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NUMERICAL STUDY OF A QUANTUM-DIFFUSIVE SPIN MODEL
FOR TWO-DIMENSIONAL ELECTRON GASES ∗

LUIGI BARLETTI † , FLORIAN MÉHATS ‡ , CLAUDIA NEGULESCU § , AND STEFAN

POSSANNER ¶

Abstract. We investigate the time evolution of spin densities in a two-dimensional electron gas
subjected to Rashba spin-orbit coupling on the basis of the quantum drift-di�usive model derived
in Ref. [2]. This model assumes the electrons to be in a quantum equilibrium state in the form of
a Maxwellian operator. The resulting quantum drift-di�usion equations for spin-up and spin-down
densities are coupled in a non-local manner via two spin chemical potentials (Lagrange multipliers)
and via o�-diagonal elements of the equilibrium spin density and spin current matrices, respectively.
We present two space-time discretizations of the model, one semi-implicit and one explicit, which
comprise also the Poisson equation in order to account for electron-electron interactions. In a �rst step
pure time discretization is applied in order to prove the well-posedness of the two schemes, both of
which are based on a functional formalism to treat the non-local relations between spin densities. We
then use the fully space-time discrete schemes to simulate the time evolution of a Rashba electron gas
con�ned in a bounded domain and subjected to spin-dependent external potentials. Finite di�erence
approximations are �rst order in time and second order in space. The discrete functionals introduced
are minimized with the help of a conjugate gradient-based algorithm, where the Newton method is
applied in order to �nd the respective line minima. The numerical convergence in the long-time limit
of a Gaussian initial condition towards the solution of the corresponding stationary Schrödinger-
Poisson problem is demonstrated for di�erent values of the parameters ε (semiclassical parameter),
α (Rashba coupling parameter), ∆x (grid spacing) and ∆t (time step). Moreover, the performances
of the semi-implicit and the explicit scheme are compared.

1. Introduction The purpose of this paper is the numerical study of the
quantum di�usive model for a spin-orbit system introduced in Ref. [2], with the aim
of developing numerical tools for the investigation of spin-based electronic devices.

Di�usive models o�er a simple, yet fairly accurate, description of charge transport
and, for this reason, they have a long-standing tradition in semiconductor modeling.
Classical drift-di�usion equations for semiconductors [12] were �rst derived by van
Roosbroeck [19], while Poupaud [18] proved their rigorous derivation from the Boltz-
mann equation. Quantum-corrected drift-di�usion equations were proposed in Refs.
[1, 7], and were later derived by using a quantum version of the maximum entropy
principle by Degond, Méhats and Ringhofer [5, 6]. Finally, fully-quantum di�usive
equations, still based on the quantum maximum entropy principle, were proposed
in Refs. [4, 5]. In view of recent progresses in controlling the electron spin, it is
highly desirable to extend the drift-di�usion description to the spinorial case. The
existing semiclassical drift-di�usion models for spin systems can be classi�ed into two
categories: the two-component models [9] and the spin-polarized or matrix models
[9, 17, 20]. Both models have been used in practice, however their mathematical
derivation is still at the very beginning.

As far as we know, a fully-quantum di�usive model of a spin system has been
�rst reported in Ref. [2], where a two-component di�usive model for a 2-dimensional
electrons gas with spin-orbit interaction is derived. Such model, which will be consid-
ered from the numerical point of view in the present work, is based on the quantum
maximum entropy principle and concerns electrons with a spin-orbit Hamiltonian of
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2 Numerical study of a spin QDD model

Rashba type [3]:

H=

(
−~2

2 ∆+V α~(∂x− i∂y)

−α~(∂x+ i∂y) −~2

2 ∆+V

)
. (1.1)

Here, (x,y) are the spatial coordinates of the 2-dimensional region where the elec-
trons are assumed to be con�ned, α is the Rashba constant and V is a potential term
which may consist of an �external� part (representing e.g. a gate or an applied poten-
tial) and a self-consistent part, accounting for Coulomb interactions in the mean-�eld
approximation.

The Rashba e�ect [3, 21] is a spin-orbit interaction undergone by electrons that are
con�ned in an asymmetric 2-dimensional well (here, perpendicular to the z direction).
Due to this interaction, the spin vector has a precession around a direction in the plane
(x,y), perpendicular to the electron momentum p= (px,py), the precession speed being
α|p|. Since it does not involve built-in magnetic �elds, and hence may be implemented
by means of standard silicon technologies, the Rashba e�ect is expected to be a key
ingredient for the realization of the so-called S-FET (Spin Field E�ect Transistor)
[21], a �spintronic� device in which the information is carried by the electron spin
rather than by the electronic current (as in the usual electronic devices). This may
lead to electronic devices of higher speed and lower power consumption. The purpose
of this work is to contribute to the understanding of how the Rashba e�ect can be
employed in order to control the spin transport in these devices.

Let us summarize brie�y the derivation of the here investigated quantum di�usive
model. The starting point is the von Neumann equation (i.e. the Schrödinger equation
for mixed states) for the Hamiltonian (1.1), endowed with a collisional term of BGK
type

i~∂t%(t) = [H,%(t)]+
i

τ
(%eq−%(t)),

where %(t) = (%ij(t)) is the 2×2 density operator, representing the time-dependent
mixed state of the system, and τ is the relaxation time. According to the theory
developed in Refs. [6, 5] , the local equilibrium state %eq is chosen as the maximizer of
a free energy-like functional, subject to the constraint of sharing with %(t) the local
moments we are interested in, here the spin-up and spin-down (with respect to the
z direction) electron densities n1, n2 (or, equivalently, the total electronic density
n1 +n2 and the polarization n1−n2). Then, the maximizer, which has the form of
a Maxwellian operator, contains as many Lagrange multipliers (chemical potentials)
as the chosen moments. These multipliers furnish the degrees of freedom necessary
to satisfy the constraint equations. In our case, therefore, the local equilibrium state
contains two chemical potential, A1 and A2, which depend on n1 and n2 through the
constraint equations. The rigorous proof of realizability of the quantum Maxwellian
associated to a given density and current has been obtained in Refs. [13, 14] for a scalar
(i.e. non spinorial) Hamiltonian. By assuming τ�1 and applying the Chapman-
Enskog method, the von Neumann equation leads in the limit to the �quantum drift-
di�usive� system (2.1) for the unknown densities n1 and n2. Apart from the chemical
potentials A1 and A2, which depend on n1 and n2 through the constraint, the system
also contains some extra moments, namely the o�-diagonal density n21 and currents
Jx21, J

y
21, which are computed via the equilibrium state and which depend on n1 and

n2 as well. Note that, with respect to the original Hamiltonian (1.1), we shall work
with a scaled version (see the Hamiltonian (2.4), which contains also the chemical
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potential) in which ε is the scaled Planck constant and α is rescaled as εα. This
is, therefore, a semiclassical scaling with the additional assumption of small Rashba
constant. Of course, the parameter ε is unimportant as long as we are not interested
in the semiclassical behavior but becomes relevant when we look for a semiclassical
expansion of the model for small ε.

In summary, the di�usive equations (2.1), coupled to Eqs. (2.3)�(2.7) which repre-
sent the equilibrium state and the constraints, and associated with the Poisson equa-
tion (2.2) for the self-consistent potential, constitute the quantum di�usive model we
are going to analyze numerically in this work. Needless to say, the model (2.1)�(2.7)
is rather implicit and involved, and requires a very careful numerical treatment. The
aim of the present paper is thus to present two discrete versions of (2.1)�(2.7), suitable
for time-resolved simulation of the spin densities n1 and n2 in a spatially con�ned,
two-dimensional electron gas. In both schemes the �nite-di�erence approximations of
the occurring derivatives are �rst order in time and second order in space. At the core
of the numerical study of the present model is the minimization of a functional that
either maps from IR3P to IR (in the �rst scheme) or from IR2P to IR (in the second
scheme), where P is the number of points on the space grid. We present an algorithm
that uses a combination of the conjugate gradient method and the Newton method
in order to �nd the minimum of the respective functional at each time step.

The paper is organized as follows. In Section 2, the continuous model is introduced
and is endowed with suitable initial and boundary conditions. In Sec. 3 we perform
two di�erent time discretizations of the continuous model and give a formal proof
of the well-posedness of each of the two schemes. Then, in Sec. 4 two fully discrete
schemes (i.e. both in time and space) are introduced and analyzed as well. Finally, Sec.
5 is devoted to numerical experiments. Details of the proofs and of the discretization
matrices are deferred to the appendices.

