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ON CALABI EXTREMAL KÄHLER-RICCI SOLITONS

SIMONE CALAMAI AND DAVID PETRECCA

Abstract. In this note we give a characterization of Kähler metrics which are
both Calabi extremal and Kähler-Ricci solitons in terms of complex Hessians
and the Riemann curvature tensor. We apply it to prove that, under the
assumption of positivity of the holomorphic sectional curvature, these metrics
are Einstein.

Introduction

Let M2n be a compact complex manifold. A Kähler metric g on M is said to be
Kähler-Einstein if it is Einstein as a Riemannian metric, i.e. it is proportional to
its Ricci tensor or, equivalently, if there exists c ∈ R such that

(1) ρg = cωg

where ρg (resp. ωg) denotes the Ricci form (resp. Kähler form) of g.
There are two possible generalizations of this notion. The first is the notion of

extremal metric introduced by Calabi in [5, 6] (see also [14]) in the attempt to find
a canonical representative in a given Kähler class Ω ∈ H1,1(M)∩H2(M,R). These
metrics are defined to be the critical points of the Riemannian functional MΩ → R

defined by

g 7−→

ˆ

M

s2gω
n

whereMΩ is the space of the Kähler metrics onM in the class Ω and sg is the scalar
curvature of g. He also showed that a metric is extremal if, and only if, the gradient
of sg is a holomorphic vector field. Constant scalar curvature Kähler metrics (cscK),
hence in particular Kähler-Einstein, are examples of extremal metrics, but there
are extremal metrics of non constant scalar curvature (see again [5]).

Another direction to generalize the Einstein condition (1) is the following. A
Kähler metric g is called a Kähler-Ricci soliton (KRS) if there exist c ∈ R and a
holomorphic vector field X such that

ρg + cωg = LXωg.

These metrics give rise to special solutions of the Kähler-Ricci flow (see e.g. [9]),
namely they evolve under biholomorphisms. It is known that on a compact man-
ifold, if c ≥ 0 then g is Einstein (see e.g. again [9]), so in the compact Kähler
case one only considers the so-called shrinking Kähler-Ricci solitons (c < 0) whose
equation, after a scaling, can be written as

(2) ρg − ωg = LXωg.

The Hodge decomposition for the dual of X allows us to introduce a holomorphy
potential with respect to g, i.e. a complex-valued function θX such that ιXωg =

1
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i∂θX . By means of this function we can infer that the Kähler form ωg belongs to
2πc1(M), making M a Fano manifold.

The first examples of non-Einstein compact Kähler-Ricci solitons go back to the
constructions of Koiso [17] and independently Cao [7] of Kähler metrics on certain
CP

1-bundles over CPn. Koiso himself remarks that this Kähler-Ricci soliton metric
is not Calabi extremal and proves that if it were, it would be Einstein.

There is a class of manifolds for which there are existence results for both kinds
of metrics, namely toric manifolds (see e.g. [1]). For extremal metrics we mention
for instance the existence result of Donaldson [10] for toric surfaces. For the KRS
we refer to the existence result, in all dimensions, of Wang and Zhu [21]. Finally, the
existence of a Kähler-Einstein metric on a compact Fano manifold is equivalent to
the notion of K-stability stated by Chen, Donaldson and Sun in [8] and subsequent
papers.

It is then natural to ask what happens when a metric generalizes a Kähler-
Einstein metric in both these ways. In Theorem 2.7 we prove, under the assumption
of positivity of the holomorphic sectional curvature, that an extremal KRS is in
fact Kähler-Einstein.

It is not too restrictive to assume positive holomorphic sectional curvature pro-
vided it does not exceed a certain numerical bound. Indeed it has been proved by
Futaki and Sano [13] that if the diameter of a Ricci soliton is < 10

13π then the soliton
is trivial. On the other hand, Tsukamoto [20] proved that if a Kähler metric g has
holomorphic sectional curvature > ε, then the diameter of the manifold is bounded
from above by π√

ε
.

From these results we can infer that if the holomorphic sectional curvature is
greater than (1310 )

2 then the KRS must be Einstein, so our result is non trivial when
the holomorphic sectional curvature does not exceed this number. The authors do
not know whether there are any connections between positive holomorphic sectional
curvature and the extremality condition or whether the extremality gives conditions
on the diameter .

The paper is organized as follows. We start recalling some notation and con-
ventions of Kähler geometry. This level of detail seems necessary in order to avoid
confusion among different conventions. We then go on proving, for a Kähler-Ricci
soliton, the characterization of being extremal in terms of the length of the complex
Hessian of its potential function and in terms of certain contractions of the Riemann
curvature tensor. We then use this to prove our main result in Theorem 2.7 and
we also give a condition about the isometry group of a non-Einstein extremal KRS.
We finally make a remark about the replicability of the argument in the Sasakian
setting.

