of HBOS and KMEANS algorithms to the case study.

9

examine one data set. Then, we gave a 20-minutes tutorial

on the tool. At this point, each group was tasked to apply

RELOAD on the data set previously examined. Sample

loaders were provided to the students, who had to adapt

them for the target data set. Finally, we asked participants to

fill the questionnaire in Table II, to assess the cognitive load

required to use our tool. All questions were rated on a 5-

point semantic Likert [8] scale i.e., ‘Very Hard’, score 1, to

‘Very Easy’, score 5, with the possibility to add comments.

All groups were able to terminate the assignment i.e., set

appropriate loaders, configure and run RELOAD, and

discuss results. Concerning the questionnaire, all answers

except Q4 are in the top quartile i.e., the score is above 3.75.

This let us conclude that the tool, despite having rooms for

improvement, was perceived easy to use. The time needed

to perform the experiments was perceived by the students as

the main weaknesses of the tool (Q4). However, students

focused on the duration of the experiment (which depends

on the dimension of the data set and on the computational

complexity of algorithms), rather than on the time required

to set-up and start experiments. Finally, suggestions

regarding the possible improvements of the tool (Q7 and, to

a lesser extent, Q2b) were mainly directed to i) include

additional documentation, ii) improve GUI, and ii) create a

more intuitive way to define loaders. As the reader could

notice, GUI was improved accordingly as presented in

Section IV and V, including an easier way to set parameters

of the loaders. Regarding documentation, we are currently

adding tutorials to our repository to reduce the time needed

to understand how to user RELOAD efficiently.

VII. CONCLUSIONS

This paper presented RELOAD, an intuitive and open

source tool [20] specifically tailored for the evaluation of

unsupervised anomaly detection algorithms in the domain of

dependable and secure systems.

RELOAD automates the selection of the most relevant

features out of a data set to reduce the amount of data to be

analyzed. Further, it includes built-in metrics for the

evaluation and contains several unsupervised algorithms,

which are often deemed the most useful [1], [36] for

detecting unexpected attacks or failures. Additionally, it

facilitates the execution of sliding window algorithms, that

are particularly relevant for dynamic systems whose

expected behavior changes through time and do not allow

relying on training data [21]. The tool is shaped to be used

also by non-expert people that want to learn the basics of the

domain, as well as from practitioners that want to estimate

detection capabilities of different anomaly detection

algorithms on a pool of existing or custom datasets.

In addition, the tool provides sample parameters

configurations of selected algorithms to be used. Support for

run-time evaluations is currently under investigation and

requires setting adequate data-stream loaders for the tool.

Finally, although it is widely extensible, RELOAD includes

a large set of built-in configurations, which are expected to

satisfy most of the necessity of possible RELOAD users

with reduced learning time.

REFERENCES

[1] Chandola, V., Banerjee, A., & Kumar, V. (2009). “Anomaly
detection: A survey”. ACM computing surveys (CSUR), 41(3), 15.

[2] Modi, Chirag, et al. "A survey of intrusion detection techniques in
cloud." Journal of Network and Computer Appl. 36.1 (2013): 42-57.

[3] Salfner, F., Maren L., Malek M. "A survey of online failure prediction
methods." ACM Computing Surveys (CSUR) 42.3, 2010.

[4] Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K. A., &
Zimek, A. (2015). A framework for clustering uncertain data.
Proceedings of the VLDB Endowment, 8(12), 1976-1979.2010): 10.

TABLE II. QUESTIONNAIRE AND AGGREGATED ANSWERS.

Question Answers (avg and st.dev)

Q1
Past experience with data mining

tools (Yes/No)
15 No, 1 Yes

Q2a Ease of use of the tool as a whole 3.81 ± 0.54

Q2b How to improve ease of use
Improving the GUI, options to

promptly access help pages.

Q3
Easiness of selecting algorithms

and data sets
3.94 ± 0.77

Q4 Time needed to calculate results 2.47 ± 0.92

Q5 Understandability of the results 4.06 ± 0.77

Q6 Completeness of the results 3.87 ± 0.64

Q7
Suggestions to improve

RELOAD (open question)

Students commented on

documentation, non-intuitive
loaders, and using GPU cores.

Figure 10. Plots of algorithm scores (ODIN) for the evaluation set from the case study of the Kaggle dataset. Red-striped bars on the left figure represent ODIN
scores corresponding to attacks in the dataset, while blue solid bars represent ODIN scores occurring with normal data points. On the right, we apply a decision

function (data point is anomalous if ODIN score < 0.54, mark G), that allows deriving TP (red horizontal striped bars), TN (yellow solid bars), FP (white bars

with green border), FN (blue bars with vertical stripes) and calculating other metrics, see mark H.

