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FINITE GROUPS WHOSE NON-LINEAR IRREDUCIBLE
CHARACTERS OF THE SAME DEGREE ARE GALOIS

CONJUGATE

SILVIO DOLFI AND MANOJ K. YADAV

Abstract. We classify the finite groups whose non-linear irreducible characters
that are not conjugate under the natural Galois action have distinct degrees, there-
fore extending the results in Berkovich et al. [Proc. Amer. Math. Soc. 115 (1992),
955-959] and Dolfi et al. [Israel J. Math. 198 (2013), 283-331].

1. Introduction

In 1992, Berkovich, Chillag and Herzog [BCH] classified the finite groups whose
non-linear irreducible characters all have distinct degrees. Since Galois groups of
suitable cyclotomic fields act in a natural degree-preserving way (see below) on the
set Irr(G) of the irreducible characters of a finite group G, it seems natural to weaken
the above mentioned condition by asking that there exists just one orbit on Irr(G)
for every given irreducible character degree 6= 1. While the condition in [BCH] forces
all non-linear characters in Irr(G) to be rational valued, we are now just imposing a
minimality condition on the multiplicities of the degrees of the irreducible characters,
without setting restrictions on their fields of values.

Let G be a finite group, n a multiple of |G| and let Gn = Gal(Qn|Q) be the Galois
group of the n-th cyclotomic extension. Then Gn acts on the set Irr(G) as follows:
for α ∈ Gn, χ ∈ Irr(G) and g ∈ G, we define

χα(g) = χ(g)α .

For χ, ψ ∈ Irr(G), if there exists a Galois automorphism α ∈ Gn such that χα = ψ,
then we say that χ and ψ are Galois conjugate (in Gn). This is clearly an equivalence
relation on Irr(G). Characters in the same equivalence class have the same kernel,
center, field of values and degree.

In this paper, we weaken the condition of [BCH], and prove the following result.

Theorem A. Let G be a finite group. Every two non-linear irreducible characters of
the same degree of G are Galois conjugate if and only if G is either abelian or one of
the following.

(a): G is a p-group (p a prime), |G′| = p and Z(G) is cyclic;
(b): G is a Frobenius group with prime power order kernel K and complement
L, with L cyclic or L ∼= Q8. Moreover:
(b1): L ∼= Q8 and |K| = 32; or
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(b2): K is elementary abelian, |K| = qn ( q prime), L is cyclic and |L| =
(qn − 1)/d, where d divides q − 1 and (d, n) = 1; or

(b3): K is a Suzuki 2-group with |K| = |K ′|2 and L is cyclic of order
|K ′| − 1.

(c): G is non-solvable and either

G ∈ {A5, Sz(8), J2, J3, L3(2),M22,Ru,Th,
3
D4(2)}

or
G ∈ {A5 × Sz(8),A5 × Th, L3(2)× Sz(8)} .

As a consequence of Theorem A, we get a new proof of the main result of [BCH].

Corollary B. Let G be a finite group. Then, for every non-linear χ, ψ ∈ Irr(G),
χ 6= ψ implies χ(1) 6= ψ(1) if and only if G is either abelian or one of the following
groups:

(a): extraspecial 2-groups;
(b): G = KL is a Frobenius group with elementary abelian kernel K, |K| = qn

for a prime q, and either
(b1): L ∼= Q8 and qn = 32; or
(b2): L is cyclic of order qn − 1.

In [DNT] the finite groups such that all non-principal irreducible characters of the
same degree are Galois conjugate are classified. We remark that for non-solvable
groups, the class of groups studied in [DNT] and the class we are considering here
in fact coincide by Theorem 3.9. However, the two classes differ significantly in the
case of nilpotent groups: while the nilpotent groups in [DNT] are just groups of
prime order [DNT], or the trivial group, here we have p-groups with cyclic center and
commutator subgroup of prime order, or abelian groups (see Corollary 3.2).

Finally, we remark that by quoting Theorem 4.1 of [DNT] (see Theorem 3.7) our
work depends on the Classification of Finite Simple Groups.

2. Preliminaries

In the following, by “group” we always mean “finite group”. We use standard
notation in character theory, as in [I]. Given a character χ ∈ Irr(G), we define
Q(χ) = Q[{χ(g) | g ∈ G}], the field generated by the values of χ; Q(χ) is called the
field of values of χ. We stress here that two characters in Irr(G) are Galois conjugate
in some Galois group Gn if and only if they are Galois conjugate in Gal(Q(χ)|Q)
(see Lemma 2.2(a)). Therefore, we omit the explicit reference to a specific Galois
extension of Q, and we simply say “Galois conjugate”.

Definition 2.1. We say that a finite group G is a GC∗-group (or G ∈ GC∗) if any
two non-linear irreducible characters of G are Galois conjugate whenever they have
the same degree.

The following lemma collects some basic facts, often used without explicit reference.
In particular, part (d) shows that the class GC∗ is stable by taking factor groups.

Lemma 2.2. Let G be a finite group. Then the following hold true.
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(a): Let χ, ψ ∈ Irr(G), and let E = Qnbe any cyclotomic field such that Q(χ) ⊆
E. Then χ and ψ are Galois conjugate in E if and only if they are Galois
conjugate in Q(χ).

(b): If χ, ψ ∈ Irr(G) are Galois conjugate, then χ(1) = ψ(1), Q(χ) = Q(ψ),
ker(χ) = ker(ψ) and Z(χ) = Z(ψ).

(c): Let G = A×B, with A non-abelian. If G ∈ GC∗, then B = B′.
(d): Let N be a normal subgroup of G. If G ∈ GC∗, then G/N ∈ GC∗.

Proof. (a) Since Gal(E|Q) is abelian, Q(χ)|Q is a normal extension and the claim
follows by extending (resp. restricting) Q-automorphisms to E (resp. to Q(χ)).