Acknowledgements. The authors are grateful to Fabio Podestà for suggesting
the problem, for his constant advice and support and for his help for a better
presentation of this paper. They are also grateful to Xiuxiong Chen for his support
and to Weiyong He and Song Sun for their interest and feedback.

1. Definitions and preliminary results

Notation. Let (M, g, J) be a smooth, compact, without boundary Kähler mani-
fold of real dimension 2n, with its Riemannian metric g and compatible integrable
complex structure J . The corresponding Kähler form is ω(·, ·) = g(J ·, ·). We also
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denote as Ric the Riemannian Ricci tensor corresponding to the Riemannian met-
ric g; and its Ricci form as ρ(·, ·) = Ric(J ·, ·). We label s the Riemannian scalar
curvature of the metric g. We let δ be adjoint of the exterior differential d with
respect to g and ∆d = δd+ dδ be the d-Laplacian acting on differential forms.

We let ♯ and ♭ denote the musical isomorphisms between fields and 1-forms. For
a 1-form α we denote as |α|2 = (α, α) = (α♯, α♯), and as well as |Z|2 = (Z, Z) =
(Z♭, Z♭) the metric pairing on by means of the Riemannian metric g. Similarly, if
a real (1, 1)-form β and a 2-tensor B correspond each other via β(·, ·) = B(J ·, ·),
then we have for the metric pairings |B|2 = (B, B) = 2|β|2 = 2(β, β). For example,
|Ric |2 = (Ric, Ric) = 2|ρ|2 = 2(ρ, ρ). Notice also that for any smooth real valued
function on M there holds (ω, ddcu) = −∆du.

Given any tensor T and any vector field V on a smooth manifold, we label as
LV T the Lie derivative of T along V .

For any smooth, real valued function u on M , we label as ∇u the Riemannian
gradient of u; namely, ∇u = (du)♯. We also denote its (1, 0)-part as ∂♯f = 1

2 (∇f −

iJ∇f). We let Hess u = 1
2L∇ug be the real Hessian of u.

We also label as h(M) the algebra of (complex) holomorphic vector fields of M .

The first definition is very classical and tracks back Hamilton [16].

Definition 1.1. Let (M, g, J) and Ric as in Notation; let f be a smooth, real
valued function on M . We say that (g, f) is a Kähler-Ricci soliton when the
following equation is satisfied

Ric−g =
1

2
L∇fg.(3)

Remark 1.2. It is a general fact that ∇f is real holomorphic, although this is
often stated in the definition. Indeed, equation (3) implies that ∇i∇jf = 0 for all
i, j ∈ {1, · · · , n}.

The next definition is due to Calabi [5].

Definition 1.3. Let (M, g, J) and s be as in Notation. We say that the metric
g is Calabi extremal, or simply extremal, when the Riemannian gradient of s is
holomorphic, i.e. if ∂∂♯s = 0.

In this paper we consider metrics which satisfy both these definitions.

Definition 1.4. Let (M, g J) as in Notation, and let (g, f) be a Kähler-Ricci soliton
as in Definition 1.1. Moreover, let g be Calabi extremal as in Definition 1.3. Then,
we call (g, f) an extremal Kähler-Ricci soliton.

Remark 1.5. We chose to label the pairs (g, f) in Definition 1.4 as extremal Kähler-
Ricci solitons although a similar name was given by Guan in [15] to different objects.

Not all complex valued smooth functions v on M give rise to holomorphic vector
fields. The ones which do are solutions of the equation ∂∂♯v = 0, they lie in the
kernel of the fourth order differential operator Lg = (∂∂♯)∗∂∂♯ (see [11]).

The presence of an extremal metric gives information about the algebra of holo-
morphic vector fields h(M). Namely the following theorems hold.

Theorem 1.6 ([6, 11]). Let g be an extremal Kähler metric on M with scalar
curvature s. Then the Lie algebra h(M) has a semidirect sum decomposition

(4) h(M) = a(M)⊕ h′(M),
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where a(M) is the complex Lie subalgebra of h(M) consisting of all parallel holo-
morphic vector fields of M , and h′(M) is an ideal of h(M) consisting of the image
under ∂♯ of the kernel of Lg.

Moreover h′(M) has a decomposition

h′(M) =
⊕

λ≥0

hλ(M)

where [∂♯s, Y ] = λY for any Y ∈ h(M). Furthermore the centralizer h0(M) of ∂♯s
is the complexification of the Lie algebra consisting of Killing vector fields of M .

In the case of a Kähler-Ricci soliton a similar theorem holds.

