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Abstract

Univariate generalized splines are smooth piecewise functions with sections in certain extended
Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines,
and enjoy the same structural properties as their polynomial counterparts. In this paper,
we consider generalized spline spaces over planar T-meshes, and we deepen their parallelism
with polynomial spline spaces over the same partitions. First, we extend the homological
approach from polynomial to generalized splines. This provides some new insights into the
dimension problem of a generalized spline space defined on a prescribed T-mesh for a given
degree and smoothness. Second, we extend the construction of LR-splines to the generalized
spline context.

Keywords: Generalized splines; T-meshes; LR-meshes; Dimension formula

1. Introduction

Generalized splines are smooth piecewise functions with sections in spaces of the form
(see [8])

P
U,V
p := 〈1, t, . . . , tp−2, U(t), V (t)〉, t ∈ [a, b], 2 ≤ p ∈ N. (1)

Classical polynomial splines are obtained by taking the functions U, V equal to tp−1, tp. In
such a case, the space P

U,V
p is the space of algebraic polynomials of degree p, denoted by Pp.

Other interesting examples are trigonometric or exponential generalized splines for which U, V
are taken as cos(αt), sin(αt), or cosh(αt), sinh(αt), respectively.

Under suitable conditions on U, V , the space (1) has the same structural properties as
Pp. Similarly, generalized splines possess all the desirable properties of polynomial splines.
In particular, they admit a representation in terms of basis functions that are a natural
extension of the polynomial B-splines. Moreover, classical algorithms (like degree elevation,
knot insertion, differentiation formulas, etc.) can be explicitly rephrased for them. Such basis
functions are referred to as generalized B-splines (GB-splines).

Generalized splines are popular tools in the computer aided geometric design (CAGD)
community. Besides their theoretical interest, generalized spline spaces offer the possibility of
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controlling the shape of their elements by means of some shape parameters (the value α in the
case of trigonometric and exponential generalized splines mentioned above), see [7, 17, 18, 28].
Moreover, they are an interesting alternative to non-uniform rational B-splines (NURBS), see
[6, 22, 36, 37] and references therein. In particular, trigonometric and exponential generalized
splines allow for an exact representation of conic sections as well as some transcendental
curves (helix, cycloid, etc.) and are attractive from the geometrical point of view. Indeed,
in contrast with NURBS, they are able to provide parameterizations of conic sections with
respect to the arc length so that equally spaced points in the parameter domain correspond
to equally spaced points on the described curve. It is also worth mentioning that, contrarily
to NURBS, trigonometric and exponential generalized B-splines behave completely similar to
polynomial B-splines with respect to differentiation and integration.

Thanks to the above properties, tensor-products of generalized B-splines are also an inter-
esting problem-dependent alternative to tensor-product (polynomial) B-splines and NURBS
in isogeometric analysis (IgA), see [9, 23, 24, 25]. Introduced nearly a decade ago in a seminal
paper by Hughes et al. [15], IgA is nowadays a well-established paradigm for the analysis
of problems governed by partial differential equations (PDEs), see, e.g., [10] and references
therein. It aims at improving the connection between numerical simulation and computer
aided design (CAD) systems. The main idea of IgA is to use the functions adopted in CAD
systems not only to describe the domain geometry, but also to represent the numerical solution
of the differential problem, within an isoparametric framework.

Adaptive local refinement is fundamental in geometric modeling and is a crucial ingredient
for obtaining, in an efficient way, an accurate solution of partial differential equations. Any
tensor-product structure lacks adequate local refinement. The introduction and the success
of the IgA paradigm triggered the interest in alternative structures that support local re-
finements. Confining the discussion to local tensor-product structures, we mention T-splines
[20, 31, 32], hierarchical splines [13, 14, 35], and locally refined (LR-) splines [12, 16].

T-splines, hierarchical splines and LR-splines can be seen as special instances of splines
over T-meshes, see [29, 30]. A complete understanding of these spline spaces requires the
knowledge of the dimension of the spline space defined on a prescribed T-mesh for a given
degree and smoothness, see [11, 19, 29] and references therein. Among the various techniques
to tackle this difficult problem, one can use the homological approach proposed in [26], where
the technique presented in [1] for splines on triangulations has been fine-tuned for splines on
planar T-meshes. The resulting dimension formula is a key ingredient in the analysis of the
properties of LR-splines, see [12].

As mentioned above, generalized splines enjoy the fundamental properties of polynomial
splines, including the behavior with respect to local refinement. In particular, GB-splines
support (locally refined) hierarchical structures in the same way as (polynomial) B-splines,
see [25] (and also [14, 34]). T-spline structures based on trigonometric GB-splines have been
addressed in [3]. Results on the dimension of generalized spline spaces over T-meshes have
been provided in [5] by extending the approach based on so-called determining sets, see [29].

In this paper, we deepen the parallelism between polynomial splines and generalized splines
over planar T-meshes. More precisely,

• we extend the homological approach of [26] to generalized splines, in order to address
the problem of determining the dimension of a generalized spline space on a prescribed
T-mesh for a given degree and smoothness;

• we extend the construction of LR-splines presented in [12] to generalized splines.
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The remaining of the paper is divided into four sections. In Section 2 we give the definition
of generalized spline spaces over T-meshes. Section 3 is devoted to the determination of the
dimension of such spaces by means of the homological approach. Generalized LR-splines are
described in Section 4. Finally, we end in Section 5 with some concluding remarks.

2. Generalized spline spaces over T-meshes

In this section we formulate the definitions of the meshes and of the spaces we deal with.
We consider a region Ω ⊂ R2 which is a finite union of closed axis-aligned rectangles, called
cells, with pairwise disjoint interiors. We assume that Ω is simply connected and its interior Ωo

is connected; see Figure 1 for an illustration. The smallest rectangle containing Ω is denoted
by [ah, bh]× [av, bv].

