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A NATURAL APPROACH TO THE

ASYMPTOTIC MEAN VALUE PROPERTY

FOR THE p-LAPLACIAN

MICHINORI ISHIWATA, ROLANDO MAGNANINI, AND H. WADADE

Abstract. Let 1 ≤ p ≤ ∞. We show that a function u ∈ C(RN ) is a viscosity
solution to the normalized p-Laplace equation ∆n

pu(x) = 0 if and only if the
asymptotic formula

u(x) = µp(ε, u)(x) + o(ε2)

holds as ε → 0 in the viscosity sense. Here, µp(ε, u)(x) is the p-mean value of
u on Bε(x) characterized as a unique minimizer of

inf
λ∈R

‖u− λ‖Lp(Bε(x)).

This kind of asymptotic mean value property (AMVP) extends to the case
p = 1 previous (AMVP)’s obtained when µp(ε, u)(x) is replaced by other
kinds of mean values. The natural definition of µp(ε, u)(x) makes sure that
this is a monotonic and continuous (in the appropriate topology) functional of
u. These two properties help to establish a fairly general proof of (AMVP),
that can also be extended to the (normalized) parabolic p-Laplace equation.

1. Introduction and main theorems

It is well-known that the classical mean value property characterizes harmonic
functions and helps to derive most of their salient properties, such as weak and
strong maximum principles, analyticity, Liouville’s theorem, Harnack’s inequality
and more. In fact, we know that a continuous function u is harmonic in an open
set Ω ⊆ RN if and only if

(1.1) u(x) = −

∫

Bε(x)

u(y) dy = −

∫

∂Bε(x)

u(y) dSy

for every ball Bε(x) with Bε(x) ⊂ Ω; here, −
∫

E u denotes the mean value of u over
a set E with respect to the relevant measure (see Evans [4] for instance). The
relation (1.1) can also be regarded as a statistical characterization of solutions of
the Laplace equation, without an explicit appearance of derivatives of u. A similar
mean value property can also be obtained for linear elliptic equations with constant
coefficients, by replacing balls by appropriate ellipsoids (see [2] and [3]).

Recently, starting with the work [14] of Manfredi, Parviainen and Rossi, a great
attention has been paid to the so-called asymptotic mean value property (AMVP)
and its applications to game theory. In [14], based on the formula

−

∫

Bε(x)

v(y) dy = v(x) +
1

2

∆v(x)

N + 2
ε2 + o(ε2) as ε → 0,(1.2)

that holds for any smooth function v not necessarily harmonic, it is shown that
the characterization (1.1) for the harmonicity of u can be replaced by the weaker
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(AMVP):

(1.3) u(x) = −

∫

Bε(x)

u(y) dy + o(ε2) as ε → 0,

for all x ∈ Ω.
Nonetheless, the decisive contribution of [14] is the observation that, provided

the mean value in (1.3) is replaced by a suitable (nonlinear) statistical value related
to u, an (AMVP) also characterizes p-harmonic functions, that is the (viscosity)
solutions of the normalized p-Laplace equation ∆n

pu = 0. Here,

∆n
pu =

∇ · (|∇u|p−2∇u)

|∇u|p−2
for 1 ≤ p < ∞, ∆n

∞u =
〈∇2v∇v,∇v〉

|∇v|2
,

denotes the so-called normalized or homogeneous p-Laplacian.
In fact, in the same spirit of (1.2), for 1 < p ≤ ∞ and for any smooth function

with ∇v(x) 6= 0, they proved the formula:

µ∗
p(ε, v) = v(x) +

1

2

∆n
pv(x)

N + p
ε2 + o(ε2) as ε → 0,

where

(1.4) µ∗
p(ε, u) =

N + 2

N + p
−

∫

Bε(x)

u(y) dy +
1

2

p− 2

N + p

(

max
Bε(x)

u+ min
Bε(x)

u

)

.

(The average of the minimum and the maximum will be referred to as the min-max
mean of u.)

That formula allowed them to prove that u is p-harmonic in the viscosity sense
in Ω if and only if

(1.5) u(x) = µ∗
p(ε, u) + o(ε2) as ε → 0,

in the viscosity sense for every x ∈ Ω (see Section 3 for the relevant definitions),
thus obtaining an (AMVP) for p-harmonic functions. It is also worth a mention
that, for N = 2 and small values of the parameter p > 1, in [11] it is proved that
the (AMVP) holds directly for weak solutions of the p-Laplace equation, without
the need to interpret the formula in the viscosity sense.

Thus, the mean µ∗
p(ε, u) is an example of the desired (nonlinear) statistical value

mentioned above. By similar arguments, one can obtain an (AMVP) with the ball
Bε(x) replaced by the sphere ∂Bε(x) simply by replacing (N + 2)/(N + p) and
(p− 2)/(N + p) by the numbers N/(N + p− 2) and (p− 2)/(N + p− 2).

In the quest of extending this type of result to the case p = 1, which is not
covered by the choice (1.4), other kinds of means were proposed by several authors.
Here, we mention the ones considered by Hartenstine and Rudd in [7], based on
the median of a function,

µ′
p(ε, u) =

1

p
med
∂Bε(x)

u+
p− 1

2p

(

min
Bε(x)

u+ max
Bε(x)

u

)

,(1.6)

µ′′
p(ε, u) =

2− p

p
med
∂Bε(x)

u+
2(p− 1)

p
−

∫

∂Bε(x)

u(y) dSy,(1.7)

and that considered by Kawohl, Manfredi and Parviainen in [9],

(1.8) µ∗∗
p (ε, u) =

N + 1

N + p
avε(u)(x) +

1

2

p− 1

N + p

(

min
Bε(x)

u+ max
Bε(x)

u

)

,
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where

avε(u)(x) = −

∫

Lε

u(x+ y) dSy,

Lε = {y ∈ Bε(x) : (y − x) · ν = 0} and

ν = νx,ε ∈ ∂B1(0) is such that u(x+ εν) = min
Bε(x)

u.

Both µ′
p(ε, u) and µ′′

p(ε, u) yield an (AMVP) for all the cases 1 ≤ p ≤ ∞, but
only when N = 2, and µ∗∗

p (ε, u) produces an (AMVP) for any 1 ≤ p ≤ ∞ and
N ≥ 2.