Theorem 1.7 ([19]). If g is a Kähler-Ricci soliton with (1, 0)-vector field X. Then
h(M) admits the decomposition

(5) h(M) = k0(M)⊕
⊕

λ>0

kλ(M) ,

where kλ(M) = {Y ∈ h(M) : [X,Y ] = λY }. Moreover the centralizer k0(M) of X
splits as k′0 ⊕ k′′0 where k′0 is the ∂♯-image of real functions and k′′0 is the ∂♯-image
of purely imaginary functions.

The following result is due to Lichnerowicz (see [3, Proposition 2.140]).

Proposition 1.8. On a compact Kähler manifold a (real) vector field X is holo-
morphic if and only if

∆dX
♭ − 2Ric(X, ·) = 0 .(6)

2. Statements and proofs

The function f in Definition 1.1 has, by means of Remark 1.2, holomorphic
gradient so it satisfies, applying δ on both sides of (6) (cf. [14, (1.17.5)])

(7)
1

2
∆2

df + (ddcf, ω +
1

2
ddcf) +

1

2
(ds, df) = 0 .

Tracing the KRS equation (3) we get 2n− s = ∆df , we substitute it into (7) to get

1

2
∆d(2n− s)−∆df +

1

2
|ddcf |2 +

1

2
(ds, df) = 0 .

So

(8) −∆ds+ 2(s− 2n) + |ddcf |2 + (ds, df) = 0 .

Differentiating we get

(9) −∆dds+ 2ds+ d|ddcf |2 + d(ds, df) = 0 .

The last term in (9) can be substituted with the following two lemmas.

Lemma 2.1. On an extremal Kähler-Ricci soliton (g, f) the holomorphic fields
∇f and ∇s commute.
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Proof. Since (g, f) is an extremal Kähler-Ricci soliton, then both ∂♯s and ∂♯f are
holomorphic vector fields, i.e. ∂♯s, ∂♯f ∈ h(M). Also, by means of Theorem 1.6,
h(M) splits as h(M) = a(M)⊕

⊕

λ≥0 hλ(M). The summand h0(M), the centralizer

of ∂♯s in h(M), contains ∂♯f . Hence we have

0 = [∂♯s, ∂♯f ] =
1

4
([∇s, ∇f ]− [J∇s, J∇f ]− i[∇s, J∇f ]− i[J∇s, ∇f ])

=
1

2
([∇s, ∇f ]− iJ [∇s, ∇f ]) ,

and we take its real part to conclude. �

Lemma 2.2. Whenever two real functions u, v satisfy [∇u ,∇v] = 0, then there
holds

d(g(∇u,∇v)) = (∇∇u∇v +∇∇v∇u)♭ = 2(∇∇u∇v)♭ .

Proof. For any vector field Y we have

Y · g(∇v,∇u) = g(∇Y ∇v,∇u) + g(∇v,∇Y ∇u)

= g(∇∇u∇v +∇∇v∇u, Y )

= g(2∇∇u∇v, Y ) .

This completes the proof of the lemma. �

For a (Kähler-)Ricci soliton there are some quantities that are constant, see e.g.
[9]. One of them is, in our notation,

(10) s+ |∇f |2 + 2f = const .

From this together with Lemma 2.2 it is easy to infer the following.

Lemma 2.3. Let g be a KRS with real holomorphic field X and let Z = X1,0. Then
g is extremal if, and only if, ∇XX is real holomorphic (or ∇ZZ is holomorphic or
∇ZZ is antiholomorphic).

At this point it is worth noticing the following.

Proposition 2.4. For an extremal KRS g with field X and scalar curvature s, if
X = c∇s then g is Einstein.

Proof. We first notice that c has to be constant on M . Indeed if it were a function
on M it would be holomorphic since the two fields are. Consider the function
p 7→ |Xp|

2 and a local maximum q ∈ M . At q we would have

gq(∇XX |q, Xq) = 0.

Under the proportionality assumption (10) becomes

(11) (c+ 2)X + 2∇XX = 0.

At q we would have then c+2
2 gq(X,X) = 0 which implies X = 0 if c 6= −2.

If c = −2 we have from (11) and Lemma 2.2 that ∇XX = ∇|X |2 = 0 implying
X = 0 as well. �

By means of the decomposition theorems 1.6 and 1.7, the fields JX and J∇s
belong to the center of the isometry algebra and are linearly independent for a
non-Einstein extremal KRS. This gives us the following corollary.
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Corollary 2.5. If g is a non-Einstein extremal KRS, then the center of the isom-
etry group of g has dimension at least 2.

We now present a characterization of extremal Kähler-Ricci solitons.

Proposition 2.6. Let (M2n, g, ω, f) be a compact Kähler-Ricci soliton with Rie-
mannian scalar curvature s. Let X = ∇f . Then the following are equivalent.

(1) the function |ddcf |2 is constant and [∇f,∇s] = 0;
(2) g is extremal;

(3) Rm(·, ∂♯f)∂♯f = 0;
(4) The tensor

TX := Rm(·, X)X

commutes with J and α : (A,B) 7→ Rm(A, JX,X,B) is a (1, 1)-form.

