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Abstract — Anomaly detection aims at identifying patterns in 

data that do not conform to the expected behavior. Despite 

anomaly detection has been arising as one of the most powerful 

techniques to suspect attacks or failures, dedicated support for 

the experimental evaluation is actually scarce. In fact, existing 

frameworks are mostly intended for the broad purposes of 

data mining and machine learning. Intuitive tools tailored for 

evaluating anomaly detection algorithms for failure and attack 

detection with an intuitive support to sliding windows are 

currently missing. This paper presents RELOAD, a flexible 

and intuitive tool for the Rapid EvaLuation Of Anomaly 

Detection algorithms. RELOAD is able to automatically i) fetch 

data from an existing data set, ii) identify the most informative 

features of the data set, iii) run anomaly detection algorithms, 

including those based on sliding windows, iv) apply multiple 

strategies to features and decide on anomalies, and v) provide 

conclusive results following an extensive set of metrics, along 

with plots of algorithms scores. Finally, RELOAD includes a 

simple GUI to set up the experiments and examine results. 

After describing the structure of the tool and detailing inputs 

and outputs of RELOAD, we exercise RELOAD to analyze an 

intrusion detection dataset available on a public platform, 

showing its setup, metric scores and plots. 

Keywords — anomaly detection, intrusion detection, tool, 

RELOAD, algorithm, sliding windows, machine learning. 

I. ANOMALY DETECTORS 

Cyber-physical infrastructures or Systems of Systems are 

composed of many different software layers and a multitude 

of services. Due to the complexity, dynamicity and 

governance of these systems, instrumenting each individual 

service for monitoring purposes and characterizing all the 

possible errors or attack that may manifest is often not 

feasible [23], despite being widely acknowledged as crucial. 

To such extent, anomaly detection [1] was proposed; it deals 

with the problem of finding patterns in data that do not 

conform to the expected behavior.  

Patterns refer to alterations of the behavior of services or 

systems that are caused by specific and non-random factors. 

Pattern changes may be caused by ongoing attacks [2], 

services misbehavior [23], or failures [3]. Anomaly 

detectors characterize an expected behavior of a service or a 

system and compare it with observed data to infer the health 

of such system. Anomaly detection has been proven useful 

to timely detect attacks and failures in a multitude of works; 

for example, to support intrusion detection systems [2], [36], 

detect side-channel attacks [34], identify occurring failures 

in a critical application [11], detect faults in high-

dimensional data streams [21], achieve dependability 

assurance in utility clouds [22] or Systems-of-Systems [49], 

analyze production logs [47], or identify suspicious 

behaviors of applications [23]. 

Four actions are crucial for the proper application of 

anomaly detection solutions: i) selection of the relevant 

features of the target system that should be monitored i.e., 

the features that are most appropriate to identify occurring 

anomalies; ii) identification of the most suitable anomaly 

detection algorithm, for a given system; iii) appropriate 

tuning of algorithm parameters; and iv) proper identification 

of voting strategies, to decide on anomalies based on the 

information offered by the above-mentioned features.  

To perform these activities, this paper presents the 

RELOAD tool, a software solution that is specifically 

crafted to support and automate the evaluation of 

unsupervised anomaly detection algorithms intended for the 

purpose of attack and failure detection. The tool offers an 

automated methodology to: i) import data from data sets; ii) 

select the most relevant features of the data set; iii) import 

anomaly detection algorithms; iv) run algorithms on data 

sets; v) evaluate multiple strategies to decide on anomalies 

based on results from single features; vi) evaluate the 

algorithms for different configurations i.e., suggest the most 

suitable configuration of algorithms parameters; vii) present 

results of the evaluation activity. RELOAD can also operate 

with algorithms that are based on sliding windows e.g., [21], 

[11]. As conclusive remark, RELOAD is easy to use: this 

has been also confirmed by non-experts, which used the tool 

for educational purposes. 

This paper is structured as follows: Section II reports on 

the available solutions for data mining and data analysis, 

illustrating the contribution of the tool. Section III describes 

the structure and methodology, while Section IV details the 

GUI of the tool. Section V presents a case study in which 

RELOAD is successfully applied. Section VI describes the 

usability assessment that we performed with the aid of MSc 

students. Finally, Section VII concludes the paper. 

II. RELATED WORKS AND CONTRIBUTION 

A. Existing Solutions and Limitations 

Understanding the role of tools to evaluate and compare 

anomaly detection algorithms is intuitive. In fact, it is 

generally difficult to perform an extensive experimental 

campaign without supporting frameworks that automate 

execution of experiments and data analysis. 