Next we define a T-mesh on Ω using the notation and definition given in [26].

Definition 1 (T-mesh). A T-mesh T := (T2, T1, T0) on Ω is defined as:

• T2 is the collection of cells in Ω;

• T1 = T h
1 ∪ T v

1 is a finite set of closed axis-aligned horizontal and vertical segments in
⋃

σ∈T2
∂σ, called edges;

• T0 :=
⋃

τ∈T1
∂τ is a finite set of points, called vertices;

such that

• for each σ ∈ T2, ∂σ is a finite union of elements of T1;

• for σ, σ′ ∈ T2 with σ 6= σ′, σ ∩ σ′ = ∂σ ∩ ∂σ′ is a finite union of elements of T1 ∪ T0;

• for τ, τ ′ ∈ T1 with τ 6= τ ′, τ ∩ τ ′ = ∂τ ∩ ∂τ ′ ⊂ T0;

• for each γ ∈ T0, γ = τh ∩ τv where τh is a horizontal edge and τv is a vertical edge.

A segment of T is a connected union of edges of T belonging to the same straight line. We
denote by T o

1 the set of interior edges, i.e., the edges intersecting the interior of Ω. Analogously,
T o
0 represents the set of the vertices in Ωo, called interior vertices. The elements of the sets

T1 \ T
o
1 and T0 \ T

o
0 are the boundary edges and the boundary vertices, respectively. We say

that an interior vertex is a crossing vertex if it belongs to 4 distinct edges; it is a T-vertex if
it belongs to exactly 3 edges. Moreover, T o,h

1 and T o,v
1 indicate the sets of the horizontal and

vertical interior edges of T , respectively, and we set T o
1 := T o,h

1 ∪ T o,v
1 . Then, the interior

T-mesh is given by T o := (T2, T
o
1 , T

o
0 ). Finally, we denote by f2 the number of rectangles, by

fh
1 and fv

1 the number of horizontal and vertical interior edges, respectively, and by f0 the
number of interior vertices of T .

Example 1. Consider the T-mesh T depicted in Figure 2. In this case, we have

• T2 = {σ1, σ2, σ3}, f2 = 3;

• T o,h
1 = {τh3 }, f

h
1 = 1;

• T o,v
1 = {τv3 , τ

v
4 }, f

v
1 = 2;

• T o
0 = {γ5}, f0 = 1.
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Example 2 (Tensor-mesh). Let Ω := [ah, bh]× [av, bv] be a rectangle in R2. Given l,m ∈ N,
ah = x0 < · · · < xl+1 = bh and av = y0 < · · · < ym+1 = bv. Then T = (T2, T1, T0), where

T2 := {[xi, xi+1]× [yj , yj+1] : i = 0, . . . , l, j = 0, . . . ,m},

T1 := {([xi, xi+1], yj) : 0 ≤ i ≤ l, 0 ≤ j ≤ m+ 1} ∪ {(xi, [yj , yj+1]) : 0 ≤ i ≤ l + 1, 0 ≤ j ≤ m},

T0 := {(xi, yj) : i = 0, . . . , l + 1, j = 0, . . . ,m+ 1},

is called a tensor-mesh on Ω. In this case, we have f2 = (l + 1)(m + 1), fh
1 = (l + 1)m,

fv
1 = l(m+ 1), f0 = lm.

We will now define a generalized spline space over a T-mesh, where the smoothness of the
elements of the space across the edges of the T-mesh is given. To this end, we first define
what we mean by smoothness.

Definition 2 (Smoothness). With each edge τ ∈ T o
1 , we associate an integer r(τ) ≥ −1. We

say that f ∈ Cr(τ)(τ) if the partial derivatives of f up to order r(τ) are continuous across the
edge τ . We assume that r(τ) = r(τ ′) for all τ, τ ′ lying on the same straight line, and we refer
to this as the constant smoothness (along lines) assumption. Letting

r := { r(τ), ∀τ ∈ T o
1 },

we call r a smoothness distribution on T . We define the following class of smooth functions
on Ω:

Cr(T ) := { f : Ω → R : f ∈ Cr(τ)(τ), ∀τ ∈ T o
1 }.

Given a smoothness distribution r on T , with each vertex γ ∈ T o
0 , we associate two integers

rh(γ), rv(γ), where rh(γ) := r(τv) and rv(γ) := r(τh) such that γ = τh ∩ τv and τh ∈ T o,h
1 ,

τv ∈ T o,v
1 . Note that the integers rh(γ), rv(γ) are well defined by the constant smoothness

(along lines) assumption.

Definition 3 (Extended T-mesh). An extended T-mesh (T , r) is a T-mesh with a smoothness
distribution r. If T is a tensor-mesh (see Example 2), then a corresponding extended T-mesh
is called an extended tensor-mesh.

In the following, we denote by ℓ either h or v. We consider the spaces PUℓ,Vℓ
pℓ

as in (1),
namely

P
Uℓ,Vℓ
pℓ

:= 〈1, t, . . . , tpℓ−2, Uℓ(t), Vℓ(t)〉, t ∈ [aℓ, bℓ], 2 ≤ pℓ ∈ N.

We assume that Uℓ, Vℓ ∈ Cpℓ([aℓ, bℓ]), and

dim
(
P
Uℓ,Vℓ
pℓ

)
= pℓ + 1,

and for any element ψ ∈ P
Uℓ,Vℓ
pℓ

,

• ifDpℓ−1
t ψ(t1) = Dpℓ−1

t ψ(t2) = 0, t1, t2 ∈ [aℓ, bℓ], t1 6= t2, thenD
pℓ−1
t ψ(t) = 0, t ∈ [aℓ, bℓ];

• if Dpℓ−1
t ψ(t1) = Dpℓ

t ψ(t1) = 0, t1 ∈ (aℓ, bℓ), then D
pℓ−1
t ψ(t) = 0, t ∈ [aℓ, bℓ].