In this paper, for 1 ≤ p ≤ ∞, we propose one more mean that helps us to
characterize — in an intrinsic way — p-harmonic functions by an (AMVP). Its
definition was inspired by the simple remark that the median, the mean value and
the min-max mean of a continuous function u on a compact topological space X
equipped with a positive Radon measure ν are respectively the unique real values
µX
p (u) that solve the variational problem

(1.9) ‖u− µX
p (u)‖Lp(X,ν) = min

λ∈R

‖u− λ‖Lp(X,ν),

for p = 1, 2, and ∞. Thus, it is natural to ask whether the solution of (1.9) yields
a characterization of viscosity solutions of ∆n

pu = 0 by means of an (AMVP), for
each fixed 1 ≤ p ≤ ∞.

Therefore, for each 1 ≤ p ≤ ∞, we consider the p-mean of u in Bε(x), that is
the number defined as

(1.10) µp(ε, u)(x) = the unique µ ∈ R satisfying (1.9) with X = Bε(x).

The main result of this paper is the following characterization.

Theorem 1.1. Let 1 ≤ p ≤ ∞ and let Ω be an open subset of RN . For a function
u ∈ C(Ω) the following assertions are equivalent:

(i) u is a viscosity solution of ∆n
pu = 0 in Ω;

(ii) u(x) = µp(ε, u)(x) + o(ε2) as ε → 0, in the viscosity sense for every x ∈ Ω.

As a by-product, this theorem confirms the (AMVP) for µ′
p(ε, u) and µ∗

p(ε, u) for
the case p = 1 in any dimension N ≥ 2.

Theorem 1.1 is based on the asymptotic formula

µp(ε, v)(x) = v(x) +
1

2

∆n
pv(x)

N + p
ε2 + o(ε2) as ε → 0,

that holds for any smooth function v such that ∇v(x) 6= 0.
We mention in passing that the mean µX

p (u) has also be considered in [5], when
p ≥ 2 and N = 2, when X is a finite set and ν is the counting measure and has
proved to be effective in the numerical approximation of the operator ∆n

p . Another
type of (AMVP) has been proved in [6] for N = 2 and 1 < p < ∞; however, the
mean considered there, besides the values of the function u on Bε(x), also depends
on the value of ∇u at x.

Compared to the means defined in (1.4), (1.6), (1.7), and (1.8) (and that in [6]),
µp(ε, u) has a drawback, since it cannot be defined explicitly, unless p = 1, 2,∞.
However, it has useful properties that those means do not always have and are the
consequences of the fact that µp(ε, u) is the projection of u on the linear sub-space
of Lp(Bε(x)) of the constant functions. As a matter of fact, we shall show that
the functional Lp(Bε(x)) ∋ u 7→ µp(ε, u)(x) ∈ R is continuous in the corresponding
Lp-topology and monotonic, in the sense that

u ≤ v pointwise implies that µp(ε, u)(x) ≤ µp(ε, v)(x).
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Notice that the functionals defined by µ′
pε, u) and µ∗∗

p (ε, u) are always monotonic,
but never continuous for p ∈ (1,∞) \ {2}, while those defined by µ∗

p(ε, u) and
µ′′
p(ε, u) are not always monotonic (the former for p > 2, the latter for 1 < p < 2)

and never continuous for p ∈ (1,∞)\{2}, due to the presence of the min-max mean
in their definition.

We shall see that the properties of continuity and monotonicity play an essential
role in the proof of Theorem 1.1, since they allow to reduce the argument to the
simpler case of a quadratic polynomial (see Lemma 3.1 and Theorem 3.2).

With a few technical adjustments, it is not difficult to treat the case of the
parabolic p-Laplace operator. It is just the matter of replacing the euclidean ball
and the Lebesgue measure by a suitable measure space. The appropriate choice is
the so-called heat ball,

Eε(x, t) =
{

(y, s) ∈ R
N+1 : s < t, Φ(x− y, t− s) > ε−N

}

,

where

Φ(y, s) = (4πs)−N/2e−
|y|2

4s X(0,∞)(s) for (y, s) ∈ R
N × (−∞,∞)

is the fundamental solution for the heat equation, equipped with the space-time
measure

dν(y, s) =
|x− y|2

(t− s)2
dy ds.

Thus, by arguing in a similar spirit, we shall consider the value πp(ε, u)(x, t) as
the unique solution of the variational problem

(1.11) ‖u− πp(ε, u)(x, t)‖Lp(Eε(x,t),ν) = min
λ∈R

‖u− λ‖Lp(Eε(x,t),ν),

Notice that the value πp(ε, u)(x, t) in (1.11) can be easily computed for p = 2 as
the caloric mean value of u, for which a classical mean value property holds true for
solutions of the heat equation ([4][pp. 52-54]). If we define the space-time cylinder
ΩT = Ω× (0, T ), we can prove the following companion of Theorem 1.1 .

Theorem 1.2. Let 1 ≤ p ≤ ∞. For a function u ∈ C(ΩT ), the following assertions
are equivalent:

(i) ut =
N

N+p−2 ∆
n
pu in ΩT in the viscosity sense;

(ii) u(x, t) = πp(ε, u)(x, t)+o(ε2) as ε → 0 in the viscosity sense for every (x, t) ∈
ΩT .

For further developments and applications of (AMVP)’s, we refer the reader to
[1], [8], [11], [12], [15], [17], and references therein.

This paper is organized as follows. In Section 2, we derive the pertinent prop-
erties of the p-mean value of a continuous function u: continuity and monotonicity
will be the most important. Then, we shall prove Theorem 1.1 and Theorem 1.2
in Sections 3 and 4, respectively. Finally, Section 5 is devoted to the calculation of
some relevant integrals.

2. Properties of p-mean values

Let X be a compact topological space which is also a measure space with respect
to a positive Radon measure ν such that ν(X) < ∞. We recall that, if u ∈ C(X),
the median med

X
u of u in X is defined as the unique solution λ of the equation

(2.1) ν({y ∈ X : u(y) ≥ λ}) = ν({y ∈ X : u(y) ≤ λ}).

We start by showing that the definitions (1.10) and (1.11) of µp(ε, u) and πp(ε, u)
are well posed.
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Theorem 2.1. Let 1 ≤ p ≤ ∞ and u ∈ C(X). There exists a unique real value
µX
p (u) such that

‖u− µX
p (u)‖Lp(X),ν = min

λ∈R

‖u− λ‖Lp(X,ν).

In particular,

µX
1 (u) = med

X
u, µX

2 (u) = −

∫

X

u(y) dν

and µX
∞(u) =

1

2

(

min
X

u+max
X

u
)

.

Furthermore, for 1 ≤ p < ∞, µX
p (u) is characterized by the equation

(2.2)

∫

X

∣

∣u(y)− µX
p (u)

∣

∣

p−2 [
u(y)− µX

p (u)
]

dν = 0,

where, for 1 ≤ p < 2, we mean that the integrand is zero if u(y)− µX
p (u) = 0.

