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Abstract. We investigate the structure of the set of periodic solutions
of a time-dependent generalized version of the sunflower equation (in
fact of the delayed Liénard equation), where the coefficients can vary
periodically, thus allowing for environmental oscillations. Our result stems
from a more general analysis, based on fixed point index and degree-
theoretic methods, of the set of T -periodic solutions of T -periodically
perturbed coupled delay differential equations on differentiable manifolds.
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1. Introduction

Physical and biological phenomena involving memory effects (such as viscosity
in solids, hysteresis in ferroelectrics, latency of diseases, delay feedback, fading
effect for hormones concentration, etc.) are described commonly by differen-
tial equations involving time delay (see, e.g., [2,11,17,27]). Indeed, in recent
years there has been a growing interest around the dynamical behavior of such
equations. In particular, a certain amount of research has been dedicated to
the sunflower equation, i.e.

ÿ(t) = −α

r
ẏ(t) − β

r
sin

(
y(t − r)

)
, (1)

where r > 0 is a finite time delay, α and β are experimental parameters
(see [16], also [9] for the derivation). This scalar equation is a mathematical
model used to describe the helical movements of the tip of a sunflower plant.
The top of the stem of the sunflower performs a rotating movement and y(t)
is the angle of the plant with respect to the vertical direction, the lag time r
corresponds to a delayed reaction in response to the effect due to accumulation
of the growth hormone (auxin) alternatively on both side of the plant. Roughly
speaking, the parameters α and β control, respectively, the fading of the effect
of auxin’s past concentration and the growth speed. Somolinos in [26] showed
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the existence of periodic solutions to (1) for a certain range of values for
the involved parameters α, β and r. This existence result covers both the
cases of small and large amplitude limit cycles generated by Hopf bifurcation.
More recently, Liu and Kalmár-Nagy [20] computed limit cycle amplitudes and
frequencies for (1). Other meaningful results related to this equation can be
found e.g., in [2,8,10,19,22,31].

Our investigation follows a different path: We extend Eq. (1) introducing
a more general dependence on the past and allowing time variation of the co-
efficients to account, e.g., for environmentally induced changes in the response
of the plant to hormone concentration and “memory” fading. The resulting
model is obtained by assuming that the coefficients −α/r of and −β/r are
actually T -periodic functions, T > 0 given, and replacing the sinus function in
the second term in the left-hand side of (1) with a generic function depending
on the present and past status. We also control the magnitude of this second
term by prepending a parameter λ ≥ 0 to it. The parametrized equation under
consideration then, reads as follows:

ÿ(t) = a(t)ẏ(t) + λb(t)φ
(
y(t), y(t − r)

)
, λ ≥ 0, (2)

where a, b and φ are continuous, a and b are T -periodic with average

a/ :=
1
T

∫ T

0

a(t) dt �= 0

and b(t) �= 0 for all t. The assumption a/ �= 0 serves to generalize the constant
coefficient of ẏ(t) in (1): Ideally, a(t) can be thought as a perturbation of the
constant term −α/r, namely a(t) = −α/r + ε(t) where ε(t) is continuous, T -
periodic and sufficiently small so that a/ = −α/r+ε/ �= 0. Similar considerations
hold for b.

We point out that, with respect to (1), an extended version of the sec-
ond addendum as in (2) makes sense also in view of different applications. For
instance, in [11, Ch. 4 §2] equations of the form (2) are considered (with con-
stant experimental parameters) in connection with a mathematical description
of sleep disorders.

What we investigate of (2) is the structure of the set of T -periodic solu-
tions as λ ≥ 0 varies. Informally, in our main result (Theorem 1.1) we find a
topological condition on the function p �→ φ(p, p) which implies that there ex-
ists a connected set of ‘nontrivial’ T -periodic solutions of (2) whose closure is
not compact and intersects the set of constant solutions of (2) for λ = 0. More
precisely, let C1

T (R) be the Banach space of the T -periodic R-valued functions
(with the uniform topology). A pair (λ, y) ∈ [0,∞) × C1

T (R) is called a T -pair
for (2) if y is a T -periodic solution of (2), also (λ, y) is called trivial if y is
constant and λ = 0. For any p ∈ R let p̂ denote the constant function p̂ ≡ p.
Our main result is the following:

Theorem 1.1. Let φ and a be as in (2) and let Ω ⊆ [0,∞)×C1
T (R) be open. Take

WΩ :=
{
p ∈ R : (0, p̂) ∈ Ω

}
and let w(q) := φ(q, q). Assume that deg(w,WΩ)

is well-defined and nonzero. Then, there exists a connected set of nontrivial
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T -pairs for (2), whose closure meets the set {(0, p̂) ∈ Ω : w(p) = 0} and is not
compact.

This theorem will be proved by rewriting (2) as a first-order coupled sys-
tem in the Liénard plane (as e.g., in [2]) and then applying a result about such
systems in a very general setting. Actually, we provide a generalization of [28]
(compare also [18]) based on [7] (Theorem 4.1), which deals with the struc-
ture of the set of harmonic solutions of periodically perturbed coupled ODEs
on manifolds. Indeed, Theorem 4.1 is of some independent interest because it
partially bridges the gap between [3] and [7,15] in the sense that the main
results of those papers can be deduced from it (see Remark 4.3 below).

