1	Improvement of waste heat recuperation on an industrial textile dryer: redesign of heat exchangers
2	network and components
3	Daniele Fiaschi ^{1*} , GiampaoloManfrida ¹ , Luigi Russo ² , Lorenzo Talluri ¹
4 5	¹ Dipartimento di Ingegneria Industriale, University of Florence, Viale Morgagni 44, 50135 - Florence, Italy
6	² Gesco S.p.A., Z. I. Belvedere n. 83 - Ingr. 2, 53034 – Colle di Val d'Elsa (SI)
7	
8	* Corresponding author. Email: <u>daniele.fiaschi@unifi.it;</u> Tel. +39 055 2758680
9	
10	Abstract
11	The improvement of low temperature exhausts heat recovery network of an industrial textile – drying machine
12	(Stenter/Rameuse) is presented.
13	A complete redesign of the layout of the water - gas heat exchangers network was done. The network was improved
14	changing the original serial configuration of the heat recovery cells to a system with parallel manifolds for the water
15	circuit. The heat transfer layout and the related heat exchangers were modelled with a dedicated thermal design code.
16	The limited heat transfer coefficient of the internal gas side in the original configuration was improved with a "twin
17	barrel" solution, with water in the outer annulus and exhaust gas in the inner duct equipped with internal longitudinal
18	fins, an effective solution allowing easy fabrication and cleaning.
19	A second step refinement design of the heat exchangers modules, realized with an OpenFOAM® CFD procedure,
20	allowed the final definition and optimization of the fins size and layout, which were not continuous on the whole length
21	of the module, but staggered on the inner side and shortened to about 1/3 of the length.
22	Compared to the original version, the new heat exchangers network and the improved thermal design allowed an
23	increase of the heat recovery from the exhausts of about 180%. The adoption of three staggered and segmented fins led
24	to an increase of 97% with respect to the bare pipe.
25	Finally, the results of the models were validated on a test bench reproducing one full-scale section of the drying
26	machine: the tests gave positive issues, confirming the model predictions and the correct operability of the unit.
27	Particularly, the accuracy of prediction of water temperature was very good (less than 0.5°C difference between
28	simulation and measurements).
29	
30	Keywords:
31	Heat recovery, Textile dryer, Finned heat exchangers, CFD, Heat exchanger tests

33 Nomenclature

Symbols	
А	Surface area [m ²]
С	Heat capacity [kJ/K]
Ср	Specific heat [kJ/(kg K)]
D	Diameter [m]
DP	Pressure loss [Pa]
e	Roughness [m]
h	Fluid/metal heat transfer coefficient [W/(m ² K)]
Н	Height [m]
k	Conductivity [W/(mK)]
L	Length [m]
LMTD	Logarithm Mean Temperature Difference [K]
LP	Power loss [W]
m	Mass flowrate [kg/s]
Ν	Number []
Nu	Nusselt Number
NTU	Number of Thermal Units []
Pr	Prandtl Number []
Ptc	Pitch [m]
Q	Heat Power [kW]
r	Radius [m]
Re	Reynolds Number []
Т	Temperature [C]
th	Thickness [m]
u	Velocity [m/s]
U	Overall Heat transfer coefficient [W/(m ² K)]
V	Volume flowrate [m ³ /s]
Subscripts	
а	Air
crit	Critical value
е	Exhausts
EH	Exhausts side

fin	Referred to Fin
g	Gas
HE	Heat Exchanger
i	Referred to i th component
in	Inner
L	Laminar
out	Outer
SP	Set Point
std	Standard
U	Overall heat transfer coefficient [W/(m ² K)]
w	Water
Greeks	
δ	Difference
η	Efficiency
3	Effectiveness
λ	Height – pitch ratio
σ	Solidity
Acronyms	
HE	Heat Exchanger
1 Introd	luction
1.1 Waste heat	recovery from textile industry
In the last decad	de, the energy recovery from waste heat flows at low and medium temperature (90-250 $^{\circ}$ C)

In the last decade, the energy recovery from waste heat flows at low and medium temperature (90-250 ° C) has aroused growing interest, mainly due to the strong push towards energy saving, reducing CO₂ emissions and improving the efficiency of manufacturing processes, industrial and building facilities. The industrial activities, which worldwide account for 38% of primary energy consumption [1], release from 20 to 50% of this energy into waste heat [2]. Cement, glass, metallurgical, food, paper, chemicals and non-metallic minerals are the most intensive sectors. The textile industry, despite being among the least considered, has a relevant overall primary energy consumption (about 87 TWh in USA, [1]) and waste effluent rates levels amongst the highest referred to total input (40%, [1]). In Italy, many

45 industrial sectors reduced their energy intensity since 1995 [3], but food and textiles production had more limited

34

35

36

46 reductions, indicating an interesting potential for relatively unexplored energy recovery in the medium-low

47 temperatures range. Even considering conservative fractions of overall primary national energy input (5-10%), it can be

48 estimated an annual national theoretical availability of waste heat from textiles of the order of 1 - 3 TWh, which rises a

49 significant interest. Fabric finishing represents a relevant share of the primary energy consumption in textile production.

50 In the last years, relevant progresses were done towards waste heat recovery and energy saving in wet processes,

51 whereas much less was done in regards of drying processes involving hot air and/or water flows [4]. Moreover, they are

52 among the most energy – intensive operations in the textile industry and the related waste heat recovery has the

53 potential to significantly reduce the energy consumption of finishing processes [5]. Nevertheless, the issue of waste heat

- recovery from drying textile machines is not very extensively discussed in literature [4-6], which is preferably oriented
- 55 towards higher energy-intensive industrial processes.

In textile industrial driers, generally, warm air or combustion gases are impinged on the humid fabric and then vented to the atmosphere: the exhaust stream still has an attractive heat content, which, however, cannot be directly recovered recirculating the exhausts to the process, because they are loaded of humidity and pollutants coming from the fabric (fibres, chemicals and dust). Rather, this heat is recovered through a surface heat exchangers network (recuperators), which exploits the heat content of the exhaust to preheat the fresh dry air to be continuously circulated to the drying process [5, 6].

62

63 *1.2 Heat exchangers (recuperators)*

The current industrial geometry for the exhausts/water heat recuperators is a double concentric pipe, with exhausts in the inner tube and water in the annulus. This is not actually an efficient configuration from the heat transfer point of view, but it is relatively simple, cost effective and easy to periodically clean from the dust and particles carried out from the drying fabric. A finned double pipe configuration would be more effective, especially with a proper design of the fins size and shape. An accurate design is required because the simple geometry of finned tubes can only offer moderate improvements compared to more complicated geometries. On the other hand, the simple solution is appreciated because of the limited cost and easiness of cleaning.