We notice that these conditions imply that the space 〈Dpℓ−1
t Uℓ, D

pℓ−1
t Vℓ〉 is a Tchebycheff

space on [aℓ, bℓ] and an extended Tchebycheff space on (aℓ, bℓ). Note that this assures that
the same holds for the space PUℓ,Vℓ

pℓ
, see [8, 28].
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Let ph, pv ∈ N with ph, pv ≥ 2. Then, we define the space

P
U ,V
p := { qh(x)qv(y) : qh ∈ P

Uh,Vh
ph

([ah, bh]), qv ∈ P
Uv ,Vv

pv
([av, bv]) }, (2)

where U := (Uh, Uv), V := (Vh, Vv) and p := (ph, pv). If the space (2) is the space of bivariate
algebraic polynomials of bi-degree p, then it will be denoted by Pp. We are now ready to
define the generalized spline space over a T-mesh.

Definition 4 (Generalized spline space). Let (T , r) be an extended T-mesh, and let ph, pv ∈ N

with ph, pv ≥ 2. We define the space of generalized splines over the T-mesh T , denoted by
SU ,V ,r
p (T ), as the space of functions in Cr(T ) such that, restricted to each cell σ ∈ T2, they

belong to PU ,V
p , i.e.,

S
U ,V ,r
p (T ) := { s ∈ Cr(T ) : s|σ ∈ P

U ,V
p , σ ∈ T2 }.

In particular, in the case of bivariate algebraic polynomials,

S
r
p(T ) := { s ∈ Cr(T ) : s|σ ∈ Pp, σ ∈ T2 }.

Note that if the smoothness r(τv) ≥ ph associated with a vertical edge τv ∈ T o,v
1 then for

any two cells σ, σ′ adjacent to τv we have

s|σ = s|σ′ , s ∈ S
U ,V ,r
p (T ).

This follows from the assumption that PUh,Vh
ph

is an extended Tchebycheff space on (ah, bh).
A similar property holds for horizontal edges. Therefore, in the following we assume

r(τv) < ph, ∀τv ∈ T o,v
1 , r(τh) < pv, ∀τh ∈ T o,h

1 .

3. Dimension of the generalized spline space

In this section we study the dimension of SU ,V ,r
p (T ). Our arguments are based on homo-

logical techniques similar to the ones used in [26] for investigating the dimension of the space
Srp(T ).

3.1. Properties of the section space PU ,V
p

First of all, we define and analyze some subspaces of PU ,V
p that will be used in an alternative

characterization of the spline space SU ,V ,r
p (T ) as the kernel of a suitable linear map. This

characterization will play a role in the analysis of the dimension of the spline space.
For any vertical edge τ of T , we consider the following subspace of PU ,V

p :

I
U ,V ,r
p (τ) := {q ∈ P

U ,V
p : Di

xq(x̄, y) ≡ 0, ∀y ∈ [av, bv], i = 0, . . . , r(τ)}, (3)

where x̄ is the abscissa of any point of τ . Analogously, for any horizontal edge τ we set

I
U ,V ,r
p (τ) := {q ∈ P

U ,V
p : Dj

yq(x, ȳ) ≡ 0, ∀x ∈ [ah, bh], j = 0, . . . , r(τ)}, (4)

where ȳ is the ordinate of any point of τ . Moreover, for any vertex γ = (x̄, ȳ) we define the
subspace

I
U ,V ,r
p (γ) := {q ∈ P

U ,V
p : Di

xD
j
yq(x̄, ȳ) ≡ 0, i = 0, . . . , rh(γ), j = 0, . . . , rv(γ)}. (5)
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Lemma 1. The following dimension formulas hold:

1. dim
(
PU ,V
p

)
= (ph + 1)× (pv + 1);

2. dim
(
PU ,V
p /IU ,V ,r

p (τ)
)
=

{

(ph + 1)× (r(τ) + 1), τ horizontal

(r(τ) + 1)× (pv + 1), τ vertical
;

3. dim
(
PU ,V
p /IU ,V ,r

p (γ)
)
= (rh(γ) + 1)× (rv(γ) + 1).

Proof. Proving the first formula is trivial. In order to prove the second one, let us write a
general element of PU ,V

p in the form

q(x, y) =

ph−2
∑

i=0

pv−2
∑

j=0

ai,jx
iyj +

ph−2
∑

i=0

bix
iUv(y) +

ph−2
∑

i=0

cix
iVv(y) +

pv−2
∑

j=0

djUh(x)y
j +

pv−2
∑

j=0

ejVh(x)y
j

+ α11Uh(x)Uv(y) + α12Uh(x)Vv(y) + α21Vh(x)Uv(y) + α22Vh(x)Vv(y).

Suppose that τ is vertical (the proof for τ horizontal is analogous). An element belonging to
I
U ,V ,r
p (τ) must then satisfy, by definition, the conditions

ph−2
∑

i=l

ai,ji(i− 1) · · · (i − l + 1)x̄i−l + djD
l
xUh(x̄) + ejD

l
xVh(x̄) = 0, j = 0, . . . , pv − 2,

ph−2
∑

i=l

bii(i− 1) · · · (i− l + 1)x̄i−l + α11D
l
xUh(x̄) + α21D

l
xVh(x̄) = 0,

ph−2
∑

i=l

cii(i− 1) · · · (i− l + 1)x̄i−l + α12D
l
xUh(x̄) + α22D

l
xVh(x̄) = 0,

for l = 0, . . . , r(τ), where a sum is assumed to be empty whenever the lower index exceeds
the upper one. Note that dim

(
P
U ,V
p /IU ,V ,r

p (τ)
)
coincides with the rank of the matrix of this

linear system. A suitable re-ordering of these equations allows us to show that the rank is
(
r(τ) + 1

)
× (pv + 1), by using the fact that the submatrix

[
Dph−1

x Uh(x̄) Dph−1
x Vh(x̄)

Dph
x Uh(x̄) Dph

x Vh(x̄)

]

is non-singular (see, e.g., [8]). Similarly, to prove the third item of the lemma, we write an
element of PU ,V

p in the form

q(x, y) =

ph−2
∑

i=0

pv−2
∑

j=0

ai,j(x− x̄)i(y − ȳ)j +

ph−2
∑

i=0

bi(x − x̄)iUv(y) +

ph−2
∑

i=0

ci(x− x̄)iVv(y)

+

pv−2
∑

j=0

djUh(x)(y − ȳ)j +

pv−2
∑

j=0

ejVh(x)(y − ȳ)j

+ α11Uh(x)Uv(y) + α12Uh(x)Vv(y) + α21Vh(x)Uv(y) + α22Vh(x)Vv(y).