A feature of this paper is the combined use of topological methods
(degree-theoretic and fixed point index) along with a classical Liénard-plane
analysis. The former are used in Sects. 2, 3 and 4 to investigate coupled delay
equations on differentiable manifold. Then, in Sect. 5, the obtained results are
exploited to approach the particular case of Eq. (2).

2. Coupled delay differential equations

Let us describe more precisely our setting. Let M ⊆ R
k and N ⊆ R

s be
boundaryless smooth manifolds, let f : R × (M × N)2 → R

k be tangent to
M , and let g : M × N → R

s and h : R × (M × N)2 → R
s be tangent to N :

This means that, for any (t, p, q, v, w) ∈ R × (M × N)2, then g(p, q, v, w) and
h(t, p, q, v, w) belong to the tangent space TqN , and f(t, p, q, v, w) is in TpM ,
respectively. Let also a : R → R be continuous. Given T > 0, we assume that
f, h and a are T -periodic in the t variable. Consider the following system of
delay differential equations for λ ≥ 0:

{
ẋ(t) = λf

(
t, x(t), y(t), x(t − r), y(t − r)

)
,

ẏ(t) = a(t)g
(
x(t), y(t)

)
+ λh

(
t, x(t), y(t), x(t − r), y(t − r)

)
,

(3)

where the time lag r > 0 is given. This system is equivalent to a single
parameter-dependent delay differential equation on the product manifold M ×
N ⊆ R

k+s.
Denote by CT (M) and CT (N) the spaces of T -periodic continuous func-

tions from R to M and N , respectively, with the topology of uniform con-
vergence. We investigate the properties of the set of the T -periodic triples (or
briefly T -triples) of (3), i.e. of those triples (μ, x, y) ∈ [0,∞)×CT (M)×CT (N),
where (x, y) is a solution to (3) when λ = μ. In particular, we shall give con-
ditions for the existence of a noncompact connected component of nontrivial
T -triples (which we call a “branch”) emanating from the set ν−1(0), where
ν : M × N → R

k+s is the vector field, tangent to M × N ⊆ R
k+s, given by

ν(p, q) =
(
wf(p, q), g(p, q)

)
, (4)

with wf(p, q) := 1
T

∫ T

0
f(t, p, q, p, q) dt. In the present setting, a T -triple (λ, x, y)

of (3) is said to be trivial if λ = 0 and (x, y) is constant.
It is tempting to try to achieve the desired generalization of [28] by simply

using a time-transformation as in [6,29] to get rid of the factor a(t) in (3) and
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then adapt the argument of [3,15] to the present case. Nevertheless, this simple
procedure does not work because the transformed perturbing term would result
in a form inappropriate for our methods. In fact, the time-transformation used
in [29] does not preserve the fixed-delay structure. Instead, to prove our result,
we follow the lead of [7] and combine the techniques of [29] and [28].

Consider the system of equations (3). We are interested in its T -periodic
solutions. Without loss of generality, as suggested in [12], we will assume that
T ≥ r. In fact, for n ∈ N, the system (3) and
⎧
⎨

⎩

ẋ(t) = λf
(
t, x(t), y(t), x

(
t − (r − nT )

)
, y

(
t − (r − nT )

))

ẏ(t) = a(t)g
(
x(t), y(t)

)
+ λh

(
t, x(t), y(t), x

(
t − (r − nT )

)
, y

(
t − (r − nT )

))
,

have the same T -periodic solutions. Thus, if necessary, one can replace r with
r − nT , where n ∈ N is such that 0 < r − nT ≤ T .

Let us now introduce some notation. Given any X ⊆ R
k, X̃ denotes the

metric space C
(
[−r, 0],X) with the distance inherited from the Banach space

R̃
k = C([−r, 0], Rk) with the usual supremum norm.

Given any (p, q) ∈ M × N , denote by p# ∈ M̃ and q# ∈ Ñ the constant
functions p#(t) ≡ p and q#(t) ≡ q, t ∈ [−r, 0], respectively. Thus, (p#, q#) ∈
M̃ × N � M̃ × Ñ . For any U ⊆ M × N , define U# =

{
(p#, q#) ∈ M̃ × N :

(p, q) ∈ U
}
. Also, given W ⊆ M̃ × N , we put W# =

{
(p, q) ∈ M × N :

(p#, q#) ∈ W
}
. Finally, we will denote by CT (X) the metric subspace of the

Banach space
(
CT (Rk), ‖ ·‖) of all the T -periodic continuous maps x : R → X

(as above, with the usual C0 norm). Observe that CT (X) is complete if and
only if X is complete (or, equivalently, closed as a subset of R

k). Nevertheless,
since M and N are locally compact, CT (M ×N) � CT (M)×CT (N) is always
locally complete.

3. Poincaré-type translation operator

Assume now, unless differently stated, that a, f, g and h are C1. Consider the
map H with domain DH ⊆ R × M̃ × Ñ × R in M̃ × Ñ defined by

H(λ, ϕ, ψ, μ)(θ) =
(
xλ,μ

(
ϕ,ψ, T + θ

)
, yλ,μ

(
ϕ,ψ, T + θ

))
, θ ∈ [−r, 0],

where t �→ (
xλ,μ(ϕ,ψ, t), yλ,μ(ϕ,ψ, t)

)
denotes the unique maximal solution of

the initial-value problem
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = λ

[
μf (t, x(t), y(t), x(t−r), y(t−r)) + (1−μ)a(t)

a/
wf (x(t), y(t))

]
,

ẏ(t) = a(t)g (x(t), y(t)) + λμh (t, x(t), y(t), x(t−r), y(t−r)) ,
t > 0,

x(t) = ϕ(t), y(t) = ψ(t), t ∈ [−r, 0].