The literature is rich of studies on the performance improvement of double-pipe heat exchangers. In a very recent review [7], the key point appears to be to enhance the overall heat transfer coefficient while minimizing the friction losses; the applied solutions imply surface or geometrical modifications or inserts like turbolators, twisted tapes, extended surfaces etc., which promote the action of secondary flows. When dealing with heat recovery from exhaust gas flows, as for example from Diesel engines, the adoption of gas side finned heat exchangers is convenient because they couple manufacturing simplicity and modest additional costs (compared to simple, less effective bare-pipe configurations) to an appreciable enhancement of the heat transfer effectiveness, at the price of moderate pressure losses

78	[8]. For	this reason, an accurate design of the fins is worth to ensure the highest possible exploitation of the heat	
79	exchang	gers. In this view, Hatami et al. [9] proposed the optimization of an internally finned heat exchanger for the heat	
80	recover	y from the exhausts of a Diesel engine combining central composite design to CFD. Dealing with CFD	
81	techniqu	ues as a tool to improve the geometry of finned double pipe heat exchangers, Cavazzuti et al. [10] also remarked	
82	that few	v studies are available on the design and optimization of heat exchangers using the open source code	
83	OpenFC	DAM. They adopted the code to predict the heat transfer rate of finned concentric pipes heat exchangers for	
84	industri	al recuperative burners. One of few examples is that of Selma et al. [11], who used this code for the optimization	
85	of a hea	t pipe exchanger to improve the energy efficiency of a building ventilation system. However, in a recent review	
86	on the u	se of CFD in heat exchangers design [12] there is no mention on the use of this open source code.	
87			
88	From a	survey of the technical literature, it appears that a significant gap exists on the subject of waste heat recovery	
89	from co	mmercial fabric drying machines, which are, as above remarked, among the main sources of waste heat in	
90	textile in	ndustry. On the other hand, the issue of waste heat recovery from exhaust flows is extensively discussed in	
91	relation	to power plants and boilers for heat generation, but very scarcely for this type of machines, which have specific	
92	configurations and technological aspects such as to deserve a detailed analysis in their specific context. It can be thus		
93	recommended to investigate the potential savings of the related heat recuperators both from numerical and experimental		
94	points of view.		
95	The obj	ective of this study is, therefore, to carry out an accurate analysis of the heat recovery network of a commercial	
96	textile d	lryer by the means of dedicated 0D/3D simulations in the current and redesigned configurations and the	
97	subsequ	ent experimental validation of the achieved results.	
98	This ob	jective is pursued by:	
99	1)	An accurate design of the heat transfer network and the related heat exchanger modules;	
100	2)	The use of the OpenFOAM code to refine the heat exchangers design, which is still at germinal level for	
101		industrial cases.	
102	3)	The assessed design improvements, which include the overall heat exchanger network as well as the single	
103		heat exchangers. They are validated through a test campaign on a dedicated test bench.	
104			
105			
106	2	The heat recovery loop of the industrial fabric drying machine: Stenter/Rameuse	
107			
108	2.1 layo	out of the current commercial configuration	

The industrial fabric drying machines (*Stenter/Rameuse*) are long units, typically made of several modules in series (up to 14, generally 7 - 8), each one equipped with a 150 - 200 kWt natural gas burner to warm the air flow by direct mixing with combustion products. Recirculation of the exhaust to the burner is practised, so that the fresh airflow rate is limited to what is needed for combustion, and to the entry of air through the fabric inlet/outlet slots. The machine dries a continuous fabric flow about 2 m wide, which is dragged through a thin slot. The schematic of the texture entrainment and the 3D view of a typical *Stenter/Rameuse* are shown in figure 1.

115 Often, the dryer also carries out the fabric finishing operations after it has been subjected to previous processes of 116 dyeing and fulling. Direct heat recovery from the exhaust stream to the inlet air (burners and fabric inlet/outlet slots) has 117 proven to be troublesome, due to contamination of the exhaust with dyes, oil and textile fragments; moreover, the air 118 inlet is distributed in several points and this renders, on the whole, this solution unpractical. Thereby, indirect heat 119 recovery systems have been developed, typically recovering heat from the exhaust and transferring it to a water 120 circuit/storage vessel; hot water can then be distributed at heat exchangers for air preheating (typically, located at the 121 inlet/outlet ports; air preheating to the burners is currently not practiced because of the need to use commercial 122 recirculating burners which cannot accept extensive air preheating). Water within the circuit is pressurized (typically to 123 2-2.5 bar gauge) in order to maintain liquid conditions at temperatures slightly exceeding 100°C. On the upper side of 124 the drying machine (3D view of figure 1b), the heat exchangers/piping network to recover part of the hot exhausts 125 downstream the drying process is shown. The detailed schematic of this part is reported in figure 2 (schematic and 126 pictorial views on left and right respectively).

The heat recuperation from the exhaust stream is done through flow of water across the external annulus of the exhaust pipes; heat is transferred to the air heater at inlet (and possibly outlet, depending on the number of modules of the machine) of the fabric drying process. The basic module for the heat transfer from the exhausts to the drying air is made of 3 counter-current gas/water tube-in-tube heat exchangers. With reference to the cold – water flow, these heat exchangers are currently arranged in series. An air/water heat exchanger (finned type, D in figure 1b, HE₄ in figure 2) preheats the ambient air at the air inlet slots of the machine. The water is circulated by a low-power pump (circulator), which establishes the working flowrate.

- 134
- Figure 1 Schematic of the fabric flow and 3D view of the Stenter/Rameuse and of the exhaust heat recovery network

137 2.2 Data and modelling

138 The design parameters of the basic configuration module, to which the proposed improved alternatives are referred in 139 the following, start from a few input thermodynamic data available from the manufacturer; all the other thermodynamic 140 parameters of the gas/water/air heat transfer network are calculated as follows by a step-by-step procedure:

- 141 1) Definition of the temperatures at suction intakes above the dryer cells (T_9 and T_6), which are input values to the 142 calculation. These are generally measured during operation of the dryer at the design load. Specifically, for the 143 two hot gas flows, different temperatures are registered: the temperature of the first heating section (HE₃ in 144 figure 2) is lower, thus one heat exchanger only (HE₃) is served by this flow.
- 145 2) Definition of the volume flow rate at the exhauster output, that is in close relationship to the parameters of the

air – water heat exchanger provided by the manufacturer: The flow rate is selected within the working range of

- 147 the suction fans (variable-speed inverter drive) at a value allowing to match the thermal power and the air
- 148 flowrate available from the manufacturer's design datasheet of the fresh air/water heat exchanger (HE₄).
- Input of the water flowrate and output temperature from HE₄ heat exchanger, known from the equipment
 manufacturer's design datasheet. The flowrate is pre-set at 1.36 kg/s, which determines a laminar regime in the
 exhausts/water heat exchangers: the water flow is almost steady, with velocity of about 0.04 m/s.
- 4) Calculation of the exhausts heat exchangers efficiencies (HE₁, HE₂, HE₃) with the NTU- ε method, based on the known surface areas, geometry, inlet temperatures and flow rates, starting from HE₁ where T₂ and T₆ are known. The procedure allows the calculation of the output temperatures (T₇ and T₃ in case of HE₁), which are inputs to the following heat exchanger HE₂. In the same way, applying the NTU- ε method to HE₂, T₈ and T₄ are calculated. The overall heat transfer coefficients U₁, U₂, U₃ are determined based on the flow conditions at both sides of the heat exchangers.
- 158 5) Finally, the NTU- ε method applied to HE₃ allows the calculation of the water temperature T₅, which is also 159 known from the HE₄ datasheet: an iterative process was set on the related overall heat transfer coefficient U₄, 160 in order to match the known air/water sides temperatures and flowrates and the overall heat transfer surface 161 area of HE₄.

162 The complete 0-D procedure allows to determine all parameters of the heat exchangers network and the thermodynamic 163 data at the various points of the circuits under typical design working conditions of the dryer. The input data and results 164 of calculation are summarized in tables 1 and 2.