10

[5] Rapid Miner tutorial, https://rapidminer.com/get-started/ [online, last
accessed 5th May 2019]

[6] Scikit tutorial, http://scikit-learn.org/stable/documentation.html
[online, last accessed 5th May 2019]

[7] Weka, https://www.cs.waikato.ac.nz/ml/index.html [online, last
accessed 5th May 2019]

[8] Friborg, Oddgeir, Monica Martinussen, and Jan H. Rosenvinge.
"Likert-based vs. semantic differential-based scorings of positive
psychological constructs: A psychometric comparison of two versions
of a scale measuring resilience." Personality and Individual
Differences 40.5 (2006): 873-884

[9] Sokolova M., Japkowicz, S. "Beyond accuracy, F-score and ROC: a
family of discriminant measures for performance evaluation" AI 2006
Springer Berlin Heidelberg, 1015-21.

[10] Friedman, Jerome H. "Stochastic gradient boosting." Computational
Statistics & Data Analysis 38.4 (2002): 367-378.

[11] Bovenzi, A., Brancati, F., Russo, S., & Bondavalli, A. (2015). An os-
level framework for anomaly detection in complex software
systems. IEEE Transactions on Dependable and Secure
Computing, 12(3), 366-372.

[12] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Computational Intelligence for
Securit and Defense Applications, 2009. CISDA 2009.
IEEESymposium on. IEEE, 2009, pp. 1–6

[13] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark data sets for
intrusion detection,”Computers & Security, vol. 31, no. 3, pp. 357–
374, 2012.

[14] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set
for network intrusion detection systems (UNSW-NB15 network data
set),” in Military Communications and Information Systems
Conference (Mil-CIS), 2015. IEEE, 2015, pp. 1–6.

[15] S. Rosset and A. Inger, “Kdd-cup 99: knowledge discovery in a
charitable organization’s donor database.” SIGKDD Explorations,
1(2), 85-90.

[16] G. Creech and J. Hu, “Generation of a new ids test data set: Time to
retire the kdd collection,” in Wireless Communications and
Networking Conf (WCNC), 2013 IEEE. IEEE, 2013, pp. 4487–4492.

[17] Di Giandomenico, F., and Strigini, L. “Adjudicators for diverse-
redundant components”. In Reliable Distributed Systems, 1990.
Proceedings., Ninth Symposium on (pp. 114-123). IEEE.

[18] M. Goldstein and S. Uchida. A comparative evaluation of
unsupervised anomaly detection algorithms for multivariate data.
PloS one, 11(4):e0152173, 2016.

[19] Saeys, Y., Abeel, T., & Van de Peer, Y. (2008, September). Robust
feature selection using ensemble feature selection techniques. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 313-325). Springer, Berlin, Heidelberg.

[20] RELOAD Wiki – Github. github.com/tommyippoz/RELOAD/wiki
[online, last accessed 25th July 2019]

[21] L. Zhang, J. Lin, and R. Karim, “Sliding window-based fault
detection from high-dimensional data streams”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. 47, no. 2, pp. 289–303, 2017.

[22] Pannu, H. S., Jianguo Liu, and Song Fu. "A self-evolving anomaly
detection framework for developing highly dependable utility
clouds." Global Communications Conf (GLOBECOM), 2012 IEEE.

[23] Cherkasova, L., et al.: Anomaly application change or workload
change? towards automated detection of application performance
anomaly and change. DSN 2008, 452–461 (2008)

[24] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers. In ACM sigmod record,
volume 29, pages 93–104. ACM, 2000.

[25] M. Goldstein and A. Dengel. Histogram-based outlier score (hbos): A
fast unsupervised anomaly detection algorithm. 2012. KI-2012: Poster
and Demo Track, 59-63.

[26] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. Enhancing
effectiveness of outlier detections for low density patterns. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages
535–548. Springer, 2002.

[27] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for
mining outliers from large data sets. In ACM Sigmod Record, volume
29, pages 427–438. ACM, 2000.

[28] M. Amer, M. Goldstein, and S. Abdennadher. Enhancing one-class
support vector machines for unsupervised anomaly detection. In
Proceedings of the ACM SIGKDD Workshop on Outlier Detection
and Description, pages 8–15. ACM, 2013.