Well known properties of differential equations imply that DH is an open subset
of R × M̃ × Ñ × R. A similar argument shows that the set D′ := {(ϕ,ψ) ∈
M̃ × Ñ : (0, ϕ, ψ, 1) ∈ DH} is open as well. Also, since we are assuming T ≥ r
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(see above), the Theorem of Ascoli-Arzelà implies that H is a locally compact
map (compare, e.g., [24] or [5]).

Remark 3.1. Consider the following equation:
{

ẋ(t) = 0,
ẏ(t) = a(t)g (x(t), y(t)) .

(5)

Given V ⊆ M̃ × Ñ such that V ⊆ D′ we have that all solutions of (5) starting
at time t = 0 from V# are defined (at least) for t ∈ [0, T ]. An argument similar
to, e.g., [29, Remark 2.3] or [7, Remark 2.1]) shows that the same assertion
holds for (5) when a(t) is replaced with its average a/:

{
ẋ(t) = 0,
ẏ(t) = a/g

(
x(t), y(t)

)
.

(6)

In fact, one could prove that solutions of (5) and of (6), leaving at time t = 0
from the same point, coincide at time t = T . Thus, T -periodic orbits (images
of solutions) of (5) and (6) must coincide. More precisely, let {Φt}t∈R be the
local flow associated to (6). That is, Φ: U → M × N is defined on an open
subset U of R × M × N , containing {0} × M × N , with the property that
for any (p, q) ∈ M × N the curve t �→ Φt(p, q) is the maximal solution of (6)
given the initial condition Φ0(p, q) = (p, q). Then, given τ ∈ R, the domain
of Φτ is the open set consisting of those points (p, q) ∈ M × N for which the
maximal solution of (6) starting from (p, q) at t = 0 is defined up to τ . (We
are interested, in particular, to the case τ = T .) Let {Ψt}t∈R be the anologous
local flow associated to (5). The argument of the above cited remarks show
that ΨT (p, q) = ΦT (p, q) whenever this relation makes sense, in particular for
all (p, q) ∈ V#.

The following definition is convenient:

Definition 3.2. We say that V ⊆ M̃ × Ñ has the constant periodic property for
(5) if any T -periodic solution (x, y) of Eq. (5) that intersects ∂V# is constant.

We have the following result:

Lemma 3.3. Let V ⊆ M̃ × Ñ be open and such that

ZV :=
{
(p#, q#) ∈ V : ν(p, q) = 0

}

is compact. Then, there exists an open neighborhood W ⊆ V of ZV and ε > 0
s.t. [0, ε] × W × [0, 1] ⊆ DH and H

(
[0, ε] × W × [0, 1]

)
is compact.

Assume in addition that V# is relatively compact, V ⊆ D′ and that V has
the constant periodic property for (5) (Definition 3.2). Then W can be taken
in such a way that it has the constant periodic property as well. That is, if
(x, y) is a T -periodic solution of (5) intersecting ∂W#, then (x, y) is constant.

Proof. One immediately checks that the set ZV consists of T -periodic solutions
of (5). Thus, we have that ZV ⊆ D′ and the first part of the lemma follows
from the local compactness of H.

Let us now prove the second part of the assertion. Let {Φt}t∈R be the
local flow associated to (6) as in Remark 3.1. The map (t, p, q) �→ Φt(p, q) is

Author's personal copy
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continuous and, therefore, the “attainable set” AT := Φ[0,T ]

(
V#

)
is compact.

Thus, the union OT of all T -periodic orbits of (6) starting from points of V#,
being closed in AT , is compact as well. Clearly, since (6) is autonomous, OT

is actually the set of all T -periodic orbits of (6) that intersect V#.
Remark 3.1 shows that OT consists indeed of all T -periodic orbits of (5)

that intersect V#. Let us denote by K the union of ZV with this set. Clearly
K is contained in D′. The local compactness of H implies the existence of
an open neighborhood W ⊆ V of K and a positive ε with the property that
[0, ε] × W × [0, 1] ⊆ DH and H

(
[0, ε] × W × [0, 1]

)
is compact. The second

part of the claim follows now from the fact a T -periodic solution of (5) whose
image intersects the boundary ∂W#, of the set W just constructed, necessarily
intersects ∂V# and thus must be constant. �

It is convenient to set

Qλ
T = H(λ, ·, ·, 1), and Q̃λ

T = H(λ, ·, ·, 0).

We will denote the domain of H(·, ·, ·, 1) by the letter D.
The following is the main result of this section (cf. [7,15]). It relates the

fixed point index of Qλ
T for small λ > 0 (see, e.g., [21,23] for an introduction)

with the degree of the tangent vector field ν. Recall that this notion, roughly
speaking, counts (algebraically) the zeros of a vector field; for an exposition of
this topic we refer, e.g., to [21] or [14].