Proof. The case p = 1 is a straightforward extension of the proofs in [16], [18] and
[19].

If p = ∞, the assertion follows at once by observing that

max
X

|u− λ| = max
(

max
X

u− λ, λ−min
X

u
)

.

Next, in the case 1 < p < ∞, we observe that

min
λ∈R

‖u− λ‖Lp(X,ν) = min
v∈Λ

‖u− v‖Lp(X,ν),

where Λ is the subspace of constant functions on X ; in other words µX
p (u) is a

projection of u on Λ. Thus, the existence, uniqueness and characterization of
µX
p (u) are guaranteed by the theorem of the projection, since Lp(X, ν) is uniformly

convex and Λ is a closed subspace, and the differentiability of the function λ 7→
‖u− λ‖Lp(X,ν) (see [10]).

The expression of µX
2 (u) is readily computed as the minimum point of a quadratic

polynomial. �

Remark 2.2. Note that, for 1 < p ≤ ∞, Theorem 2.1 extends to the case in which
u ∈ Lp(X, ν), provided the minimum and the maximum are replaced by

ess inf
X

u and ess sup
X

u.

If u ∈ L1(X, ν)\C(X), it is known that the median of u in X may not be unique
(see [16]).

The following corollary will be very useful for further computations. We set
B = B1(0).

Corollary 2.3. Let u ∈ Lp(Bε(x)), for 1 < p ≤ ∞, and u ∈ C(Bε(x)), for p = 1.
If we let uε(z) = u(x+ εz) for z ∈ B and set

(2.3) µp(ε, u)(x) = µBε(x)
p (u),

then it holds that

(2.4) µp(ε, u)(x) = µp(1, uε)(0).

Proof. It suffices to observe that, for every λ ∈ R, it holds that

‖u− λ‖Lp(Bε(x)) = εN/p ‖uε − λ‖Lp(B),

for 1 ≤ p < ∞, and

‖u− λ‖L∞(Bε(x)) = ‖uε − λ‖L∞(B),
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and hence invoke the uniqueness part of Theorem 2.1. �

In the next two theorems we regard µX
p (u) as the value at u of a functional µX

p

on Lp(X). If p = 1 and u ∈ L1(X) \ C(X), we allow µX
1 (u) to be any minimizing

value of λ 7→ ‖u− λ‖L1(X) on R, whenever it is convenient.

Theorem 2.4 (Continuity). Let 1 ≤ p ≤ ∞. It holds that

(2.5)
∣

∣

∣

∥

∥u− µX
p (u)

∥

∥

Lp(X)
−
∥

∥v − µX
p (v)

∥

∥

Lp(X)

∣

∣

∣
≤ ‖u− v‖Lp(X),

for any u, v ∈ Lp(X).
Moreover, if un → u in Lp(X) for 1 ≤ p ≤ ∞ and un, u ∈ C(X) for p = 1, then

µX
p (un) → µX

p (u) as n → ∞.
In particular, the same conclusion holds for any p ∈ [1,∞], if {un}n∈N ⊂ C(X)

converges to u uniformly on X as n → ∞.

Proof. The inequality (2.5) simply follows by observing that
∥

∥u− µX
p (u)

∥

∥

Lp(X)
is

nothing else than the distance of u from the subspace Λ.
Next, if un → u in Lp(X) as n → ∞, (2.5) implies that

‖un − µX
p (un)‖Lp(X) → ‖u− µX

p (u)‖Lp(X) as n → ∞.

We conclude by observing that, since µX
p (u) unique for 1 < p ≤ ∞ and for p =

1 if u ∈ C(X), any converging sub-sequence of {µX
p (un)}n∈N must converge to

µX
p (u). �

Theorem 2.5 (Monotonicity). Let u and v be two functions in Lp(X), for 1 <
p ≤ ∞, or in C(X) for p = 1.

If u ≤ v a.e. on Lp(X), then µX
p (u) ≤ µX

p (v).

Proof. For 1 < p < ∞, we observe that the function F : R× R → R defined by

F (u, λ) = |u− λ|p−2(u − λ)

is increasing in u for fixed λ and decreasing in λ for fixed u; hence,
∫

X

|u(y)− λ|p−2[u(y)− λ] dνy ≤

∫

X

|v(y)− λ|p−2[v(y)− λ] dνy

if u ≤ v a.e. in X . The characterization (2.2) then yields that µX
p (u) ≤ µX

p (v).
Next, we know that

µX
∞(u) =

1

2

{

ess inf
X

u+ ess sup
X

u

}

;

thus, the conclusion follows by an inspection.
Finally, we know that µX

1 (u) is the unique zero of the function defined by

Fu(λ) = ν({y ∈ X : u(y) ≥ λ})− ν({y ∈ X : u(y) ≤ λ}), λ ∈ R.

The conclusion then follows by observing that Fu ≤ Fv. �

Remark 2.6. Notice that the mean µmpr
p (ε, u) in (1.4) is not monotonic when

1 ≤ p < 2 and is continuous in Lp(Bε(x)) only for p = 2,∞.
The mean µhr,2

p (ε, u) in (1.7) is not monotonic for 2 < p < ∞ and the mean

µhr,1
p (ε, u) in (1.6) is not continuous unless p = ∞.

Finally, the mean µkmp
p (ε, u) in (1.8) is not continuous unless p = ∞.

To disprove continuity, it is sufficient to take the sequence of functions un(y) =
(|y − x|/ε)n for y ∈ Bε(x): this converges to zero in Lp(Bε(x)) for 1 ≤ p < ∞, but
the average of its maximum and minimum is always 1/2.

The proof of following proposition is straightforward.



ASYMPTOTIC MEAN VALUE PROPERTY FOR THE p-LAPLACIAN 7

Proposition 2.7. We have that

(i) µX
p (u+ c) = c+ µX

p (u) for every c ∈ R;

(ii) µX
p (αu) = αµX

p (u) for every α ∈ R.

3. The (AMVP) for the elliptic case

This section is devoted to prove Theorem 1.1. We first give a proof of the
(AMVP) for smooth functions. The following lemma is the crucial step of that
proof.

Lemma 3.1. Let 1 ≤ p ≤ ∞, pick ξ ∈ RN \ {0}, and let A be a symmetric N ×N
matrix. Consider the quadratic function q : Bε(x) → R defined by

q(y) = q(x) + ξ · (y − x) +
1

2
〈A(y − x), y − x〉, y ∈ Bε(x).

Then it holds that

µp(ε, q)(x) = q(x) +
1

2 (N + p)

{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

ε2 + o(ε2)

as ε → 0.