Proof. Let us first prove the equivalence between (1) and (2). By means of Proposi-
tion 1.8, the condition on g being extremal is equivalent to require the Riemannian
scalar curvature s to satisfy the tensorial Lichnerowicz equation (see [3, Proposition
2.140])

(12) ∆dds− 2Ric(∇s, ·) = 0 .

Let us assume g to be extremal. Equation (12), together with the Kähler-Ricci
soliton assumption Ric = g +Hess f , reads

0 = ∆dds− 2ds− 2Hessf (∇s, ·)

= ∆dds− 2ds− 2g(∇∇s∇f, ·) .(13)

By means of Lemma 2.2, formula (13) differs from (9) by the term d|ddcf |2 which
has to be zero.

Conversely, assuming [∇s, ∇f ] = 0, then Lemma 2.2 holds. Also, in (9) the term
d|ddcf |2 vanishes and then (9) is simply (12), which says, by means of Proposition
1.8, that s has holomorphic gradient. This completes the equivalence between (1)
and (2).

Let g be extremal, then by means of the previous Lemma, the field ∇ZZ where
Z = ∂♯f is holomorphic. Then compute for any (1, 0)-field A,

Rm(A,Z)Z = ∇A∇ZZ −∇Z∇AZ −∇[Z,A]Z

= 0

by using the fact that Z and ∇ZZ are antiholomorphic (hence killed by ∇A) that

kills the first two terms and that [Z,A] is (1, 0) that kills the last.
Conversely, the generic form of the Riemann tensor for A of type (1, 0) is

Rm(A,Z)Z = ∇A∇ZZ.

If this is zero, it means that the field ∇ZZ is killed by ∇A for any A of type (1, 0)
implying that it is antiholomorphic. Indeed, for any W we have

0 = ∇Y −iJY (W + iJW ) = ∇Y W + J∇JY W + i(J∇Y W −∇JY W )

that is, W satisfies ∇JY W = J∇Y W for all Y , that is W is real holomorphic.
Hence we conclude g is extremal by means of the previous Lemma.
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Let us now assume (3). We notice that its real formulation is given by the system

(14)

{

Rm(A,X)JX = −Rm(A, JX)X

Rm(A,X)X = Rm(JA,X)JX.

and the second equation means exactly that [TX , J ] = 0. We have now, using
(14) for the second equality,

α(B,A) = Rm(B, JX,X,A)

= −Rm(B,X, JX,A)

= −Rm(JX,A,B,X)

= −α(A,B).

To prove that α is (1, 1) is equivalent to prove that it is J-invariant. This follows
again from (14) since

α(JA, JB) = Rm(JA, JX,X, JB)

= −Rm(A,X, JX,B)

= Rm(A, JX,X,B)

= α(A,B).

Conversely let [TX , J ] = 0 and let α be J-invariant. These assumption are
exactly (14). �

We can use this to prove our main result.

Theorem 2.7. Any extremal Kähler-Ricci soliton with positive holomorphic sec-
tional curvature is Einstein.

Proof. Let f be the soliton function. Assume it is not a constant and Z be the
normalized ∂♯f .

By assumption we have, in the direction Z, that the holomorphic sectional cur-
vature is

K(Z) := Rm(Z,Z, Z, Z) > 0.

By means of the previous proposition we are lead to the contradiction K(Z) = 0
as the above Riemann tensor vanishes. �

Remark 2.8. There is no loss of generality to assume the positivity of the holomor-
phic sectional curvature instead of just requiring it to have a sign. Indeed, by a
theorem of Berger [2, Lemme (7.4) pag. 50] prescribing the sign of the holomorphic
sectional curvature gives the same sign to the scalar curvature, which in case of
Ricci solitons is always positive by means of general results (see e.g. again [9]).

The argument exposed in this paper can be replicated verbatim to prove the
following result about Sasaki manifolds. We refer to [12, 4] for the notions of
Sasaki-Ricci solitons, to and Sasaki-extremal metrics and for transverse curvature.
Recall that, for a Sasaki manifold, being transversally Kähler-Einstein is equivalent
to being η-Sasaki-Einstein.

Theorem 2.9. Any extremal Sasaki-Ricci soliton with positive transverse holomor-
phic sectional curvature is η-Sasaki-Einstein.
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Indeed there are Sasakian analogues of Theorem 4 done by Boyer and Galicki
and an extension of Theorem 1.7 done by the second author in [18]. Moreover, the
Lichnerowicz equations hold as well for the transverse quantities, see again [4].
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Largo Pontecorvo 5 - Pisa - Italy
E-mail address: petrecca at mail.dm.unipi.it


	Introduction
	Acknowledgements

	1. Definitions and preliminary results
	2. Statements and proofs
	References