Theorem 3.4. Given V ⊆ M̃ × Ñ open and such that
(i) V# is relatively compact;
(ii) There exists s > 0 such that [0, s] × V ⊆ D;
(iii) ZV is compact;
(iv) If (x, y) is a T -periodic solution of (5) whose image intersects ∂V#, then

(x, y) is constant.
Then there exists λ∗ ∈ (0, s] such that, for λ ∈ (0, λ∗), ind(Qλ

T , V ) is well
defined and

ind(Qλ
T , V ) = sign(a/)dim N deg

( − ν, V#

)
.

The symbol “ind(Qλ
T , V )” in the above formula denotes the fixed point

index of Qλ
T in the open set V , whereas “deg

( − ν, V#

)
” denotes the degree of

the tangent vector field −ν in the open subset V# of M × N .

Proof of Theorem 3.4. Let W and ε be as in Lemma 3.3. Consider the sets

S =
{
(λ, ϕ, ψ) ∈ [0, ε] × W : H(λ, ϕ, ψ, 1) = (ϕ,ψ)

}
,

S0 = S ∩ ({0} × M̃ × Ñ
)
.

Clearly, S is compact being a closed subset of the compact set [0, ε]×H
(
[0, ε]×

W × [0, 1]
)
. Thus S0 is compact as well. Using the definition of Qλ

T , we will
prove the following fact:
Claim 1. There exists λ0 ∈ (0,min{ε, s}] such that if (ϕ,ψ) ∈ V is a fixed
point of Qλ

T with λ ∈ (0, λ0] then (ϕ,ψ) ∈ W . That is, Qλ
T has no fixed points

in V \W for λ ∈ (0, λ0].

Author's personal copy
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To prove this claim we proceed by contradiction. If the claim is false
there exist sequences {λn} ⊆ (0, λ0], and

{
(ϕn, ψn)

} ⊆ V \W , with λn → 0
and (λn, ϕn, ψn) ∈ S. By the compactness of S0 ∩ (V \W ) we can assume that
(ϕn, ψn) → (ϕ0, ψ0) ∈ S0 ∩(V \W ). The continuous dependence on data shows
that the solution of (5) with initial data (ϕ0, ψ0) is T -periodic. Assumption
(iv) shows that there exists p0 ∈ M and q0 ∈ N such that (ϕ0, ψ0) = (p#

0 , q#
0 ).

Clearly, one has g(p0, q0) = 0. Let (xn, yn) be the unique maximal solution of
⎧
⎨

⎩

ẋ(t) = λnf (t, x(t), y(t), x(t − r), y(t − r)) ,
ẏ(t) = a(t)g (x(t), y(t)) + λnh (t, x(t), y(t), x(t − r), y(t − r)) ,

t > 0,

x(t) = ϕn(t), y(t) = ψn(t), t ∈ [−r, 0].

Then,

0 = xn(T ) − xn(0) = λn

∫ T

0

f (t, xn(t), yn(t), xn(t − r), yn(t − r)) dt.

So that, in particular,

0 =
∫ T

0

f (t, xn(t), yn(t), xn(t − r), yn(t − r)) dt

and, passing to the limit, we get

0 =
∫ T

0

f(t, p0, q0, p0, q0) dt = wf(p0, q0).

Hence, ν(p0, q0) =
(
wf(p0, q0), g(p0, q0)

)
= 0. This contradicts the choice of W

and completes the proof of Claim 1.
Claim 1 shows that, for λ ∈ (0, λ0], the set of the fixed points of Qλ

T

that lie in V is, in fact, contained in W . Hence, by the compactness of S, it is
compact too. As a consequence, ind(Qλ

T , V ) and ind(Qλ
T ,W ) are well-defined

and, by the excision property,

ind(Qλ
T , V ) = ind(Qλ

T ,W ), for λ ∈ (0, λ0]. (7)

In fact, when λ is sufficiently small, something more can be obtained:
Claim 2. There exists λ∗ ∈ (0, λ0], such that the homotopy Hλ : W × [0, 1] →
M̃ × Ñ given by Hλ(ϕ,ψ, μ) = H(λ, ϕ, ψ, μ), is admissible for each λ ∈ (0, λ∗].

To prove the claim we ought to show that for each λ ∈ (0, λ∗], λ∗ > 0
sufficiently small, the set of fixed points

Fλ =
{
(ϕ,ψ) ∈ W : H(λ, ϕ, ψ, μ) = (ϕ,ψ), for some μ ∈ [0, 1]

}
,

which is compact being a closed subset of H
(
[0, ε]×W × [0, 1]

)
, is contained in

W . Suppose by contradiction that this is not the case, that is, that such a choice
of λ∗ cannot be done. Then there are sequences {λn} ⊆ (0, λ0], {μn} ⊆ [0, 1]
and

{
(ϕn, ψn)

} ⊆ ∂W with λn → 0 and

H(λn, ϕn, ψn, μn) = (ϕn, ψn). (8)

As in the proof of Claim 1, by the compactness of H
(
[0, ε] × W × [0, 1]

)
we

can assume that (ϕn, ψn) → (ϕ0, ψ0) ∈ ∂W . The continuous dependence on
data shows that the solution of (5) with initial data (ϕ0, ψ0) is T -periodic.
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Assumption (iv) shows that there exists p0 ∈ M and q0 ∈ N such that
(ϕ0, ψ0) = (p#

0 , q#
0 ). Clearly, we get g(p0, q0) = 0. From (8) it follows that

if (xn, yn) is the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = λn

[
μnf

(
t, x(t), y(t), x(t − r), y(t − r)

)

+(1 − μn)a(t)

a/
wf

(
x(t), y(t)

)
]
,

ẏ(t) = a(t)g (x(t), y(t))

+λnμnh

(
t, x(t), y(t), x(t − r), y(t − r)

)
,

t > 0,

x(t) = ϕn(t), y(t) = ψn(t), t ∈ [−r, 0].