Proof. Set

qε(z) = q(x+ ε z), vε(z) =
q(x+ εz)− q(x)

ε
, and v(z) = ξ · z.

We know that

µp(ε, q)(x) = µp(1, qε)(0);

thus, Proposition 2.7 implies that

µp(ε, q)(x) − q(x)

ε
= µp(1, vε)(0),

and vε converges to v uniformly on B as ε → 0. Theorem 2.4 then yields that

lim
ε→0

µp(ε, q)(x)− q(x)

ε
= µp(1, v)(0),

and λ = µp(1, v)(0) = 0, 0 is the unique root of the equation
∫

B

|v(z)− λ|p−2[v(z)− λ] dz = 0,

for 1 ≤ p < ∞, and for p = ∞ maximizes the quantity

max(|ξ| − λ, λ+ |ξ|)

for λ ∈ R.
For 1 ≤ p ≤ ∞, set

(3.1) δε =
µp(ε, q)(x)− q(x)

ε2
.

Case 1 < p < ∞. We define the function h(s) = |s|p−2s; by some manipula-
tions, we get that

∫

B

h(ξ · z + ε [〈Az, z〉/2− δε]) dz = 0.

Without loss of generality, we assume that |ξ| = 1, apply the change of variables
z = Ry, where R is a rotation matrix such that tR ξ = e1, and set C =t RAR to
obtain that

∫

B

h(y1 + ε[〈Cy, y〉/2− δε])− h(y1)

ε
dy = 0,
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since
∫

B h(y1) dy = 0. Thus, we have that

(3.2)

∫

B

{
∫ 1

0

h′(y1 + τ ε [〈Cy, y〉/2− δε]) dτ

}

[〈Cy, y〉/2− δε] dy = 0,

and this implies that δε is bounded by some constant c (c is equal to half of the
norm of the matrix C).

If 2 ≤ p < ∞, it is easy to prove that, by the dominated convergence theorem,
(any converging subsequence of) δε converges to the number δ0 defined by

(3.3)

∫

B

h′(y1) [〈Cy, y〉/2− δ0] dy = 0.

If 1 < p < 2, we observe that
∣

∣

∣

∣

∫ 1

0

h′(y1 + τ ε [〈Cy, y〉/2− δε]) [〈Cy, y〉/2− δε] dτ

∣

∣

∣

∣

≤ 2 c
∣

∣

∣
|y1| − 2c ε

∣

∣

∣

p−2

and

lim
ε→0

∫

B

||y1| − 2c ε|
p−2

dy =

∫

B

|y1|
p−2 dy.

If (any converging subsequence of) δε converges to a number δ0, then the integrand
in (3.2) converges pointwise to h′(y1) [〈Cy, y〉/2 − δ0], and hence we can conclude
that (3.3) holds, by the generalized dominated convergence theorem (Theorem 5.4).

Therefore, by Lemma 5.1 we have that

lim
ε→0

δε =
1

2

∫

B |y1|
p−2 〈Cy, y〉 dy

∫

B |y1|p−2 dy
=

1

2 (N + p)
{tr(C) + (p− 2) 〈C e1, e1〉} =

1

2 (N + p)

{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

,

since 〈C e1, e1〉 = 〈ARe1, R e1〉, with Re1 = ξ/|ξ|.

Case p = 1. We know that µ1(ε, q) is the unique root of the equation

(3.4) |{y ∈ Bε(x) : q(y) > µ1(ε, q)}| = |{y ∈ Bε(x) : q(y) < µ1(ε, q)}|.

Next, manipulating (3.4) gives that
∣

∣

∣

{

z ∈ B : ξ · z +
ε

2
〈Az, z〉 > εδε

}∣

∣

∣
=
∣

∣

∣

{

z ∈ B : ξ · z +
ε

2
〈Az, z〉 < εδε

}∣

∣

∣

and, by applying the substitution z = Ry, where R is a rotation matrix such that
tR ξ = |ξ| e1, we can infer that

(3.5)
∣

∣

∣

{

y ∈ B : |ξ| y1 +
ε

2
〈C y, y〉 > εδε

}
∣

∣

∣
=
∣

∣

∣

{

y ∈ B : |ξ| y1 +
ε

2
〈C y, y〉 < εδε

}∣

∣

∣
,

where C =t RAR.
Now, consider the right-hand side of the last formula, set

fε(y) = |ξ| y1 +
ε

2
〈C y, y〉,

and

cε = |{y ∈ B : fε(y) < εδε}| − |B−|,

where B− = {y ∈ B : y1 ≤ 0}. The use of the change of variables

y =
ε z1
|ξ|

e1 + z′ where z′ = (0, z2, . . . , zN),
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yields that

|ξ|

ε
cε =

∣

∣

∣

∣

{

(z1, z
′) ∈ Bε : ε−1 fε

(

ε z1
|ξ|

e1 + z′
)

< δε

}∣

∣

∣

∣

− |Bε,−|,

where

Bε = {(z1, z
′) ∈ R

N : (ε z1/|ξ|)
2 + |z′|2 < 1},

and Bε,− = {z ∈ Bε : z1 ≤ 0}.

Now, set B′ = {z′ ∈ RN−1 : |z′| < 1} and notice that, if ε is small enough, by
the implicit function theorem, there is a unique function gε : B

′ → R such that

ε−1 fε

(

ε gε(z
′)

|ξ|
e1 + z′

)

= δε for z′ ∈ B′.

We can then infer that

cε =
ε

|ξ|

∫

B′

{

min
[

g+ε (z
′), (|ξ|/ε)

√

1− |z′|2
]

−

min
[

g−ε (z
′), (|ξ|/ε)

√

1− |z′|2
]}

dz′,

where g+ε and g−ε denote the positive and negative parts of gε. Thus, since gε(z
′) →

δ0 − 〈Cz′, z′〉/2 pointwise (possibly passing to a subsequence), by the dominated
convergence theorem, we obtain that

lim
ε→0

|ξ|

ε
cε =

∫

B′

[

δ0 −
1

2
〈Cz′, z′〉

]

dz′.

We can repeat the same arguments for the left-hand side of (3.5) and obtain
that

lim
ε→0

|ξ|

ε

{

|{y ∈ B : fε(y) > εδε}| − |B+|
}

=

∫

B′

[

1

2
〈Cz′, z′〉 − δ0

]

dz′.

Therefore, (3.5) implies that
∫

B′

[

δ0 −
1

2
〈C z′, z′〉

]

dz′ = 0,

and hence

δ0
ωN−1

N − 1
=

1

2

∫

B′

〈C z′, z′〉 dz′ =
ωN−1

2 (N2 − 1)

N
∑

j=2

Cjj .