An element belonging to IU ,V ,r
p (γ) must satisfy, by definition, the following conditions

µηalk + µblD
k
yUv(ȳ) + µclD

k
yVv(ȳ) + ηdkD

l
xUh(x̄) + ηekD

l
xVh(x̄) + α11D

l
xUh(x̄)D

k
yUv(ȳ)

+ α12D
l
xUh(x̄)D

k
yVv(ȳ) + α21D

l
xVh(x̄)D

k
yUv(ȳ) + α22D

l
xVh(x̄)D

k
yVv(ȳ) = 0,

6



for 0 ≤ l ≤ rh(γ), 0 ≤ k ≤ rv(γ), where

µ =

{

l!, l ≤ ph − 2

0, l > ph − 2
, η =

{

k!, k ≤ pv − 2

0, k > pv − 2
.

The matrix of such a system has rank
(
rh(γ) + 1

)
×
(
rv(γ) + 1

)
, see also [5], which completes

the proof.

3.2. Topological chain complexes

As done in [26] in the algebraic polynomial case, we define the following complexes, see
also [1] and [33]:

0 0

↓ ↓

IU ,V ,r
p (T o) : 0

∂̂2→
⊕

τ∈T o
1

I
U ,V ,r
p (τ)

∂̂1→
⊕

γ∈T o
0

I
U ,V ,r
p (γ)

∂̂0→ 0

↓ ↓ ↓

PU ,V
p (T o) : 0

∂3→
⊕

σ∈T2

P
U ,V
p

∂2→
⊕

τ∈T o
1

P
U ,V
p

∂1→
⊕

γ∈T o
0

P
U ,V
p

∂0→ 0

↓ ↓ ↓

SU ,V ,r
p (T o) : 0

∂̄3→
⊕

σ∈T2

P
U ,V
p

∂̄2→
⊕

τ∈T o
1

P
U ,V
p /IU ,V ,r

p (τ)
∂̄1→

⊕

γ∈T o
0

P
U ,V
p /IU ,V ,r

p (γ)
∂̄0→ 0

↓ ↓ ↓

0 0 0
(6)

The maps of the complex PU ,V
p (T o) are induced by the usual boundary maps, so they are

defined as follows. We consider all the edges τ ∈ T1 oriented, and we represent them with the
notation τ = [γ1γ2], where γ1, γ2 ∈ T0. The opposite edge is represented by [γ2γ1], and by
convention we set [γ1γ2] = −[γ2γ1].

• The map ∂3 is the identity map.

• The map ∂2 :
⊕

σ∈T2
P
U ,V
p →

⊕

τ∈T o
1
P
U ,V
p is given by

∂2(q) =
⊕

τ∈T o
1

∑

σ∈S(τ)

qσ, q ∈
⊕

σ∈T2

P
U ,V
p ,

where, for any τ ∈ T o
1 , S(τ) is the set of the cells in T2 which contain τ , and for each cell

σ ∈ T2, whose counter-clockwise boundary is formed by the edges τ1 = [γ1γ2], . . . , τl =
[γlγ1], qσ is the component of q associated with the cell σ if the boundary of σ contains
τ and its opposite if the boundary of σ contains the opposite of τ .

• The map ∂1 :
⊕

τ∈T o
1
P
U ,V
p →

⊕

γ∈T o
0
P
U ,V
p is given by

∂1(q) =
⊕

γ∈T o
0

∑

τ∈S(γ)

qτ , q ∈
⊕

τ∈T o
1

P
U ,V
p ,

where, for any γ ∈ T o
0 , S(γ) is the set of the edges in T o

1 which have γ as one of
the endpoints, and, for each oriented edge τ = [γ1γ2] ∈ T o

1 , qτ is the component of q
associated with τ if γ = γ2 and its opposite if γ = γ1.
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• For any q ∈
⊕

γ∈T o
0
PU ,V
p , ∂0(q) = 0.

The maps of the complex IU ,V ,r
p (T o), denoted by ∂̂2, ∂̂1 and ∂̂0, are obtained from ∂2,

∂1 and ∂0 by restriction. Indeed, for any τ ∈ T o
1 and γ ∈ T o

0 , an element qτ of IU ,V ,r
p (τ)

also belongs to IU ,V ,r
p (γ), provided that the edge τ has an endpoint in γ, and therefore

∑

τ∈S(γ) qτ belongs to IU ,V ,r
p (γ) as well. As a consequence, the image of the restriction of ∂1

to
⊕

τ∈T o
1
IU ,V ,r
p (τ) is included in

⊕

γ∈T o
0
IU ,V ,r
p (γ).

The maps of SU ,V ,r
p (T o), denoted by ∂̄2, ∂̄1 and ∂̄0, are naturally induced since the

considered vector spaces are quotients of the ones of PU ,V
p (T o).

Note that, by construction, we have ∂̂i ◦ ∂̂i+1 = 0, ∂i ◦ ∂i+1 = 0, ∂̄i ◦ ∂̄i+1 = 0, i = 0, 1.
The vertical maps in each column of the diagram in (6) are the inclusion and the quotient

map, respectively.
We will now study the homology of the complexes. First, we recall the definition of

homology.