Then,

0 = xn(T ) − xn(0) = λn

∫ T

0

μnf

(
t, xn(t), yn(t), xn(t − r), yn(t − r)

)
dt

+λn

∫ T

0

(1 − μn)
a(t)
a/

wf

(
xn(t), yn(t)

)
dt.

So that

0 = μn

∫ T

0

f (t, xn(t), yn(t), xn(t − r), yn(t − r)) dt

+(1 − μn)
∫ T

0

a(t)
a/

wf

(
xn(t), yn(t)

)
dt.

Passing to the limit we get

0 = μ0

∫ T

0

f
(
t, p0, q0, p0, q0

)
dt + (1 − μ0)

∫ T

0

a(t)
a/

wf

(
p0, q0

)
dt

= μ0wf

(
p0, q0

)
+ (1 − μ0)wf

(
p0, q0

)
= wf(p0, q0),

which contradicts the choice of W and proves Claim 2.
Claim 2, along with the homotopy invariance property, imply that for

λ ∈ (0, λ∗]

ind(Qλ
T ,W ) = ind

(
H(λ, ·, ·, 1),W

)
= ind

(
H(λ, ·, ·, 0),W

)
= ind(Q̃λ

T ,W ).
(9)

Consider the tangent vector field vλ on M × N given by

vλ(p, q) :=
(

λ

a/
wf(p, q), λg(p, q)

)
.

Theorem 3.2 of [7] imply that, for each fixed λ ∈ (0, λ∗]

ind(Q̃λ
T ,W ) = sign(a/)dim(M×N) deg(−vλ,W#). (10)

Since λ > 0, a well known property of the degree yields

deg(−vλ,W#) = deg(−v1,W#). (11)
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Lemma 1 of [28] shows that

deg(−v1,W#) = sign(a/)dim M deg(−ν,W#), (12)

hence, by equalities (9)–(12), taking into account that dim(M ×N) = dimM +
dim N , we get

ind(Qλ
T ,W ) = ind(Q̃λ

T ,W ) = sign(a/)dim(M×N) deg(−vλ,W#)
= sign(a/)dim(M×N) deg(−v1,W#)
= sign(a/)dim(M×N) sign(a/)dim(M) deg(−ν,W#)
= sign(a/)2 dim M+dim N deg(−ν,W#)
= sign(a/)dim N deg(−ν,W#).

(13)

Finally, by (7), (13) and the excision property of the degree, we get

ind(Qλ
T , V ) = ind(Qλ

T ,W )

= sign(a/)dim N deg(−ν,W#)

= sign(a/)dim N deg(−ν, V#),

which proves the assertion. �

4. Branches of T -periodic solutions

Let T > 0 be given, by CT (Rd) we mean the Banach space of all the continuous
T -periodic functions ζ : R → R

d whereas CT (X) denotes the metric subspace
of CT (Rd) consisting of all those ζ ∈ CT (Rd) that take values in X. It is not
difficult to prove that CT (X) is complete if and only if X is closed in R

d.
It is also convenient to introduce the following notation: Given (p, q)

in M × N , let (p̂, q̂) ∈ CT (M × N) = CT (M × N) be the constant maps(
p̂(t), q̂(t)

) ≡ (p, q), t ∈ R.
We are now in a position to state our result concerning the “branches” of

T -triples of (3). Its proof follows closely the one of Theorem 5.1 in [15] (see also
[7,13]), for this reason we only provide a sketch for the sake of completeness.

Theorem 4.1. Let Ω be an open subset of [0,∞)×CT (M×N), and let ΩM×N :=
{(p, q) ∈ M × N : (0, p̂, q̂) ∈ Ω}. Assume that deg

(
ν,ΩM×N

)
is well-defined

and nonzero. Then there exists a connected set Γ of nontrivial T -triples for
(3) in Ω whose closure in [0,∞) × CT (M × N) meets ν−1(0) ∩ ΩM×N and is
not contained in any compact subset of Ω. In particular, if M ×N is closed in
R

k+s and Ω = [0,∞) × CT (M × N), then Γ is unbounded.

The proof of this theorem is based on the following global connection
result (see [13]), which will also be needed later.

Lemma 4.2. Let Y be a locally compact metric space and let Z be a compact
subset of Y . Assume that any compact subset of Y containing Z has nonempty
boundary. Then Y \Z contains a connected set whose closure (in Y ) intersects
Z and is not compact.

We are now ready to sketch the proof of the theorem.