Finally, the desired conclusion follows from

lim
ε→0

µ1(ε, q)(x)− q(x)

ε2
= lim

ε→0
δε = δ0,

where

2 (N + 1) δ20 = tr(C)− 〈C e1, e1〉 = tr(A)−
〈Aξ, ξ〉

|ξ|2
,

since 〈C e1, e1〉 = 〈ARe1, R e1〉, with Re1 = ξ/|ξ|.

Case p = ∞. For what we already showed at the beginning of this proof, we
know that

µ∞(ε, q)(x) − q(x)

ε
=

1

2

{

min
z∈B

[ξ · z + ε 〈Az, z〉/2] + max
z∈B

[ξ · z + ε 〈Az, z〉/2]

}

.



10 M. ISHIWATA, R. MAGNANINI, AND H. WADADE

Now, notice that, if ε is sufficiently small, the minimum and the maximum are
respectively attained at the points z+ε and z−ε on ∂B and

z±ε = ±
ξ + εA z′ε
|ξ + εA z′ε|

= ±
ξ

|ξ|
+ o(ε),

as ε → 0. Thus, we can infer that

µ∞(ε, q)− q(x)

ε2
=

〈Az+ε , z
+
ε 〉+ 〈Az−ε , z

−
ε 〉

4
+ o(1)

and conclude that
µ∞(ε, q)− q(x)

ε2
→

1

2

〈Aξ, ξ〉

|ξ|2

as ε → 0. �

Theorem 3.2 (Asymptotics for µp(ε, u) as ε → 0). Let 1 ≤ p ≤ ∞. Let Ω ⊆ RN

be an open set and x ∈ Ω.
If u ∈ C2(Ω) with ∇u(x) 6= 0, then

(3.6) µp(ε, u)(x) = u(x) +
1

2

∆n
pu(x)

N + p
ε2 + o(ε2) as ε → 0.

Proof. Let ε > 0 be such that Bε(x) ⊂ Ω and consider the function q(y) in Lemma
3.1 with q(x) = u(x), ξ = ∇u(x) and A = ∇2u(x); also, notice that

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2
= ∆n

pu(x).

Set uε(z) = u(x + εz) and qε(z) = q(x + εz); since u ∈ C2(Ω), then for every
η > 0 there exists εη > 0 such that

|uε(z)− qε(z)| < η ε2 for every z ∈ B and 0 < ε < εη.

Thus, since by Proposition 2.7

µp(ε, q ± ηε2)(x) = µp(ε, q)(x)± ηε2,

Theorem 2.5 and Corollary 2.3 yield that

µp(ε, q)(x)− u(x)

ε2
− η ≤

µp(ε, u)(x)− u(x)

ε2
≤

µp(ε, q)(x) − u(x)

ε2
+ η.

Therefore, Lemma 3.1 implies that

1

2

∆n
pu(x)

N + p
− η ≤ lim inf

ε→0

µp(ε, u)(x)− u(x)

ε2
≤

lim sup
ε→0

µp(ε, u)(x) − u(x)

ε2
≤

1

2

∆n
pu(x)

N + p
+ η.

The desired conclusion follows, since η is arbitrary. �

Corollary 3.3 ((AMVP) for smooth functions). Let 1 ≤ p ≤ ∞ and u ∈ C2(Ω).
The following assertions are equivalent:

(i) ∆n
pu(x) = 0 at any x ∈ Ω such that ∇u(x) 6= 0;

(ii) u(x) = µp(ε, u)(x) + o(ε2) as ε → 0 at any x ∈ Ω such that ∇u(x) 6= 0.

Remark 3.4. Without any essential modification, we can show a similar result
with µp(ε, u)(x) in Corollary 3.3 replaced by an analogous spherical p-mean value
of u on ∂Bε(x), that is the minimum value in the variational problem (1.9), where
the Lp norm is taken on ∂Bε(x). The asymptotic formula (3.6) reads in this case
as:

µp(ε, u)(x) = u(x) +
1

2

∆n
pu(x)

N + p− 2
ε2 + o(ε2) as ε → 0.
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We are now going to prove that continuous viscosity solutions of the normalized
p-Laplace equation are characterized by an (AMVP) in the viscosity sense. We
recall the relevant definitions from [14].

A function u ∈ C(Ω) is a viscosity solution of ∆n
pu = 0 in Ω, if both of the

following requisites hold at every x ∈ Ω:

(i) for any function φ of class C2 near x such that u−φ has a strict minimum at
x with u(x) = φ(x) and ∇φ(x) 6= 0, there holds that ∆n

pφ(x) ≤ 0;

(ii) for any function φ of class C2 near x such that u − φ has a strict maximum
at x with u(x) = φ(x) and ∇φ(x) 6= 0, there holds that ∆n

pφ(x) ≥ 0.

We say that a function u ∈ C(Ω) satisfies at x ∈ Ω the asymptotic mean value
property (AMVP)

u(x) = µp(ε, u)(x) + o(ε2) as ε → 0

in the viscosity sense if both of the following requisites hold:

(a) for any function φ of class C2 near x such that u− φ has a strict minimum at
x with u(x) = φ(x) and ∇φ(x) 6= 0, there holds that

φ(x) ≥ µp(ε, φ)(x) + o(ε2) as ε → 0;

(b) for any function φ of class C2 near x such that u− φ has a strict maximum at
x with u(x) = φ(x) and ∇φ(x) 6= 0, there holds that

φ(x) ≤ µp(ε, φ)(x) + o(ε2) as ε → 0.

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Let φ be of class C2 near x with ∇φ(x) 6= 0; by Theorem
3.2, we know that

(3.7) φ(x) = µp(ε, φ)(x) −
1

2

ε2

N + p
∆n

pφ(x) + o(ε2)

as ε → 0.
Thus, if u − φ has a strict minimum at x with u(x) = φ(x) and ∆n

pφ(x) ≤ 0,
then (3.7) implies that

φ(x) ≥ µp(ε, φ)(x) + o(ε2) as ε → 0.

Conversely, if φ(x) ≥ µp(ε, φ)(x) + o(ε2) as ε → 0, by (3.7) we infer that

−∆n
pφ(x) ≥ o(1) as ε → 0,

and hence ∆n
pφ(x) ≤ 0.