For data mining purposes, frameworks such as ELKI [4], 

WEKA [7], RapidMiner [5], or libraries such as Scikit [6] 

and Pandas were created that allow comparing the 

performance of essentially any data mining and machine 

learning algorithm following specific methodologies. ELKI 

and WEKA provide Java-based executables with built-in 

algorithms including anomaly detection ones, while Scikit 
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and Pandas are a Phyton libraries for data mining that 

include anomaly-based techniques such as Random Forests 

[35] or Gradient Boosting [10]. Despite these solutions 

allow extending their functionalities, they require extensive 

customization to execute algorithms for determined 

purposes and settings, and in general their full set of 

functionalities is not intuitive to grasp. Instead, RapidMiner 

[5] is an enterprise suite that offers graphical support with a 

complete user interface, but adding algorithms is rather 

complicated and the tool is not free to use.  

Summarizing, these powerful solutions already include 

some anomaly detection algorithms, and new ones can be 

added. As a drawback, we observe that features, settings and 

usage are not always easy to understand and do not offer a 

complete support to the experimental evaluation of 

unsupervised anomaly detection algorithms in the domain of 

dependable and secure systems. In particular, the following 

requirements can be achieved – when possible – with the 

above solutions only through extensive customization and 

experience: 

 Focus on unsupervised algorithms, which are often 

acknowledged as the most suitable way to identify 

unknown vulnerabilities as zero-day attacks [1], [36], 

[49]: implementations of unsupervised algorithms are 

scattered in the above-mentioned frameworks (e.g., 

Isolation Forests [30]  can be found only in [7]). 

 Provide support for sliding windows algorithms, that are 

often relevant in this domain [21], [11].  

 Integrate different feature selection techniques, allowing 

also to sequentially executing a pool of the above 

techniques. This way, it is possible to define a subset of 

relevant features to be monitored, and evaluate voting 

strategies to decide on anomalies on the basis of the 

scores from such features. This is important to maximize 

detection efficacy and minimize resource consumption. 

B. RELOAD Characteristics 

The peculiarities and characteristics of RELOAD can be 

described along the following lines. 

Domain. RELOAD provides functionalities specific for the 

evaluation of anomaly detection algorithms intended for 

detecting unknown attacks or errors. In fact, extensive 

support is offered for unsupervised and sliding window 

algorithms, automated tailoring of features, profiling of 

algorithms parameters, and voting strategies. 

Input/output data. Our tool can load data from different 

kinds of data sources, that may either be i) text files, or ii) 

MySQL databases, while a support for data streams is 

currently under development. In addition, it provides 

outputs results in CSV files that can be easily manipulated. 

Currently, it contains loaders to the attack data sets 

KDDCup99 [15], NSL-KDD [12], ADFA-LD [16], 

ISCX2012 [13], and UNSW-NB15 [14], and to the failure 

data set available in [37]. 

Feature Selection. Once datasets are loaded, the user may 

and should apply feature selection techniques [19], to filter 

out features that will not provide actionable data for the 

purpose of identifying errors or attacks. While some built-in 

strategies were implemented, e.g., Variance, Pearson 

correlation [19], a big pool of feature selection strategies as 

the one based on Information Gain are derived from the 

implementations in the WEKA [7] framework. 

Algorithms. RELOAD is able to integrate existing 

algorithms as well as novel algorithms written by RELOAD 

users. Further, it offers the opportunity to run different 

algorithms on data sets and collect metric scores. To 

facilitate comparison, RELOAD includes 10 algorithms, 

selected among those already used in research works for 

failure and intrusion detection. The algorithms are selected 

from the six main families [1], [18]: clustering (K-Means 

[4]), statistical (HBOS [25]), classification (SVM [28], 

Isolation Forest [30]), neighbour-based (kNN [27], ODIN 

[26]), density-based (LOF [24], COF [31]) and angle-based 

(ABOD [29], FastABOD [29]). Some of the algorithms 

were implemented by RELOAD users, while most of them 

were imported from ELKI and WEKA. In addition, the tool 

embeds 6 sliding window algorithms such as SPS [11].  

Metrics. The tool computes the most relevant metrics for 

evaluating anomaly detectors [9], selected by surveying 

research papers. Built-in metrics are reported and discussed 

in Section III. This offers a comprehensive evaluation with 

the default configuration of RELOAD. New metrics can be 

defined if needed. 

Usability. The tool has an intuitive GUI to select the target 

algorithms, define configuration parameters, and choose 

data sets. It does not need relevant expertise; for example, it 

was successfully used by MSc students with limited 

experience on experimental evaluation (see Section VI). 

Extensibility. RELOAD can be modified to add new 

algorithms, metrics or voting strategies. It is open source, 

developed in Java to increase portability, available at [20]. 

C. Contribution and Relevance of RELOAD 

The tool itself does not provide novel technologies, 

algorithms or techniques, but instead adopts state-of-the art 

findings in an orchestrated and intuitive fashion. As opposed 

to existing tools and web portals as ELKI, WEKA, Scikit 

(and Pandas), RapidMiner and others, RELOAD embeds 

the following characteristics (see also Table I). 

 Easy to use, since it embeds known techniques by 

hiding many implementation details and variants to the 

final user, which is requested to select just a few inputs. 

Indeed, it is a powerful artifact to be used as a teaching 

support for bachelor or masters’ degrees. 