(b) These assertions follow directly from the definitions.
(c) Let α ∈ Irr(A) with α(1) > 1 and let β ∈ Irr(B) with β(1) = 1. Then

χ = α× 1B and ψ = α × β are non-linear irreducible characters of G and they have
the same degree. It follows that B ≤ ker(χ) = ker(ψ), so β = 1B. Hence, B

′ = B.
(d) Let χ, ψ ∈ Irr(G/N) be non-linear characters of the same degree. Then the

same is true for their inflations χ0, ψ0 ∈ Irr(G); so they are Galois conjugate and
(observing that Q(χ) = Q(χ0)) the claim follows. �

Let N be a normal subgroup of G and let λ ∈ Irr(N). We denote by Irr(G|λ) =
{χ ∈ Irr(G) | [χN , λ] 6= 0} the set of the irreducible characters of G lying above λ.
If λ is invariant in G and |Irr(G|λ)| = 1 we say that λ is fully ramified in G/N . In
this case, if χ ∈ Irr(G) is the (only) character lying above λ, then χ(g) = 0 for all
g ∈ G \N and |G/N | = (χ(1)/λ(1))2 (see [I, Problem 6.3]).

Lemma 2.3. Let P be a p-group such that |P ′| = p, where p is a prime. Let Z =
Z(P ). Then the following statements hold true.

(a): Every non-linear irreducible character of P is a faithful character of degree
√

|P : Z|;
(b): Every non-trivial character λ ∈ Λ := {λ ∈ Irr(Z) | P ′ 6≤ ker(λ)} is fully

ramified in P/Z. The map

f : Λ → {χ ∈ Irr(P ) | χ(1) > 1}

such that f(λ) = χλ, where χλ is the unique irreducible character of G lying
over λ, is a bijection.

Proof. This follows from Theorem 7.5 of [H1]. �

We also need a classical result on irreducible modules for abelian groups.

Lemma 2.4. Let V be a faithful irreducible A-module, |V | = qn (q prime), for an
abelian group A. Then A is cyclic and the semidirect product V ⋊ A is isomorphic
to a subgroup of the affine group GF(qn)+ ⋊ GF(qn)×. Moreover, if U is any other
faithful irreducible A-module of characteristic q, then |U | = |V |.

Proof. It follows from [H, II.3.10] (and its proof). �

Finally, we give a result that will be used in pinning down the structure of nilpotent
residuals (which will turn out to be Frobenius kernels) of GC∗-groups.
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Lemma 2.5. Let G ∈ GC∗ be a Frobenius group, with Frobenius kernel K a q-
group (q prime). Let N ≤ K be normal in G and let λ ∈ Irr(N) be a non-principal
K-invariant character. Then the following statements hold true.

(a): If q = 2 and θ1, θ2 ∈ Irr(K|λ) are characters of the same degree, then there
exists a Galois automorphism α ∈ Gal(Qqk |Q), where qk = exp(K), such that
θα1 = θ2.

(b): If K/N is abelian and exp(K) = q, then |Irr(K|λ)| = 1 (i.e. λ is fully
ramified in K).

Proof. Write G = KL with L Frobenius complement. Let θ1, θ2 ∈ Irr(K|λ) be such
that θ1(1) = θ2(1). As G is a Frobenius group, θG1 and θG2 are non-linear irreducible
characters of the same degree of G. Hence, as G ∈ GC∗ and Q(θGi ) ⊆ Q(θi) ⊆ Qqk ,
where qk = exp(K), there exists a Galois automorphism α ∈ Gal(Qqk |Q) such that
(θG1 )

α = θG2 . By Clifford theory, there exists an element x ∈ L such that

(1) θα1 = θx2 .

Thus, by restricting to N , we get that λα = λx. Now, for every positive integer
m, λα

m

= λx
m

because Galois conjugation and group conjugation commute. As any
non-trivial element of L fixes only the trivial character of N , we deduce that o(x)
divides o(α), so o(x) divides qk−1(q − 1). Since |L| is coprime to q, we conclude that
o(x) divides q − 1.

(a): As o(x) | (q − 1), if q = 2 then by (1) we get θα1 = θ2 and (a) is proved.

(b): Assume now that exp(K) = q is prime and that K/N is abelian. By [MW,
Lemma 12.6], there exists a (unique) subgroup U with N ≤ U ≤ K such that every
ϕ ∈ Irr(U |λ) extends λ and is fully ramified in K/U . It follows that |Irr(K|λ)| =
|U/N | and that all characters in Irr(K|λ) have the same degree. By (1) we deduce
that the action of G × L on Irr(K|λ) (defined, for θ ∈ Irr(K|λ) and (α, x) ∈ G × L,
by θ(α,x) = (θα)x = (θx)α) is transitive on Irr(K|λ). Since |Irr(K|λ)| = |U/N | is a
power of q and G × L is a q′-group, it follows that |Irr(K|λ)| = 1. �

3. GC∗-groups

Theorem 3.1. Let P be a non-abelian p-group, p a prime. Then P is a GC∗-group
if and only if P has cyclic center and commutator subgroup of prime order.

Proof. Assume first that |P ′| = p and that Z = Z(P ) is cyclic. By Lemma 2.3 the
map f from the set Λ = {λ ∈ Irr(Z)|P ′ 6≤ ker(λ)} onto {χ ∈ Irr(P )|χ(1) > 1}
such that f(λ) = χλ, where Irr(G|λ) = {χλ}, is a bijection. Note that Λ is also
the set of the faithful characters of Z, as Z is cyclic. Moreover Q(χλ) = Q(λ), as
(χλ)Z is a multiple of λ and χ(x) = 0 for all x ∈ P \ Z. Let |Z| = pa. If λ ∈ Λ,
then Q(λ) = Qpa and hence, writing G = Gal(Q(λ)|Q) = Gal(Qpa |Q), we have that
|G| = |Λ|. Since any element of Λ is stabilized only by the trivial automorphism of
G, it follows that G acts transitively on Λ. Let now χ1, χ2 ∈ Irr(G) be non-linear
characters; then χ1 = f(λ1) and χ2 = f(λ2) for suitable λ1, λ2 ∈ Λ. Now, there exists
a Galois automorphism α ∈ G such that λα1 = λ2. As (χλ1

)α lies over λα1 , we have
that χ2 = f(λ2) = f(λα1 ) = (χλ1

)α. Hence P ∈ GC∗.
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Conversely, we show that if P is a GC∗-group, then Z(P ) is cyclic and |P ′| = p.
Let P be a counterexample of minimal order; hence either Z(P ) is not cyclic, or
|P ′| > p.