- 165 The 0-D calculations are performed with an in house developed EES model [13], a calculation environment specifically
- suitable for this kind of applications, because of its numerous built-in procedures dedicated to heat transfer problems,
- 167 also involving heat exchangers with complex geometry. With indexes referred to the scheme and subscripts w, e and a

(2)

- 168 for the water, exhausts and air respectively, the main governing equations are resumed in the following.
- 169 Mass balance on the lines of water, exhausts and air:

- $170 \qquad m_1 = m_2 = m_3 = m_4 = m_w \tag{1}$
- 171 $m_6 = m_7 = m_8 = m_{e1}$

172	$m_{10}=m_9=m_{e2}$	(3)

173 $m_{13}=m_{12}=m_a$

174

175 The calculations apply the *NTU-\varepsilon method* [14] to determine the unknown parameters, starting from those known for the 176 different heat exchangers according to the manufacturer's data:

(4)

177

178	$C_{e,i} = m_{e,i} \cdot cp_{e,i}$	exhaust side heat capacity;	(5)
179	$C_{\mathrm{w},\mathrm{i}} = m_{\mathrm{w},\mathrm{i}} {\cdot} c p_{\mathrm{w},\mathrm{i}}$	water side heat capacity;	(6)
180			
181	$C_{\min,i} = \min(C_{e,i}; C_{w,i})$	minimum heat capacity;	(7)
182			
183	$Q_{\text{max},i} = C_{\text{min},i} \left(T_{\text{e},i} - T_{\text{w},i} \right)$	minimum heat capacity;	(8)
184			

185
$$NTU_i = U_i A_i / C_{min,i}$$
 number of thermal units; (9)

186

187 The efficiency ε is calculated with the internal EES heat transfer library functions, which make use of the well-known 188 NTU- ε relationships as function of heat capacitance rate $C_{min,i}/C_{max,i}$ [14]. The overall heat transfer coefficient U_i is 189 also calculated with the EES internal functions, considering external flow on the water side (annulus between the two 190 concentric pipes) and the internal pipe flow on the exhausts side. For the calculation of friction losses, correlations for 191 laminar, transitional and turbulent flow were used. For turbulent pipe flow, the friction factor f_i, in case of relative 192 roughness between 0 and 10^{-5} (smooth tubes) is calculated with the Seem and Li correlation [15]; in case of relative 193 roughness higher than 10^{-5} (rough tubes) f_i is calculated with the Zigrang and Sylvester correlation [16]. The Nusselt 194 number Nu; is calculated with the Gnielinski correlation [17]. 195 In case of laminar flow, correlations for the Darcy friction factor on developing and fully developed flow regions, 196 available on Shah and London [18], are adopted. 197

198 Figure 2 – Schematic of the current heat exchanger network of the Stenter/Rameuse

199

200 Table 1 shows the known input data from the manufacturer's datasheet for typical operation of the Stenter/Rameuse; the

201 assumed unknown values and calculation model's output are checked in feedback to tune the model's parameters. Table

202 2 shows the main heat exchangers parameters. The numerical indexes are referred to the top left scheme of figure 2.

204	Table 1 – Main data o	f the current heat	recovery network an	d heat exchangers	parameters
	10010 1 110010 00000 0				,

205

206 Table 2 – Main current heat exchangers parameters

207

- 208
- 209

3 New layout of the heat recovery network

210

211 The new proposed layout of the heat recovery network, as well as the enhanced data, are shown in figure 3 and tables 3 212 and 4 (system components and heat exchangers respectively). The main difference is the parallel arrangement for the 213 water circuit, realized using two manifolds (delivery 3 and return 4); each exhaust heat exchanger is fed in parallel 214 connecting to these manifolds. Moreover, the heat transfer on the exhausts side is improved by splitting the original 215 single can into two twin-can exhaust channels with reduced diameters carrying equal mass flowrates. In this way, with 216 the same fixed cross flow section area, the heat transfer surface is significantly increased. This plays a fundamental role 217 in augmenting the gas side heat transfer, which is strongly limited by the low heat transfer coefficient. 218 In order to allow an efficient access for cleaning of the internal exhausts ducts, the pipe size can be only moderately 219 reduced: the investigated diameters of the twin cans were 0.2, 0.22 and 0.25 m (labelled as C.200, C.220 and C.250 220 respectively) as an alternative to the 0.35 m of the current single-pipe configuration (A.350). 221 Further improvement of heat transfer is achieved by adding fins on the internal surface of the twin ducts (gas side). As 222 the internal fins are manufactured and assembled (as described in the following), it was decided to adopt a shorter 223 length of each module, realizing each barrel of the two cans with two modules in series (2x0.986 m). The resulting 224 overall length is slightly lower compared to the original one (2.283 m), in order to leave space for the connecting 225 flanges, see figures 2 and 3. The pipe is realized by calendering of a metal sheet manufactured by laser cutting. The fins 226 are longitudinal, positioned with studs on the pre-perforated plate. The size and the maximum number of fins in the 227 channel are defined by the solidity $\sigma_{fin} = N_{fin} th_{fin} / (\pi \cdot D_{in})$ and the height to pitch fin ratio $\lambda_{fin} = H_{fin} / (Ptc_{fin} - th_{fin})$ inside 228 the channel. In order to improve the overall heat transfer, the current stainless steel solution was replaced with carbon 229 steel. After placing the fins, a galvanizing process eliminates the fin/pipe contact resistance and ensures corrosion 230 protection. At the same time, the zinc coating significantly increases the surface roughness compared to that of stainless 231 steel (from 0.01 to about 0.046 mm), thus increasing the overall heat transfer coefficient between 4.5 and 6%. 232 The 0D calculation model adopted for the annular water/gas heat exchangers of each single can is similar as discussed 233 in section 2 for the current commercial configuration with bare tubes. The main difference is the introduction of N_{fin}

longitudinal fins, whose efficiency η_{fin} is calculated by an internal procedure referred to rectangular shaped fins as a 235 function of its dimensions (H_{fin} , L_{fin}), material conductivity k_{fin} and heat transfer coefficient h_{fin} between the flow and the 236 fin surface [13]. The latter is calculated with the following correlation between the Nusselt number (Nufin), Reynolds 237 (Refin) and Prandtl (Prfin) numbers: 238 $Nu_{fin} \frac{0.6774 Pr^{1/3} Re_{crit}^{1/2}}{\left[1 + \left(\frac{0.0468}{Pr}\right)^{2/3}\right]^{1/4}} + 0.037 Pr^{\frac{1}{3}} (Re_L^{0.8} - Re_{crit}^{0.8})$ [14] 239 (10)240 $h_{fin} = k_{fin} N u_{fin} \, / L_{fin}$ (11)241 242 Thus, the additional heat recovered using fins on the exhausts side is given by: 243 $Q_{\text{fin}} = \eta_{\text{fin}} h_{\text{fin}} H_{\text{fin}} L_{\text{fin}} (T_{e,i} - T_{w,i})$ (12)244 245 *Figure 3 – Layout of the improved heat recovery loop* 246 247 Table 3 – Main circuit data of the improved heat recovery network 248 249 Table 4 – Main heat exchangers data of the improved heat recovery network 250 251 252 4. **Comparison of the proposed solutions** 253 254 The comparison of the proposed solutions and the selection of the best one is done referring to the current basic 255 commercial case with one single duct. The identifier codes, features and relevant dimensions of the different solutions 256 are summarized in table 5. The analysis is done for three different values of the water mass flowrate: 4, 8 and 16 l/s, in 257 order to assess the influence of the corresponding flow velocity in the annulus, whose increase gives a further 258 contribution to the heat transfer from hot gas to cold water. 259 The adoption of twin-can heat exchangers leads to an increase of gas and water velocity, as shown in figure 4. 260 The comparison of the twin-can configurations C.250, C.220, C.200 at variable flowrate in the water loop and for 261 different number of fins is shown in figure 5 a) and b), in terms of heat transferred and temperature of the water and 262 exhausts at points 5 and 11 (referred to figure 3). It can be noticed that generally - as expected - the increase in number 263 of fins leads to a higher heat recovery (figure 5 a), which is also confirmed by the corresponding increase of water