 Open source, since code is available on online public 

repositories and free to use. 

 Lightweight and portable, given that Java 8+ is 

installed in the target machine. 

TABLE I.  COMPARING RELOAD WITH EXISTING FRAMEWORKS. ✔INDICATES 

OPTIMAL MATCHING, * IDENTIFIES A PARTIAL OR SUB-OPTIMAL MATCHING. 

Framework GUI 
Open 

Source 
Extensible 

Unsupervised 

Algorithms 

Sliding 

Windows 

WEKA  ✔ ✔ * ✔ 

ELKI ✔ ✔ ✔ * * 

RapidMiner ✔  * ✔ ✔ 

Scikit-Pandas  ✔ ✔ ✔ * 

RELOAD ✔ ✔ ✔ ✔ ✔ 
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 Easily extensible by adding new algorithms, with built-

in interfaces to embed algorithms and other techniques 

e.g., feature selection strategies, depending on the needs 

of the user. 

 Shaped for anomaly detection, selecting relevant 

unsupervised algorithms from different frameworks and 

including a full – but almost transparent to the user – 

support to sliding windows (see “Unsupervised 

Algorithms” and “Sliding Windows” in Table I). 

III. THE RELOAD TOOL 

We describe the inputs, the most relevant components of the 

tool, and the main relationships between software modules, 

while the methodology is presented at the end of the section. 

A. Inputs 

Data set, data streams and features. In this paper we use 

the term features to identify the monitored values that are 

collected observing the target system. Examples of features 

are the used memory [32], number of cache accesses [34], or 

number of network packets received in a time interval [33]. 

We use the term data point to refer to the set of values 

observed, for all the features and for a given data set, at a 

given instant of time. For example, in a log file, usually a 

data point corresponds to a row. We also distinguish 

between Training Data (TD) and the rest of the data set, that 

we call Evaluation Data (ED). Further, we consider only 

labelled data sets i.e., anomalous data points are explicitly 

marked. Such labels are not fed to algorithms during 

training, but are instead needed to compare the effectiveness 

of different algorithms once trained, or the effectiveness of 

different parameters’ setup for a given algorithm. 

Data sets are read using loaders, configuration files that 

contain information about the data sets. Through the loaders, 

RELOAD gathers raw data and metadata from the data set. 

At the current state of the implementation, default loaders 

allow connecting to i) CSV files, ii) ARFF text files, and ii) 

MySQL databases, as they are commonly used in most 

applications. A loader should specify the data sets type, 

structures, and the way the dataset is partitioned into TD and 

ED. RELOAD could also operate with data streams through 

the setup of dedicated loaders, which are currently under 

development. For simplicity, we will only consider data sets 

in the rest of the discussion. 

Feature Selection Strategy(ies). The user should choose 

one or more strategies for feature selection that he/she wants 

to apply when gathering data. At the current state of the 

implementation, the tool allows selecting features through 

Variance, Pearson Correlation, Information Gain strategies, 

while learner-based alternatives as the ones based on 

Random Forests are currently under development. Multiple 

feature selection strategies can be applied sequentially.  

Algorithms. Currently, RELOAD includes 10 unsupervised 

anomaly detection algorithms and 6 sliding window 

algorithms. The hierarchical organization of super-classes 

shown in Figure 1 helps adding a new algorithm. Interfaces 

are built in the tool, allowing the user to extend existing 

abstract classes mainly implementing two methods 

responsible of i) how the algorithm performs its initial 

training (if empty, no training is performed), and ii) 

calculating the anomaly score for a given data point. Since 

several algorithms were taken from existing frameworks as 

ELKI and WEKA, wrappers to call and execute such 

algorithm e.g., DataSeriesElkiAlgorithm class in Figure 1 

are already deployed into the tool. When the user chooses 

which algorithms to execute, he/she can also propose 

various i) configuration parameters (e.g., number k of 

relevant neighbours for neighbour-based algorithms [26], 

[29]) and ii) decision functions [48], to convert numeric 

scores into boolean, through a configuration file. RELOAD 

will test all parameters combinations and report on 

individual scores, ultimately pointing out the more 

convenient parameters combination. 

Except SPS, sliding windows algorithms are simulated 

sliding versions of existing algorithms LOF, KNN, ABOD, 

IsolationForests, KMeans, since no public implementations 

were made available in [42], [43], [44], [45], [46]. Every 

time a new data point is added to the window, we run the 

corresponding non-sliding algorithm by using the content of 

the window as training set. Despite not being optimal in 

terms of execution time this simulation allows estimating 

the detection capabilities of non-sliding algorithms when 

applied to sliding windows. 