First, we suppose that P ′ ≤ Z(P ) (i.e. that P has nilpotency class 2). To begin
with, we also assume that Z := Z(P ) is cyclic. So, |P ′| > p and, by minimality of
P , we have that |P ′| = p2. Then by [BBC, Theorem 2.1], P is a central product of
2-generated subgroups with cyclic center and a (possibly trivial) cyclic subgroup. So,
again by minimality, we have that P is 2-generated; write P = 〈x, y〉. P being a class
2 p-group, it follows that exp(P/Z) = exp(P ′). Since P ′ ≤ Z and Z is cyclic, we
have that P ′ is a cyclic group of order p2, and therefore exp(P/Z) = exp(P ′) = p2.
Thus, again P being a class 2 p-group, we can choose generators x and y of P such
that o(xZ) = o(yZ) = p2 in P/Z. Now, if N is the (unique) subgroup of order p of
P ′, then both xpN and ypN belong to M/N := Z(P/N). In fact, P ′ = 〈[x, y]〉 and
[xp, y] = [x, y]p = [x, yp], so [xp, y] as well as [yp, x] belongs to N as exp(P ′) = p2.
Now, by minimality, Z(P/N) is cyclic, and therefore M/Z is cyclic. On the other
hand, since both xp and yp lie inM , M/Z cannot be cyclic. This contradiction shows
that Z cannot be cyclic.

So, we assume that Z is not cyclic. Let N be a subgroup of order p of Z such that
N 6= P ′ (such a subgroup certainly exists as Z has more than one subgroup of order
p). By minimality, Z(P/N) is cyclic and |P ′N/N | = p. If N ∩ P ′ = 1, then |P ′| = p
and by Lemma 2.3 the irreducible characters of G lying over 1N ×λ and µ×λ, where
µ ∈ Irr(N) and λ ∈ Irr(P ′) are non-principal characters, are non-linear characters of
the same degree, but with distinct kernels, against P ∈ GC∗.

Thus, N ≤ P ′, |P ′| = p2 and Z = N×Z0, where Z0 is a non-trivial cyclic group. Let
M ≤ Z0 with |M | = p. By minimality |(P/M)′| = p and Z(P/M) is cyclic; this yields
that M = Z0 and hence that Z = N ×M = P ′ is elementary abelian of order p2. As
P has class two, exp(P/Z) = p. Let U/N = Z(P/N) and W/M = Z(P/M); by the
minimality of P , they are cyclic groups. As exp(P/Z) = p, this yields |U/Z|, |W/Z| ≤
p. We claim that |U/Z| = |W/Z|. Contrarily assume that |U/Z| 6= |W/Z|. Then,
by symmetry, let W = Z and |U/Z| = p. So P/M is an extraspecial group and
hence |P/Z| = p2n for some positive integer n. Then |P/U | = p2n−1 is not a square
and, as P/N has commutator subgroup of prime order, this gives a contradiction by
Lemma 2.3. This proves our claim. Hence, |P/N : Z(P/N)| = |P/M : Z(P/M)|
and by Lemma 2.3 there are characters χ, ψ ∈ Irr(P ) such that χ(1) = ψ(1) with
ker(χ) = N and ker(ψ) =M , so they cannot be Galois conjugate.

Therefore, we can assume that P ′ 6≤ Z; hence, in particular, |P ′| ≥ p2. Let M be
a normal subgroup of P such that |M | = p. Since P/M is a non-abelian GC∗-group,
minimality of P yields that Z(G/M) is cyclic and that (P/M)′ = P ′M/M has prime
order. Thus M ≤ P ′ and, as both Z/M and P ′/M are subgroups of the cyclic group
Z(P/M), and P ′/M is a group of prime order which is not contained in Z/M , we
deduce that Z =M . So, we conclude that Z is the only normal subgroup of order p
of P , Z < P ′ and that |P ′| = p2.

Now, Z(P/Z) = Z2(P )/Z is a cyclic group of exponent dividing exp(Z) = p ([H,
III.2.13]). As P ′/Z ≤ Z(P/Z), we conclude that Z2(P ) = P ′ is a group of order p2.
Hence, P/Z is an extraspecial group; set |(P/Z)/(P/Z)′| = |P/P ′| = p2n.
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We remark that |P | 6= p4. In fact, otherwise P/Z is an extraspecial group of order
p3, so there exists a character χ ∈ Irr(P ) with ker(χ) = Z and χ(1) = p. As |Z| = p,
there also exists a faithful character ψ ∈ Irr(P ) ([I, (2.32)]). Since ψ(1)2 divides
|P/Z| ([I, (2.30)]), it follows that ψ(1) = p = χ(1), a contradiction.

We also observe that P ′ ∼= Cp × Cp. In fact, if P ′ = Z2(P ) is cyclic then P has a
cyclic subgroup C of index 2 by [H, III.7.7]. Thus |C/Z| = 4 (as P/Z is extraspecial).
Then |P/Z| = 23, and hence |P | = 16, which is not possible.

Let N = CP (P
′). Since P/N is isomorphic to a non-trivial subgroup of GL2(p),

then |P/N | = p. Also, N ′ = P ′. In fact, if N ′ < P ′, then N ′ ≤ Z, as Z is the only
proper non-trivial subgroup of P ′ which is normal in P . Hence, N/Z is an abelian
subgroup of index p in the extraspecial group P/Z. This implies |P | = p4, which is
again not possible.

Let T be a subgroup of order p of P ′, with T 6= Z. Let N = N/T and W = Z(N).