2. The quantum spin drift-di�usion model Let us start with the presen-
tation of the quantum di�usive model introduced in Ref. [2]. The model describes
the evolution of the spin-up and the spin-down densities n1 and n2, respectively,
of a two-dimensional electron gas by means of the following quantum drift-di�usion
equations:

∂tn1 +∇·(n1∇(A1−Vs))+
+α(A1−A2)Re(Dn21)−2αRe(n21D(A2−Vs))−

− 2α

ε
(A1−A2)Im(Jx21− iJ

y
21) = 0,

∂tn2 +∇·(n2∇(A2−Vs))+
+α(A1−A2)Re(Dn21)+2αRe(n21D(A1−Vs))+

+
2α

ε
(A1−A2)Im(Jx21− iJ

y
21) = 0.

(2.1)

Here, ∇= (∂x,∂y), D=∂x− i∂y, A1 and A2 denote the two Lagrange multipliers
(A1−Vs and A2−Vs being the chemical potentials), Vs stands for the self-consistent
potential arising from the electron-electron interaction and n21, J

x
21 and Jy21 are o�-

diagonal elements of the spin-density matrix N and the spin-current tensor J written
in (2.6) and (2.7), respectively. The parameter α>0 denotes the scaled Rashba con-
stant and ε>0 stands for the scaled Planck constant (for details regarding the scaling
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we refer to [2]). The self-consistent potential Vs is determined by the Poisson equation,

−γ2∆Vs=n1 +n2 , (2.2)

where γ>0 is proportional to the occurring Debye length. The system (2.1)-(2.2)
is closed through the fact that the electrons are assumed to be in a quantum local
equilibrium state at all times. This constraint allows one to relate the Lagrange
multipliers A= (A1,A2) to the spin densities n1 and n2 as well as to the spin-mixing
quantities n21 and J21, respectively. More precisely, if H(A) denotes the system
Hamiltonian, the equilibrium state operator is given by

%eq = exp(−H(A)), (2.3)

where exp(·) here denotes the operator exponential. In the present case, the Hamil-
tonian is given by

H(A) :D(H)⊂ (L2(Ω,C))2→ (L2(Ω,C))2 , D(H)⊂ (H2(Ω,C))2 ,

H(A) =

(
− ε

2

2 ∆+Vext,1 +A1 ε2α(∂x− i∂y)

−ε2α(∂x+ i∂y) − ε
2

2 ∆+Vext,2 +A2

)
, (2.4)

where Ω⊂ IR2 denotes the bounded domain where the electrons are assumed to be
con�ned. In what follows we shall denote x= (x,y)∈Ω. Hence, we introduced
two external, time-independent potentials Vext,1(x) and Vext,2(x) for the spin-up
and the spin-down electrons, respectively. Assuming that H(A) has a pure point
spectrum, the eigenvalues and the eigenvectors of H(A), denoted by λl(A) and
ψl(A) = (ψ1

l (A),ψ2
l (A)), l∈ IN, respectively, are solutions of

H(A)ψl(A) =λl(A)ψl(A) , (2.5)

and link the Lagrange multipliers to the spin-density matrix N as well as to the
spin-current matrix J , according to

N =
∑
l

e−λl

(
|ψ1
l |2 ψ1

l ψ
2
l

ψ2
l ψ

1
l |ψ2

l |2

)
=

(
n1 n21

n21 n2

)
, (2.6)

J =− iε
2

∑
l

e−λl

(
ψ1
l∇ψ1

l −ψ1
l∇ψ1

l ψ2
l∇ψ1

l −ψ1
l∇ψ2

l

ψ1
l∇ψ2

l −ψ2
l∇ψ1

l ψ2
l∇ψ2

l −ψ2
l∇ψ2

l

)
(2.7)

=

(
J1 J21

J21 J2

)
.

The formulas (2.6) and (2.7) are the standard textbook expressions for the spin-density
and the spin-current, respectively, corresponding to the density operator (2.3). The
system (2.1)-(2.2) is now closed through the non-local relations N(A) and J(A), given
by Eqs. (2.4)-(2.7). As we do not have a proof of the invertibility of these relations,
in other words whether it is possible to compute A(n1,n2), the equations (2.1) can
also be viewed as evolution equations for the Lagrange multipliers A1 and A2 rather
than for the spin densities n1 and n2. Indeed, the two time-discretizations of the
system (2.1)-(2.7), which will be developed in section 3, represent these two possible
viewpoints regarding the evolution equations (2.1).
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Let us now come to the boundary conditions of our problem. The considered
spatial domain Ω⊂ IR2 is assumed to be bounded with regular boundary ∂Ω. We
shall impose Dirichlet boundary conditions for the eigenvectors ψl,

ψl(x) = 0 for x∈∂Ω,

hence the current across the domain boundary ∂Ω is zero. As we will brie�y show at
the end of this section, the Hamiltonian (2.4) is not hermitian in (L2(Ω,C))2 when
imposing Neumann boundary conditions. The study of this problem as well as the
implementation of transparent boundary conditions can be matter for a future work.
The self-consistent potential Vs is supplemented with Dirichlet conditions too,

Vs(x) = 0 for x∈∂Ω.

The Lagrange multipliers A1 and A2 are allowed to vary freely at the boundary,
therefore we take Neumann conditions,

∇(A1(x)−Vs(x)) ·ν(x) = 0 for x∈∂Ω ,

∇(A2(x)−Vs(x)) ·ν(x) = 0 for x∈∂Ω .

Here, ν(x) denotes the outward normal to the boundary ∂Ω at x. As far as initial
conditions are concerned, one has two choices depending on the point of view of the
evolution equations (2.1). Since we do not know whether or not (2.6) is invertible, the
safe approach is to provide initial data for the chemical potentials. However, from the
viewpoint of device modeling, it is more appealing to start from initial spin densities.
We shall take the latter approach and assume that n1(0,x) and n2(0,x) are smooth
and bounded.

In summary, we have the following quantum spin-drift-di�usion model,

∂tn1 +∇·(n1∇(A1−Vs))+α(A1−A2)Re(Dn21) (2.8)

−2αRe(n21D(A2−Vs))−
2α

ε
(A1−A2)Im(Jx21− iJ

y
21) = 0,

∂tn2 +∇·(n2∇(A2−Vs))+α(A1−A2)Re(Dn21) (2.9)

+2αRe(n21D(A1−Vs))+
2α

ε
(A1−A2)Im(Jx21− iJ

y
21) = 0,

−γ2∆Vs=n1 +n2 , (2.10)

H(A)ψl(A) =λl(A)ψl(A) , (2.11)

N =
∑
l

e−λl(A)

(
|ψ1
l (A)|2 ψ1

l (A)ψ2
l (A)

ψ2
l (A)ψ1

l (A) |ψ2
l (A)|2

)
, (2.12)

J21 =− iε
2

∑
l

e−λl(A)
(
ψ1
l (A)∇ψ2

l (A)−ψ2
l (A)∇ψ1

l (A)
)
, (2.13)
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where the Hamiltonian H(A) is given by (2.4), and supplemented with the following
initial and boundary conditions,

n1(t= 0,x) =n0
1(x) , n2(t= 0,x) =n0

2(x) for x∈Ω ,

Vs(x) = 0 for x∈∂Ω ,

ψl(x) = 0 for x∈∂Ω , (2.14)

∇(A1(x)−Vs(x)) ·ν(x) = 0 for x∈∂Ω ,

∇(A2(x)−Vs(x)) ·ν(x) = 0 for x∈∂Ω .

Let us �nish this section, by remarking that the Hamiltonian (2.4) is not hermitian
in (L2(Ω,C))2 for Neumann boundary conditions. Indeed, let us consider

(χ,H(A)ψ)L2 =

∫
Ω

(χ1,χ2)

(
− ε

2

2 ∆ψ1 +(Vext,1 +A1)ψ1 +ε2α(∂x− i∂y)ψ2

− ε
2

2 ∆ψ2 +(Vext,2 +A2)ψ2−ε2α(∂x+ i∂y)ψ1

)
dx,

where (·, ·)L2 denotes the scalar product in (L2(Ω,C))2. Speci�cally, let us look at the
Rashba coupling terms,∫

Ω

(χ1(∂x− i∂y)ψ2−χ2(∂x+ i∂y)ψ1)dx

=−
∫

Ω

ψ2(∂x− i∂y)χ1dx+

∫
Ω

ψ1(∂x+ i∂y)χ2)dx

+

∫
∂Ω

χ1ψ2(1,−i) ·ν(x)dσ−
∫
∂Ω

χ2ψ1(1,i) ·ν(x)dσ.