Author's personal copy



1582 L. Bisconti and M. Spadini NoDEA

Sketch of the proof of Theorem 4.1. This proof can be roughly divided into
three steps:
Step 1. We assume first that the maps a, f, g and h are C1, so that uniqueness
of solutions holds for (3). Consider the following notion:

A triple (λ, ϕ, ψ) ∈ [0,∞) × M̃ × Ñ is said to be a starting triple for (3)
if the following initial value problem has a T -periodic solution:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = λf
(
t, x(t), y(t), x(t − r), y(t − r)

)
,

ẏ(t) = a(t)g
(
x(t), y(t)

)
+ λh

(
t, x(t), y(t), x(t − r), y(t − r)

)
,

t > 0,

x(t) = ϕ(t),
y(t) = ψ(t), t ∈ [−r, 0].

(14)

A triple of the type (0, p#, q#) with g(p, q) = 0 is clearly a starting triple and
will be called a trivial starting triple. The set of all starting triples for (3)
will be denoted by S. By known continuous dependence properties of delay
differential equations the set V ⊆ [0,∞) × M̃ × Ñ of all triples (λ, ϕ, ψ) such
that the unique solution of (14) is defined at least up to T is open (compare
it to the set D defined in Sect. 3). Clearly V contains the set S of all starting
triples for (3).

Given an open set W of [0,∞) × M̃ × Ñ , let

W 0
# :=

(
W ∩ ({0} × M̃ × Ñ)

)

#
=

{
(p, q) ∈ M × N : (0, p#, q#) ∈ W

}
.

Our first step consists of proving that, if deg
(
ν,W 0

#

)
is well-defined and

nonzero, then there exists in S ∩ W a connected set G of nontrivial start-
ing triples whose closure in S ∩ W meets

{
(0, p#, q#) ∈ W ∩ V : g(p, q) = 0

}

and is not compact.
The proof of this fact follows closely the one of [15, Prop. 4.1] using

Theorem 3.4 in place of [15, Theorem 3.2]. Loosely speaking, this proof uses
the properties of the fixed point index and of the degree of a tangent vector field
to obtain a contradiction with Lemma 4.2 (Compare also [7, Theorem 4.1]).
Step 2. As in Step 1 we assume that the maps a, f, g and h are C1. Denote
by X the set of T -periodic triples of (3) and by S the set of starting triples of
the same equation, as above. Define the map Π : X → S by

Π(λ, x, y) =
(
λ, x|[−r,0], y|[−r,0]

)

and observe that Π is continuous, onto and, since f, g and h are smooth,
it is also one to one. Furthermore, by the continuous dependence on data,
Π−1 : S → X is continuous as well. Take

SΩ = {(λ, ϕ, ψ) ∈ S : the solution of (14) is contained in Ω},

so that X∩Ω and SΩ correspond under the homeomorphism Π : X → S. Thus,
SΩ is an open subset of S and, consequently, we can find an open subset W of
[0,∞) × M̃ × Ñ such that S ∩ W = SΩ. This implies, as in [15, Theorem 5.1],
that

{
(p, q) ∈ W 0

# : g(p, q) = 0
}

= {(p, q) ∈ ΩM×N : g(p, q) = 0} .
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The excision property of the degree of tangent vector fields yields

deg
(
g,W 0

#

)
= deg

(
g,ΩM×N

) �= 0.

By Step 1 we deduce the existence of a connected set

Σ ⊆ (S ∩ W )\{
(0, p#, q#) ∈ W : g(p, q) = 0

}

whose closure in S ∩ W meets
{
(0, p#, q#) ∈ W : g(p, q) = 0

}
and is not

compact. Clearly, Γ = Π−1(Σ) satisfies the assertion.
Step 3. We now only need to remove the C1-regularity assumption on the maps
a, f, g and h replacing it with continuity. This is done by an approximation
procedure that follows closely the one used in [15, Theorem 5.1]. For this reason
we skip the details. �
Remark 4.3. One can easily check that Theorem 4.1 implies both [3, Lemma
4.5] and [4, Lemma 3.5], albeit in the less general case of boundaryless mani-
folds, which are valid for a single differential equation of the form

ẋ(t) = λf
(
t, x(t), x(t − r)

)
,

where f : R × M × M → R
k is tangent to M . At the same time, Theorem

4.1 extends [15, Thm. 5.1] (see also Theorem 4.1 in [7]) that applies to the
differential equations of the following type:

ẏ(t) = a(t)g(y) + λh
(
t, y(t), y(t − r)

)
.

where g : M → R
k and h : R × M × M → R

k are tangent to M .

5. Sunflower-like equation

In order to prove our main theorem, we look at how the results of the previous
section apply to Eq. (2). Let us now recall the notion of T -periodic pair (or
T -pair for brevity) for this equation and some related facts. A pair (λ, y) ∈
[0,∞) × C1

T (R) is called a T -pair for (2) if y is a T -periodic solution of (2).
We say that a T -pair (λ, y) is trivial if y is constant and λ = 0.

To study Eq. (2), we introduce a transformation that allows us to rewrite
this model in an equivalent but easier to handle form. We need the following
technical lemma whose proof is a standard ODE argument which we provide
for the sake of completeness.

Lemma 5.1. Let a : R → R be as in (2) and such that a/ �= 0. Then, there exists
a unique T -periodic C1 function σ : R → R for which

a(t) =
σ̇(t)
σ(t)

− σ(t), for all t ∈ R. (15)

Clearly, σ has constant sign so that, in particular σ/ �= 0.

