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Molecular recognition and solvatomorphism in a cyclic peptoid: 
Formation of a stable 1D porous framework. 
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Molecular recognition and the hydrophobic effect explain the 

solvatomorphic behavior of a hexameric -cyclic peptoid. Either a 

pure non-porous crystal form or a stable one-dimensional porous 

framework is obtained by appropriate choice of crystallization 

solvents.  

The study of molecular aggregation in solution to form 

crystalline solids represents the focus of interdisciplinary 

research efforts.1,2 An understanding of the supramolecular 

aspects in the nucleation step is crucial to control the overall 

outcome of the crystallization process. A holistic approach 

takes into account both the structural diversity and the 

possible interaction patterns of the involved species to exploit 

the chemistry of nucleation.3 In particular, a recent total 

scattering study demonstrated that solvent molecules 

restructure around the forming nanoparticles depending on 

the nature of the counterparts.4 Thus, the solvent plays a key 

role in determining the resulting crystal form.5 Conformational 

flexibility adds further complexity to the crystallization 

process, giving rise to conformational polymorphs that differ 

not only in the packing mode, but also in the molecular 

conformation.6  

In our ongoing studies on cyclic peptoids7-10 we have 

investigated the role of the crystallization solvent in the solid 

state assembly of the cyclic hexamer cyclo-(Nme-Npa2)2 

(compound 1 in Scheme 1, Nme = N-(methoxyethyl)glycine, 

Npa = N-(propargyl)glycine) and reported its peculiar solid 

state dynamics.11 Compound 1 crystallizes from acetonitrile as 

form 1A and undergoes a reversible single-crystal-to-single-

crystal transformation upon release of guest molecules with a 

drastic conformational change to give the desolvated crystal 

form 1B.11 In form 1A methoxyethyl and propargyl side chains 

extend vertically with respect to the macrocycle plane, 

inducing the columnar arrangement of the peptoid 

macrocycles. Upon acetonitrile removal two vertical propargyl 

side chains tilt by 113° and form an unprecedented CH-pi 

zipper that links together the peptoid columns in the 

desolvated crystal form 1B. Thereafter, upon exposure to 

acetonitrile molecules the CH-pi zipper opens up and 

transforms back to the solvated form 1A.11 

Subsequent to these intriguing results, we report herein a 

polymorph screening of compound 1 with a view to 

understanding the role of the crystallization solvent in the 

solid state assembly (Scheme 1). In particular, we obtained and 

characterized two new crystal forms of 1, namely 1C and 1D. 

We were also able to derive two other crystal forms 1E and 1F 

from 1D, with the latter 1F being a stable empty porous form. 

1C and 1D were crystallized by slow evaporation from 

acetonitrile/water and acetonitrile/methanol solutions, 

respectively (Scheme 1, see ESI for further details).  

Single crystal X-ray diffraction‡ (see Table 1 and also Fig. S1-S3, 

ESI) showed that 1C crystallizes as a pure form, while 1D is a 

methanol solvate. In both crystal forms the macrocycle 

possesses a crystallographic inversion centre and exhibits a 

distorted cctcct peptoid backbone conformation (where c 

denotes cis, and t trans).12 

Nevertheless the macrocycle conformation in 1C and 1D is 

remarkably different: in 1C two propargyl residues feature a 

trans conformation while in 1D the methoxyethyl residues 

correspond to the trans residues, as observed in crystal forms 

1A and 1B (Fig. 1 and Fig. S4-S6, ESI).11 

Gas phase energy optimization13 indicates that the novel 

molecular conformation observed in crystal form 1C is less 

stable by 30 kJ/mol with respect to that of 1D (see ESI for 

details).  

Hirshfeld surface analysis14 and lattice energy calculations 

using the PIXEL method15 allowed us to quantitatively assess  
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Scheme 1.  Crystal forms of cyclo-(Nme-Npa2)2 1, Nme = N-(methoxyethyl)glycine, Npa = N-(propargyl)glycine. 

the main assembly motifs in the two crystal forms (Fig. 1 and 

Fig. S7-S9 and Tables S2-S3 ESI). 

In 1C a layered arrangement in the plane ab is provided by 

backbone-to-side chains CO···H2C interactions involving the cis 

carbonyl groups and both propargyl residues (Fig. 1C, S7c, S8 

and motifs I and II in Table S1, ESI). In 1D a columnar 

arrangement along the shortest axis is provided by backbone-

to-side chain CO···HC≡C interactions involving the trans 

carbonyl groups and the vertical cis propargyl side chains (Fig. 

1D, S7d, S9 and motif I in Table S2, ESI). Vertical propargyl side 

chains act as pillars and extend vertically with respect to the 

macrocycle plane interacting with the backbone atoms of the 

macrocycles below and above, as previously observed.8-9,10a,11 

In 1C layers are interconnected along the c axis by backbone-

to-side chain interactions by means of C=O···H-C≡C and pi-pi 

interactions involving the cis propargyl side chains (Fig. S8 and 

motifs III and IV in Table S1). In 1D intercolumnar interactions 

are provided by backbone-to-side chain C=O···H-C≡C 

interactions and involve the horizontal propargyl side chains 

(Fig. S9 and motif II in Table S2, ESI).  