Metrics. RELOAD includes a broad range of metrics to 

measure the effectiveness of anomaly detectors [9]. Metrics 

are correct detections (true positives, TP, and true negatives, 

TN), missed detections (false negatives, FN), and wrong 

detections (false positives, FP), as well as the aggregated 

metrics, precision (P), recall (R), false positive rate (FPR), 

accuracy (A), F-measure (F1), Matthews coefficient (MCC) 

and area under ROC curve (AUC). As it can be observed in 

Figure 2, to introduce a metric, a user must create a new 

class overriding either BetterMaxMetric (the higher, the 

better), or BetterMinMetric interfaces, and adding a field 

with the metric name to the enum MetricType. All available 

metrics are computed whenever RELOAD is executed with 

its default configuration, while a target metric should be 

always selected by the user to rank algorithms and their 

effectiveness in detecting anomalies.  

B. Main Software Components  

This section reports on the main modules that execute 

and evaluate anomaly detection algorithms. GUI, Anomaly 

Checkers Manager, Policies Selector and Voter modules are 

highlighted in Figure 3 by red bold-font labels. 

 

Figure 2. Class Diagram portion: some Metrics used by RELOAD. 

 

Figure 1. Class Diagram portion: Management of Algorithms in RELOAD. 
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Anomaly Checkers Manager. It generates and operates a 

set of anomaly checkers: we define an anomaly checker as a 

unique couple <feature, algorithm>. For each data point, an 

anomaly checker is able to decide if an anomaly is raised 

i.e., the anomaly checker produces an anomaly score. 

The features used by anomaly checkers can also be 

composed features [37]. In fact, the Anomaly Checkers 

Manager operates to aggregate features using given 

relations. For example, two features as bytes sent per second 

and bytes received per second may be aggregated creating a 

composed feature as the byte sent/byte received rate per 

second. Filtered features may be aggregated depending on 

specific rules e.g., always aggregate all the filtered features 

into a unique composed feature, or if specific properties are 

met e.g., two filtered features are highly or loosely coupled 

[19]. Strategies to create composed features in RELOAD are 

described in Section IV.A. 

Policies Selector. This component evaluates anomaly 

checkers according to a metric. More in detail, each 

anomaly checker is first applied on a data set (using the 

Anomaly Checker Manager), and then used to compute a 

score for a given metric to decide on the most effective 

ones. As selection policies, the Policies Selector includes 

and applies by default the metrics in [37]: 

 BEST x: the x anomaly checkers that have the best 

ranking according to a specific metric; 

 FILTERED y: the y anomaly checkers with the best 

ranking, filtered to avoid more than one anomaly 

checker built using the same feature; 

 THRESHOLD z:  all the anomaly checkers that reach a 

threshold z, for a given metric e.g., recall > 0.6. 

Additional selection policies can be included by 

updating a configuration file. 

Voter. The Voter combines the outputs of a given set of m 

anomaly checkers. The Voter applies a voting strategy [17], 

and identifies a data point as anomalous if at least n out of m 

anomaly checkers raise an anomaly. The value n can be 

defined through a configuration file; alternatively, the voter 

contains the following default voting strategies [37]: 

 ALL: the data point is considered anomalous only if all 

the anomaly checkers identifies an anomaly; 

 QUARTER/THIRD/HALF: the data point is considered 

anomalous only if a quarter/third/half of the m anomaly 

checkers identifies an anomaly; 

 ONE/1: the data point is evaluated as anomalous if at 

least one of the m anomaly checker raises an anomaly. 

GUI. A simple and intuitive Graphical User Interface (GUI) 

allows importing inputs and showing outputs; details can be 

found in Section IV. 

C. Methodology and Workflow of the Tool 

The workflow of RELOAD is depicted in Figure 3. From 

left to right, we can observe four phases, namely initial, 

training, optimization and evaluation. A background 

process automates the execution of such steps, invoking the 

components described in Section III.B when needed. 

Initial Phase. The operations in the initial phase are 

performed once, when setting up the tool. Training data TD 

is an input of this phase, as well as the feature selection 

strategies FSS the user wants to apply. The features are 

automatically filtered according to FSS, removing those not 

useful for anomaly detection. Filtered features may then be 

combined creating composed features; filtered features and 

composed features build the selected features in Figure 3. 

Only the resulting set of filtered features will be used in 

the following steps of the methodology. Algorithms are also 

an input of this phase: anomaly checkers are built using the 

selected algorithms and the filtered features. This phase is 

realized by the Anomaly Checkers Manager and GUI. 

Training Phase. The training phase produces the list of 

Scored Anomaly Checkers (SAC) using the TD. First, the 

input metrics are imported. A specific metric, that we call 

target metric, is selected by the user (through the GUI). It is 

up to the user to understand the target metric that is more 

relevant for the system under analysis. Then, multiple 

instances of each anomaly checker are generated, one for 

each possible value of algorithm’s parameter(s).  