As a direct consequence, we have that Eq. (2) can be rewritten as

ÿ(t) =
(

σ̇(t)
σ(t)

− σ(t)
)

ẏ(t) + λb(t)φ
(
y(t), y(t − r)

)
, λ ≥ 0, (16)

with σ chosen as in Lemma 5.1.
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Proof of Lemma 5.1. It is easy to verify by inspection that, for any c ∈ R,

ζ(t) := e− ∫ t
0 a(s)ds

(
c −

∫ t

0

e
∫ s
0 a(�)d�ds

)
,

is a solution of equation

ζ̇(t) = −ζ(t)a(t) − 1, (17)

which corresponds to (15) under the transformation ζ(t) = 1/σ(t). Clearly,
ζ(0) = c. Taking

c =

∫ T

0
e
∫ s
0 a(�)d�ds

e−Ta/ − 1
e−Ta/,

(recall that a/ �= 0) we get ζ(0) = ζ(T ). Since the right-hand-side of (17) is
T -periodic we obtain that ζ is T -periodic as well. In fact, the above is the only
choice of c for which ζ(0) = ζ(T ); thus (17) has a unique T -periodic solution.

We need to prove that the function t �→ 1/ζ(t) is a T -periodic solution of
(15). It is sufficient to show that ζ(t) �= 0 for all t ∈ R. We consider the two
possibilities a/ > 0 and a/ < 0 separately:
Case a/ > 0. Clearly, e−Ta/ < 1 so that, since e−Ta/ ∫ t

0
e
∫ s
0 a(�)d�ds > 0 we have

c < 0. Now, being e− ∫ t
0 a(s)ds > 0 for all t ∈ R, we get ζ(t) < 0 for all t.

Case a/ < 0. In this case one has e−Ta/ > 1, thus

1 <
e−Ta/

e−Ta/ − 1
.

Since t �→ e− ∫ t
0 a(s)ds is a positive function we have:

∫ t

0

e
∫ s
0 a(�)d�ds <

∫ T

0

e
∫ s
0 a(�)d�ds <

e−Ta/

eTa/ − 1

∫ T

0

e
∫ s
0 a(�)d�ds,

so that ζ(t) > 0.
Thus, in both cases, we find a T -periodic solution of (15). The uniqueness,

follows from the fact that if t �→ σ(t) is a T -periodic solution of (15), hence
defined for all t ∈ R, then σ(t) �= 0. Then, t �→ 1/σ(t) is a T -periodic solution
of (17) which, as discussed above, is unique. �

Remark 5.2. From the proof of Lemma 5.1 it follows that σ has (constantly)
the opposite sign of the average a/. This fact has the obvious consequence that
the signs of the averages of σ and of 1/σ coincide with − sign(a/). Furthermore,
if b : R → R is as in (2), one has that b/σ has nonzero average and

sign

(
1
T

∫ T

0

b(t)
σ(t)

dt

)

= − sign(a/) sign
(
b(0)

)
.

For the average σ/ of σ we can actually prove that σ/ = −a/ by the following
simple argument that only uses Eq. (15):

a/ =
1
T

∫ T

0

a(t) dt =
1
T

∫ T

0

σ̇(t)
σ(t)

dt − 1
T

∫ T

0

σ(t) dt = −σ/.
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In fact,
∫ T

0

σ̇(t)
σ(t)

dt = ln
(
σ(T )

) − ln
(
σ(0)

)
= 0

because of the T -periodicity of σ.

To investigate Eq. (2) or, equivalently, (16) we follow the approach used
in [28, §5]. Along this path we find convenient to treat a more general class of
equations, i.e.

ÿ(t) =
(

γ̇(t)
γ(t)

− γ(t)g
(
y(t)

)
)

ẏ(t) + λf
(
t, y(t), y(t − r)

)
, λ ≥ 0, (18)

where f : R×R
2 → R is continuous and T -periodic in t, γ : R → R is T -periodic

and nonzero, and g : R → R is C1.
Introducing a new variable x, Eq. (18) can be equivalently rewritten in

R
2 (as in the so-called Liénard plane technique) as follows:

{
ẋ(t) = λf

(
t, y(t), y(t − r)

)
γ−1(t),

ẏ(t) =
(
x − G(y)

)
γ(t), λ ≥ 0, (19)

where G(y) is a primitive of g(y) and γ plays the role of σ in Lemma 5.1.
Indeed, taking the derivative of the second equation in (19), we have

ÿ(t) = γ̇(t)
(
x(t) − G

(
y(t)

))
+ γ(t)ẋ(t) − g

(
y(t)

)
ẏ(t)

= γ̇(t)
γ(t) ẏ(t) − g

(
y(t)

)
ẏ(t) + λf

(
t, y(t), y(t − r)

)
.

By this relation, one can easily see that (19) is equivalent to (18). Because of
this equivalence, Theorem 4.1 can be applied to (18):

Proposition 5.3. Let f , g and γ be as in (18), and let Ω ⊆ [0,∞) × C1
T (R) be

open. Define the open subset of CT (R × R)

Ω̂ :=
{
(λ, ϕ, ψ) ∈ [0,∞) × CT (R × R) : (λ, ϕ) ∈ Ω

}
,

and, according to the notation of Theorem 4.1,

Ω̂R2 =
{

(λ, p, q) ∈ [0,∞) × R × R : (λ, p̂, q̂) ∈ Ω̂
}

.