Thus, we obtained two different molecular conformations in 

crystal forms 1C and 1D by changing the molecular 

environment during the crystallization process. In particular, 

adding water to the crystallization solvent triggers a new 

conformation induced by a 

hydrophobic effect. In 1C the 

more hydrophilic 

methoxyethyl side chains are 

oriented horizontally with 

respect to the macrocycle 

plane and are more exposed 

with respect to 1D, where 

the methoxyethyl side 

chains are vertical and 

eventually embedded in the 

cyclopeptoid columns (Fig. 1 

and S7c-d, ESI). Moreover, 

the layered assembly in 1C 

allows to maximize the 

interactions among the hydrophobic propargyl side chains. 

Adding methanol to the acetonitrile solution does not have the 

same conformational effect observed in 1C; indeed the 

molecular conformation is the same obtained in 1A using only 

acetonitrile as the crystallization solvent.16  

Methanol molecules in form 1D occupy cavities between the 

columns (with a volume of 84.4 Å3 per unit cell,17 Fig. 2 and 3b) 

and are hydrogen bonded to the cis carbonyl oxygen atoms O2 

(CO···HO 1.79 Å, CO···HO 173°). The carbonyl oxygen atoms O2 

act as H-bond binding sites (Fig. S7d ESI). Indeed, acetonitrile 

molecules in form 1A occupy channels (with a volume of 196.2 

Å3, Fig. 2 and 3a) and bind to the cis carbonyl oxygen atoms O3 

(CO···HC 2.65 Å, CO···HO 157°, Fig. S7a ESI). Notably, the 

assembly of columns in 1D and 1A is different, as 

intercolumnar interactions in 1D and 1A are mediated by the 

guest molecules, which are attached to different sides of the 

columns (Fig. 2). In 1D the columns pack in an approximate 

hexagonal arrangement and in 1A the columns shifted by one 

half along the shortest cell axis. 

Thermal analyses were carried out for both crystal forms. In 

the case of 1C, DSC shows that the sample is stable up to 190 

°C, and decomposes thereafter (Fig. S10, ESI). 

 

 

      1A     1B (type II)      1C     1D      1E      1F 

Fig. 1 Arrangement of cyclopeptoid molecules along the shortest crystallographic axis in crystal forms 1A, 1B type II molecules, 1C, 1D, 1E and 1F. C=O···H-C hydrogen bonds 

are depicted as dotted lines. Atom types: C grey, N blue, O red, H white. 
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For 1D, DSC and TGA reveal that desolvation occurs in one step 

over a wide temperature range from 30 °C to 90 °C (Fig. S11 

and S12, ESI). DSC also shows two closely occurring 

endothermic and exothermic events, starting at 184 °C and 

215 °C, respectively. Finally, decomposition occurs at T > 230 

°C (Fig. S11, ESI). 

The observed percentage weight loss of 8.2% from TGA 

corresponds to 1.7 molecules of methanol per cyclopeptoid 

molecule, which is in agreement with the value determined 

from single crystal X-ray structure analysis.‡ 

It is noteworthy that a single crystal of form 1D, exposed to air 

at room temperature for 30 minutes, is able to exchange the 

methanol molecules with water molecules (as shown by single 

crystal X-ray diffraction), resulting in the crystal form 1E. 

Crystal form 1E is isostructural with 1D‡ (Fig. 2).  

The cyclopeptoid molecules in the two crystal forms overlap 

with a rmsd value of 0.1904 Å, also in this case the macrocycle 

possesses a crystallographic inversion centre. Water molecules 

in form 1E occupy the cavities (with a volume of 11.9 Å3, Fig. 

3c) between the columns and are hydrogen bonded to the cis 

carbonyl oxygen atoms O2 (CO···HO distance 1.92 Å, CO···HO 

angle 167°). The carbonyl oxygen atoms O2 again act as H-

bond binding sites (Fig. S7e, ESI). 

To test the crystal stability in the absence of guest molecules, 

an in situ variable temperature single crystal X-ray diffraction 

experiment was performed (see ESI for details). A fresh crystal 

of 1D was flash cooled in liquid nitrogen and analyzed at 100 K 

to confirm the presence of methanol molecules, it was then 

heated using a hot air blower and measured at 323 K, 368 K, 

393 K and cooled back to 100 K. The structure determinations 

revealed that methanol molecules left the crystal at 323 K to 

give rise to the isostructural apohost 1F. The cyclopeptoid 

molecules in 1E and 1F crystal forms overlap within a rmsd 

value of 0.0705 Å, also in this case the macrocycle possesses a 

crystallographic inversion centre. 

Importantly, the columnar architecture remains intact and 

voids form (with a volume of 14.6 Å3, Fig. 3d), showing the 

robustness of the framework upon solvent removal. Form 1F 

remains stable in a nitrogen atmosphere from 100 K to 393 K.  