Definition 5. Given a complex

A : · · · → Ai+1
δi+1
→ Ai

δi→ Ai−1 · · ·

the i-homology is defined as Hi(A) := ker δi/ im δi+1.

Our interest in the homology of the complexes in (6) is motivated by the fact that the
homology of the cells in SU ,V ,r

p (T o) is related to the space SU ,V ,r
p (T ). More precisely, the

following result holds.

Proposition 1. It holds

H2(S
U ,V ,r
p (T o)) = ker ∂̄2 = S

U ,V ,r
p (T ). (7)

Proof. The proof is a straightforward extension of the proof of Proposition 2.9 in [26], see also
Theorems 2.4 and 3.2 in [1]. Nevertheless, for the sake of completeness, we detail the short
and simple argument.

From Definition 5 and from (6) we have H2(S
U ,V ,r
p (T o)) = ker ∂̄2. An element in ker ∂̄2

is a collection of functions (qσ)σ∈T2 where qσ ∈ PU ,V
p and qσ − qσ′ ∈ IU ,V ,r

p (τ) if σ, σ′ share
the internal edge τ . By (3)–(4), this implies that the piecewise function which is qσ on σ and
qσ′ on σ′ belongs to Cr(τ)(τ) (see Definition 2). As this is true for all the interior edges, any
piecewise function (qσ)σ∈T2 ∈ ker ∂̄2 is of class Cr(T ), that is an element of SU ,V ,r

p (T ).

The next results address the exactness of PU ,V
p (T o), and so they are of interest for de-

termining a dimension formula for S
U ,V ,r
p (T ). They can be proved with the same line of

arguments as considered in [26] to prove Propositions D.1–D.3 for the algebraic polynomial
case. Indeed, their proofs are just based on general properties of complexes and on the topo-
logical features of the T-mesh. For this reason, we omit the corresponding technical proofs.

Proposition 2. It holds
H0(P

U ,V
p (T o)) = 0;

H1(P
U ,V
p (T o)) = 0;

H2(P
U ,V
p (T o)) = P

U ,V
p .

8



Finally, the next proposition extends Lemma 2.2 and Proposition 2.7 in [26] to the gener-
alized B-spline case. Their proofs are again based on general properties of complexes and on
the topological features of the T-mesh, just like in [26]; therefore we omit them.

Proposition 3. It holds

H0(P
U ,V
p (T o)) = H0(S

U ,V ,r
p (T o)) = 0; (8)

H1(S
U ,V ,r
p (T o)) = H0(I

U ,V ,r
p (T o)). (9)

3.3. Dimension of the spline space SU ,V ,r
p (T )

By using the above results, we are finally able to give a dimension formula for the gener-
alized spline space over an extended T-mesh (T , r).

Theorem 1. Given an extended T-mesh (T , r), we have

dim
(
S
U ,V ,r
p (T )

)
=

∑

σ∈T2

(ph + 1)(pv + 1)

−
∑

τ∈T o,h
1

(ph + 1)(r(τ) + 1)−
∑

τ∈T o,v
1

(r(τ) + 1)(pv + 1)

+
∑

γ∈T o
0

(rh(γ) + 1)(rv(γ) + 1) + dim
(
H0(I

U ,V ,r
p (T o))

)
. (10)

Proof. If we consider the Euler characteristic of the complex

SU ,V ,r
p (T o) : 0

∂̄3→
⊕

σ∈T2

P
U ,V
p

∂̄2→
⊕

τ∈T o
1

P
U ,V
p /IU ,V ,r

p (τ)
∂̄1→

⊕

γ∈T o
0

P
U ,V
p /IU ,V ,r

p (γ)
∂̄0→ 0,

we get the relation

dim
(⊕

σ∈T2

P
U ,V
p

)
− dim

( ⊕

τ∈T o
1

P
U ,V
p /IU ,V ,r

p (τ)
)
+ dim

( ⊕

γ∈T o
0

P
U ,V
p /IU ,V ,r

p (γ)
)

= dim
(
H2(S

U ,V ,r
p (T o))

)
− dim

(
H1(S

U ,V ,r
p (T o))

)
+ dim

(
H0(S

U ,V ,r
p (T o))

)
.

By combining (7), (8), (9) with the above equality, we arrive at the formula (10).

Remark 1. Since dim
(
H0(I

U ,V ,r
p (T o))

)
≥ 0, from Theorem 1 we easily get the same lower

bound for dim
(
SU ,V ,r
p (T )

)
as in the algebraic polynomial case, see [26, Section 3],

dim
(
S
U ,V ,r
p (T )

)
≥

∑

σ∈T2

(ph + 1)(pv + 1)

−
∑

τ∈T o,h
1

(ph + 1)(r(τ) + 1)−
∑

τ∈T o,v
1

(r(τ) + 1)(pv + 1)

+
∑

γ∈T o
0

(rh(γ) + 1)(rv(γ) + 1). (11)

We say that a smoothness distribution r on T is constant if there exist two integers ̺h, ̺v
such that

r(τv) = ̺h, ∀τv ∈ T o,v
1 , r(τh) = ̺v, ∀τh ∈ T o,h

1 . (12)
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Example 3. Given an extended T-mesh (T , r) with a constant smoothness distribution r as
in (12), the dimension formula (10) simplifies to

dim
(
S
U ,V ,r
p (T )

)
= (ph + 1)(pv + 1)f2 − (ph + 1)(̺v + 1)fh

1

− (̺h + 1)(pv + 1)fv
1 + (̺h + 1)(̺v + 1)f0

+ dim
(
H0(I

U ,V ,r
p (T o))

)
. (13)

The formula (13) corresponds to the formula found in [26] for the algebraic polynomial spline
space defined on the same extended T-mesh.