At this stage, RELOAD partitions the TD in two sets: 

checkers_train and checkers_test e.g., 70%-30% split. Then, 

it uses the checkers_train to train the anomaly checkers, and 

it uses the checkers_test as evaluation of the performance of 

the anomaly checkers, according to the target metric. This 

allows associating quantitative values to each anomaly 

checker: they are now scored anomaly checkers (SAC) and 

can be ordered by score. For example, consider an 

experiment were two selected features F1 and F2 are 

considered and used by kNN algorithm with possible sizes 

of the neighbourhood k ϵ {3, 5, 10}. RELOAD generates 

two anomaly checkers, AC1 = <F1, kNN> and AC2 = <F2, 

 

Figure 3. Workflow of the RELOAD tool. 
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kNN>, and each checker is instantiated three times: AC1 = 

{<F1, kNN(3)>, <F1, kNN(5)>, <F1, kNN(10)>} and AC2 

= {<F2, kNN(3)>, <F2, kNN(5)>, <F2, kNN(10)>}. Each 

instance of kNN is trained using checkers_train; then, 

instances of each anomaly checker AC1 and AC2 are scored 

using checkers_test to extract the instance of AC1 and AC2 

that guaranteed higher scores according to the target metric. 

As a final remark, the user may tune the k parameter in 

Figure 3 to manage the above process through k-fold cross 

validation [38], which is largely adopted in the machine 

learning domain to reduce biases derived by overfitting the 

model to the training set. 

Optimization Phase. RELOAD users may want to apply 

selection policies and voting strategies to understand i) the 

optimal set of the scored anomaly checkers, and ii) the best 

voting strategy to decide if a data point is anomalous. This is 

achieved from the optimization phase, which is optional. It 

is skipped if RELOAD users are satisfied with executing all 

the scored anomaly checkers on the ED with no 

aggregations i.e., having individual results for all the scored 

anomaly checkers. During optimization, selection policies 

are applied on the scored anomaly checkers. This allows 

identifying sets of scored anomaly checkers that satisfy the 

selection policies. Each of these sets is then matched to the 

voting strategies. The optimization phase terminates with 

the definition of pairs <set of scored anomaly checkers, 

voting strategy>. This phase is mostly realized thanks to the 

Policies Selector and the Voter components. 

Evaluation Phase. Lastly, all the pairs <set of scored 

anomaly checkers, voting strategy> are exercised on the 

ED, to investigate which data points are anomalous. 

Resulting anomaly scores are compared with the true labels 

in the ED, to compute metric scores. This phase is 

performed mostly by background processes, and the GUI, 

that shows results.  

D. Methodology and Workflow with Sliding Windows 

When using sliding windows, the initial phase is the same 

as in Section III.C, with the dimension of the window as an 

additional input.  

After the initial phase, the training phase is started. 

Typically, sliding window algorithms use a window of w 

data points, and continuously learn whenever a novel data 

point is progressively acquired. This means that many 

sliding windows algorithms may not have an initial training 

phase, and instead they continuously train using the novel 

data points progressively acquired. 

More in detail, sliding windows algorithm are exercised 

in RELOAD as follows. If the optimization phase is not 

requested, the training and the evaluation phases are iterated 

in sequence, to add a novel data point to the sliding window, 

perform the learning phase, decide on the presence of 

anomalies and compute metrics scores. If the optimization 

phase is requested, the above procedure is first exercised on 

the TD to acquire the information for the optimization 

phase. Then, the optimization phase is executed. After, the 

algorithm performs as above: the learning phase is 

performed for all the novel data points on the ED, and the 

evaluation phase is executed to decide on anomalies and 

compute metrics scores. This iteration continues for the 

entirety of the data set or until the data stream is closed.  

IV. DETAILS ABOUT THE GUI 

The RELOAD GUI helps setting parameters, selecting 

algorithms and data sets, and checking results. Here we 

report details about i) setup see Figure 4, and ii) results 

GUIs. The rest of the RELOAD interaction with the user is 

limited to configuration files e.g., the loaders, and to output 

files with results. 

A. Setup GUI 

Setup Box: From top to bottom, the user performs the 

following actions. First, the user selects the target metric. 

Second, the output format is selected: the default option null 

provides textual information, while the option GRAPH 

creates summarizing graphs. We do not detail on this feature 

for brevity, but it just creates bar charts with the x-axis 

containing the data points, and the y-axis reporting the 

number of anomaly checkers raising an anomaly (a chart is 

created for each combination of algorithm, data set, voting 

strategy and selection policy). The Feature Selection 

Strategies button opens the window in Figure 5. It describes 

the available feature selection strategies, allowing the user 

to choose the ones that suit the problem the most. Selecting 

more strategies leads applying each strategy sequentially 

according to the order specified by the user in the table.  

Strategies to aggregate the features that were selected at 

 
Figure 4. GUI to setup RELOAD.  
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the previous step include: i) NONE, that does not combine 

selected features, ii) UNION, the aggregation of all the 

selected features as a composed feature, iii) SIMPLE, that 

considers selected features individually (as in NONE) and 

also the UNION feature, and iv) PEARSON, that considers 

selected features individually and creates a composed 

feature if the Pearson correlation index between two or 

more features exceeds a given threshold set by the user. 