Since N
′
= P ′ has order p, Lemma 2.3 yields that every λ ∈ Irr(W ) such that

P ′ 6≤ ker(λ) is fully ramified in N/W ; so, if ϕ ∈ Irr(N |λ), then ϕ(1) = pa, where
|N/W | = p2a and Q(ϕ) = Q(λ); note that Q(λ) ⊆ Qp2 , as exp(W/T ) divides p2

(since P/P ′ has exponent p because P/Z is extraspecial). We also observe that ϕ is
not P -invariant, as ker(ϕ)∩P ′ = T is not normal in P . Hence, as |P : N | = p, ϕP is
an irreducible character of P ([I, (6.19)]); since Z 6≤ ker(ϕP ), then ker(ϕP ) = 1. So
ϕP ∈ Irr(P ) is a faithful character of degree pa+1.

Let now µ ∈ Irr(P ′) with ker(µ) = T . As W/T is abelian, it follows that µ has
|W/P ′| extensions to W . Let λ1, λ2 ∈ Irr(W |µ) be any extensions of µ, ϕi ∈ Irr(N)
the (unique) character lying over λi and χi = ϕP

i ∈ Irr(P ), for i = 1, 2.
As χ1(1) = χ2(1) > 1 and P ∈ GC∗, there exists a Galois automorphism α ∈

Gal(Q|P ||Q) such that χα
1 = χ2. Let {x1 = 1, x2, . . . , xp} be a transversal for N in

P . Then (χi)N = ϕx1

i + ϕx2

i + · · · + ϕ
xp

i , for i = 1, 2. Hence, ϕα
1 = ϕ

xj

2 for some
j ∈ {1, 2, . . . , p}. We have

T = ker(ϕ1) ∩ P
′ = ker(ϕα

1 ) ∩ P
′ = ker(ϕ

xj

2 ) ∩ P ′ = (ker(ϕ2) ∩ P
′)
xj = T xj .

As all conjugates T xi are distinct (because |P : N | = p and T is not normal in P ), it
follows that j = 1 and that ϕα

1 = ϕ2. Therefore, recalling that (ϕi)W = λi for i = 1, 2,
we conclude that λα1 = λ2. So, by Lemma 2.2(a) there exists a β ∈ H = Gal(Q(λ1)|Q)

such that λβ1 = λ2. Hence, H acts transitively on the set Irr(W |µ) of the extensions of
µ toW . As Q(λ1) ⊆ Qp2 , we see that |H| divides p(p−1). Since |Irr(W |µ)| = |W/P ′|
is a power of p, we conclude that |W/P ′| divides p. Now, P ′ < W , as otherwise N
would be an extraspecial group against |N | = |P/P ′| = p2n. We conclude that
|W/P ′| = p and hence that p2a = |N/W | = p2n−2.

Therefore, if χ ∈ Irr(P ) lies over µ, then χ(1) = pa+1 = pn and, as observed above,
ker(χ) = 1. But pn is also the degree of any non-linear irreducible character of the
extraspecial group P/Z; this is a contradiction, as characters with different kernels
cannot be Galois conjugate. This is the final contradiction. �

As a consequence, we get a characterization of nilpotent groups in GC∗.



CHARACTERS OF THE SAME DEGREE ARE GALOIS CONJUGATE 7

Corollary 3.2. Let G ∈ GC∗ be a nilpotent group. Then either G is abelian or G is
a group of prime power order with cyclic center and commutator subgroup of prime
order.

Proof. Assume that G is non-abelian and let P be a non-abelian Sylow p-subgroup
of G, where p is a suitable prime. So G = P ×K and hence K = 1 by part (c) of
Lemma 2.2. �

Given a finite group G, we denote by G∞ the nilpotent residual of G, that is the
smallest term of the lower central series of G.

Lemma 3.3. Let G ∈ GC∗ be a solvable group and let K = G∞ > 1 (i.e. G is not
nilpotent). Let N < K be such that either N = 1 or N is the unique minimal normal
subgroup of G contained in K. If (|G/K|, |K/N |) = 1, then G is a Frobenius group
with Frobenius kernel K.

Proof. Let ϕ ∈ Irr(K) with ϕ 6= 1K . Then ϕ(1) divides |K/N |, as N is a normal
abelian subgroup of K; so ϕ(1) is coprime to |G/K|.

We claim that the determinantal order o(ϕ) is also coprime to |G/K|. Recall that
o(ϕ) divides |K/K ′|; so we are done if N ≤ K ′. But if N 6≤ K ′, then the assumption
that N is the unique minimal normal subgroup of G contained in K implies that
K ′ = 1 and hence K is a q-group, for some prime q. So, o(ϕ) is a power of q and q
divides |K/N |, and the claim follows.

Thus, (o(ϕ)ϕ(1), |G/K|) = 1 and hence (by [I, (6.28)]) there exists a unique ex-
tension α of ϕ to IG(ϕ) such that o(α) = o(ϕ).

Now let β be any extension of ϕ to I = IG(ϕ) and let χ = αG and ψ = βG.
So, χ, ψ ∈ Irr(G) are irreducible characters of the same degree. Observe that they
are non-linear, otherwise their kernels would contain K, as K = G∞ ≤ G′, while
they lie over ϕ 6= 1K . So, as G ∈ GC∗, there exists a σ ∈ Gal(Q(χ)|Q) such
that χσ = ψ. Recalling that Galois conjugation commutes with character induction,
Clifford correspondence yields that ασ = β. In particular o(β) = o(α) = o(ϕ) and
hence (by the uniqueness of α) we conclude that β = α. Whence, there exists a
unique extension of ϕ to I. Now Gallagher’s theorem ([I, 6.17]) yields (I/K)′ = I/K
and, being I/K solvable, this implies I = K.

Therefore, we have shown that IG(ϕ) = K for every ϕ ∈ Irr(K), ϕ 6= 1K . By
Brauer Permutation Lemma ([I, 6.32]), we conclude that no non-trivial conjugacy
class of K is fixed by any non-trivial element of G/K. Thus, CG(x) ≤ K for every
non-trivial element x ∈ K, so G is a Frobenius group with kernel K. �

Proposition 3.4. Let G be a solvable, non-nilpotent group, with G ∈ GC∗. Then
G = KL is a Frobenius group, where K = G∞ is the Frobenius kernel, L is the
Frobenius complement and either L is cyclic or L ∼= Q8.