Under certain conditions on the T-mesh and/or the generalized spline space, the homology
term in the dimension formula (10) is zero, so that the dimension of SU ,V ,r

p (T ) agrees with
the lower bound in (11). In the following we discuss some examples.

Example 4. For an extended tensor-mesh (T , r), one can easily check that the dimension of
SU ,V ,r
p (T ) agrees with the lower bound in (11). Taking a tensor-mesh T as in Example 2 and

a constant smoothness distribution r as in (12), the dimension formula (13) simplifies to

dim
(
S
U ,V ,r
p (T )

)
=

(
(ph + 1)(l + 1)− l(̺h + 1)

)(
(pv + 1)(m+ 1)−m(̺v + 1)

)
.

In the algebraic polynomial context, it is known (see [26, 29]) that if the degree is large
enough with respect to the smoothness, then the dimension of Srp(T ) agrees with the lower
bound in (11). This extends to the generalized spline setting, as stated in Corollary 1. First,
we recall from [29] the concept of a cycle (see Figure 3 for an illustration).

Definition 6 (Cycle). A segment of a T-mesh is called a composite edge if all the vertices
lying in its interior are T-vertices and if it cannot be extended to a longer segment with the
same property. A sequence γ1, . . . , γn of T-vertices in a T-mesh T is said to form a cycle if
γi lies in the interior of a composite edge of T having one of its endpoints at γi+1 (we assume
γn+1 = γ1).

A relevant class of T-meshes without cycles are the so-called LR-meshes, see the next
section for their definition. Note that they are called hierarchical T-meshes in [26, Section 4.1].

Corollary 1. Let T be a T-mesh without cycles, and let r be a constant smoothness distri-
bution on T as in (12). Then, if we assume that ph ≥ 2̺h + 1 and pv ≥ 2̺v + 1, we have
dim

(
H0(I

U ,V ,r
p (T ))

)
= 0.

Proof. From Theorem 3.7 in [5] we know that dim
(
SU ,V ,r
p (T )

)
equals the lower bound in (11),

so dim
(
H0(I

U ,V ,r
p (T ))

)
= 0.

Example 5. Consider the T-mesh T in Figure 2, and the constant smoothness distribution
r on T as in (12) with ̺h = ̺v = 1. The space SU ,V ,r

p (T ) with p = (3, 3) has dimension
28. This immediately follows from the mesh numbers in Example 1, the dimension formula in
Example 3 and Corollary 1.

Example 4 and Corollary 1 show that for a large class of (generalized) spline spaces we
have

dim
(
S
U ,V ,r
p (T )

)
= dim

(
S
r
p(T )

)
. (14)

We conjecture that (14) is true for all generalized spline spaces on T-meshes, at least gener-
ically. The latter means that if for a given space PU ,V

p and an extended T-mesh (T , r) the
equality in (14) does not hold, then there exists an arbitrarily small perturbation of the ver-
tices of T making the equality true. This is also inspired by the concept of generic embeddings,
used in [1] in the context of dimensions of polynomial spline spaces on triangulations.
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4. Locally refined generalized splines

In the context of algebraic polynomial splines, the well-known knot insertion process of
tensor-product B-splines gives rise to LR B-splines [12]. In this section we extend this con-
struction to the generalized spline setting.

4.1. Generalized B-splines

Let Ξ be a sequence of knots over the interval [a, b],

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξm+p+1}, m, p ∈ N. (15)

It is well known that it is possible to construct B-spline-like functions with sections in spaces
PU,V
p as in (1), see [18, 23, 37] and references therein. The so-called generalized B-splines

(GB-splines) of degree p, defined over the knot sequence (15), will be denoted by

B
(p)
[ξi,...,ξi+p+1]

.

They can be defined by means of the following recurrence relation:

B
(1)
[ξi,ξi+1,ξi+2]

(t) :=







V (p−1)(t)
V (p−1)(ξi+1)

, if t ∈ [ξi, ξi+1),

U(p−1)(t)
U(p−1)(ξi+1)

, if t ∈ [ξi+1, ξi+2),

0, elsewhere,

and

B
(p)
[ξi,...,ξi+p+1]

(t) := d
(p−1)
i,Ξ

∫ t

−∞

B
(p−1)
[ξi,...,ξi+p]

(s)ds− d
(p−1)
i+1,Ξ

∫ t

−∞

B
(p−1)
[ξi+1,...,ξi+p+1]

(s)ds, p ≥ 2,

where

d
(p)
i,Ξ :=

1
∫ +∞

−∞ B
(p)
[ξi,...,ξi+p+1]

(s)ds
,

and fractions with zero denominators are considered to be zero. The knot sequence (15) allows
us to define m GB-splines of degree p, namely

B
(p)
[ξ1,...,ξp+2]

, . . . , B
(p)
[ξm,...,ξm+p+1]

.

GB-splines possess all desirable properties of classical polynomial B-splines [2, 18]. We
collect them in the following proposition.

Proposition 4. Let B
(p)
[ξi,...,ξi+p+1]

, i = 1, . . . ,m be GB-splines of degree p ≥ 2 associated with

the knot sequence (15). Then, the following properties hold:

• piecewise structure: B[ξi,...,ξi+p+1](t) ∈ PU,V
p , t ∈ [ξj , ξj+1);

• positivity: B
(p)
[ξi,...,ξi+p+1]

(t) ≥ 0;

• partition of unity:
∑m

i=1B
(p)
[ξi,...,ξi+p+1]

(t) = 1, t ∈ [ξp+1, ξm+1);

• compact support: B
(p)
[ξi,...,ξi+p+1]

(t) = 0, t /∈ [ξi, ξi+p+1];
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• smoothness: B
(p)
[ξi,...,ξi+p+1]

(t) is p − µj times continuously differentiable at ξj being µj

the multiplicity of ξj in the knot sequence;

• local linear independence: B
(p)
[ξi−p,...,ξi+1]

(t), . . . , B[ξi,...,ξi+p+1](t) are linearly independent

on [ξi, ξi+1).