[9] for a geometrically similar case.
The modifications introduced determine a remarkable increase of the heat transferred compared to the current
commercial bare pipe single can configurations. In particular, there is a considerable improvement in the C.220 and

temperature and decrease of exhaust temperature (figure 5 b). This is also in agreement with the general trend found in

C.200 configurations.

269

264

270 Table 5– Main parameters of the original and improved water/gas heat exchangers

271

272 Figure 4 – Gas and water velocities in the different analysed cases

273

274 The twin cans give a better reconfiguration to the heat recovery network, while the fins increase the heat transfer 275 potential of each single pipe. The cumulative contributions of the modifications on the overall power output of the heat 276 recovery network, compared to the base case A.350, are shown on figure 6. The adoption of the twin can arrangement 277 has a prevailing effect at low diameters (C.200/F series) and higher water mass flowrates, due to the reduced available 278 space, which limits the maximum applicable number of fins on the inner surface of the pipes. As shown on figure 5a, 279 the heat recovery increases from C.250/F through C.220/F to C.200/F: the explanation is that the gas velocity is larger 280 and thus the gas side heat transfer coefficient. However, 220 mm was considered as the lowest acceptable diameter for 281 cleaning issues. 282 The twin-can configuration with fins increases the friction losses compared to the single bare pipe one of the current 283 commercial version of the heat recovery circuit. They were evaluated, in terms of head loss and required fan power, with the calculation model described in section 2. In the original configuration, about 20 Pa head losses per module due 284 285 to friction were calculated on the exhausts side, which require about 39 W fan power, for a total of 117 W (see data on 286 Table 2). In the C.220/F with 16 fins, the calculated pressure drop per module is 130 - 143 Pa, requiring a total 596 W 287 fan power (183 to 208 W per each HE, see Table 4). This is relatively a great increment, but, in absolute terms, the 288 additional 479 W of mechanical power produce an increase of about 45 kW in heat recovery.

289

290 *Figure 5 – Heat rate of HE4 and water/exhausts temperatures(comparison of cases C.xxx/20/2)*

291

Figure 6 – Cumulative effect of the modifications introduced in the heat recovery network (comparison of cases
 C.xxx/30/3)

- 294
- 295

Detailed CFD design and analysis of the twin-can heat recovery module

298	After the sizing of the internally finned gas/water heat exchangers, a detailed refined design of the single module of
299	twin-can water/gas heat exchanger was performed. Specifically, the influence of shape, size and thickness of the fins on
300	the performance of the heat exchanger module were analysed with a CFD approach developed in OpenFOAM
301	environment. The computational mesh was created with the SnappyHexMesh application (structured grids) with
302	resolution ranging from about 3.7 to 5.1 million points. The numerical simulations were run for stationary flow and the
303	problem was solved by the conjugate heat transfer solver chtMultiRegionSimpleFoam with 2 nd order schemes for
304	discretization terms and k-Omega SST as turbulence model. Table 6 summarizes the resolution, features and
305	thermodynamic parameters of the CFD model.
306	
307	Table 6 – CFD Model Data
308	
309	Following are the key issues of the finned heat exchanger module design:
310	• Increased internal heat transfer (gas side);
311	• Effective increase of the fin-tube contact surface;
312	• Improved turbulence conditions;
313	• Guaranteed easy cleaning of the finned internal exhaust gas side.
314	
315	In order to meet these objectives, the thermal behaviour of five possible fins configurations, different in size and/or
316	geometry and disposal, are analysed and compared each other. Specifically, the following configurations were
317	examined (see schematics in figure 7):
318	1) <i>Continuous straight fins</i> with different thickness and height (C.220/20/2/1F, C.220/25/3/1F, C.220/30/3/1F);
319	2) Interrupted fins (C.220/20/2/9F);
320	3) Shifted segmented fins (C.220/30/3/3F).
321	The geometric details, codes and type of analysis of all the configurations are summarised in figure 7. The performance
322	of the heat exchanger was compared to those of the basic bare tube (C.220).
323	The 2D temperature cross sectional distribution around the different investigated fins are summarised in figure 8: the
324	growth of thermal boundary layer in the flow direction is evident in the three representative cross sections along the z
325	axis. It is only moderately influenced by the fin height, passing from 20 to 30 mm. By the way, the influence of fin
326	thickness is marginal.

327	The effect of straight fin segmentation (case C.220/20/2/9F) is shown in figure 9, reporting the behaviour of the
328	temperature fields on the longitudinal axial section (z) in the two cases of continuous and interrupted fins. The
329	advantages related to the adoption of interrupted fins are marginal. The reason is the not efficiently renovated build-up
330	of the thermal boundary layer around the fin, even with frequent interruptions. This effect is remarked in the close-up of
331	temperature distribution in two different axial positions of figure 9): close to the inlet (1) and to the outlet (2). This
332	effect is also confirmed by the behaviour of heat flux decay for the two cases in the xz midspan section, which is
333	practically the same in the first 30% of the axial path. The values in the marked sections are reported and compared in
334	table 7.
335	The most significant improvement of performance in heat transfer is achieved with the adoption of three radially shifted
336	segmented fins (C.220/30/3/3F). In fact, radial shifting of the fins (7.5°) guarantees an effective renovation of the
337	thermal boundary layer. The length of the fin is adequate to prevent the development of a thermally exhausted film over
338	the fin.
339	The satisfactory results can be quantitatively evaluated in terms of temperature profiles (figure 10) and heat flux (figure
340	11) on the midspan section. In the latter, the effect of heat flux recovery on the leading edge of each fin is well
341	noticeable.
342	
343	Figure 7 – schematic of geometry, size, and cross sectional mesh of the different investigated fin
344	
345	Figure 8 – Cross sectional flow of the heat exchanger module with the different investigated fins
346	
347	Table 7– Comparison of heat fluxes along the xz midspan section between continuous and interrupted fins
348	
349	Figure 9 – Temperature field and heat flux distributions in the axial xz midspan section for interrupted and continuous
350	fins
351	
352	Figure 10– Temperature profile on the midspan section in the case of 3 shifted segmented fins (C.220/30/3/3F)
353	
354	Figure 11– Heat flux profile on midspan section in the case of 3 shifted segmented fins (C.220/30/3/3F) compared to the
355	case with single continuous fin
356	
357	