Proof. We first observe that it is enough to show that G is a Frobenius group with
kernel K = G∞. In fact, G/K is a nilpotent group in GC∗, so Corollary 3.2 and the
structure of Frobenius complements then yield that G/K is either a cyclic group or
it is a quaternion group Q8, since Q2n has commutator subgroup of order 2n−2.

We work by induction on |G|. Let K = G∞. Assume first that K is minimal
normal in G; hence K is an abelian q-group for some prime q.
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If K < G′, then G/K ∈ GC∗ is a non-abelian nilpotent group and by Corollary 3.2
G/K is a p-group, for a prime p 6= q. Hence, we are done by Lemma 3.3 (with N = 1).
If K = G′, let Q be a Sylow q-subgroup of G. So K ≤ Q and Q is normal in G.
Thus, as 1 6= Z(Q) ∩ K ⊳ G, we see that K ≤ Z(Q). Let L be a q-complement of
G. Since [L,Q] is a subgroup of K = G′, [L,Q] ⊳ G. So [L,Q] 6= 1, as otherwise
G = L×Q would be nilpotent, and we deduce that [L,Q] = K. By coprime action,
Q = [L,Q]×CQ(L) = K ×CQ(L) and hence G = LK ×CQ(L). Recalling that LK
is non-abelian, Lemma 2.2 (c) yields that CQ(L) = 1. Therefore, Q = K and we can
again apply Lemma 3.3 (with N = 1).

Thus, we can assume that K is not minimal normal in G. If N1, N2 ≤ K are
distinct minimal normal subgroup of G, then by induction G/Ni is a Frobenius
group with Frobenius kernel K/Ni, for i = 1, 2, as K/Ni = (G/Ni)∞. In particular,
(|G/K|, |K/Ni|) = 1 for i = 1, 2 and hence (|G/K|, |K|) = 1; again, we conclude
using Lemma 3.3. So, we can reduce to the case that there is an unique minimal
normal subgroup N of G such that N < K. We conclude by using induction and
Lemma 3.3. �

We now start working towards a finer description of the solvable (non-nilpotent)
GC∗-groups. In order to motivate the next result, we mention that the affine group
GF(52)+⋊GF(52)× is a GC∗-group, but its subgroup of index 2 is not a GC∗-group,
since it has two rational characters of degree 12.

Given an abelian group K, we denote by Irr(K)# the set of non-principal irre-
ducible characters of K.

Theorem 3.5. Let G = KL be a Frobenius group, with Frobenius kernel K and
complement L. Assume that K is abelian. Then G ∈ GC∗ if and only if K is
minimal normal in G, |K| = qn (for a prime q) and

(a): either G ∼= (C3 × C3)⋊Q8 or
(b): L is cyclic and |L| = (qn − 1)/d, where d is a divisor of q − 1 and d is

coprime to n.

Proof. Assume G ∈ GC∗. Let ϕ, ψ ∈ Irr(K) be non-principal characters; then
ϕG and ψG are irreducible characters and they have the same degree |L|, as K is
abelian. Then there exists a Galois automorphism α such that ψG = (ϕG)α = (ϕα)G

and hence, by Clifford theory, there is an element x ∈ L such that ϕα = ψx. In
particular, ker(ϕ) = ker(ϕα) = ker(ψ)x. As every subgroup N < K with cyclic
factor group K/N , is the kernel of a suitable non-principal irreducible character of
K, it follows that L acts transitively on the set of such subgroups. Therefore, K
is elementary abelian, as otherwise it has non-trivial cyclic factor groups of distinct
orders. Also K is an irreducible L-module, because given a proper non-trivial L-
submodule H of K there exist M1, M2 maximal subgroups of K such that H ≤ M1

and H 6≤M2. Hence, K is minimal normal in G. Write |K| = qn, where q is a prime.
Viewing K as a GF(q)-vector space, L acts transitively on the hyperplanes of K

so (qn − 1)/(q− 1) divides |L|. Also, as L acts fixed point freely on K, we have that
|L| divides qn − 1.

So, if L ∼= Q8, then (q, n) ∈ {(3, 2), (7, 2)}. Assuming q = 7, n = 2, then G ∼=
(C7 × C7) ⋊ Q8 has six irreducible characters of degree 8, and their fields of values
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have degree 3 over Q, so G 6∈ GC∗. Hence, if L ∼= Q8, then G ∼= (C3 × C3) ⋊ Q8.
We notice here that the group (C3 ×C3)⋊Q8 has exactly two non-linear irreducible
characters, one of degree 2 and one of degree 8, so it is a GC∗-group.

By Proposition 3.4, we can now assume that L is cyclic. So, by Lemma 2.4 we
can assume that L is a subgroup of the multiplicative group L0 of the field GF(qn)
acting on K = GF(qn)+. We denote by U0 the subgroup of order q− 1 of L0 and set
U = U0 ∩ L. Write d = [L0 : L], where d divides q − 1.

We first show that L0 = LU0 if and only if (d, (qn − 1)/(q − 1)) = 1. In fact,
assuming L0 = LU0, we have that [U0 : U ] = [L0 : L] = d and hence |U | = (q − 1)/d.
Since L0 is cyclic, we also have that |U | = (|U0|, |L|) = |U |((q − 1)/|U |, [L : U ]).
Hence, (d, (qn − 1)/(q − 1)) = ((q − 1)/|U |, [L : U ]) = 1. Conversely, as [L0 : L] = d
and [L0 : U0] = (qn − 1)/(q − 1), if (d, (qn − 1)/(q − 1)) = 1, then U0 and L are
subgroups of coprime indices in L0 and hence L0 = LU0.

So, observing that (as d is a divisor of q− 1) (d, (qn− 1)/(q− 1)) = (d, n), in order
to complete the proof of the theorem it is enough to show that G ∈ GC∗ if and only
if L0 = LU0.