(2.15)

Here, the boundary terms do not vanish when imposing Neumann conditions. How-
ever, if we considered the problem in the whole space Ω = IR2, the boundary terms
would vanish and the Hamiltonian would be hermitian. Considering the problem in
the whole IR2 means, from the numerical point of view, imposing transparent bound-
ary conditions for ψ.

3. Semi-discretization in time In this section we make a �rst step towards
a full space-time discretization of the system (2.8)-(2.14), by discretizing the time
domain. The purpose of the semi-discretization is two-fold. Firstly, since the space
discretization of the present two-dimensional spin model is quite involved, the func-
tional formalism which will be applied in this work becomes more transparent in the
semi-discrete case than in the fully discrete case. Secondly, in contrast to the continu-
ous case (2.8)-(2.14), existence and uniqueness of solutions of the semi-discrete system
can be proven. Two di�erent semi-discretizations will be presented. The �rst one was
studied in [8] for a scalar quantum di�usive model (without the Rashba spin-orbit
coupling). We shall use some of the techniques elaborated in [8] and apply them to
the present spin model. The second semi-discrete scheme is an explicit one which re-
lies heavily on the ability to invert the relation (2.12). Its bene�ts lie in the fact that,
when passing to the full discretization, its treatment is far less involved as compared
to the �rst scheme.

In the subsequent analysis, the identities

(A1−A2)Dnk21−2nk21D(A2) =D(nk21(A1−A2))−nk21D(A1 +A2),

(A1−A2)Dnk21 +2nk21D(A1) =D(nk21(A1−A2))+nk21D(A1 +A2),
(3.1)

will be helpful.
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3.1. A �rst semi-discrete system Suppose T >0 and let us discretize the
temporal interval [0,T ] in the following homogeneous way

tk =k∆t, k∈{0,1,. ..,K}, ∆t :=
T

K
.

Then, inspired by [8], we choose the following time-discretization of the continuous
problem (2.8)-(2.13),

n1(Ak+1)−nk1
∆t

+∇·(nk1∇(Ak+1
1 −V k+1

s ))+αRe[D(nk21(Ak+1
1 −Ak+1

2 ))]

−αRe[nk21D(Ak+1
1 +Ak+1

2 −2V k+1
s )] (3.2)

− 2α

ε
(Ak+1

1 −Ak+1
2 )Im(J21,k

x − iJ21,k
y ) = 0,

n2(Ak+1)−nk2
∆t

+∇·(nk2∇(Ak+1
2 −V k+1

s ))+αRe[D(nk21(Ak+1
1 −Ak+1

2 ))]

+αRe[nk21D(Ak+1
1 +Ak+1

2 −2V k+1
s )] (3.3)

+
2α

ε
(Ak+1

1 −Ak+1
2 )Im(J21,k

x − iJ21,k
y ) = 0,

−γ2∆V k+1
s =n1(Ak+1)+n2(Ak+1) , (3.4)

H(Ak+1)ψk+1
l =λk+1

l ψk+1
l , (3.5)

n1(Ak+1) =
∑
l

e−λ
k+1
l |ψ1,k+1

l |2 , n2(Ak+1) =
∑
l

e−λ
k+1
l |ψ2,k+1

l |2 . (3.6)

In this scheme one searches for the unknowns (Ak+1,V k+1
s ), given (Nk,Jk21). The

main di�culty concerning the solution of this system are the non-local relations (3.5)-
(3.6). We shall thus construct a mapping (A,Vs)∈ (H1(Ω,IR))3 7→F(A,Vs)∈ IR whose
unique minimum (Ak+1,V k+1

s ) is the solution of system (3.2)-(3.6). Once Ak+1 and
the eigenvalues λk+1

l respectively eigenvectors ψk+1
l are known, Eqs. (2.12)-(2.13)

can be used to compute (Nk+1,Jk+1
21 ) and the process can be repeated. Let us thus

introduce the two functionals

G : (L2(Ω,IR))2→ IR , F : (H1(Ω,IR))3→ IR ,

de�ned by

G(A) :=
∑
l

e−λl(A) , A∈ (L2(Ω,IR))2 , (3.7)

where λl(A) are the eigenvalues of the Hamiltonian (2.4), and

F(A,Vs) =G(A)+F1(A,Vs)+F2(A,Vs)+F3(A,Vs)+F4(A), (3.8)
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where

F1(A,Vs) :=
∆t

2

∫
Ω

nk1 |∇(A1−Vs)|2dx+
∆t

2

∫
Ω

nk2 |∇(A2−Vs)|2dx , (3.9)

F2(A,Vs) :=
γ2

2

∫
Ω

|∇Vs|2dx+

∫
Ω

nk1(A1−Vs)dx+

∫
Ω

nk2(A2−Vs)dx , (3.10)

F3(A,Vs) :=α∆tRe

{∫
Ω

nk21(A1−A2)D(A1 +A2−2Vs)dx

}
, (3.11)

F4(A) :=
α∆t

ε
Im

{∫
Ω

(A1−A2)2(J21,k
x − iJ21,k

y )dx

}
. (3.12)

The computation of the �rst and second Gateaux derivative of the functionals (3.7)-
(3.12) can be found in Appendix B and C, respectively. One can immediately see that
a solution (Ak+1,V k+1

s ) of the semi-discrete system (3.2)-(3.6) satis�es

dF(Ak+1,V k+1
s )(δA,δVs) = 0, ∀(δA,δVs)∈ (H1(Ω,IR))3 ,

and inversely. Thus, it remains to show that F has a unique extremum (minimum).
This can be achieved in two steps, as it is detailed in Appendix C. First we show that,
under suitable assumptions, the functional F is strictly convex. Then it is su�cient
to show that F is coercive to obtain the existence and uniqueness of the extremum
(Ak+1,V k+1

s ), solution of the system (3.2)-(3.6) (see Appendix C).

3.2. A second semi-discrete system We suggest here an alternative way to
discretize in time the quantum drift-di�usion model (2.8)-(2.14). It is based on the
point of view that one advances the spin densities in time, rather than the chemical
potentials. We shall implement a forward Euler scheme:

nk+1
1 −nk1

∆t
+∇·(nk1∇(Ak1−V ks ))+αRe{D(nk21(Ak1−Ak2))} (3.13)

−αRe(nk21D(Ak1 +Ak2−2V ks ))− 2α

ε
(Ak1−Ak2)Im(Jx,k21 − iJ

y,k
21 )

= 0,

nk+1
2 −nk2

∆t
+∇·(nk2∇(Ak2−V ks ))+αRe{D[nk21(Ak1−Ak2)]} (3.14)

+αRe[nk21D(Ak1 +Ak2−2V ks )]+
2α

ε
(Ak1−Ak2)Im(Jx,k21 − iJ

y,k
21 )

= 0,

−γ2∆V ks =nk1 +nk2 , (3.15)

H(Ak)ψkl =λkl ψ
k
l , (3.16)

N =
∑
l

e−λ
k
l

 |ψ1,k
l |2 ψ1,k

l ψ2,k
l

ψ2,k
l ψ1,k

l |ψ2,k
l |2

 , (3.17)
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Jk21 =− iε
2

∑
l

e−λ
k
l

(
ψ1,k
l ∇ψ

2,k
l −ψ

2,k
l ∇ψ

1,k
l

)
. (3.18)

In this case, given the spin-densities (nk1 ,n
k
2), one �rst uses the Poisson equation

(3.15) to get V ks , then inverts the relations (3.16)-(3.17) in order to get the chemical
potentials (Ak1 ,A

k
2). Finally one advances in time, using the drift-di�usion equations

(3.13)-(3.14) in order to get the new spin densities (nk+1
1 ,nk+1

2 ), and then one repeats
the steps. The inversion of the non-local relation (3.16)-(3.17) can be achieved by
minimizing the functional Gn : (L2(Ω,IR))2→ IR, de�ned by

Gn(A) :=G(A)+

∫
Ω

nk1A1dx+

∫
Ω

nk2A2dx (3.19)

Indeed, the �rst derivative of this functional reads

dGn(A)(δA) =−
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx

+

∫
Ω

nk1δA1dx+

∫
Ω

nk2δA2dx ,

(3.20)

which clearly implies that its zeros are solutions of (3.16)-(3.17). As shown in Ap-
pendix B, the functional Gn is strictly convex and coercive, admitting hence a unique
extremum.
Remark 3.1. The two semi-discrete systems presented in this section conserve the
total mass (n1 +n2) because of the particular choice of Dirichlet boundary conditions
for the eigenvectors ψl of the Hamiltonian (2.4). This can be obtained by integrating
the sum of the semi-discrete drift-di�usion equations for n1 and n2, Eqs. (3.2)-(3.3)
or (3.13)-(3.14), respectively, over the domain Ω. The remaining boundary term is of
the form ∫

∂Ω

n21(A1−A2)(1,−i) ·ν(x)dσ,

which does not vanish for Neumann boundary conditions. This is in accordance with
the remark at the end of Section 2, where we showed that Neumann conditions for ψl
lead to a non-hermitian Hamiltonian (2.4) in (L2(Ω,C))2.