358	Figure 12 shows the temperature profile in the axial direction of the different fins at two different heights Y (referred to
359	the axis of the duct, thus increasing from the tip to the hub of the fin). The effective renovation of the thermal boundary
360	layer with shifted fins is evident: with the continuous fins, the temperature gradient is high at the leading edge and for
361	the first 10% of axial distance. Successively, the thermal boundary layer "relaxes" and the temperature gradient is
362	strongly reduced. The behaviour is similar for fins of different height and thickness. The influence of fin height on the
363	values of temperature profile is appreciable, whereas that of fin thickness is marginal. The effect of thermal boundary
364	layer renovation is also evident in the case of interrupted fins (C.002/02/9F), but it is relatively modest and allows only
365	a moderate improvement over the continuous fins, as discussed (figure 9 and table 7).
366	
367	Figure 12–Axial temperature profile of the different fins at two fin height (tip and hub)
368	
369	The results achieved with 3D CFD analysis applied to the bare and finned pipes were also compared to those of the 0D
370	models discussed on section 3, which adopts correlations to calculate the overall heat transfer parameters. With
371	reference to the bare pipe, figure 13 shows, for example, the comparison of the heat flux profiles of the hot exhaust
372	streamside along the axis of the single heat exchanger module calculated with the OpenFOAM CFD (averaged) and the
373	EES model.
374	
375	Figure 13- Heat flux profile of the hot exhausts flow at the HE module
376	
377	Finally, the overall heat recovered per module of the twin-can heat exchanger with the different types of fins is reported
378	on table 8, as well as the comparison with the results achieved with the 0D model in the cases where it is applicable (i.e.
379	
	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well
380	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted
380 381	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F).
380 381 382	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F). The agreement between the results achieved with CFD and 0D correlation models is satisfactory, with relative errors
380 381 382 383	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F). The agreement between the results achieved with CFD and 0D correlation models is satisfactory, with relative errors between 1.5 and 2.7%.
 380 381 382 383 384 	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F). The agreement between the results achieved with CFD and 0D correlation models is satisfactory, with relative errors between 1.5 and 2.7%.
 380 381 382 383 384 385 	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F). The agreement between the results achieved with CFD and 0D correlation models is satisfactory, with relative errors between 1.5 and 2.7%. <i>Table 8– Heat recovered with the different kinds of fins and comparison between 3D CFD and 0D results</i>
 380 381 382 383 384 385 386 	not in the case of shifted fins). Compared to the heat recovered with the bare pipe, the improvement due to fins is well evident, ranging from a minimum of 53% with the interrupted fins (C.220/20/2/9F) to the 97% of the three shifted segmented fins (C.220/30/3/3F). The agreement between the results achieved with CFD and 0D correlation models is satisfactory, with relative errors between 1.5 and 2.7%. <i>Table 8– Heat recovered with the different kinds of fins and comparison between 3D CFD and 0D results</i>

6

Experimental setup and tests

389

309			
390	A dedicated experimental setup (figure 14), consisting in one fully instrumented module of the drying machine, was		
391	realized to check the correctness, operability, reliability and effectiveness of the proposed redesign solutions to improve		
392	the heat recovery section.		
393	A test campaign was organized on the heat exchangers modules with shifted fins $(C.220/30/3/3F)$, mounted on the twin		
394	can HE arrangement (figures 14 and 15). The purpose of the tests was:		
395	a) To validate the predicted performance of the single heat recovery module (0D and 3D models).		
396	b) To verify that the twin-can water manifold arrangement was working correctly, with even flow distributions		
397	between parallel branches for all operating conditions.		
398	c) To verify the optimizing conditions of the whole machine (burner, exhaust and heat recovery network setup)		
399	with variable control settings.		
400	The test conditions should reflect the real operation of the machine. Therefore, several values of set point temperature		
401	T_{SP} were considered. T_{SP} is the temperature at the entrance of the <i>Stenter/Rameuse</i> section, which is the main parameter		
402	that a textile producer can adjust depending on the fabric processing parameters.		
403			
404	Figure 14–view of the experimental setup of the rameouse cell equipped with twin-can recuperator module		
405			
406	For each value of T _{SP} , the test bench allowed some degrees of freedom, which are reflected in the control strategy and		
407	can be implemented on the real machine. In detail, three inverters are available: A) on the exhaust fan, regulating the air		
408	passing through the textile drier; B) on the circulation pumps of the water circuit; C) on the water-air heat exchanger fan.		
409	When operating the machine, increasing the exhaust gas flow rate (A) improves the heat transfer (which depends on the		
410	exhaust gas velocity); however, more air is entrained through the fabric entrance slots, and this determines a higher		
411	consumption of natural gas for the burner in order to maintain the value of T _{SP} . Moreover, the exhaust fan has a power		
412	rating of 6 kW, considerably larger than power absorbed by the circulation pumps (B) or by the air preheat fan (C).		
413	Consequently, the operator tries to maintain a value of exhaust flow rate as low as possible compatibly with the stability		
414	of operation (2930 Sm ³ /h in the reference test conditions). Heat recovery performance optimization is rather sought		
415	adjusting the speeds of the pumps (B) or of the air fan (C).		
416	The test bench was designed to confirm uniformity of performance for the two branches in parallel; consequently, both		
417	branches were completely instrumented. In order to estimate the heat recovered by the heat exchangers, 8 Platinum		

418 thermo-resistance probes (PT100) with 1/10 DIN accuracy (0.1 °C) were placed on the water circuit, as displayed in

- 419 figure $15(T_{11} \text{ to } T_{31} \text{ on the lower branch}; T_{12} \text{ to } T_{32} \text{ on the higher branch}; T_{13} \text{ and } T_{23} \text{ at the entrance and exit of the}$ 420 water-air heat exchanger). 3 PT100 were set on the exhaust gas circuit (Tg1; Tg2; Tg3). Tg2 was a special shielded total 421 temperature probe, designed to provide reliable measurements within the inner exhaust pipe (the probe design includes 422 velocity control minimizing recovery error, and radiation shielding); on the other hand, due to layout problems, probes 423 T_{g1} and T_{g3} were simple bare sensor probes inserted in branching connections, installed mainly for a qualitative check 424 than for accurate measurements. An electromagnetic flow meter with 0.5% actual value accuracy was placed at the inlet 425 of the two heat exchanger branches to measure the water mass flow rate (m_1, m_2) and a calibrated orifice with 426 differential pressure transducer and temperature measurement measured the exhaust outlet gas flow rate.
- 427

Figure 15- cross section of the realized pipe module, rendering view of the heat exchangers assembly and schematic of
 the experimental setup

430

431 The results confirmed that the exhaust flow was evenly distributed in the two branches at all operating conditions; 432 consequently, the evaluation of the performance is reported for one single module (namely, HE₁), and for the complete 433 unit (4 heat recovery modules, piping and water/air heat exchanger). Table 9 and figure 16 display the experimental 434 results obtained against the simulation results. In particular, the heat rate and the temperature at the exit of heat 435 exchanger 1 (HE₁; operating with lower average exhaust gas temperature) are shown. The accuracy of prediction of 436 water temperature is very good (globally less than 0.5°C difference between simulation and measurements). On the 437 other hand, the simulated and measured heat rates present some deviations, which are due mostly to the fluctuation of 438 the exhaust gases temperature and especially by its flow rate. The tests confirmed that – depending on the system operating conditions - the low-temperature gas exhaust recovery heat exchanger module is typically capable of 439 440 recovering from 3.5 to 5.5 kW, which is in line with the model predictions (Table 8).