We notice that, identifying U0 with the group of non-zero residue classes a mod q,
if a ∈ U0 and λ ∈ Irr(K)#, then λa = λαa , where αa ∈ Gq = Gal(Qq|Q) is the Galois
automorphism that takes q-th roots of unity to their b-th power, where b is the inverse
of a mod q.

Assume first that L0 = LU0 and take non-linear characters χ, ψ ∈ Irr(G). Then
χ = λG and ψ = µG for some λ, µ ∈ Irr(K)#. As L0 = LU0 acts transitively on
Irr(K)#, there exists a Galois automorphism α ∈ Gq and an element x ∈ L such that
λ = (µx)α. Hence,

χ = λG = ((µx)α)G = ((µx)G)α = ψα

because (µx)G = µG as x ∈ L. So G is a GC∗-group.
Assume now that G ∈ GC∗. Note that G has exactly d non-linear irreducible

characters, all of degree |L|, because |Irr(K)#|/|L| = d and G = KL is a Frobe-
nius group. Hence, considering a non-linear χ ∈ Irr(G), we have that d divides
|Gal(Q(χ)|Q)| = [Q(χ) : Q]. Writing χ = λG for a suitable λ ∈ Irr(K)#, one ob-
serves that χ(g) = 0 for every g ∈ G \K. For x ∈ K, taking a transversal T of U in
L, one has

χ(x) =
∑

y∈L

λy(x) =
∑

t∈T

∑

a∈U

λat(x) =
∑

t∈T

∑

a∈U

λa(xt
−1

) =
∑

t∈T

∑

α∈H

(λ(xt
−1

))α

where H is a subgroup of Gq such that [Gq : H] = [U0 : U ]. Hence
∑

α∈H(λ(x
t−1

))α

is an element of E = Fix(H). We conclude that χ(x) ∈ E for every x ∈ K and
then Q(χ) ⊆ E. Therefore, d divides [E : Q] = [U0 : U ] = [LU0 : L] and hence
L0 = LU0. �

A non-abelian 2-group K is a Suzuki 2-group if K has more than one involution
and there exists a soluble group of automorphisms of K which is transitive on the
set of the involutions of K (see [HB, Definition 7.1]). If K is a Suzuki 2-group, then
K ′ = Z(K) = Φ(K) = {x ∈ K | x2 = 1} and either |K| = |K ′|2 or |K| = |K ′|3 ([HB,
Theorem 7.9]).
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Theorem 3.6. Let G = KL ∈ GC∗ be a solvable Frobenius group with kernel K =
G∞ and complement L. Then either K is an elementary abelian q-group, q a prime,
or K is a Suzuki 2-group such that |K| = |K ′|2, L is cyclic and |L| = |K ′| − 1.

Proof. By Proposition 3.4 we know that L is cyclic or L ∼= Q8. So, if K is abelian,
we conclude by applying Theorem 3.5.

We assume now that K is non-abelian. Thus L is cyclic (as Frobenius groups with
complements of even order have abelian kernel). By applying Theorem 3.5 to the
GC∗-group G/K ′, we get that K/K ′ is an irreducible L-module; write |K/K ′| = qn,
for a prime q. Since K is nilpotent, this implies that K is a q-group. Also, |L| =
(qn − 1)/d, where d divides q − 1 and (d, n) = 1.

We will first show that q = 2. By taking a suitable factor group, we can assume
that K ′ is minimal normal in G. Hence, exp(K) ∈ {q, q2} and K ′ = Z(K). Moreover,
by Lemma 2.4 we have that |K ′| = |K/K ′|. If exp(K) = q, then by Lemma 2.5 we
see that every non-principal irreducible character of K ′ is fully ramified in K/K ′.
Hence, by the second orthogonality relation, for any x ∈ K \K ′ we have |K/K ′| =
|CK/K ′(xK ′)| = |CK(x)| ≥ |〈x,K ′〉| > |K ′|, a contradiction. So, exp(K) = q2.

Assume, working by contradiction, that q 6= 2. So K (having class 2) is a regular
q-group and K ′ = Ω1(K) = {x ∈ K | xq = 1}. Looking at the action of L on K ′,
by Lemma 2.4 we can identify K ′ with the additive group of the field F = GF(qn)
and L with a subgroup of M = F×. Let U = GF(q)× ≤ M . As |L| = (qn − 1)/d,
with d a divisor of q − 1 and d coprime to n, we have that LU = M ; in fact,
(|M : L|, |M : U |) = (d, (qn − 1)/(q − 1)) = (q, n) = 1. It follows that L acts
transitively on the subgroups of order q of K ′. As all elements in K \K ′ have order
q2, we conclude L acts transitively on the subgroups of order q of K and hence
Shult’s theorem [S] yields that K is abelian, a contradiction. Hence, q = 2 and then
|L| = 2n − 1.

We are going to show that K ′ is minimal normal in G. Assume,working by contra-
diction, that there exists a non-trivial subgroup N of K ′ such that K ′/N is a chief
factor of G. Taking a suitable factor group, we can also assume that N is minimal
normal in G. So, N ≤ Z(K) and hence N is an irreducible L-module. By Lemma 2.4,
then K/K ′, K ′/N and N are all faithful irreducible L-modules of the same order 2n,
for a positive integer n . Moreover, K ′ is abelian, as [K,K ′, K] = [K ′, K,K] = 1 im-
plies [K ′, K ′] = 1 by the Three Subgroups Lemma. Finally, we note that by induction
K/N is a Suzuki 2-group with |K/N | = |K ′/N |2.