4. Fully discrete system This section is devoted to the full discretization of
the continuous spin QDD model (2.8)-(2.14). The time discretization was done in the
previous section, now we focus on the space discretization. Let x∈Ω = [0,1]× [0,1]
with the discretization

xij = ((j−1)∆x, (i−1)∆y ) , j∈{1,2,. ..,M}, i∈{1,2,. ..,N},

∆x :=
1

M−1
, ∆y :=

1

N−1
.

For functions f(x) on Ω we write f(xij) =fij . A function f(x) that is subject to
homogenous Dirichlet boundary conditions on ∂Ω satis�es

f1j =fNj = 0 ∀j∈{1,2,. ..,M} , fi1 =fiM = 0 ∀i∈{1,2,. ..,N} .

We introduce the following index transformation,

(i,j) 7→p ∀ i∈{2,. ..,N−1} , j∈{2,. ..,M−1} ,
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de�ned by

p= (N−2)(j−2)+ i−1 , p= 1,. ..,P , P := (N−2)(M−2).

For discrete functions (fij)
N−1,M−1
i,j=2 in Ω the following vector notation will be imple-

mented:

f̂ := (fp)
P
p=1 ∈ CP . (4.1)

The corresponding euclidean scalar product is denoted by

(f̂ , ĝ)P = ∆x∆y
∑
p

fpgp= ∆x∆y

N−1∑
i=2

M−1∑
j=2

fijgij .

4.1. A �rst fully discrete system (scheme 1) The discretization matrices
D±x , D

±
y , Dx, Dy, D̃x, D̃y and ∆dir, used in the following, are de�ned in Appendix D.

In view of the boundary conditions (2.14), we choose the following space discretization
of the semi-discrete system (3.2)-(3.6),

n̂1(Âk+1
1 ,Âk+1

2 )− n̂k1
∆t

− 2α

ε
(Âk+1

1 −Âk+1
2 )◦Im(Ĵ21,k

x − iĴ21,k
y ) (4.2)

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk+1

1 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk+1

1 − V̂ k+1
s )]

−αRe
{
D̃T
x [n̂k21 ◦(Âk+1

1 −Âk+1
2 )]

}
+αRe

{
iD̃T

y [n̂k21 ◦(Âk+1
1 −Âk+1

2 )]
}

−αRe
{
n̂k21 ◦ [D̃x(Âk+1

1 +Âk+1
2 −2V̂ k+1

s )]
}

+αRe
{
in̂k21 ◦ [D̃y(Âk+1

1 +Âk+1
2 −2V̂ k+1

s )]
}

= 0,

n̂2(Âk+1
1 ,Âk+1

2 )− n̂k2
∆t

+
2α

ε
(Âk+1

1 −Âk+1
2 )◦Im(Ĵ21,k

x − iĴ21,k
y ) (4.3)

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk+1

2 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk+1

2 − V̂ k+1
s )]

−αRe
{
D̃T
x [n̂k21 ◦(Âk+1

1 −Âk+1
2 )]

}
+αRe

{
iD̃T

y [n̂k21 ◦(Âk+1
1 −Âk+1

2 )]
}

+αRe
{
n̂k21 ◦ [D̃x(Âk+1

1 +Âk+1
2 −2V̂ k+1

s )]
}

−αRe
{
in̂k21 ◦ [D̃y(Âk+1

1 +Âk+1
2 −2V̂ k+1

s )]
}

= 0,
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−γ2∆dirV̂
k+1
s = n̂1(Âk+1

1 ,Âk+1
2 )+ n̂2(Âk+1

1 ,Âk+1
2 ) , (4.4)

H(Âk+1
1 ,Âk+1

2 )

(
ψ̂1,k+1
l

ψ̂2,k+1
l

)
=λk+1

l

(
ψ̂1,k+1
l

ψ̂2,k+1
l

)
, (4.5)

n̂1(Âk+1
1 ,Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂1,k+1

l ◦ ψ̂1,k+1
l , (4.6)

n̂2(Âk+1
1 ,Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂2,k+1

l ◦ ψ̂2,k+1
l , (4.7)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (4.8)

Ĵx,k21 =− iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂2,k

l )◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dx(ψ̂1,k

l )
]
, (4.9)

Ĵy,k21 =− iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂2,k

l )◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dy(ψ̂1,k

l )
]
. (4.10)

Here, the operator �◦� symbolizes the component by component multiplication of two
vectors in CP and the Hamiltonian H(Âk+1) is given by

H(Âk+1
1 ,Âk+1

2 ) =

=

− ε22 ∆dir+dg(V̂ext,1 +Âk+1
1 ) ε2α(Dx− iDy)

−ε2α(Dx+ iDy) − ε
2

2 ∆dir+dg(V̂ext,2 +Âk+1
2 )

 , (4.11)

where dg(f̂) stands for a diagonal P ×P matrix where the diagonal elements are

the components fp of f̂ . The scheme (4.2)-(4.10) is consistent with the continuous
model (2.8)-(2.14). It is of �rst order in time and of second order in space. Due
to its rather implicit nature, the scheme (4.2)-(4.10) shows better stability proper-
ties than the forward Euler scheme (c.f. numerical tests, section 5). The solution
(Âk+1

1 ,Âk+1
2 ,V̂ k+1

s ) of the system (4.2)-(4.10) is the minimizer of the following dis-

crete functional F̂(Â1,Â2,V̂s) : IR3P→ IR,

F̂(Â1,Â2,V̂s) : = Ĝ(Â1,Â2)+ F̂1(Â1,Â2,V̂s)+

+ F̂2(Â1,Â2,V̂s)+ F̂3(Â1,Â2,V̂s)+ F̂4(Â1,Â2),
(4.12)

where

Ĝ(Â1,Â2) :=

2P∑
l=1

e−λl(Â1,Â2) , (4.13)
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F̂1(Â1,Â2,V̂s) :=
∆t

4

[
(n̂k1 ◦D+

x (Â1− V̂s),D+
x (Â1− V̂s))P

+(n̂k1 ◦D−x (Â1− V̂s),D−x (Â1− V̂s))P +(n̂k1 ◦D+
y (Â1− V̂s),D+

y (Â1− V̂s))P
+(n̂k1 ◦D−y (Â1− V̂s),D−y (Â1− V̂s))P +(n̂k2 ◦D+

x (Â2− V̂s),D+
x (Â2− V̂s))P

+(n̂k2 ◦D−x (Â2− V̂s),D−x (Â2− V̂s))P +(n̂k2 ◦D+
y (Â2− V̂s),D+

y (Â2− V̂s))P

+(n̂k2 ◦D−y (Â2− V̂s),D−y (Â2− V̂s))P
]
, (4.14)

F̂2(Â1,Â2,V̂s) : = (n̂k1 ,Â1− V̂s)P +(n̂k2 ,Â2− V̂s)P

+
γ2

2

[
(Db

xV̂s,D
b
xV̂s)P +(Db

yV̂s,D
b
yV̂s)P

]
+

∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj

(4.15)

F̂3(Â1,Â2,V̂s) :=α∆tRe
[(
n̂k21 ◦(Â1−Â2),D̃x(Â1 +Â2−2V̂s)

)
P

− i
(
n̂k21 ◦(Â1−Â2),D̃y(Â1 +Â2−2V̂s)

)
P

] (4.16)

F̂4(Â1,Â2) :=
α∆t

ε
Im
[(

(Â1−Â2)◦(Â1−Â2), Ĵ21,k
x − iĴ21,k

y

)
P

]
, (4.17)

and the further discretization matrices Db
x and Db

y are also de�ned in Appendix D.
Using the relation

−(V̂s,∆dirV̂s)P = (Db
xV̂s,D

b
xV̂s)P +(Db

yV̂s,D
b
yV̂s)P

+
∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj ,

(4.18)

it can be readily veri�ed that a solution (Âk+1
1 ,Âk+1

2 ,V̂ k+1
s ) of (4.2)-(4.10) satis�es

dF̂(Âk+1
1 ,Âk+1

2 ,V̂ k+1
s )(δÂ,δV̂s) = 0 ∀(δÂ1,δÂ2,δV̂s)∈ IR3P .