The following formula for inserting one knot follows from Theorem 5.5 in [21]:

Proposition 5. Suppose for some integers i,m with i ≤ m ≤ i + p that ξ ∈ (ξi, ξi+p+1) ∩
[ξm, ξm+1), and let ηi, . . . , ηi+p+2 be the numbers ξ, ξi, . . . , ξi+p+1 sorted in nondecreasing or-
der. Then, we have

B[ξi,...,ξi+p+1] =







B[ηi,...,ηi+p+1], i ≤ m− p,

λiB[ηi,...,ηi+p+1] + (1− λi+1)B[ηi+1,...,ηi+p+2], m− p+ 1 ≤ i ≤ m,

B[ηi+1...,ηi+p+2], i > m,

where 0 ≤ λj ≤ 1 for j = i, . . . , i+ p. In particular, λm−p+1 = 1 and λm+1 = 0.

Explicit formulas for the λj ’s are given in [21]. For alternative, less general, but easier to
compute formulas we refer to [37]. The spaces (1) also support a degree-raising process.

Multivariate versions of GB-splines can be obtained straightforwardly by the usual tensor-
product approach.

4.2. Extended LR-mesh

An LR-mesh is a T-mesh constructed from a tensor-mesh by applying successive refine-
ments. In each refinement at least one cell is split in two by an axis-aligned segment, see [12].
Since we use continuity across knot lines instead of multiplicities we repeat some definitions
from [12].

Definition 7 (Split). Let T = (T2, T1, T0) be a T-mesh and let ε be an axis-aligned segment.
We say that ε splits σ ∈ T2 if σ \ ε is not connected. We say that ε is a minimal split of σ if
it splits σ and ε ⊆ σ. We say that ε splits T if ε = τ1 ∪ · · · ∪ τn, a finite union, with each τi
either a minimal split of a cell in T2 or an edge in T1.

If ε splits σ ∈ T2 then σ \ ε has two connected components σ1 and σ2 with closures σ1, σ2.
Moreover, denote by T2(ε) the set of cells in T2 that are split by ε. We define

T + ε := (T2 + ε, T1 + ε, T0 + ε), T2 + ε := (T2 \ T2(ε)) ∪ (
⋃

σ∈T2(ε)

{σ1, σ2}),

and where T1 + ε, T0 + ε are the set of edges and vertices obtained after ε has been introduced
in the mesh. (See [12] for a more precise definition of T1 + ε, T0 + ε). Similarly, we define
the sets T o

1 + ε, T o
0 + ε.

Definition 8 (Extended split). Let ε be a split of an extended T-mesh (T , r) and let rε ≥ −1
be an integer defining the smoothness of the edges of T + ε belonging to ε. We associate with
each edge τ of T + ε an integer rε(τ) given by

rε(τ) :=

{

r(τ ′), if τ ⊆ τ ′ ∈ T o
1 ,

rε, if τ ∈ (T o
1 + ε) \ T o

1 .
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In addition, we have to assume that rε is such that the constant smoothness (along lines)
assumption is satisfied, see Definition 2. We call (T + ε, rε) an extended split of (T , r),
where

rε := { rε(τ) : τ ∈ T o
1 + ε }.

Definition 9 (Extended LR-mesh). An extended LR-mesh (T , r) is an extended T-mesh,
where either

1. it is an extended tensor-mesh, or

2. it is an extended split of an extended LR-mesh.

The corresponding mesh T is called an LR-mesh.

The T-mesh in Figure 3 is not an LR-mesh. Indeed, starting with the boundary of the
rectangle there is no way we can insert one of the line segments so that it splits the rectangle in
two elements (it has a cycle, see Definition 6). Figure 4 shows the construction of an LR-mesh
obtained by successive insertion of splits.

4.3. LR GB-splines

LR GB-splines are a collection of minimally supported functions on an LR-mesh. Each
of them is a tensor-product GB-spline defined on a local tensor-mesh which is part of the
LR-mesh. A formal definition is given in the following.

Definition 10 (Tensor-submesh). Given x0 < · · · < xk+1 and y0 < · · · < yn+1, we consider
the tensor-mesh S with vertices (xi, yj), i = 0, . . . , k+ 1, j = 0, . . . , n+ 1. If the edges of this
tensor-mesh are completely covered by edges belonging to some T-mesh T , we say that S is
a tensor-submesh of T . It is a maximal tensor-submesh if no other segment of T completely
crosses the domain defined by S, namely the rectangle [x0, xk+1]× [y0, yn+1].

Definition 11 (Extended tensor-submesh). Given an extended T-mesh (T , r), degrees ph, pv,
and a set of integers r̄ := {−1 ≤ r̄h,i < ph, i = 0, . . . , k + 1 } ∪ {−1 ≤ r̄v,j < pv, j =
0, . . . , n+ 1 }, we say that (S, r̄) is an extended tensor-submesh of (T , r) if

r̄h,i = r(τ), if τ ∈ T o
1 , τ belonging to the line x = xi;

r̄v,j = r(τ), if τ ∈ T o
1 , τ belonging to the line y = yj .

We say that an extended tensor-submesh has minimal support with respect to r̄, ph, pv if it is
maximal and

k+1∑

i=0

(ph − r̄h,i) = ph + 2,

n+1∑

j=0

(pv − r̄v,j) = pv + 2.

Definition 12 (Minimal support). Let (T , r) be an extended T-mesh in R2. A tensor-product
GB-spline B : R2 → R has minimal support on (T , r) if it is defined on an extended tensor-
submesh (S, r̄) of minimal support.