[29] H.-P. Kriegel, A. Zimek, et al. Angle-based outlier detection in high-
dimensional data. In Proceedings of the 14th ACM SIGKDD Int.
Conference on Knowledge discovery and data mining, pages 444–
452. ACM, 2008.

[30] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In Data
Mining, 2008. ICDM’08. Eighth IEEE Int. Conference on, pages
413–422. IEEE, 2008.

[31] Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. (2001). A robust
outlier detection scheme for large data sets. In In 6th Pacific-Asia
Conf. on Knowledge Discovery and Data Mining.

[32] Dupont, Laurent, et al. "Continuous anomaly detection based on
behavior modeling and heterogeneous information analysis." U.S.
Patent Application No. 12/941,849.

[33] Giotis, Kostas, et al. "Combining OpenFlow and sFlow for an
effective and scalable anomaly detection and mitigation mechanism
on SDN environments." Computer Networks 62 (2014): 122-136.

[34] Chiappetta, M., Erkay S., and Cemal Y.. "Real time detection of
cache-based side-channel attacks using hardware performance
counters." Applied Soft Computing 49 (2016): 1162-1174.

[35] Breiman, Leo. "Random forests". Machine learning 45.1 (2001): 5-32

[36] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A
comparative study of anomaly detection schemes in network intrusion
detection. In Proceedings of the 2003 SIAM Int. Conference on Data
Mining, pages 25{36. SIAM, 2003.

[37] Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli.
"MADneSs: a Multi-layer Anomaly Detection Framework for
Complex Dynamic Systems." IEEE Transactions on Dependable and
Secure Computing (2019). DOI 10.1109/TDSC.2019.2908366

[38] Rodriguez, Juan D., Aritz Perez, Jose A. Lozano. "Sensitivity analysis
of k-fold cross validation in prediction error estimation." IEEE Trans.
on pattern analysis and machine intelligence 32.3 (2010): 569-575.

[39] Falcão, F., Zoppi, T., Silva, C. B. V., Santos, A., Fonseca, B.,
Ceccarelli, A., & Bondavalli, A. (2019, April). Quantitative
comparison of unsupervised anomaly detection algorithms for
intrusion detection. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (pp. 318-327). ACM.

[40] Kaggle – “Intrusion Detection” dataset uploaded by Jinner,
https://www.kaggle.com/what0919/intrusion-detection [online, last
accessed 5th May 2019]

[41] OpenML portal, https://www.openml.org/ [online, last accessed 5th
May 2019]

[42] Zhou, A., Cao, F., Qian, W., & Jin, C. (2008). Tracking clusters in
evolving data streams over sliding windows. Knowledge and
Information Systems, 15(2), 181-214.

[43] Karimian, S. H., Kelarestaghi, M., & Hashemi, S. (2012, May). I-
inclof: improved incremental local outlier detection for data streams.
In Artificial Intelligence and Signal Processing (AISP), 2012 16th
CSI International Symposium on (pp. 023-028). IEEE.

[44] Zhang, Liangwei, Jing Lin, and Ramin Karim. "Sliding window-
based fault detection from high-dimensional data streams." IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.2
(2017): 289-303.

[45] Mouratidis, K., & Papadias, D. (2007). Continuous nearest neighbor
queries over sliding windows. IEEE transactions on knowledge and
data engineering, 19(6), 789-803.

[46] Ding, Z., & Fei, M. (2013). An anomaly detection approach based on
isolation forest algorithm for streaming data using sliding window.
IFAC Proceedings Volumes, 46(20), 12-17.

[47] He, S., Zhu, J., He, P., & Lyu, M. R. (2016, October). Experience
report: System log analysis for anomaly detection. In 2016 IEEE 27th
International Symposium on Software Reliability Engineering
(ISSRE) (pp. 207-218). IEEE.

[48] Ali, Shawkat, and Kate A. Smith. "On learning algorithm selection
for classification." Applied Soft Computing 6.2 (2006): 119-138.

[49] Zoppi, T., Ceccarelli, A., & Bondavalli, A. (2017, April). Exploring
anomaly detection in systems of systems. In Proceedings of the
Symposium on Applied Computing (pp. 1139-1146). ACM.

https://rapidminer.com/get-started/
http://scikit-learn.org/stable/documentation.html
https://www.cs.waikato.ac.nz/ml/index.html
https://github.com/tommyippoz/RELOAD/wiki
https://www.kaggle.com/what0919/intrusion-detection
https://www.openml.org/