Now, exp(K ′) ∈ {2, 4}. If exp(K ′) = 4, then N \ {1} is the set of all involutions of
K ′ (as K ′/N is an irreducible L-module). As in the Suzuki group K/N all elements
not belonging to K ′/N have order 4, we see that N \ {1} is the set of all involutions
of K. Observing that L acts transitively on N \ {1}, we conclude that K is a Suzuki
2-group. So, in particular |K ′| ≤ |K|1/2, a contradiction as |K ′| = |K|2/3. Thus, K ′

is elementary abelian and then exp(K) = 4.
Consider now a non-principal character λ ∈ Irr(N). Let µ ∈ Irr(K ′|λ) and let

T = IK(µ). By [MW, Lemma 12.6] there exists a (uniquely determined) subgroup
U = Uµ, with K ′ ≤ U ≤ T , such that every ν ∈ Irr(U |µ) extends µ and is fully
ramified in T/U (so, in particular, |T/U | is a square). By Clifford correspondence,
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it follows that all characters θ ∈ Irr(K|µ) have the same degree (depending only on
|U/K ′|) and that |Irr(K|µ)| = |U/K ′|. By Lemma 2.5 it follows that |U/K ′| ≤ 2.

For µ0 ∈ Irr(K ′|λ), we have µ0 = µǫ, for some ǫ ∈ Irr(K ′/N) and K ′/N is central
in K/N , so IK(µ0) = T . Recalling that |T : Uµ0

| is a square and that both |U/K ′|
and |Uµ0

/K ′| are at most 2, we also get that |U | = |Uµ0
|. Hence, all characters θ ∈

Irr(K|λ) have the same degree. So, again using Lemma 2.5, we get that |Irr(K|λ)| ≤
2.

Observing that |Irr(K ′|λ)| = |K ′/N | = |K/K ′|, we deduce that the number m of
orbits in the conjugation action of K/K ′ on Irr(K ′|λ) is |T/K ′|. But, by Clifford
theorem, m ≤ |Irr(K|λ)|, so we get that |T/K ′| ≤ 2. As |T : U | is a square and
K ′ ≤ U ≤ T , we conclude that T = U . Assume |T/K ′| = 2 and let µ1, µ2 ∈
Irr(K ′|λ) be representatives of the orbits of K/K ′ on Irr(K ′|λ). As observed before,
|Irr(K|µi)| = |U/K ′| = 2. But by Clifford theorem Irr(K|µ1) ∩ Irr(K|µ2) = ∅, and
Irr(K|λ) = Irr(K|µ1) ∪ Irr(K|µ2), hence |Irr(K|λ)| = 4, a contradiction.

It follows that T = K ′ and hence µG = θ ∈ Irr(K) for every µ ∈ Irr(K ′|λ). Since
K/K ′ is transitive on Irr(K ′|λ), then |Irr(K|λ)| = 1 and we conclude that every
non-principal λ ∈ Irr(N) is fully ramified with respect to K/N . Therefore, we have
that χ(x) = 0 for all χ ∈ Irr(K)\ Irr(K/N) and x ∈ K \N . Now, K/N has exponent
greater than 2 (as K/N is non-abelian) and hence there exists an element y ∈ K \N
such that x := y2 6∈ N . Since both K/K ′ and K ′/N are elementary abelian, it
follows that x ∈ K ′ and that y ∈ K \ K ′. By the second orthogonality relation,
|CK(x)| = |CK/N(xN)|. But |CK/N(xN)| = |K/N | = |N |2 = |K ′|, while both y and
K ′ centralize x so |CK(x)| > |K ′|, a contradiction.

Hence, we have that K ′ is minimal normal in G. So, K ′ ≤ Z(K) and both K/K ′

and K ′ are irreducible L-module. In particular, K ′ = Z(K) and |K ′| = |K/K ′| = 2n.
Recalling that |L| = 2n − 1, we see that L acts transitively on the non-identity
elements of both Z = Z(K) and K/Z. As all elements in a coset xZ, with x ∈ K \Z,
have the same order, we deduce that all elements x ∈ K \Z have order 4. Therefore,
Z \ {1} is the set of the involutions of K. As L acts transitively on it, we conclude
that K is a Suzuki 2-group with |K| = |K ′|2. The proof is complete. �

As defined in [DNT] a finite group G is a GC-group (or G ∈ GC, for short) if
every two non-principal irreducible characters of G are Galois conjugate whenever
they have the same degree. Clearly, GC is a subclass of GC∗ and, for a perfect
group G, G ∈ GC∗ if and only if G ∈ GC. We are going to show that a non-solvable
GC∗-group is perfect, and then we apply the classification of non-solvableGC-groups
given in [DNT].

Let us consider the following list of simple groups:

S = {A5, Sz(8), J2, J3, L3(2),M22,Ru,Th,
3
D4(2)} .

As proved in [DNT], all groups in S are GC-groups and hence (being perfect) are
GC∗-groups.

We will make use of the following result from [DNT]:

Theorem 3.7 ([DNT, Theorem 4.1]). Let S be a non-abelian simple group. Then
either G ∈ S or for every almost simple group A with socle S there exist two non
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Galois conjugate characters χ1, χ2 ∈ Irr(A) such that χ1(1) = χ2(1) > 1 and (χi)S ∈
Irr(S) for i = 1, 2.

The proof of the following result mimics the proof of [DNT, Theorem 3.2]; we have
anyway decided to sketch it for completeness.

Lemma 3.8. If G ∈ GC∗ and S is a non-abelian composition factor of G, then
S ∈ S.

Proof. Let S be a non-abelian composition factor of the GC∗-group G. Then G has
a chief factor N/M ∼= Sn, for some positive integer n. By replacing G with a suitable
factor group, we can assume that N = S1 × S2 × · · · × Sn, with Si

∼= S, is a minimal
normal subgroup of G and that CG(N) = 1. Set S = S1 and write T = NG(S),
C = CG(S); so T/C is an almost simple group with socle (isomorphic to) S.

Assume, working by contradiction, that S 6∈ S; so by Theorem 3.7 there exist two
non Galois conjugate characters θ1, θ2 ∈ Irr(T/C) such that αi = (θi)S ∈ Irr(S), for
i = 1, 2.

For i = 1, 2, let

βi = αi × 1S2
× · · · × 1Sn

∈ Irr(N)

and observe that IG(βi) = T .
Considering now θi ∈ Irr(T ) by inflation, we have that (θi)N = βi. Hence, by

Clifford correspondence χi = (θi)
G ∈ Irr(G), for i = 1, 2. As χ1(1) = χ2(1) > 1, there

exists a Galois automorphism σ ∈ G|G| such that χσ
1 = χ2.