We proceed similarly, if u− φ has a strict maximum at x. �

4. The (AMVP) for the parabolic case

The situation in the parabolic case is similar to that presented in the previous
paragraph: we just have to use the proper cost function. As already observed, the
choice disclosed in (1.11) is a good candidate since it yields for p = 2 the classical
mean value property for solutions of the heat equation. Thus, we shall denote:

(4.1) πp(ε, u)(x, t) = the unique π ∈ R satisfying (1.11).

It is clear that the characterization, continuity and monotonicity of Theorems
2.1, 2.4 and 2.5 apply to πp(ε, u)(x, t), if we set X = Eε(x, t) and dν(y, s) =
|x− y|2/(t− s)2dy ds. In particular, the heat mean value of u is

−

∫

Eε(x,t)

u(y, s) dν(y, s) =
1

4 εN

∫

Eε(x,t)

u(y, s) dν(y, s)
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and the heat median of u, h-med
Eε(x,t)

u, is the unique root of the equation:

(4.2)

∫

Eλ,+
ε (x,t)

|x− y|2

(t− s)2
dy ds =

∫

Eλ,−
ε (x,t)

|x− y|2

(t− s)2
dy ds,

where
Eλ,±

ε (x, t) = {(y, s) ∈ Eε(x, t) : λ ≶ u(y, s)}.

The companion of Corollary 2.3 is the following result, that does not need an ad
hoc proof.

Corollary 4.1. Let 1 ≤ p < ∞, u ∈ C(Eε(x, t)) and define

uε(z, σ) = u(x+ εz, t− ε2σ), (z, σ) ∈ E,

where

(4.3) E = {(z, σ) ∈ R
N+1 : 0 < σ <

1

4π
,Φ(z, σ) > 1}.

Then

(4.4) πp(ε, u)(x, t) = πp(1, uε)(0, 0),

where λ = πp(1, uε)(0, 0) is the unique root of the equation

(4.5)

∫

E

|uε(z, σ)− λ|p−2[uε(z, σ)− λ] dν(z, σ) = 0.

Lemma 4.2. Let 1 ≤ p ≤ ∞, pick a ∈ R and ξ ∈ RN \ {0}, and let A be a
symmetric N ×N matrix.

Consider the quadratic function q : Eε(x, t) → R defined by

q(y, s) = q(x, t) + ξ · (y − x) + a (s− t) +
1

2
〈A(y − x), y − x〉

for (y, s) ∈ Eε(x, t). Let πp(ε, q) be the heat p-mean of q on Eε(x, t).
Then it holds that

πp(ε, q) = q(x, t)+

1

4π

(

1−
2

N + p

)1+N+p

2
{

−a+
N

N + p− 2

[

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

]}

ε2 + o(ε2)

as ε → 0.

Proof. We proceed similarly to the proof of Lemma 3.1. Set

qε(z, σ) = q(x + ε z, t− ε2 σ),

vε(z, σ) =
q(x + εz, t− ε2 σ)− q(x, t)

ε
and v(z, σ) = ξ · z.

We know that
πp(ε, q)(x, t) = πp(1, qε)(0, 0);

thus, Proposition 2.7 implies that

πp(ε, q)(x, t) − q(x, t)

ε
= πp(1, vε)(0, 0),

and vε converges to v uniformly on E as ε → 0. Theorem 2.4 then yields that

lim
ε→0

πp(ε, q)(x, t)− q(x, t)

ε
= πp(1, v)(0, 0),

and πp(1, v) = 0, since it is the unique solution λ of
∫

E

|v(z, σ)− λ|p−2[v(z, σ)− λ] dν(z, σ) = 0,
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for 1 ≤ p < ∞, and for p = ∞ maximizes the quantity

max(|ξ| − λ, λ+ |ξ|)

for λ ∈ R.
As before, set

δε =
πp(ε, q)(x, t) − q(x, t)

ε2
.

Case 1 < p < ∞. By some manipulations, we get that
∫

E

h(ξ · z + ε [−a σ + 〈Az, z〉/2− δε]) dν(z, σ) = 0,

where h is the function already defined. Without loss of generality, we assume that
|ξ| = 1, apply the change of variables z = Ry, where R is a rotation matrix such
that tR ξ = e1, and set C =t RAR to obtain that

∫

E

h(y1 + ε[−a σ + 〈Cy, y〉/2− δε])− h(y1)

ε
dν(y, σ),

since
∫

E h(y1) |y|
2/σ2 dydσ = 0. Thus, by proceeding as before, we have that

(4.6) δε

∫

E

{
∫ 1

0

h′(y1 + τ ε [−a σ + 〈Cy, y〉/2− δε]) dτ

}

dν(y, σ) =

∫

E

{
∫ 1

0

h′(y1 + τ ε [−a σ + 〈Cy, y〉/2− δε]) dτ

}

[−a σ + 〈Cy, y〉/2] dν(y, σ),

and this implies that δε is bounded by some constant (this is equal to c+ |a|/4π).
If 2 ≤ p < ∞, it is easy to prove that, by the dominated convergence theorem,

(any converging subsequence of) δε converges to the number δ0 defined by

(4.7)

∫

E

h′(y1) [−a σ + 〈Cy, y〉/2− δ0] dν(y, σ) = 0.

If 1 < p < 2, we observe that
∣

∣

∣

∣

∫ 1

0

h′(y1 + τ ε [−a σ + 〈Cy, y〉/2− δε]) [−a σ + 〈Cy, y〉/2− δε] dτ

∣

∣

∣

∣

≤

2 (c+ |a|/4π)
∣

∣

∣
|y1| − 2 (c+ |a|/4π) ε

∣

∣

∣

p−2

and

lim
ε→0

∫

E

∣

∣

∣
|y1| − 2 (c+ |a|/4π) ε

∣

∣

∣

p−2

dν(y, σ) =

∫

B

|y1|
p−2 dν(y, σ).

If (any converging subsequence of) δε converges to a number δ0, then the inte-
grand in (3.2) converges pointwise to h′(y1) [−a σ + 〈Cy, y〉/2 − δ0], and hence we
can conclude that (4.7) holds, by the generalized dominated convergence theorem
(Theorem 5.4).