When exposed to environmental humidity the apohost 1F 

gives form 1E, meaning that the cavities are accessible to 

incoming and outgoing guest molecules. 

Form 1F shows a lower packing coefficient (0.706) than the 

solvated crystal forms 1D (0.766), 1E (0.758) and 1A (0.769). In 

1C the packing coefficient is 0.724, indicating that host-guest 

interactions in 1D and 1E favour a more efficient packing 

arrangement. 

We also verified the reversibility of the exchange process 

between water and methanol molecules by an in situ single 

crystal XRD experiment, exposing a crystal of 1E to methanol 

vapours in a capillary (see ESI). Structural analysis confirmed 

the transformation to form 1D. Notably the cavities contract 

considerably when they are occupied by water molecules (11.9 

Å3) instead of methanol molecules (84.4 Å3). However, the 

volume of the cavities (14.6 Å3) in the empty form 1F does not 

change significantly with respect to the hydrate form 1E. 

In conclusion, the conformational flexibility of compound 1 is 

crucial to the observed solvatomorphism. The crystallization 

solvents are able to favour one conformation over the other, 

leading either to a one-dimensional columnar (1A and 1D) or a 

two-dimensional layered assembly of cyclopeptoid molecules 

(1C). Once the columns are formed, they may assemble in 

different ways and the interaction with the guest molecules 

such as acetonitrile or methanol drives the final assembly in 

the solid state, leading to a different sorption behaviour. 

 

 

 

 

    1A         1B  

 

    1C        1D 

 

    1E        1F 

Fig. 2 Crystal packing of crystal forms 1A, 1B (type I molecules in blue; type II 

molecules in green), 1C, 1D, 1E and 1F as viewed along the shortest crystallographic 

axis. Host binding sites are highlighted in red. Guest molecules are depicted as ball and 

stick. Hydrogen atoms are visualized only for guest molecules. 
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Table 1. Crystallographic data for 1C, 1D, 1E and 1F. 

 1C 1D 1E 1F 

T 296 K 100 K 100 K 100 K 

Formula C30H38N6O8 C30H38N6O8 

·2 CH3OH 

C30H38N6O8· 

1.16 H2O 

C30H38N6O8 

Formula 

weight 

610.66 667.06 628.68 
610.66 

System Triclinic Triclinic Triclinic Triclinic 

Space 

group 

P -1 P -1 P -1 P -1 

a (Å) 8.814(3) 8.5007(14) 8.5852(15) 8.5875(8) 

b (Å) 9.0944(18) 10.3965(11

) 

10.4929(17

) 

10.3508(8) 

c (Å) 10.982(4) 10.9102(17

)  

10.556(2) 10.6762(8)  

α (°) 78.86(2) 67.863(11) 68.110(9) 67.884(7) 

 (°) 87.55(3) 84.552(15) 86.318(10) 86.630(7) 

γ (°) 66.35(2) 71.048(13) 67.035(9) 68.351(8) 

V (Å3) 790.6(4) 844.3(2) 808.8(3) 813.60(13) 

Z 1 1 1 1 

DX (g cm-3) 1.283 1.327 1.297 1.246 

 (mm-1) 0.094 0.099 0.097 0.092 

F000 324.0 360.0 336.0 324.0 

R 

 (I > 2σI) 

0.0762 

(1454) 

0.0700 

(2055) 

0.0582 

(1780) 

0.0492 

(2051) 

wR2 

 (all) 

0.2567 

(3541) 

0.1966 

(3798) 

0.1560 

(3240) 

0.1099 

(3081) 

N. param. 200 218 212 199 

GooF 0.986 0.993 0.925 1.020 

min, max 

(eÅ-3) 

-0.22, 0.33 -0.32, 0.33 -0.28, 0.25 -0.21, 0.23 

 

Indeed, compound 1 exhibits two different possible guest 

release and uptake mechanisms according to the exhibited 

crystal form: 

- in 1A, the host framework releases the guest molecules, 

yielding the non-isostructural apohost 1B, which in turn 

adsorbs the incoming guest and transforms back to 1A.11 

- in 1D and 1E, the host framework releases the guest 

molecules to give a zeolite-like isostructural apohost 1F, with 

stable cavities open to incoming and outgoing guest 

molecules. 

Finally, compound 1 represents a paradigmatic example of 

how conformational changes are induced by the external 

environment, leading to different aggregation modes with 

divergent properties, paving the way to the understanding of a 

similar behaviour in more complex systems as polypeptides. 
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                                       c                                                          d 

Fig. 3 Contact surfaces (yellow) in the crystal structures of 1 (probe radius: 1.2 Å). 

a) Form 1A: channels (V = 196.2 Å3 per unit cell) parallel to the c axis; b) form 1D: 

cavities (V = 84.4 Å3) stacked along the c axis; c) form 1E: cavities (V = 11.9 Å3) stacked 

along the c axis; d) form 1F: cavities stacked along the c axis (V = 14.6 Å3).  
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