Consider the vector field ν in R
2, given by

ν(p, q) :=
(
w̄(q), p − G(q)

)
,

with w̄(q) := 1
T

∫ T

0
f(t, q, q)γ−1(t) dt. Assume that ν is admissible in ΩR2 for

the degree and that deg(ν,ΩR2) �= 0. Then, there exists a connected set of
nontrivial T -pairs for (18) whose closure meets the set

{
(0, p̂) ∈ Ω : w̄(p) = 0

}

and, is not compact.

Proof. By Theorem 4.1, there exists a connected set Γ of nontrivial T -triples
for (19) whose closure meets the set

{
(0, p̂, q̂) ∈ Ω̂ : w̄(q) = 0, p = G(q)

}

and is not compact.
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Observe that to any (λ, y, z) ∈ Γ one can associate the nontrivial T -pair
(λ, y) for (18). In this way, one gets a connected set of nontrivial T -pairs for (18)
whose closure meets the set {(0, p̂) ∈ Ω : w̄(p) = 0} and is not compact. �

Example 5.4. Consider Eq. (18) with γ(t) = sin(t) + 2 and g(y) ≡ 1; that is:

ẍ(t) =
(

cos(t)
sin(t) + 2

− (sin(t) + 2)
)

ẋ(t) + λx(t − r). (20)

Take T = 2π. Clearly, the average γ/ = 2 and, for any q ∈ R,

w̄(q) =
1
2π

∫ 2π

0

q

sin(t) + 2
dt =

q√
3
.

Let Ω = [0,∞) × C1
T (R). The vector field ν(p, q) =

(
q/

√
3, p − q

)
is clearly

admissible in Ω̂R2 = R
2 and has degree 1. Then, by Proposition 5.3, there

exists a connected set of nontrivial 2π-pairs for (20) whose closure meets the
set

{
(0, p̂) ∈ [0,∞) × C1

T (R) : w̄(p) = 0
}

and is not compact.

Remark 5.5. When γ(t) ≡ 1, the system of Eq. (19) reduces to
{

ẋ(t) = λf
(
t, y(t), y(t − r)

)
,

ẏ(t) =
(
x − G(y)

)
,

λ ≥ 0,

which is equivalent to the equation

ÿ(t) = −g
(
y(t)

)
ẏ(t) + λf

(
t, y(t), y(t − r)

)
. (21)

in the particular case when f
(
t, y(t), y(t − r)

)
= f

(
y(t − r)

)
, Eq. (21) gives a

so-called delayed Liénard equation (or Liénard sunflower-type equation) see,
e.g., [1,2,25,30,32–34]. Clearly, Proposition 5.3 applies (for the non-delayed
case, see [28]).

When f is of the form f
(
t, y(t), y(t − r)

)
= b(t)φ

(
y(t − r)

)
with b and φ

as in (2), Proposition 5.3 combined with Lemma 5.1 implies the main result of
the paper, Theorem 1.1, concerning Eq. (2), which we are now ready to prove.

Proof of Theorem 1.1. By Lemma 5.1 there exists a unique T -periodic func-
tion of constant sign σ : R → R such that a(t) = σ̇(t)/σ(t) − σ(t). Therefore,
(2) can be written in the form (16).

Take G(y) = y. Then the maps w̄ and ν of Proposition 5.3 become,
respectively

w̄(q) =
1
T

∫ T

0

b(t)φ(q, q)
σ(t)

dt = φ(q, q)
1
T

∫ T

0

b(t)
σ(t)

dt,

and

ν(p, q) =
(
w̄(q), p − q

)
.

Let Ω̂R2 as in Proposition 5.3, with γ = σ. Since the average of b/σ is nonzero
(see Remark 5.2), one easily checks that
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∣
∣
∣deg

(
ν, Ω̂R2

)∣∣
∣ =

∣
∣
∣
∣
∣
− sign

(
1
T

∫ T

0

b(t) dt

σ(t)

)

deg(w,WΩ)

∣
∣
∣
∣
∣
= |deg(w,WΩ)| .

Thus, deg(w,WΩ) �= 0 implies deg
(
ν, Ω̂R2

) �= 0. The assertion now follows
from Proposition 5.3. �

In the following example we consider the case of Eq. (2) when the per-
turbing term φ

(
y(t), y(t−r)

)
= sin

(
y(t−r)

)
, namely of the original sunflower

equation but with time-periodic coefficients.

Example 5.6. (Sunflower-like equation) Consider the following scalar equation:

ẍ(t) = a(t)ẋ(t) + λb(t) sin
(
x(t − r)

)
. (22)

where a, b : R → R are as in (2). Let Ω be the open subset of [0,∞) × C1
T (R)

given by Ω = [0,∞) × C1
T

(
(−1, 1)

)
, and let WΩ be as in Theorem 1.1. Let

T = 2π. One immediately checks that deg(w,WΩ) = 1, where

w(p) =
1
2π

∫ 2π

0

sin(p) dt = sin(p).

By Theorem 1.1 there exists a connected set of nontrivial T -pairs for (2), whose
closure meets the set {(0, p̂) ∈ Ω : w(p) = 0} and is not compact.
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