441 During the tests, it was clear that the air circulation fan (C) should be operated at the highest speed in order to improve 442 the heat transfer in the air/water heat exchanger. However, optimizing conditions did exist for the water flow rate. 443 Figure 17 displays how the whole heat exchanger network operates varying both water mass flow rate and set point 444 temperature. The heat recovered presents a maximum for values of the total water mass flow rate around 15 l/min. This 445 is because at lower values of water flow rate the liquid-side convection transfer coefficient becomes very low. On the 446 other hand, at higher values of water flow rate, the temperature difference between inlet and outlet of the heat exchanger 447 becomes smaller, as the water returning to the gas/water heat exchanger has a higher temperature, thereby hindering the 448 heat transfer. This is a whole system effect, determined by combined operation of the heat recovery network (gas/water 449 and air/water heat exchangers) and the constraints imposed by the set point conditions. The performance of the isolated

450	heat exe	changer module, as predicted with the calculation models, would continue to increase with increasing
451	velocity	//flow rate of water.
452		
453	Table 9	- Heat Recovery of HE_1 comparison between experiments and simulation
454		
455	Figure	16–Water Temperature at outlet of HE_1 comparison between experiments and simulation
456		
457	Figure	17– Heat Exhanger network operation map
458		
459		
460	7	Conclusions
461		
462	The hea	at recovery system of an industrial textile dryer (Stenter/Rameuse) was redesigned looking after general
463	perform	nance improvement. The redesign procedure followed three main steps:
464	1)	Thermodynamic analysis of the current heat recovery section, with rearranged manifold layout of the heat
465		exchangers network making use of heat transfer correlations;
466	2)	Detailed CFD analysis of the proposed heat exchangers modules and design/manufacturing of the final
467		prototypes;
468	3)	Experimental campaign on one stenter module, in order to verify the correctness and reliability of the predicted
469		results from the 0D and CFD calculations.
470		
471	The key	y results of the study may be summarized as follows:
472	•	The 0D (heat transfer correlation) model proved to be effective to examine the fundamental design alternatives,
473		allowing to predict the possibility of extensive heat recovery from the low-temperature exhaust gases.
474	•	The improved layout of the water/exhausts heat recovery circuit proposes a parallel manifold arrangement of
475		the water circuit; in order to increase the heat transfer surface area and the exhausts velocity, an internally
476		longitudinally finned twin-can configuration of the heat exchangers was proposed.
477	•	The adoption of a twin-can geometry with 16 fins leads to a heat recovery potential almost doubled with
478		reference to the current basic configuration: the contribution of twin cans ranges from 25 to 35%, whereas that
479		of fins ranges from 40 to 50%, the latter increasing when the diameter of the pipes is reduced. On the whole,
480		the heat recovery potential was estimated to increase of about 180 % over the original configuration with

- 481 single bare pipes in series (45 kW more), at the moderate price of 480W additional mechanical power of fans
 482 due to increased friction.
- The detailed design of the new twin can heat exchangers with 16 fins was performed applying CFD in
 OpenFoam environment: this allowed the evaluation of the influence of shape, size and fins thickness on the
 heat exchanger performance:
- The highest performance improvement of the heat exchanger module was achieved in the
 configuration with three shifted segmented fins, due to the effective renovation of the thermal
 boundary layer, which leads to a remarkable recovery of heat flux on the leading edge of each fin and
 then "relaxes" in the following. The influence of fin height on heat flux recovery is moderate, while
 that of fin thickness is marginal.
- 491 o The overall heat recovered with the 5 different analysed fin configurations range from 53 to 97%, in
 492 agreement with the levels predicted by the zero dimensional EES calculation models.
- The results of the models were operationally validated on a test bench, reproducing one full-scale section of
 the Stenter; the purpose of the tests was not only to validate the model predictions (accuracy of prediction of
 water temperature within 0.5°C between simulations and measurements), but also to verify the correct
 operation of the dual-can water manifold arrangement, and to identify control strategies for the burner/
 air/gas/water flow rate control settings, depending on the nominal temperature set point of the machine. The
 tests gave positive issues, validating the model predictions, confirming correct operability of the unit and
 identifying the correct control strategy.
- 500
- 501
- 502

503 Acknowledgements

- 504 Help and workshop/test bench supervision by Ing. Guido Giorgetti of Unitech Textile Machinery is gratefully
- 505 acknowledged for providing drawings, data and measured working conditions of the reference case study.
- 506 The experimental setup and analysis has been funded by Regione Toscana, project MPENMAT, funds PRSE 2012-
- 507 2015 -line 1.1b POR CREO FESR 2007-2013 line 1.3b POR CREO FESR 2014-2020 Action 1.1.2 A Support to
- 508 theSMEsfor innovation services.
- 509
- 510

511 **References**

- 512 [1] U.S. Energy Information Administration, 2013. International energy outlook 2013. Available at:
- 513 <u>http://www.eia.gov/outlooks/ieo/pdf/0484(2013).pdf(accessed 06.01.17).</u>
- 514 [2] Tello, P. and Weerdmeester R., 2013. Spire Roadmap. Available at:
- 515 <u>https://www.spire2030.eu/sites/default/files/pressoffice/spire-roadmap.pdf(accessed 06.01.17).</u>
- 516 [3] ENEA, 2015, RAEE Rapporto Annualesull'Efficienza Energetica. Available
- 517 at:<u>http://www.enea.it/it/pubblicazioni/pdf-volumi/raee-2015.pdf(accessed 06.01.17).(in Italian)</u>
- 518 [4] Pulat, E.,Etemoglu, A.B., Can, M.,2009. Waste-heat recovery potential in Turkish textile industry: Case study
 519 for city of Bursa. In: Renewable and Sustainable Energy Reviews, 13 (3),663-672.
- 520 [5] TuğrulOğulata, R., 2014. Utilization of waste-heat recovery in textile drying. In: Applied Energy, 79 (1), 41-49.
- [6] Rakib, M.I.,Saidur, R., Mohamad, E.N., Afifi, A.M., 2017. Waste-heat utilization The sustainable technologies
 to minimize energy consumption in Bangladesh textile sector. In: Journal of Cleaner Production, 142 (4),
 1867-1876.
- 524 [7] Omidi, M.,Farhadi, M.,Jafari, M.,2017. A comprehensive review on double pipe heat exchangers. In: Applied
 525 Thermal Engineering, 110, 1075-1090.
- 526 [8] Hatami, M., Ganji, D.D., Gorji-Bandpy, M., 2014. A review of different heat exchangers designs for increasing
 527 the diesel exhaust waste heat recovery. In: Renewable and Sustainable Energy Reviews, 37, 168-181.
- 528 [9] Hatami, M., Jafaryar, M., Ganji, D.D., Gorji-Bandpy, M., 2014. Optimization of finned-tube heat exchangers
 529 for diesel exhaust waste heat recovery using CFD and CCD techniques. In: International Communications in
 530 Heat and Mass Transfer, 57, 254-263.
- [10] Cavazzuti, M., Agnani, E., Corticelli, M.A., 2015. Optimization of a finned concentric pipes heat exchanger for
 industrial recuperative burners. In: Applied Thermal Engineering, 84, 110-117.
- [11] Selma, B., Désilets, M., Proulx, P., 2014. Optimization of an industrial heat exchanger using an open-source
 CFD code. In: Applied Thermal Engineering, 69 (1–2), 241-250.
- [12] Bhutta, M.M.A., Hayat, N., Bashir, M.H., Khan, A.R., Ahmad, K.N., Khan, S., 2012. CFD applications in
 various heat exchangers design: A review. In: Applied Thermal Engineering, 32, 1-12.
- 537 [13] Klein, S.A., 2016. Engineering Equation Solver (EES), Academic Professional V10-095-3D (7/11/16), ©
 538 1992-2016.
- 539 [14] Nellis, G., and Klein, S.A., 2009. Heat Transfer. Cambridge University Press, New York, NY.
- 540 [15] Li, P., Seem, J.E., Li, Y., 2011. A new explicit equation for accurate friction factor calculation of
 541 smooth pipes. In: International Journal of Refrigeration, 34 (6) 1535-1541.