4.2. A second fully discrete system (scheme 2) We chose the following
space discretization of the forward Euler scheme (3.13)-(3.18):
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n̂k+1
1 − n̂k1

∆t
− 2α

ε
(Âk1−Âk2)◦Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk1− V̂ ks )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk1− V̂ ks )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk1− V̂ ks )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk1− V̂ ks )]

−αRe
{
D̃T
x [n̂k21 ◦(Âk1−Âk2)]

}
+αRe

{
iD̃T

y [n̂k21 ◦(Âk1−Âk2)]
}

−αRe
{
n̂k21 ◦ [D̃x(Âk1 +Âk2−2V̂ ks )]

}
+αRe

{
in̂k21 ◦ [D̃y(Âk1 +Âk2−2V̂ ks )]

}
= 0, (4.19)

n̂k+1
2 − n̂k2

∆t
+

2α

ε
(Âk1−Âk2)◦Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk2− V̂ ks )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk2− V̂ ks )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk2− V̂ ks )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk2− V̂ ks )]

−αRe
{
D̃T
x [n̂k21 ◦(Âk1−Âk2)]

}
+αRe

{
iD̃T

y [n̂k21 ◦(Âk1−Âk2)]
}

+αRe
{
n̂k21 ◦ [D̃x(Âk1 +Âk2−2V̂ ks )]

}
−αRe

{
in̂k21 ◦ [D̃y(Âk1 +Âk2−2V̂ ks )]

}
= 0, (4.20)

−γ2∆dirV̂
k
s = n̂k1 + n̂k2 , (4.21)

H(Âk1 ,Â
k
2)

(
ψ̂1,k
l

ψ̂2,k
l

)
=λkl

(
ψ̂1,k
l

ψ̂2,k
l

)
, (4.22)

n̂k1 =
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l , n̂k2 =

∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l , (4.23)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (4.24)
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Ĵx,k21 =− iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂2,k

l )◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dx(ψ̂1,k

l )
]
, (4.25)

Ĵy,k21 =− iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂2,k

l )◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dy(ψ̂1,k

l )
]
. (4.26)

Here, the Hamiltonian H is the same discrete Hamiltonian (4.11) as in the �rst fully
discrete scheme. Clearly, the scheme (4.19)-(4.26) is consistent with the continuous
model (2.8)-(2.14). It is of �rst order in time and of second order in space. A
drawback of the explicit nature of the forward Euler scheme (3.13)-(3.18) is that its
full discretization is only conditionally stable, i.e. the space-time grid must be chosen
in such a way that a CFL condition is ful�lled.

The solution of this scheme requires the inversion of the non-local relation (4.22)-

(4.23) at each time step. For this let us de�ne the discrete version Ĝn : IR2P→ IR of
(3.19),

Ĝn(Â1,Â2) := Ĝ(Â1,Â2)+(n̂k1 ,Â1)P +(n̂k2 ,Â2)P . (4.27)

It can be easily veri�ed that the �rst derivative of this functional is given by

dĜn(Â1,Â2)(δÂ1,δÂ2) =

(
−
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l + n̂k1 ,δÂ1

)
P

+

(
−
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l + n̂k2 ,δÂ2

)
P

,

(4.28)

whose zeros are hence the solutions of (4.22)-(4.23).
Remark 4.1. The Eqs. (3.13)-(3.14) contain a term of conservative form ∇·
(nj∇Aj). Therefore, appropriate discretizations for conservation laws [11], such as
Lax-Friedrichs, should be used to ensure numerical stability. Nevertheless, we em-
ployed a forward Euler schemes with central di�erence in space, which is known to be
unconditionally unstable for (linear) hyperbolic equations. In the numerics section 5,
the explicit scheme is found to be stable for small values of the semiclassical parame-
ter, i.e. ε≤0.5. An explanation for the observed stability can be given by regarding the
Lagrange multipliers Aεj =Aεj(n1,n2) in the semi-classical limit ε→0. As described in
[2], the correct semi classical expansion reads

Aεj(n1,n2) =−lognj+
ε2

6

∆
√
nj

√
nj

+O(ε2α2) . (4.29)

Therefore, in the limit ε→0, the conservative term reads

∇·(nεj∇Aεj)
ε→0−−−→ −∇·(nj∇lognj) . (4.30)

Hence, for small ε, the Eqs. (3.13)-(3.14) resemble a heat equation or a drift-di�usion
equation, respectively, where the di�usive term is written in the non-standard form
(4.30). In this case a forward Euler scheme with central �nite di�erence space deriva-
tives is stable with respect to a CFL condition of the form ∆t≤d∆x2 for some constant
d.
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4.3. Initialization of scheme 1 As was brie�y mentioned in Sec. 2, a natural
way to initialize the system (4.2)-(4.10) would be to start from given initial chemical
potentials Â0

1 and Â0
2, compute the corresponding spin- and current densities and

subsequently begin the iteration. However, from an experimental point of view it is
more appealing to start from the initial spin densities n̂0

1 and n̂0
2. The problem in the

latter approach is the lack of information about the initial spin-mixing quantities n̂0
21,

Ĵx,021 and Ĵy,021 , which are not directly related to the spin densities. At t= t0 it is thus
necessary to do a half step of scheme 2, which means to minimize the functional (4.27)
in order to obtain the chemical potentials corresponding to the initial spin densities
n̂0

1 and n̂0
2. One can then proceed according to scheme 1.

5. Numerical results This part deals with the numerical study of the two
fully discrete schemes introduced in the previous section. In the spin-less case it is well
known that the steady-state solutions (∂tn= 0) of quantum drift-di�usion models are
solutions of the corresponding stationary Schrödinger-Poisson problem [15, 16]. We
shall check whether this convergence in the long-time limit is achieved by the numerical
schemes developed in this work for the spin-dependent case. Tests are performed for
di�erent values of the semiclassical parameters ε, the Rashba coupling parameter α
and the discretization parameters ∆x and ∆t. Moreover, the performance of the semi-
implicit scheme 1 (c.f. section 4.1) will be compared to the performance of the explicit
scheme 2 (c.f. section 4.2). In what follows, the spin-dependent external potentials
are chosen as

Vext,1 = 0.0 , Vext,2 = sin(2πx)sin(2πy). (5.1)

Using these external potentials, steady-state solutions were obtained by solving the
stationary Schrödinger-Poisson (SP) system (4.4)-(4.7). In the discrete Hamiltonian
(4.11) we set Âk+1

1 = Âk+1
2 = V̂ ks , where k now denotes the index of the SP-iteration.

We use a space grid withN =M = 41 points in each direction and set γ= 1 (throughout
this section). During SP-iteration, the total mass density was renormalized to 1.0
after each solution of the eigenvalue problem. We set V̂ 0

s = 0.0 and iterated until
the change in the spin densities was less than 10−6 from one iteration to the next.
Obtained solutions are denoted with an index 'SP' and are depicted in Figure 5.1 (for
α= 1 and di�erent values ε) and in Figure 5.2 (for ε= 0.2 and di�erent values α).

In view of the the external potentials given in (5.1), it is reasonable to obtain max-
ima of the total mass density nSPtot =nSP1 +nSP2 at the minima of Vext,2, namely (x,y) =
(1/4,3/4) and (x,y) = (3/4,1/4). Clearly, the spin polarization nSPpol =nSP1 −nSP2 has
minima at those points. In Figure 5.1 we remark that the larger the semiclassical
parameter ε becomes, the less apparent is the in�uence of the external potentials on
the steady state. This is expected since, in the quantum regime, electrons have the
ability to 'tunnel' potential barriers, which therefore tend to have a lesser impact on
the electron distribution. Additionally, from Figure 5.2 we learn that increased values
of the Rashba coupling parameter α lead to lesser spin polarization in the steady
state. This is physically reasonable because Rashba spin-orbit coupling is a source of
spin depolarization [21]. On the other hand, the total mass density is hardly a�ected
by a change of α.