Training phase heavily relies on the setup of the k 

parameter for k-fold validation [38]. Furthermore, if the 

analysis targets sliding window algorithms, the size of the 

sliding window should be set (field Window Size). The 

Sliding Policy field explains how to manage the sliding 

window, or rather how to decide if we want to add a novel 

data point and which data point in the window should be 

discarded. At the moment, two options are implemented: i) 

FIFO, the window always slides, replacing the oldest data 

point with the current one data set is read from top to 

bottom, and ii) FIFO_Normal, that blocks the sliding 

mechanism if the current data point is evaluated as 

anomalous by the algorithm. This last strategy avoids 

polluting the sliding window with anomalous data points. 

Lastly, the selection policies and voting strategies are 

configured by opening a configuration file with the button 

Open Optimization Preferences: this file enlists the policies 

to apply e.g., BEST 3, FILTERED 10, along with the voting 

strategies e.g., ALL, HALF.  

Paths Box: First, the user defines the path of the input 

folder, that is the root of all the configuration files and 

folders described below. Then, the user selects the folders: i) 

output , which will contain all the results in CSV format; ii)  

configuration, which contains the loaders and the metrics 

configuration files; iii) datasets, that specifies where textual 

files (if any) of datasets are placed, and iv) setup, that 

contains the data sets. Finally, the score folder is identified: 

it is used only for temporary storage of ranked anomaly 

checkers during computations.  

Data Analysis Box: The user selects the algorithms, among 

the implemented ones, and the data sets, among those in the 

setup folder and that have a loader. When a new data loader 

has to be defined, as it is the case pressing the “Create 

Loader” button in the “Data Analysis” box allows to choose 

a file name and opens a GUI to specify key items of loaders. 

Depending on the type of the loader e.g., file, database, 

RELOAD allows the user to choose relevant items to extract 

data from the chosen data source. Once the data loader is 

defined, the user can choose the algorithms he wants to 

apply on such dataset(s). By clicking the “Add Algorithm” 

button, RELOAD opens a window to allow choosing 

amongst all available algorithms. Multiple algorithms, and 

combinations of two or more algorithms, may be selected 

through the GUI showed in Figure 6. When one or more 

sliding window algorithms are selected, RELOAD will 

examine such sliding window algorithm(s) considering the 

sliding policy and window size values that the user can set 

through the GUI showed in Figure 4, box “Setup”. On the 

bottom of the GUI, the Update button is used to refresh the 

interface whenever a configuration is modified, while the 

Run button starts the experiments. 

B. Summary and Detailed GUI 

RELOAD provides a Summary GUI, while producing 

many files to expand on specific aspects. More in detail, 

RELOAD creates, for each <dataset, algorithm> couple, 

files that report on i) the selected features, and the scores 

they reached on each feature selection strategy, ii) the 

combined features created, iii) the ranked anomaly checkers, 

the optimal voting strategy and anomaly threshold, if 

optimization is executed, and iv) a detailed list of the 

anomaly scores provided by each anomaly checker used for 

evaluation, along with the anomaly evaluation generated by 

the ensemble of anomaly checkers by applying voting 

strategy and anomaly threshold. In addition, RELOAD 

creates detailed views of each combination of data loader 

and algorithm the user selected for the experiment. This 

Detailed GUI shows metric scores of the algorithm on a 

given dataset by varying selection policy and voting 

strategy, both for training (and, when selected, optimization) 

and evaluation phases. Screenshots can be found in Section 

V.F, along with plots of algorithms’ scores. 

V. EXERCISING RELOAD 

RELOAD was applied to different case studies, especially 

regarding data logs of service-oriented systems [37], [39]. 

The tool turned out to be helpful in identifying the more 

fitting algorithms, either for error or intrusion detection. To 

show the steps that a generic user has to follow for using the 

tool, in this section we refer to an entirely new dataset 

obtained by querying “intrusion detection” and sorting 

results by “relevance” in the Kaggle [40] datasets portal.  

 
Figure 6. GUI for choosing Algorithms. 

 

Figure 5. GUI for setup of Feature Selection Strategies. 
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A. Checking prerequisites 

 Java 1.8.0_152 is already installed on our machine. In 

this case, since we want to download our dataset and the 

tool from their online repositories [40], [20], we also need 

internet connection. We remark here that, once the 

executable and the dataset have been downloaded, the tool is 

fully standalone and does not require external connections. 

B. Analyzing and Refining Dataset  

The dataset is partitioned in two CSV files, one for 

training (TD) and the other one for evaluation (ED). The 

structure of the two files is the same, except for an 

unlabelled column in the training set – the first one – that we 

remove due to the lack of information. The resulting data is 

structured in 42 columns, with respectively 125.973 and 

10.000 data points for train and test set. The last column 

shows the label for each data point, that can be either 

normal (43.3% of the test set), or representing an attack dos 

(33.3%), probe (10.5%), r2l (12.0%), or u2r (0.9%). 

Information on the attacks are not reported in the portal, we 

assume that they cover the same categories as their 

KDDCup [15] and NSL-KDD [12] datasets. All but 2 

columns are numeric, meaning that RELOAD can process 

them without needing further categorizations. 