But, for i = 1, 2 (χi)N =
∑n

j=1 β
xj

i , where {x1 = 1, x2, . . . , xn} is a transversal of
T in G. As Galois conjugation commutes with induction and restriction, we get that
βσ
1 = β

xj

2 for some j and, as ker(βσ
1 ) = ker(β1) = S2 × · · · × Sn 6= ker(β

xj

2 ) for j > 1,
we conclude that βσ

1 = β2. So, θσ1 , θ2 ∈ Irr(T |β2) and hence Clifford correspondence
yields that θσ1 = θ2, against the fact that θ1 and θ2 are not Galois conjugate. �

Theorem 3.9. Let G be a non-solvable group with G ∈ GC∗. Then G = G′

Proof. We work by induction on |G|. Assume that G is not a simple group and let
N be a minimal normal subgroup of G.

Suppose first that G/N is solvable. Then N is non-solvable and hence N = Sk for
some S ∈ S by Proposition 3.8. Then S has a non-principal Aut(S)-invariant rational
character α of odd degree (see [DNT, page 299] or [Atlas]). Then ψ = α×α×· · ·×α ∈
Irr(N) is a G-invariant rational character of odd degree with o(ψ) = 1 (as N = N ′).
By [NT, Theorem 2.3] it follows that ψ extends to a rational character χ ∈ Irr(G). As
we are assuming that G/N is a non-trivial solvable group, there exists a non-principal
linear character λ ∈ Irr(G). So, λχ ∈ Irr(G) is a non-linear character of the same
degree as χ, and λχ 6= χ by Gallagher’s theorem. Being G a GC∗-group, this gives
a contradiction, as χ is rational, so it is fixed by Galois conjugation.

Hence, G/N is non-solvable. By induction, G/N is perfect and hence G′N = G.
Assuming that N is not contained in G′, we have N ∩G′ = 1 and hence G = G′×N .
So N is a non-trivial abelian group. As G′ is non-abelian (since G is non-solvable),
Lemma 2.2 (c) yields that N = N ′ = 1, a contradiction. Therefore, N ≤ G′ and
hence G = G′N = G′. �
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We are now ready to prove Theorem A.

Proof of Theorem A. Assume first that G is a non-abelian solvable GC∗-group. If G
is nilpotent, then we get type (a). Assume that K = G∞ < G. Then by Proposi-
tion 3.4 G is a Frobenius group with Frobenius kernel K and complement L, with L
cyclic or L ∼= Q8 (so G is of type (b)). If K is abelian, then we get either type (b1)
or (b2) by Theorem 3.5. If K is non-abelian, then we get type (b3) by Theorem 3.6.

Assume now that G is a non-solvable GC∗-group. Then Theorem 3.9 yields that
G = G′ and hence G is a GC-group. Now (c) follows by Theorem A of [DNT].

Conversely, we will now show that any group of type (a) − (c) is a GC∗-group.
Groups of type (a) are GC∗-groups by Theorem 3.1.

Let now G be a group of type (b). If it is of type (b1), then G has only two
non-linear irreducible characters, one of degree 2 and the other of degree 8, so it is a
GC∗-group. If G is of type (b2), then G is a GC∗-group by Theorem 3.5.

So we assume that G is of type (b3). We note that all non-linear characters χ ∈
Irr(G) of odd order have the same degree |L| and that they are Galois conjugate.
In fact, ker(χ) = K ′ and G/K ′ is a GC∗-group by Theorem 3.5. Now, denoting by
∆ the set of all non-linear irreducible characters of K, by Theorem 7.9 of [HB] and
Lemma 2.9 of [DNT] we have that |∆| = 2|L| and that every θ ∈ ∆ is not rational
valued. Hence, no θ ∈ ∆ is real valued, as θK ′ is rational valued and every element
in K \K ′ has order 4. Considering that by Brauer Permutation Lemma L acts fixed
point freely on Irr(K) \ {1K}, we see that L has exactly two orbits O1 and O2 on
∆. Write χ = θG1 , ψ = θG2 , where θ1, θ2 ∈ Irr(K) non-linear characters, and θ1 ∈ O1

and θ2 ∈ O2. Now, θ1 = θx2 for some x ∈ L, because complex conjugation does not
stabilize the orbit Oi, for i = 1, 2 (otherwise, as |Oi| is odd, there would be some real
character in Oi). Hence,

χ = θG1 = (θ1)
G = (θx2 )

G = ψ .

Thus G is a GC∗-group.
(We also remark that in this case (b3) G has exactly three non-linear irreducible

characters, one of odd degree |L| and χ and ψ above.)
Finally, by Theorem A of [DNT] the groups listed in (c) are GC-groups. So, being

perfect groups, they are also GC∗-groups. �

To conclude, we prove Corollary B, the Berkovich-Chillag-Herzog classification of
groups with distinct non-linear degrees.

Proof of Corollary B. It is enough to check which of the groups listed in Theorem A
have distinct non-linear degrees.

For a p-group G of type (a), Lemma 2.3 yields that G has exactly (p−1)|Z(G) : G′|
non-linear irreducible characters of the same degree. Hence, G has distinct non-linear
degrees if and only if p = 2 and G is extraspecial.

Assume now that G is of type (b), so G = KL is a Frobenius group. First, we recall
that (C3×C3)⋊Q8 has distinct non-linear degrees (exactly one irreducible character
of degree 2 and of degree 8). Next, we observe that the groups listed in type (b2) have
exactly d non-linear characters, all of degree |L|. Hence they are groups with distinct
non-linear degrees if and only if d = 1. Also, by the remark at the end of the proof
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of Theorem A, the groups of type (b3) have two non-linear irreducible characters of
the same degree.

Finally, it is readily checked (see [Atlas]) that the groups of type (d) also have two
non-linear irreducible characters of the same degree. �
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