542	[16] Zigrang, D.J. and Sylvester, N.D., 1982. Explicit approximations to the solution of Colebrook's friction factor
543	equation. In:AIChE Journal, 28, 514-515.
544	[17] Gnielinski, V., 1976. New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. In:
545	International Chemical Engineering, 16, 359-368.
546	[18] Shah, R.K. and London, A.L., 1978. Laminar Flow Forced Convection in Ducts, Academic Press.
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	

573	Figures captions
574	
575	Figure 1 – Schematic of the fabric flow and 3D view of the Stenter/Rameuse and of the exhaust heat recovery network
576	a) Schematic of the drying texture flow
577	b) 3D view of the Stenter/Rameuse and exhausts heat recuperation loop
578	Figure 2 – Schematic of the current heat exchanger network of the Stenter/Rameuse
579	Figure 3 – Layout of the improved heat recovery loop
580	Figure 4 – Gas and water velocities in the different analysed cases
581	Figure 5 – Heat rate of HE4 and water/exhausts temperatures(comparison of cases C.xxx/20/2)
582	a) Absolute Heat power of HE_4 and comparison with the current base case
583	b) Water and exhausts temperature at points 5 and 11
584	Figure 6 – Cumulative effect of the modifications introduced in the heat recovery network (comparison of cases
585	C.xxx/30/3)
586	Figure 7 – schematic of geometry, size, and cross sectional mesh of the different investigated fins
587	Figure 8 – Cross sectional flow of the heat exchanger module with the different investigated fins
588	Figure 9 – Temperature field and heat flux distributions in the axial xz midspan section for interrupted and continuous
589	fins
590	Figure 10 – Temperature profile on the midspan section in the case of 3 shifted segmented fins (C.220/30/3/3F)
591	Figure 11 – Heat flux profile on midspan section in the case of 3 shifted segmented fins (C.220/30/3/3F)compared to
592	the case with single continuous fin
593	Figure 12 – Axial temperature profile of the different fins at two fin height (tip and hub)
594	Figure 13 - Heat flux profile of the hot exhausts flow at the HE module
595	Figure 14 – View of the experimental setup of the rameouse cell equipped with twin-can recuperator module
596	a) Front view
597	b) Back view
598	Figure 15 – Cross section of the realized pipe module, rendering view of the heat exchangers assembly and schematic of
599	the experimental setup
600	a) Cross section of the realized pipe module of the twin-can HE with internal shifted fins (C.220/30/3/3F)
601	b) New heat exchangers assembly with twin-can HE modules
602	c) Schematic of the experimental setup of the twin-can HE
603	

604	Figure $16 - Water$ Temperature at outlet of HE_1 comparison between experiments and simulation
605	Figure 17 – Heat Exhanger network operation map
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	

636	Tables captions
637	
638	Table 1 – Main data of the current heat recovery network and heat exchangers parameters
639	Table 2 – Main current heat exchangers parameters
640	Table 3 – Main circuit data of the improved heat recovery network
641	Table 4 – Main heat exchangers data of the improved heat recovery network
642	Table 5 – Main parameters of the original and improved water/gas heat exchangers
643	Table 6 – CFD Model Data
644	Table 7 – Comparison of heat fluxes along the xz midspan section between continuous and interrupted fins
645	Table 8 – Heat recovered with the different kinds of fins and comparison between 3D CFD and 0D results
646	Table 9– Heat Recovery of HE1 comparison between experiments and simulation
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	

Figure 1

Basic configuration: water loop with series HEs

Figure 4

Figure 5

b)

Figure 6

CFD Simulation results – Hot stream region

Figure 9

Figure 11

1034 1038 1039 1040 1042 1048 1049 1050 1051 1052 1060 1062 1063

Figure 12

Figure 13

a) Front view

b) Back view

a)

b)

Figure 15

Figure 16

Figure 17

Tables

Colour Code Legend	Datasheet inputs	Assumed inputs	Outputs from calculation model
SYSTEM COMPONENTS	Circuit Points [-]	Mass flowrate m [kg/s]	Temperature [C]
WATER LOOP			
Pump – inlet	1	1.36	95.2
Pump – outlet	2	1.36	95.2
HE ₁ gas/water output	3	1.36	96.9
HE ₂ gas/ water output	4	1.36	98.4
HE ₃ gas/ water output	5	1.36	99.7
EXHAUST GAS LINE			
Suction cell 2 $m_6 = 1/2 m_{11}$	6	1.60	185
	7	1.60	179.4
	8	1.60	174.2
Suction cell 1 $m_9 = 1/2 m_{11}$	9	1.60	176
	10	1.60	171.1
Each angeta Outrant	11	3.20	172.7
Exhausts Output	11	9400 Sm ³ /h	
MAKEUP AIR			
HE air/water Inlet	12	0.446	31.8
HE sir/water Outlet	12	0.446	88.3
HE all/water Outlet	15	1.316 Sm ³ /h	

HEAT EXCHANGERS	Dowor [1/W]	Overall HT coefficient Utot	HE Surface area
PARAMETERS		$[W/m^2K^{-1}]$	[m ²]
EXHAUST GAS/WATER Hes			
HE1	9.118	20.84	2.539
HE2	8.385	20.83	2.539
HE3	7.895	20.84	2.539
AIR / WATER HE			
HE4	25.31	41.0	20.94
	Friction Power	Exhaust gas velocity	LMTD
	[W]	[m/s]	[K]
HE1	39.6	19.72	86.18
HE2	39.2	19.62	79.26
HE3	39	19.58	74.61
Comparative table: Model vs.			
Datasheet			
	Thermal power [kW]	Volume flow rate [Sm ³ /h]	HE surface area [m²]
Datasheet	25.29	1310	20.80
0D Model	25.31	1316	20.94

Colour Code Legend		Assumed inputs	Outputs from calculation model
SYSTEM COMPONENTS	Circuit Points	Mass flowrate	Temperature
	[n°]	m [kg/s]	[C]
WATER LOOP			
Pump – inlet	1	16	95.2
Pump – outlet	2 - 3.1-3.2-3.3	16	95.2
HE ₁ gas/water output	4.1	5.33	96.35
HE ₂ gas/ water output	4.2	5.33	96.14
HE ₃ gas/ water output	4.3	5.33	96.23
HE ₄ air/water inlet	5	16	96.24
EXHAUST GAS LINE			
Suction cell 2 $m_6 = 1/2 m_{11}$	6	1.60	185
	7	1.60	169.1
	8	1.60	156.1
Suction cell 1 m ₉ = $1/2$ m ₁₁	9	1.60	176
	10	1.60	161.7
Exhausta Output	11	3.20	158.9
Exhausts Output	11	9400 Sm ³ /h	
MAKEUP AIR			
HE air/water Inlet	12	0.575	31.8
HE oir/water Outlet	12	0. 575	88.3
HE all/water Outlet	13	3631 Sm ³ /h	