C. Downloading and Running RELOAD 

RELOAD can be downloaded as a ZIP archive from 

[20]. The ZIP archive includes three items: the JAR file of 

RELOAD, a preferences file and a folder that contains 

configuration files. Once files are extracted from the 

archive, RELOAD can be launched from command line as 

java -jar RELOAD.jar. 

D. Configuring RELOAD 

Once started, RELOAD shows the GUI in Figure 2. 

Setup Box. Starting from the “Setup” box, we first want to 

define the reference metric e.g., F-Measure in Figure 4, and 

strategies to select features and aggregate them to create 

composed features. For this case study we selected 

VARIANCE(3) and INFORMATION_GAIN(0.05) feature 

selection strategies. The other options of the “Setup” box 

allow choosing how to create composed features, which we 

execute whenever the Pearson correlation index between 

two or more selected features is more than 0.8 – 

PEARSON(0.8) -, and to choose which of the phases in 

Figure 3 the user wants to execute. To the sake of this case 

study, we will run all the phases of RELOAD, checking all 

the Feature Selection, Training, Optimization and 

Evaluation checkboxes.  We also proceed with a 10-fold 

validation of the training set as widely suggested [38] in the 

literature. 

Path Box. The “Path” box does not require further 

adaptations. Only note that the default folder for datasets is 

specified as a “datasets” subfolder of the current directory. 

If the datasets the user wants to analyse is located in another 

folder, the user should either i) change the default path of 

RELOAD through GUI, or ii) move the files.  

Data Analysis Box. Here the user i) defines the data 

loader(s), and ii) selects algorithms.  

A new data loader can be defined by pressing the 

“Create Loader” button in the “Data Analysis” box. This 

allows to choose a file name and opens the GUI in Figure 7. 

We filled the fields of the id_kaggle.loader loader in the 

figure as follows. The CSV files were put in 

datasets/intrusion_detection_kaggle folder: we specified 

train and test file in the TRAIN_CSV_FILE and 

VALIDATION_CSV_FILE items. Then, we chose to 

analyse the performances of RELOAD in identifying probe 

attacks in this dataset. Therefore, we set the 

FAULTY_TAGS fields to “probe” and the SKIP_ROWS 

fields to “dos”, “u2r”, “r2l”, or rather the remaining attacks 

we are not interested in. We select 50 batches both for 

training and for validation i.e., RUN_IDS fields, considering 

batches of 200 data points, as specified by 

EXPERIMENT_ROWS. Lastly, we specified the true label 

in the LABEL_COLUMN field, and the columns to be 

skipped (SKIP_COLUMNS in Figure 7). 

To show the versatility of the tool, for this example we 

selected different algorithms as HBOS, KMeans and ODIN, 

a sliding window algorithm (SPS), and a combination of two 

algorithms such as HBOS and KMeans.  

E. Running RELOAD 

When everything is set, the user presses the RELOAD! 

button on the bottom of the GUI. This will start the process 

of selecting algorithms and executing anomaly detection. 

When the process completes, RELOAD will open a window 

that summarizes results, as shown in Figure 8. 

F. RELOAD Summary and Detailed GUI 

Summary and Detailed GUIs are reported in Figure 8 

and Figure 9.  

Summary GUI. The first tab to be seen is the “Summary” 

tab: RELOAD shows a row for each couple <algorithm, 

data set> analysed. Each row reports on i) the data set, ii) 

the algorithm, iii) the most performing pair of selection 

policy and voting strategy, according to the target metric, iv) 

the percentage of labelled anomalies over all data points in 

the ED, and v) the score of the target metric. This view 

 
Figure 7. GUI for setting up Loaders. 
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allows to see which algorithm reached higher metric scores, 

or rather the optimal algorithm for the dataset or the system 

under investigation. In addition, for each sliding window 

algorithm the user selected (SPS in the example), RELOAD 

will show metric scores for each combination of selection 

policy and window size the user set through GUI. As a side 

note, we can observe how in this case combining anomaly 

checkers using either HBOS or KMEANS allowed 

improving metric scores (see mark “A” in Figure 8) with 

respect to executing either HBOS or KMEANS 

independently (marks “B” and “C” in the figure). In 

addition, by looking at SPS results, it is easy to observe that 

the usage of wider sliding windows does not help SPS in 

identifying attacks i.e., the wider the window, the lower the 

F-Measure as pointed out by mark “D” in Figure 8.  

Detaied GUI. The GUI shows detail of combinations of 

data sets and algorithms for the different selection policies 

and voting strategies. An example is in Figure 9: given the 

HBOS and KMEANS algorithm on our case study, it shows 

the metrics computed for the selection policies BEST 3, 

FILTERED 5, FILTERED 10 and the voting strategies 

ALL, HALF, 1. It is worth noticing that the voting strategy 

severely impacts the performance of the algorithm under 

evaluation. As it is marked as “E” in Figure 9, the 1 strategy 

reduces the amount of false negatives (FN); instead, 

achieving consensus among several anomaly checkers 

composing the ensemble, e.g., the ALL strategy, reduces the 

number of false alarms (FP), see “F” mark in the figure. 