Let us present a few computational details concerning the numerics. The devel-
oped algorithms were implemented in the Fortran 90 language. Eigenvalue problems
were solved using the routine 'zheev.f90' from the Lapack library. The solution of
scheme 1, equations (4.2)-(4.10), was achieved by minimizing the discrete functional
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Fig. 5.1. Solutions of the stationary Schrödinger-Poisson system (4.4)-(4.7) with external
potentials (5.1) and A1 =A2 =Vs. The number of mesh points is N =M = 41. Parameters are α=
1.0 and ε ranging from 0.1 (line 1) to 1.0 (line 4). nSP

1 +nSP
2 is the total mass density, nSP

1 −nSP
2

denotes the spin polarization and V SP
s is the self-consistent electric potential.
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Fig. 5.2. Solutions of the stationary Schrödinger-Poisson system (4.4)-(4.7) with external
potentials (5.1) and A1 =A2 =Vs. The number of mesh points is N =M = 41. Parameters are
ε= 0.2 and α ranging from 1.0 (line 1) to 20.0 (line 4). nSP

1 +nSP
2 is the total mass density,

nSP
1 −nSP

2 denotes the spin polarization and V SP
s is the self-consistent electric potential.
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(4.12) at each time step tk, k>0. At t0 the system was initialized as detailed in Sub-
sec. 4.3. Each minimization problem was solved by a conjugate gradient method in
the parameter space IR3P (or IR2P for scheme 2, respectively). We denote vectors in
the parameter space by capital letters, i.e. X= (Â1,Â2,V̂s), X ∈ IR3P in scheme 1 and
X= (Â1,Â2), X ∈ IR2P in scheme 2. In the parameter space the gradient is denoted
by '∇X ' and the usual euclidean scalar product is denoted by '·'. In order to �nd the
line minimum of ∇XF̂ ·Yn, where Yn denotes the search direction (|Yn|= 1) during
the n-th step of the conjugate gradient scheme, a Newton method was employed. The
derivative of ∇XF̂ ·Yn in the direction Yn was computed numerically with a forward
discretization and the small step size εNT = 10−3,

(∇XF̂(X) ·Yn)′≈ ∇XF̂(X+εNTYn) ·Yn−∇XF̂(X) ·Yn
εNT

. (5.2)

The same method was applied to the functional Ĝn in scheme 2. The Newton method
was considered converged when |∇XF̂(X) ·Yn|<10−10. We established two conver-
gence criteria for the conjugate gradient method. In scheme 1, the functional (4.12)
was considered optimized when the maximal change in the vector (Â1,Â2,V̂s) was less
than 10−5 from one conjugate gradient step to the next. On the other hand, in scheme
2 and during initialization, the functional (4.27) was considered optimized when

||∇X Ĝn||∞<10−5 . (5.3)

In all tests performed the initial spin densities were two Gaussians centered at (x,y) =
(0.5,0.5),

n0
1(x,y) =n0

2(x,y) =
1

0.12π
exp

(
− (x−0.5)2

0.06
− (y−0.5)2

0.06

)
. (5.4)

The initial data for n1 and n2 were discretized according to the conventions at the
beginning of section 4. The initial total mass of the system was 1.0. We recall that
in all simulations, the externally applied potentials are given by (5.1).

5.1. Long-time convergence towards steady state. We shall test the
relaxation of the initial data (5.4) towards the steady-state solutions 'SP' shown in
Figure 5.1 and Figure 5.2, respectively, for di�erent values of the parameters ε and
α. Simulations are performed with the semi-implicit scheme 1, Eqs. (4.2)-(4.10). We
choose a time step ∆t= 10−2 and simulate until the �nal time tf = 0.2, i.e. 20 time
steps. The number of grid points in each direction is N =M = 21, thus ∆x= ∆y=
0.05. The explicit scheme 2, along with di�erent choices for the time and the space
discretization, will be tested in the next subsection.

Figure 5.3 demonstrates the long-time convergence of the Gaussian initial state
towards the stationary Schrödinger-Poisson states for various choices of the semiclas-
sical parameter ε and the Rashba coupling parameter α. Convergence is with respect
to the L2-norm. The three columns of sub-�gures show the L2-errors over time of
the total mass density ||ntot−nSPtot ||, of the spin polarization ||npol−nSPpol || and of the

self-consistent potential ||Vs−V SPs ||, respectively. As can be seen in sub�gure (a), re-
laxation is faster and the reached accuracy (the 'plateau') is more favorable for larger
values of ε (quantum regime). By contrast, from sub�gure (b) one obtains that for
ε= 0.2 the rate of convergence is hardly dependent on the Rashba coupling parameter
α. Moreover, the reached accuracy (plateau) gets worse as α increases.
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(a) Numerical convergence (in L2-norm) for α= 1.0 (scheme 1).

(b) Numerical convergence (in L2-norm) for ε= 0.2 (scheme 1).

Fig. 5.3. Numerical convergence (in L2-norm) over time of the initial state (5.4) to the steady
states 'SP' (solutions of the stationary Schrödinger-Poisson problem depicted in Figures 5.1 and 5.2)
computed with the semi-implicit scheme 1. Simulation results are shown in (a) for di�erent values of
ε (α= 1.0) and in (b) for di�erent values of α (ε= 0.2). Numerical parameters were ∆x= ∆y= 0.05
and ∆t= 10−2.

In order to highlight the obtained long-time convergence, we show the evolution
of the total mass density ntot=n1 +n2, the spin polarization npol=n1−n2 and the
self-consistent potential Vs for parameters ε= 0.1 and α= 1.0 in Figures 5.4 and 5.5,
respectively.

5.2. Parameter studies for the schemes 1 and 2. It is the aim of this sub-
section to compare the performances of the semi-implicit scheme 1, Eqs. (4.2)-(4.10),
and the explicit scheme 2, Eqs. (4.19)-(4.26), by means of long-time simulations until
the �nal time tf = 0.2. Various values of the parameters ε and α will be tested. More-
over, di�erent space discretizations shall be applied in order to check for numerical
convergence as ∆x→01. As in the previous subsection, the external potentials are
given by (5.1) and we use the initial spin densities (5.4).

For α= 1.0 and various choices of the parameters ε and ∆x, a comparison re-
garding the computational cost of the schemes 1 and 2 is given in Table 5.1. The
CPU-time tCPU has been normalized to a run with the semi-implicit scheme with
parameters ε= 1.0, ∆x= 0.1 and ∆t= 10−2. A few remarks concerning Table 5.1:

1. The explicit scheme is subjected to a stability condition with a critical time
step ∆tc for stability that depends on the grid size ∆x as well as on the

1We remark that due to the large number of eigenvalue problems to be solved at each time step,
mesh re�nement beyond ∆x= 0.05 was not feasible. For example, for N =M = 41, the solution of
one eigenvalue problem takes about 1500 seconds, which is required approximately 500-1000 times
to arrive at tf = 0.2.



20 Numerical study of a spin QDD model

Fig. 5.4. Evolution of the total mass density of the initial state (5.4) towards the steady state
'SP' computed from the stationary Schrödinger-Poisson system depicted in Figure 5.1. Parameters
were ε= 0.1, α= 1.0, ∆x= ∆y= 0.05, ∆t= 10−2. The simulation was performed with the semi-
implicit scheme 1.
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(a) Evolution of the spin polarization for ε= 0.1.

(b) Evolution of the self-consistent electric potential for ε= 0.1.

Fig. 5.5. Evolution of the initial state (5.4) towards the steady state 'SP' computed from the
stationary Schrödinger-Poisson system depicted in Figure 5.1. Parameters were α= 1.0, ∆x= ∆y=
0.05, ∆t= 10−2. The simulation was performed with the semi-implicit scheme 1.
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Table 5.1. Comparison of the performance of the semi-implicit scheme 1, Eqs. (4.2)-(4.10),
with the explicit scheme 2, Eqs. (4.19)-(4.26). The computational time tCPU has been normalized to
a run with the parameter set in line four of this table. Final simulation time was tf = 0.2, moreover
α= 1.0 and ∆x= ∆y in all simulations. '#CG (init.)' stands for the number of conjugate gradient
steps during the initialization and 'avg.#CG' denotes the average number of conjugate gradient
steps in one time step. Parameters shown here were used to obtain the results depicted in Figure
5.6.