			HE Surfa a	
HEAT EACHANGERS PARAMETERS	Power [kW]	$[W/m^2K^{-1}]$	[m ²]	e area
EXHAUST GAS/WATER Hes			Bare pipe	Fins
HE1	25.79	57.05	2.726	1.893
HE2	21.17	49.08	2.726	1.893
HE3	23.17	49.17	2.726	1.893
AIR / WATER HE				
HE4	70.15	41.0	64.46	
	Friction Power	Exhaust gas velocity	LMTI)
	[W]	[m/s]	[K]	
HE1	183.8	25.89	81.11	
HE2	204.5	25.39	66.69	
HE3	208.1	25.6	72.94	
Comparative table: Bacis vs.				
improved comiguration	Thermal power [kW]	Volume flow rate [Sm ³ /h]	HE surface [m ²]	e area
Previous configuration	25.31	1316	20.94	
Improved configuration	70.13	3631	64.46	
Fins geometry	H _{fin} [m]	0.03		
H_{fin}	th _{fin} [m]	0.003		
Ptc _{fin} PtC _{fin}	Ptc _{fin} [m]	0.042		

Table 4

HEAT RECO	HEAT RECOVERY SYSTEM - 0D Analysis - Exhaust Gas Heat Exchangers Configurations							ns	
		Exhaust g	as heat exch]	Finned in	ner pipe	- Fins		
Label	Inner diameter [mm]	Outer diameter [mm]	Inner jacket diameter [mm]	Length of jacket [mm]	Twin pipes conf.	Number [n°]	Height [mm]	Thick. [mm]	Height/pitch ratio λ _{fin}
HEAT	HEAT EXCHANGER - COURRENT TYPE "A" ⁽¹⁾ WITH SERIES WATER CIRCUIT								
A.350	350	354	410	2.283	-	-	-	-	
HEA	AT EXCHAN	NGER - NEV	W TYPE "C	⁽²⁾ WITH I	PARALL	EL WATER	CIRCUI	Т	
C.350	350	354	410	2.283	-	-	-	-	
C.250	246	250	209	2 086	Х	-	-	-	
C.250/F	240	250	508	2 X 980	х	8 / 12 / 16	20	2	0.208/0.31/0.42
C.220	216	220	279	2 - 086	х	-	-	-	
C.220/F	210	220	278	2 X 980	х	8 / 12 / 16	20	2	0.234/0.35/0.47
C.200	106	200	259	2 0.96	Х	-	-	-	
C.200/F	190	200	238	2 x 980	Х	8 / 12 / 16	20	2	0.26/0.39

(1) Co-current bare pipe - Water loop with heat exchangers in series

(2) New twin-can exhaust gas pipe - Water loop with manifold distribution to exhaust heat exchangers

Table 5

 $\begin{array}{c} 1442\\ 1443\\ 1444\\ 1445\\ 1446\\ 1447\\ 1448\\ 1449\\ 1450\\ 1451\\ 1452\\ 1453\\ 1454\\ 1455\\ 1456\\ \end{array}$

Domain							
Lenght Radius				Angle α			Mesh
0,986 m	0,138 r	n		22,5°		Str	uctured Grid
		Simulation	para	meters			
CFD Code	Simulation	type		Solver		Turk	oulence model
OpenFOAM	Stationa	ry	chtl	tMultiRegionSimpleFoam		n K-Omega SST	
Hot Stream Region	n inlet - Exhaust g	gas		Cold Strea	am Regio	on inlet - `	Water
Temperature	Velocity			Temperature			Velocity
185°C	25,89 m	/s		95,2°C		0,1271 m/s	
	Grid resolution						
Heat Exchanges ID	C.220/20/2/1F	C.220/20/2	C.220/20/2/9F C.220/25/3/1F C.220/3			′30/3/1F	C.220/30/3/3F
Cells numbers	3.074.269	3.074.17	6	3.708.853	3.98	4.234	5.037.362

Table 6

 $\begin{array}{c} 1458\\ 1459\\ 1460\\ 1461\\ 1462\\ 1463\\ 1464\\ 1465\\ 1466\\ 1467\\ 1468\\ 1469\\ 1470\\ 1471\\ \end{array}$

CFD Model	C.220/20/2/1F		C.220/20/2/9F		Heat flux Ratio relative difference [%]
Section [n°]	fin height [m]	Heat flux [W]	fin height [m]	Heat flux [W]	C.220/20/2/1F / C.220/20/2/9F [%]
1	0.02	30.31	0.02	30.28	0.1
2.1	0.02	5.65	0.004	5.28	7.0
2.2	0.02	42.33	0.02	42.54	-0.5
3.1	0.02	4.28	0.004	3.95	8.3
3.2	0.02	36.32	0.02	36.43	-0.3
4.1	0.02	3.83	0.004	3.49	9.6
4.2	0.02	33.04	0.02	32.90	0.4

HEAT RECOVERY SYSTEM - 0D/CFD Comparative Analysis - Results								
		0D .	Analysis	Analysis				
Heat exchanger		Heat recovery [kWt]	Relative increase to the bare pipe [%]	Heat recovery [kWt]	Relative increase to the bare pipe [%]			
Label Id								
C.220	bare pipes	3,75	-	3,65	-			
	C.220/20/2/1F	5,75	53,1%	5,66	55,1%			
	C.220/20/2/9F	-	-	5,60	53,4%			
C.220/F	C.220/25/3/1F	6,23	65,9%	6,30	72,6%			
	C.220/30/3/1F	6,60	75,7%	6,78	85,8%			
	C.220/30/3/3F	-	-	7,20	97,3%			

 $\begin{array}{c} 1556\\ 1557\\ 1558\\ 1559\\ 1560\\ 1561\\ 1562\\ 1563\\ 1564\\ 1565\\ 1566\\ 1567\\ 1568\\ 1569\\ 1570\\ 1571\end{array}$

T _{SP} [°C]	Branch Mass flow rate [l/min]	Heat Recovered [kW] Simulation Data	Heat Recovered [kW] Experimental Data	Standard Deviation of experimental data [kW]
203	4.17	4.56	4.81	± 0.15
	7.38	4.72	5.21	± 0.12
	10.49	4.65	4.87	± 0.10
	15.04	4.40	3.98	± 0.07
190	5.80	4.56	4.34	± 0.10
	7.35	4.60	4.71	± 0.07
	8.91	4.56	4.48	± 0.08
175	5.78	4.16	4.09	± 0.04
	7.35	4.26	4.24	± 0.04
	8.91	4.15	4.24	± 0.05
150	5.78	3.59	3.74	± 0.04
	7.34	3.62	3.72	± 0.06
	8.89	3.55	3.55	± 0.04
130	5.76	3.10	3.14	± 0.03
	7.33	3.08	3.08	± 0.04
	8.87	3.01	2.99	± 0.04