This can also be verified from the FN and FP columns in 

Figure 9 – see FILTERED 5 – ALL that does not have FPs, 

while FILTERED 5 – 1 does not have FNs. 

Plots. Ultimately, Figure 10 shows two bar charts that 

RELOAD outputs when the user presses the “Plot Results” 

button in Figure 9. More in detail, the figure shows the 

scores that ODIN algorithm assigns to each data point in the 

evaluation set. Such scores are grouped in 50 bars, which 

partition the interval defined by maximum (1.68 in Figure 

10) and the minimum ODIN value (0). The height of the 

bars represents the amount of data points that were scored 

by ODIN with a value that falls in a given interval.  

The bar chart on the left of Figure 10 depicts algorithm 

scores by painting columns with different colours depending 

on their true label in the dataset. Then, by using the 

dropdownlist marked as “G” in the figure is it possible to 

select a decision function out of the commonly used ones 

[48] to convert numeric scores into boolean and to calculate 

TP, TN, FP, FN and related metrics (see mark “H” in Figure 

10). This view on the right of Figure 10, painting TP, TN, 

FP, FN with different patterns, is useful to understand the 

impact that the choice of the correct decision function has 

on the final evaluation of algorithm scores. 

VI. USER ASSESSMENT 

We estimated the usability of the tool by understanding the 

perceived difficulties of non-expert users. We involved 16 

students of our MsC in Computer Science in a 3-hours 

experiment. Students have only fundamental knowledge on 

quantitative assessment of dependable and secure systems. 

We organized the 16 students in 8 groups. After that, we 

provided subsets of the attack data sets KDDCup99, NSL-

KDD, ADFA-LD, ISCX2012, and UNSW-NB15. We asked 

each group to use the first 45 minutes of the experiment to 

 

Figure 8. GUI to summarize results of RELOAD.  

 

Figure 9. GUI to expand on the results of the application of HBOS and KMEANS algorithms to the case study.  
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examine one data set. Then, we gave a 20-minutes tutorial 

on the tool. At this point, each group was tasked to apply 

RELOAD on the data set previously examined. Sample 

loaders were provided to the students, who had to adapt 

them for the target data set. Finally, we asked participants to 

fill the questionnaire in Table II, to assess the cognitive load 

required to use our tool. All questions were rated on a 5-

point semantic Likert [8] scale i.e., ‘Very Hard’, score 1, to 

‘Very Easy’, score 5, with the possibility to add comments. 

All groups were able to terminate the assignment i.e., set 

appropriate loaders, configure and run RELOAD, and 

discuss results. Concerning the questionnaire, all answers 

except Q4 are in the top quartile i.e., the score is above 3.75. 

This let us conclude that the tool, despite having rooms for 

improvement, was perceived easy to use. The time needed 

to perform the experiments was perceived by the students as 

the main weaknesses of the tool (Q4). However, students 

focused on the duration of the experiment (which depends 

on the dimension of the data set and on the computational 

complexity of algorithms), rather than on the time required 

to set-up and start experiments. Finally, suggestions 

regarding the possible improvements of the tool (Q7 and, to 

a lesser extent, Q2b) were mainly directed to i) include 

additional documentation, ii) improve GUI, and ii) create a 

more intuitive way to define loaders. As the reader could 

notice, GUI was improved accordingly as presented in 

Section IV and V, including an easier way to set parameters 

of the loaders. Regarding documentation, we are currently 

adding tutorials to our repository to reduce the time needed 

to understand how to user RELOAD efficiently. 

VII. CONCLUSIONS 

This paper presented RELOAD, an intuitive and open 

source tool [20] specifically tailored for the evaluation of 

unsupervised anomaly detection algorithms in the domain of 

dependable and secure systems.  

RELOAD automates the selection of the most relevant 

features out of a data set to reduce the amount of data to be 

analyzed. Further, it includes built-in metrics for the 

evaluation and contains several unsupervised algorithms, 

which are often deemed the most useful [1], [36] for 

detecting unexpected attacks or failures. Additionally, it 

facilitates the execution of sliding window algorithms, that 

are particularly relevant for dynamic systems whose 

expected behavior changes through time and do not allow 

relying on training data [21]. The tool is shaped to be used 

also by non-expert people that want to learn the basics of the 

domain, as well as from practitioners that want to estimate 

detection capabilities of different anomaly detection 

algorithms on a pool of existing or custom datasets.  

In addition, the tool provides sample parameters 

configurations of selected algorithms to be used. Support for 

run-time evaluations is currently under investigation and 

requires setting adequate data-stream loaders for the tool. 

Finally, although it is widely extensible, RELOAD includes 

a large set of built-in configurations, which are expected to 

satisfy most of the necessity of possible RELOAD users 

with reduced learning time.  
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