The function B in Definition 12 is given by

B(x, y) = B
(ph)
[ξ0,...,ξph+1]

(x)B
(pv)
[ζ0,...,ζpv+1]

(y),
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where

ξ0, . . . , ξph+1 =

ph−r̄h,0
︷ ︸︸ ︷
x0, . . . , x0, . . . ,

ph−r̄h,k+1
︷ ︸︸ ︷
xk+1, . . . , xk+1,

ζ0, . . . , ζpv+1 =

pv−r̄v,0
︷ ︸︸ ︷
y0, . . . , y0, . . . ,

pv−r̄v,n+1
︷ ︸︸ ︷
yn+1, . . . , yn+1 .

As a consequence, the support of the GB-spline B is the rectangle [x0, xk+1]× [y0, yn+1].

Definition 13 (LR GB-splines). If (T , r) is an extended LR-mesh, then the tensor-product
GB-splines of minimal support on (T , r) are called LR GB-splines.

Given an extended LR-mesh (T , r) and bi-degree p := (ph, pv), we now construct a collec-
tion B of LR GB-splines of degree p on (T , r). We recall that (T , r) is defined as a sequence of
extended LR-meshes (M1, r1), . . . , (Mn, rn) where (M1, r1) is an extended tensor-mesh and
(T , r) = (Mn, rn). We start with the complete collection B1 of tensor-product GB-splines
of degree p on (M1, r1). Suppose we have constructed the collection of LR GB-splines Bi

on (Mi, ri) for some 1 ≤ i < n. To form the new mesh Mi+1, an axis-aligned segment εi is
inserted which we assume is long enough to split the support of at least one GB-spline in Bi.
Following [12], we construct the new collection of LR GB-splines Bi+1 on (Mi+1, ri+1) by a
sequence of updates.

1. As long as there is a B ∈ Bi that does not have minimal support on (Mi+1, ri+1), there
must be at least a horizontal and/or vertical segment which is a union of edges of Mi+1

that splits the support of B. Then, we proceed as follows. Suppose εi is such a vertical
segment that splits the support of B at a point x = ξ. If B(x, y) = B1(x)B2(y) then we
insert ξ in the univariate GB-spline B1 using Proposition 5 and get two univariate GB-
splines B1,1 and B1,2, and two tensor-product GB-splines obtained from B by replacing
B1 by B1,1 and B1,2, respectively. We update Bj by removing B and adding the two
new tensor-product GB-splines. We also remove duplicate GB-splines if necessary. A
horizontal segment is handled analogously by inserting a knot in the univariate GB-spline
B2.

2. When all B ∈ Bi have minimal support we set Bi+1 = Bi.

We refer to [12, Section 3.2] for a bilinear example.
It has been shown in [12, Theorem 3.4] that the final collection of LR B-splines B = Bn

only depends on the final mesh T , and its proof generalizes to our LR GB-splines. With a
proper scaling, LR B-splines form a positive partition of unity, see [12, Theorem 7.2], and the
same also holds for our LR GB-splines.

Under certain conditions, the LR GB-splines span the full space of generalized splines on
an extended LR-mesh. For example, we have the following result. Its proof follows the same
line of arguments as in [12, Theorem 5.2].

Theorem 2. Let (M1, r1), . . . , (Mn, rn) be a sequence of extended LR-meshes with corre-
sponding collections of LR GB-splines B1, . . . ,Bn of degree p. If

dim
(
S
U ,V ,ri
p (Mi)

)
= dim

(
S
U ,V ,ri−1
p (Mi−1)

)
+ 1, i = 2, . . . , n, (16)

then
S
U ,V ,ri

p (Mi) = 〈B ∈ Bi〉, i = 1, . . . , n.
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In general, LR GB-splines are not always linearly independent, as already known for
polynomial LR-splines, see, e.g., [12, Example 6.4]. The dimension theory for GB-splines
on T-meshes (described in Section 3) applies to LR GB-splines, and can be used to check
their linear independence. Moreover, the dimension results can be of help in the design of
(local) refinement algorithms ensuring collections of linearly independent LR GB-splines.

Example 6. It is clear that the collection of LR GB-splines defined over an extended tensor-
mesh are linearly independent as they are nothing else than tensor-product GB-splines.

Example 7. Consider a sequence of extended LR-meshes (M1, r1), . . . , (Mn, rn) satisfying
(16). From Theorem 2 it follows that linear independence is ensured if the number of LR
GB-splines increases by one going from (Mi−1, ri−1) to (Mi, ri), i = 2, . . . , n.

There are also other criteria that are sufficient for ensuring that a collection of LR GB-
splines is linearly independent. For example, the so-called peeling strategy presented in [12,
Section 6] can be used in the GB-spline context as well.

5. Conclusions

In this paper we have considered generalized spline spaces over planar T-meshes, and we
have shown that they share several structural properties with polynomial spline spaces over the
same partitions. First, we have provided some new insights into the problem of determining
the dimension of a generalized spline space defined on a prescribed T-mesh for a given degree
and smoothness, by extending the homological approach of [26] to generalized splines. Second,
we have shown that the construction of LR-splines presented in [12] can be easily extended to
the generalized spline context and we have outlined this construction.

It is worth emphasizing that, besides the structural similarities presented here, many other
properties can be carried over from polynomial to generalized spline spaces. In particular, it
has already been shown that the construction and properties of (truncated) hierarchical B-
splines and analysis-suitable T-splines also extend to the generalized spline context, see [14, 34]
and [3, 4] respectively.

Finally, we remark that generalized splines are a special case of the wider and very in-
teresting class of Tchebycheff splines [21, 27, 28]. Tchebycheff splines are smooth piecewise
functions with sections in Tchebycheff spaces, and admit a B-spline-like basis in the same way
as generalized splines. Therefore, it is reasonable to believe that the results presented in this
paper are also valid for Tchebycheff splines.
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Figure 1: Left: a simply connected region with connected interior. Center: a region which is not simply
connected. Right: a region where the interior is not connected.
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Figure 2: Example of a T-mesh.

Figure 3: A T-mesh with a cycle, so it is not an LR-mesh.

Figure 4: A sequence of LR-meshes.
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