Therefore, by Lemma 5.3 we have that

lim
ε→0

δε =

∫

E
|y1|

p−2 [−a σ + 〈Cy, y〉/2] dν(y, σ)
∫

E
|y1|p−2 dν(y, σ)

=

1

4π

(

1−
2

N + p

)

N+p

2
+1 {

−a+
N

N + p− 2
[tr(C) + (p− 2) 〈Ce1, e1〉]

}

=

1

4π

(

1−
2

N + p

)

N+p

2
+1{

−a+
N

N + p− 2

[

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

]}

since 〈C e1, e1〉 = 〈ARe1, R e1〉, with Re1 = ξ/|ξ|.
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Case p = 1. By proceeding as in the proof of Lemma 3.1, it is easy to show
that

∫

E+
ε

|y|2

σ2
dy dσ =

∫

E−
ε

|y|2

σ2
dy dσ

where

E∓
ε = {(y, σ) ∈ E : −y1 ≶ 0, |ξ| y1 + ε [−a σ + 〈Cy, y〉/2] ≶ εδε} ,

R is the usual rotation matrix, and C = tRAR.
Now, we assume that |ξ| = 1 without loss of generality and use the change of

variables

y = ε z1 e1 + z′ where z′ = (0, z2, . . . , zN )

and take the limit as ε → 0; similarly to the proof of Lemma 3.1 we obtain that
∫

E+

0

|z|2

σ2
dz dσ =

∫

E−
0

|z|2

σ2
dz dσ

where δ0 is, as usual, the limit of δε as δ → 0 and

E±
0 =

{

(z, σ) ∈ R
N+1 : 0 ≤ |z′| <

√

−2N σ log(4πσ), 0 < σ <
1

4π
,

0 ≶ z1, δ0 ≶ z1 − a σ +
〈C z′, z′〉

2

}

.

Thus, δ0 results to be the solution of
∫

E′

[

δ0 + a σ −
1

2
〈C z′, z′〉

]

|z′|2

σ2
dz′ dσ = 0,

where

E′ =

{

(z′, σ) ∈ R
N : 0 ≤ |z′| <

√

−2N σ log(4πσ), 0 < σ <
1

4π

}

,

and hence

δ0

∫

E∗

rNσ−2 dr dσ = −a

∫

E∗

rNσ−1 dr dσ+

1

2 (N − 1)

[

tr(A) −
〈Aξ, ξ〉

|ξ|2

]
∫

E∗

rN+2σ−2 dr dσ.

Finally, Lemma 5.2 gives that

δ0 =
1

4π

(

N − 1

N + 1

)

N+1

2
+1{

−a+
N

N − 1

[

tr(A)−
〈Aξ, ξ〉

|ξ|2

]}

.

Case p = ∞. For what we already showed at the beginning of this proof, we
know that

π∞(ε, q)− q(x, t)

ε
=

1

2
min

(z,σ)∈E
[ξ · z + ε (−a σ + 〈Az, z〉/2)]+

1

2
max

(z,σ)∈E
[ξ · z + ε (−a σ + 〈Az, z〉/2)] .

Now, notice that if ε is sufficiently small, since ξ 6= 0, the minimum and the
maximum are attained at some points (z+ε , σ

+
ε ) and (z−ε , σ

−
ε ) on ∂E. Thus, there

exist two Lagrange multipliers λ+
ε and λ−

ε such that the following three equations
hold:

(4.8)
ξ + εAz±ε = λ±

ε z±ε , −ε a = λ±
ε N{log(4πσ±

ε ) + 1},

|z±ε |
2 + 2Nσ±

ε log(4πσ±
ε ) = 0.



ASYMPTOTIC MEAN VALUE PROPERTY FOR THE p-LAPLACIAN 15

Since

max
(z,σ)∈E

(ξ · z) = |ξ|

√

N

2πe
and min

(z,σ)∈E
(ξ · z) = −|ξ|

√

N

2πe
,

a straightforward asymptotic analysis on the system (4.8) informs us that

z±ε = ±

√

N

2πe

ξ

|ξ|
+ o(ε) and σ±

ε =
1

4πe
+ o(ε) as ε → 0.

Therefore, we obtain:

lim
ε→0

π∞(ε, q)− q(x, t)

ε2
=

lim
ε→0

{

ξ ·
z−ε + z+ε

2ε
− a

σ−
ε + σ+

ε

2
+

〈Az−ε , z−ε 〉+ 〈Az+ε , z
+
ε 〉

4

}

=

1

4πe

(

−a+N
〈Aξ, ξ〉

|ξ|2

)

,

as desired. �

Theorem 4.3 (Asymptotics for πp(ε, u) as ε → 0). Let 1 ≤ p ≤ ∞. Assume
(x, t) ∈ ΩT , u ∈ C2(ΩT ) and ∇u(x, t) 6= 0.

Then

(4.9) πp(ε, u)(x, t) = u(x, t)+

1

4π

(

1−
2

N + p

)

N+p

2
+1{

−ut(x, t) +
N

N + p− 2
∆n

pu(x, t)

}

ε2 + o(ε2),

as ε → 0.

Proof. Let ε > 0 be such that Eε(x, t) ⊂ ΩT and consider the function q(y, s) in
Lemma 4.2 with q(x, t) = u(x, t), a = ut(x, t), ξ = ∇u(x, t), and A = ∇2u(x, t);
then, set uε(z, σ) = u(x+ εz, t− ε2σ) and qε(z, σ) = u(x+ εz, t− ε2σ).

Since u ∈ C2(ΩT ), for every η > 0 there exists εη > 0 such that

|uε(z, σ)− qε(z, σ)| < η ε2 for every z ∈ E and 0 < ε < εη.

Thus, by Proposition 2.7, (4.4) and Theorem 2.5,

πp(ε, q)(x, t)− q(x, t)

ε2
− η ≤

πp(ε, u)(x, t)− q(x, t)

ε2
≤

πp(ε, q)(x, t) − q(x, t)

ε2
+ η.

Therefore, Lemma 4.2 implies that

1

4π

(

1−
2

N + p

)

N+p

2
+1{

−ut(x, t) +
N

N + p− 2
∆n

pu(x, t)

}

− η ≤

lim inf
ε→0

πp(ε, u)(x, t)− q(x, t)

ε2
≤ lim sup

ε→0

πp(ε, u)(x, t)− q(x, t)

ε2
≤

1

4π

(

1−
2

N + p

)

N+p

2
+1{

−ut(x, t) +
N

N + p− 2
∆n

pu(x, t)

}

+ η.

The desired conclusion follows at once, since η is arbitrary. �

Corollary 4.4. Let u ∈ C2(ΩT ). The following assertions are equivalent:

(i) −ut(x, t) +
N

N+p−2 ∆
n
pu(x, t) = 0,

(ii) u(x) = πp(ε, u)(x, t) + o(ε2) as ε → 0,
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at any point (x, t) ∈ ΩT such that ∇u(x, t) 6= 0.

We do not provide the proof of Theorem 1.2, since is a straightforward re-
adaptation of that of Theorem 1.1, once the following definitions are established.