scheme ε ∆x ∆t #CG (init.) avg.#CG tCPU

semi-implicit 0.1 0.10 10−2 81 79.9 1.7
semi-implicit 0.2 0.10 10−2 71 95.8 2.0
semi-implicit 0.5 0.10 10−2 159 71.1 1.3
semi-implicit 1.0 0.10 10−2 226 45.7 1.0

explicit 0.1 0.10 10−4 81 4.4 9.2
explicit 0.2 0.10 10−4 71 5.1 10.3
explicit 0.5 0.10 10−5 159 1.9 31.9
explicit 1.0 0.10 10−5 226 1.5 25.6

semi-implicit 0.1 0.07 10−2 118 127.6 20.0
semi-implicit 0.2 0.07 10−2 177 168.7 23.5
semi-implicit 0.5 0.07 10−2 357 138.5 17.8
semi-implicit 1.0 0.07 10−2 410 89.9 13.4

explicit 0.1 0.07 10−4 118 5.3 78.6
explicit 0.2 0.07 5 ·10−5 177 6.0 154.6
explicit 0.5 0.07 10−5 357 2.2 264.8
explicit 1.0 0.07 10−6 410 1.2 1292.3

semi-implicit 0.1 0.05 10−2 195 234.1 288.7
semi-implicit 0.2 0.05 10−2 487 326.0 358.9
semi-implicit 0.5 0.05 10−2 675 278.8 285.9
semi-implicit 1.0 0.05 10−2 1045 175.2 229.8

semiclassical parameter ε. For all values of ε and ∆x studied, it can be seen
in Table 5.1 that the time step in the explicit scheme had to be chosen con-
siderably smaller than in the semi-implicit scheme in order to have stability.
Moreover, we �nd that the explicit scheme is unstable for large values of ε, c.f.
Remark 4.1. This can be seen from the fact that as ε passes from 0.1 to 1.0
for ∆x= 0.07, the time step has to be increased by two orders of magnitude
to have stability, a typical feature of unstable schemes. Indeed, one observes
instabilities when decreasing ∆x further (and tightening the convergence cri-
terion (5.3), see point 2. below).

2. For ε≥0.5, the time step for the explicit scheme had to be chosen equal or
smaller than the convergence criterion (5.3), thus (∆t≤10−5). This manifests
itself in the small average of conjugate gradient steps per time step, avg.#CG,
which means that the Functional Ĝn might not have been properly minimized
at each time step. Indeed, this expected lack of accuracy is seen in the
Figures 5.6(c) and 5.6(d). Improved accuracy can be achieved by tightening
the convergence criterion, which in turn leads to considerable increase in
computational cost. As mentioned above, for ε≈1 and ∆x→0 the explicit
scheme is unstable.

3. Regarding CPU-time, the semi-implicit scheme is clearly favorable compared
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to the explicit scheme for long-time simulations, for all parameter values
considered.

4. The computational cost depends strongly on ∆x for both schemes, see foot-
note 1.

For the parameter sets displayed in Table 5.1, the numerical convergence in L2-
norm over time of the initial state (5.4) towards the stationary Schrödinger-Poisson
states shown in Figure 5.1 is depicted in Figure 5.6. One observes that the explicit
scheme, with a time step much smaller than the semi-implicit scheme, converges faster.
The achieved accuracy in the steady state is almost identical for the two schemes for
ε≤0.2, while it is much worse for the explicit scheme for ε= 1.0, as was discussed in
point 2 above. Regarding the semi-implicit scheme, it is obtained that mesh re�ne-
ment leads to a better accuracy in the steady-state for all ε considered. Hence, one
expects convergence of numerical solutions as ∆x→0, the order of convergence being
dependent on the semiclassical parameter ε. Finally, in Figure 5.7 we show numerical
convergence towards steady-sate in the case ε= 0.2 for the two schemes with di�erent
values of ∆x and the Rashba coupling parameter α. Other parameters were chosen
as in Table 5.1 for ε= 0.2.

6. Conclusion In this work have carried out a numerical investigation of the
quantum di�usive spin model introduced in Ref. [2] and summarized in equations
(2.8)-(2.14). We formally proved (under suitable assumptions) the existence and
uniqueness of a solution of two time-discrete versions of this model, on the basis
of a functional argument. Furthermore, �nite di�erence approximations of space
derivatives resulted in two fully discrete schemes which were applied to simulate the
evolution of a Rashba electron gas con�ned in a bounded domain and subjected to
spin-dependent external potentials. The �rst scheme is semi-implicit and advances in
time the spin chemical potentials, whereas the second scheme is Euler explicit and
advances in time the spin-up and spin-down densities, respectively. The numerical
convergence in the long-time limit of a Gaussian initial condition towards the solution
of the corresponding stationary Schrödinger-Poisson problem was demonstrated for
di�erent values of the parameters ε (semiclassical parameter), α (Rashba coupling
parameter), ∆x (grid spacing) and ∆t (time step). In contrast to the �rst scheme
the explicit scheme is subjected to a stability condition, which makes it less appealing
for long-time simulations. Our results show that the quantum drift-di�usion model
considered here can be applied for the numerical study of spin-polarized e�ects due
to Rashba spin-orbit coupling and, thus, appears to bene�t the design of novel spin-
tronics applications.

Appendix A. Perturbed eigenvalue problem. This section is devoted to the
computation of the derivatives dλl(A)(δA) and dψl(A)(δA) of the eigenvalues and
eigenfunctions, respectively, of the Hamiltonian (2.4), when a small perturbation δA
of the chemical potential A is applied. Let us de�ne

δH=

(
δA1 0

0 δA2

)
, (1.1)

and start from

(H+δH)(ψl+dψl) = (λl+dλl)(ψl+dψl) (1.2)
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(a) Numerical convergence (in L2-norm) for ε= 0.1.

(b) Numerical convergence (in L2-norm) for ε= 0.2.

(c) Numerical convergence (in L2-norm) for ε= 0.5.

(d) Numerical convergence (in L2-norm) for ε= 1.0.

Fig. 5.6. Numerical convergence (in L2-norm) over time of the initial state (5.4) to the steady
states 'SP' (solutions of the stationary Schrödinger-Poisson problem depicted in Figure 5.1) for
α= 1.0 and di�erent values of ε. Results are shown for the semi-implicit scheme (S1) as well as for
the explicit scheme (S2) for di�ferent space discretizations. The numerical parameters concerning
this study can be found in Table 5.1.
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(a) Numerical convergence (in L2-norm) for α= 5.0.

(b) Numerical convergence (in L2-norm) for α= 10.0.

(c) Numerical convergence (in L2-norm) for α= 20.0.

Fig. 5.7. Numerical convergence (in L2-norm) over time of the initial state (5.4) to the steady
states 'SP' (solutions of the stationary Schrödinger-Poisson problem depicted in Figure 5.2) for
ε= 0.2 and di�erent values of α. Results are shown for the semi-implicit scheme (S1) as well as for
the explicit scheme (S2) for di�ferent space discretizations. The numerical parameters concerning
this study were the same as those used to obtain Figure 5.4.

where H denotes the Hamiltonian (2.4). Using Hψl=λlψl one obtains, up to �rst
order in the variations,

Hdψl+δHψl=λldψl+dλlψl . (1.3)

Taking now the scalar product with ψk and using the orthonormalitiy of the eigen-
functions,

(ψk,ψl)L2 =

∫
Ω

(ψ1
kψ

1
l +ψ2

kψ
2
l )dx= δkl , (1.4)
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one obtains

(ψk,Hdψl)L2 +(ψk,δHψl)L2 =λl(ψk,dψl)L2 +dλlδkl . (1.5)

Since H is hermitian we have

(ψk,Hdψl)L2 = (Hψk,dψl)L2 =λk(ψk,dψl)L2 , (1.6)

and (1.5) can be written as

(ψk,δHψl)L2 = (λl−λk)(ψk,dψl)L2 +dλlδkl . (1.7)

For l=k we obtain

dλl(A)(δA) = (ψl,δHψl)L2 =

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx , (1.8)

and for l 6=k, assuming that the spectrum of H is non-degenerate, i.e. λl 6=λk, for
l 6=k, one obtains

(ψk,dψl)L2 =
(ψk,δHψl)L2

λl−λk
. (1.9)

Since (1.9) is the projection of dψl on the k-th basis vector of the eigenbasis of H we
may write

dψl(A)(δA) =
∑
k 6=l

ψk
λl−λk

(ψk,δHψl)L2 = (1.10)

=
∑
k 6=l

ψk(A)

λl(A)−λk(A)

∫
Ω

(
ψ1
k(A)ψ1

l (A)δA1 +ψ2
k(A)ψ2

l (A)δA2

)
dx.