A function u ∈ C(ΩT ) is a viscosity solution of ut =
N

N+p−2∆
n
pu in ΩT , if both

of the following requisites hold at every (x, t) ∈ ΩT :

(i) for any function φ of class C2 near (x, t) such that u − φ has a strict min-
imum at (x, t) with u(x, t) = φ(x, t) and ∇φ(x, t) 6= 0, there holds that

N
N+p−2∆

n
pu(x, t) ≤ ut(x, t);

(ii) for any function φ of class C2 near (x, t) such that u − φ has a strict max-
imum at (x, t) with u(x, t) = φ(x, t) and ∇φ(x, t) 6= 0, there holds that

N
N+p−2∆

n
pu(x, t) ≥ ut(x, t).

We say that a function u ∈ C(ΩT ) satisfies at (x, t) ∈ ΩT the asymptotic mean
value property (AMVP)

u(x, t) = πp(ε, u)(x, t) + o(ε2) as ε → 0

in the viscosity sense if both of the following requisites hold:

(a) for any function φ of class C2 near (x, t) such that u− φ has a strict minimum
at (x, t) with u(x, t) = φ(x, t) and ∇φ(x, t) 6= 0, there holds that

φ(x, t) ≥ πp(ε, φ)(x, t) + o(ε2) as ε → 0;

(b) for any function φ of class C2 near (x, t) such that u−φ has a strict maximum
at (x, t) with u(x, t) = φ(x, t) and ∇φ(x, t) 6= 0, there holds that

φ(x, t) ≤ πp(ε, φ)(x, t) + o(ε2) as ε → 0.

5. Useful integrals

We begin with the computation of some useful integrals.

Lemma 5.1. Let SN−1 be the unit sphere in R
N . Let ξ ∈ R

N \ {0} and A be an
N ×N symmetric matrix. Then for 1 < p < ∞ we have that

(5.1)

∫

SN−1 |ξ · y|
p−2〈Ay, y〉 dSy

∫

SN−1 |ξ · y|p−2 dSy
=

1

N + p− 2

{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

and

(5.2)

∫

B
|ξ · y|p−2〈Ay, y〉 dy
∫

B
|ξ · y|p−2 dy

=
1

N + p

{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

.

Proof. Let R be a rotation matrix such that tRξ = |ξ| e1; by the change of variables
y = Rθ, we have that

∫

SN−1 |ξ · y|
p−2〈Ay, y〉 dSy

∫

SN−1 |ξ · y|p−2 dSy
=

∫

SN−1 |θ1|
p−2〈(tRAR) θ, θ〉 dSθ

∫

SN−1 |θ1|p−2 dSθ
.

On the other hand,

∫

SN−1

|θ1|
p−2θi θj dSθ =

∫

B

∂

∂yj
(|y1|

p−2yi) dy =

[δij + (p− 2)δi1δ1j ]

∫

B

|y1|
p−2dy =

δij + (p− 2)δi1δ1j
N + p− 2

∫

SN−1

|θ1|
p−2 dSθ,
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where we have used the divergence theorem in the first equality. Therefore, we
obtain that
∫

SN−1 |ξ · y|
p−2〈Ay, y〉 dSy

∫

SN−1 |ξ · y|p−2 dSy
=

tr(tRAR) + (p− 2)〈(tRAR) e1, e1〉

N + p− 2
=

1

N + p− 2

{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

.

Formula (5.2) easily follows from (5.1). �

Lemma 5.2. Let α > 0 and β < α+ 1 be real numbers and let

E∗ =

{

(r, σ) ∈ R
2 : 0 < r <

√

−2N σ log(4πσ), 0 < σ <
1

4π

}

.

Then

(5.3)

∫

E∗

r2α−1σ−β drdσ =
22β−α−3 πβ−α−1 Nα

α (α− β + 1)α+1
Γ(α+ 1).

Proof. The result follows from the calculations:

∫

E∗

r2α−1σ−β drdσ =
1

2α

∫ 1
4π

0

σ−β{−2Nσ log(4πσ)}α dσ =

22β−α−3 πβ−α−1 Nα

α

∫ ∞

0

τα e−(α−β+1)τ dτ =

22β−α−3 πβ−α−1 Nα

α (α− β + 1)α+1

∫ ∞

0

τα e−τ dτ ;

in the second equality we used the substitution 4πσ = e−τ . �

Lemma 5.3. Let ξ and A be as in Lemma 5.1. Then for 1 < p < ∞ we have that

(5.4)

∫

E |ξ · z|p−2 σ dν(z, σ)
∫

E
|ξ · z|p−2 dν(z, σ)

=
1

4π

(

N + p− 2

N + p

)1+N+p

2

and

(5.5)

∫

E
|ξ · z|p−2〈Az, z〉 dν(z, σ)
∫

E |ξ · z|p−2 dν(z, σ)
=

1

2π

N

N + p− 2

(

N + p− 2

N + p

)1+N+p

2
{

tr(A) + (p− 2)
〈Aξ, ξ〉

|ξ|2

}

.

Proof. By using spherical coordinates, we calculate that
∫

E |ξ · z|p−2 σ dν(z, σ)
∫

E
|ξ · z|p−2 dν(z, σ)

=

∫

E∗
rp+N−1 σ−1dr dσ

∫

E∗
rp+N−1 σ−2dr dσ

and
∫

E
|ξ · z|p−2〈Az, z〉 dν(z, σ)
∫

E |ξ · z|p−2 dν(z, σ)
=

∫

E∗
rp+N+1 σ−2dr dσ

∫

E∗
rp+N−1 σ−2dr dσ

∫

SN−1 |ξ · y|
p−2〈Ay, y〉 dSy

∫

SN−1 |ξ · y|p−2 dSy
.

Thus, (5.4) and (5.5) follow from the calculations
∫

E∗
rp+N−1 σ−1dr dσ

∫

E∗
rp+N−1 σ−2dr dσ

and (5.1). �
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For the reader’s convenience, we recall the generalized dominated convergence
theorem (see [10] for instance), that is needed for the proofs of Lemmas 3.1 and
4.2.

Theorem 5.4 (Generalized dominated convergence theorem). Let (X, ν) be a mea-
sure space and let {fn}n∈N and {gn}n∈N be sequences of measurable functions on
X such that

(i) fn converges to a measurable function f a.e. on X as n → ∞;
(ii) each gn ∈ L1(X, ν) and gn converges to a function g in L1(X, ν) a.e. on X

as n → ∞;
(iii) |fn| ≤ gn a.e. on X for all n ∈ N;
(iv) lim

n→∞

∫

X gn dν =
∫

X g dν.

Then, we have that

lim
n→∞

∫

X

fn dν =

∫

X

f dν.
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