Appendix B. The functionals G and Gn. This appendix is concerned
with the study of the functionals G : (H1(Ω,IR))2→ IR, introduced in (3.7), and
Gn : (H1(Ω,IR))2→ IR, introduced in (3.19). The map G is Gateaux-derivable and
its �rst and second derivatives in the direction δA= (δA1,δA2), read

dG(A)(δA) =−
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx ,

d2G(A)(δA) =−
∑
l,k

e−λl−e−λk

λl−λk

(∫
Ω

ψ1
kψ

1
l δA1dx+

∫
Ω

ψ2
kψ

2
l δA2dx

)2

.

Let us present the detailed computation of the second derivative. We have

d2G(A)(δA) =−2
∑
l

e−λl

∫
Ω

Re
(
ψ1
l dψ1

l δA1 +ψ2
l dψ2

l δA2

)
dx

+
∑
l

e−λldλl

∫
Ω

(
|ψ1
l |2δA1 + |ψ2

l |2δA2

)
dx .

(2.1)

Let us de�ne the following integrals,

Ikl1 :=

∫
Ω

ψ1
kψ

1
l δA1dx Ikl2 :=

∫
Ω

ψ2
kψ

2
l δA2dx . (2.2)
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Remark that from (1.8) one deduces

dλl= I ll1 +I ll2 . (2.3)

Thus, the second line in (2.1) can be written as∑
l

e−λl
(
I ll1 +I ll2

)2
. (2.4)

Moreover, from (1.10) one obtains

dψ1
l =
∑
k 6=l

ψ1
k

λl−λk
(
Ikl1 +Ikl2

)
,

dψ2
l =
∑
k 6=l

ψ2
k

λl−λk
(
Ikl1 +Ikl2

)
,

(2.5)

and therefore we have∫
Ω

(
ψ1
l dψ1

l δA1 +ψ2
l dψ2

l δA2

)
dx=

∑
k 6=l

1

λl−λk
(
Ikl1 +Ikl2

)2
. (2.6)

The right-hand-side of the �rst line in (2.1) can now be written as

−2
∑
l

∑
k 6=l

e−λl

λl−λk
(
Ikl1 +Ikl2

)2
=−

∑
l,k,l 6=k

e−λl−e−λk

λl−λk
(
Ikl1 +Ikl2

)2
. (2.7)

Adding (2.4) and (2.7) together and making the convention

l=k :
e−λl−e−λk

λl−λk
=−e−λl , (2.8)

the second derivative of G(A) becomes

d2G(A)(δA) =−
∑
l,k

e−λl−e−λk

λl−λk
(
Ikl1 +Ikl2

)2
. (2.9)

As a consequence, the map G is strictly convex. As far as Gn is concerned, we formally
obtain

Gn(A) =
∑
l

e−λl(A) +

∫
Ω

nk1A1dx+

∫
Ω

nk2A2dx

≥e−λ1(A) +

∫
Ω

nk1A1dx+

∫
Ω

nk2A2dx−−−−−−−−−−−−−−→
||A1||L2+||A2||L2→∞

∞ ,

(2.10)

where λ1(A) stands for the smallest eigenvalue of the Hamiltonian H(A),

λ1(A) = min
φ∈(H1(Ω))2

(H(A)φ,φ), ||φ||(L2(Ω))2 = 1. (2.11)

We are then let to the conclusion that Gn is strictly convex (as its second derivatives
coincide with those of G) and even coercive.
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Appendix C. The functional F . In this appendix we are concerned with the
convexity and coercivity of the functional F , given by (3.9)-(3.12), in order to show
that under some assumptions F admits a unique minimum. The �rst and second
Gateaux derivative of the functionals (3.9)-(3.12) are given by

dF1(A,Vs)(δA,δVs) =−∆t

∫
Ω

∇·(nk1∇(A1−Vs))(δA1−δVs)dx

−∆t

∫
Ω

∇·(nk2∇(A2−Vs))(δA2−δVs)dx ,

d2F1(A,Vs)(δA,δVs) =−∆t

∫
Ω

∇· [nk1∇(δA1−δVs)](δA1−δVs)dx

−∆t

∫
Ω

∇· [nk2∇(δA2−δVs)](δA2−δVs)dx

=∆t

∫
Ω

nk1 |∇(δA1−δVs)|2dx+∆t

∫
Ω

nk2 |∇(δA2−δVs)|2dx ,

dF2(A,Vs)(δA,δVs) =−γ2

∫
Ω

∆VsδVsdx−
∫

Ω

(nk1 +nk2)δVsdx

+

∫
Ω

nk1δA1dx+

∫
Ω

nk2δA2dx,

d2F2(A,Vs)(δA,δVs) =−γ2

∫
Ω

(∆δVs)δVsdx=γ2

∫
Ω

|∇δVs|2dx ,

dF3(A,Vs)(δA,δVs) =−α∆tRe

{∫
Ω

D[nk21(A1−A2)](δA1 +δA2−2δVs)dx

}
+α∆tRe

{∫
Ω

nk21D(A1 +A2−2Vs)(δA1−δA2)dx

}
,

d2F3(A,Vs)(δA,δVs) = 2α∆tRe

{∫
Ω

nk21D(δA1 +δA2−2δVs)(δA1−δA2)dx

}
,

dF4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(A1−A2)(δA1−δA2)(J21,k
x − iJ21,k

y )dx

}
,

d2F4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(δA1−δA2)2(J21,k
x − iJ21,k

y )dx

}
.

To show that F is strictly convex, it is su�cient to show that

d2F(A,Vs)(δA,δVs)≥0, ∀δA,δVs .

One can see immediatly that the terms corresponding to G, F1 and F2 are positive.
Nevertheless, nothing can be said about the sign of the terms corresponding to F3
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and F4. Assuming on the other hand that ε is a small parameter, which is a physical
hypothesis, one can incorporate these latter terms in the former ones. Inspired by a
formal proof in [2], we may assume that

nk21 =O(ε2) , Im(J21,k
x − iJ21,k

y ) = 2cεα
e−A

k
1 −e−Ak

2

Ak2−Ak1
+O(ε3) ,

for some constant c>0. We remark, then, that the dominant term in d2F4,

4cα2∆t

{∫
Ω

(δA1−δA2)2 e
−Ak

1 −e−Ak
2

Ak2−Ak1
dx

}
,

is positive.
Concerning the coercivity, it is enough to show that

|F(A,Vs)|−−−−−−−−−−−−−−→
||A||H1+||Vs||H1→∞

∞ .

In [8] this property has been shown for the �rst terms X :=G+F1 +F2, by proving
that if |X (A,Vs)|<c1 for some constant c1>0, than there exists a constant c2>0 such
that ||A||H1 + ||Vs||H1 <c2. We can adapt this result in the present case, by assuming
again that ε is a small parameter. Indeed, one can again incorporate the new terms
F3 +F4 in X , by proving the existence of some constant C>0, such that

C|X (A,Vs)|≤ |F(A,Vs)| ,

which proves coercivity. Thus, the functional F , being strictly convexe and coercive,
admits a unique minimum.

Appendix D. Discretization matrices. Let us present here the discretization
matrices used for the fully discrete systems (see Section 4). Let 1 stands for the
(N−2)×(N−2) identity matrix. Then we have the following discretization matrices:

D+
x =

1

∆x



−1 1

0 −1 1

. . .
. . .

. . .

0 −1 1

0 0


∈ IRP×P ,

D−x =
1

∆x



0 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IRP×P ,
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D+
y =

1

∆y

d+
y

. . .

d+
y

 , D−y =
1

∆y

d−y
. . .

d−y

 ,

D+
y ,D

−
y ∈ IRP×P ,

d+
y =



−1 1

0 −1 1

. . .
. . .

. . .

0 −1 1

0 0


∈ IR(N−2)×(N−2) ,

d−y =



0 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IR(N−2)×(N−2) ,

D̃x=
D+
x +D−x

2
, D̃y =

D+
y +D−y

2
,

∆dir = ∆x+∆y ∈RP×P ,

∆x=
1

(∆x)2



−21 1

1 −21 1

. . .
. . .

. . .

1 −21 1

1 −21


∈RP×P .

∆y :=
1

(∆y)2


ly

. . .

ly

∈RP×P .
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ly =



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2


∈ IR(N−2)×(N−2) ,

Dx=
1

2∆x



0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0


∈ IRP×P ,

Dy :=
1

2∆y


dy

. . .

dy

∈RP×P .

dy =



0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0


∈ IR(N−2)×(N−2) ,

Db
x=

1

∆x



1 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈RP×P .

Db
y =

1

∆y

dby
. . .

dby

∈ IRP×P ,
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dby =



1 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IR(N−2)×(N−2) ,
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