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Let ΓR be the class of plane, oriented, rectifiable curves γ, such that, for almost every x ∈ γ,
the part of γ preceding x is outside the open disk of radius R, centered in x+Rtx, where tx
is the unit tangent vector at x. In [1] the present authors have obtained bounds for the length
and the detour for C1 regular curves in ΓR. These bounds are proved here for all curves in
ΓR.

1. Introduction

Let R > 0. Let ΓR be the class of the plane oriented local rectifiable curves γ satisfying the
following property: for every x ∈ γ, let γx be the part of γ between the starting point and x
and almost everywhere let t be the tangent vector to γ at x, then γx is not contained in the
open circle centered at x+Rt and of radius R. These curves have been studied in [1] and
have been called R-curves.

ΓR is a generalization of the class Γ introduced in [2, 3] and studied in Rn [5, 9]: γ ∈ Γ if
for every x ∈ γ the arc γx is contained in the half plane bounded by the line through x
ortogonal to t. The class Γ has also been recently studied in many other spaces: Riemannian
manifolds [6], finite-dimension normed spaces [8].

The steepest descent curves of quasi convex functions are curves of Γ [2, 4, 9]; the interest
in the R-curves is that they are the steepest descent lines of functions whose level sets have
reach greater than R, see [1];

In all previous papers an important goal is to get the apriori global rectifiability
(boundeness of the length) of γ ∈ Γ. Here this result is obtained for the bounded planar
curves γ ∈ ΓR, Theorem 5.6.

In the previous definition of the curves of Γ it is assumed that γ is local rectifiable; it has
been proved that the defining property is equivalent to the so called self-expanding property
[10] (or self-contracted property [4] when opposite order is used for γ) for a continuous curve
t→ γ(t), with t not necessarily the parameter length:

|γ(t)− γ(t1)| ≥ |γ(t2)− γ(t1)| for 0 ≤ t1 ≤ t2 ≤ t. (1)

Another definition of the class Γ which comes out immediately from the geometric meaning
involves co(γx), the convex hull of γx. Then, γ ∈ Γ if for almost every x ∈ γ the tangent
vector t lies in the normal cone to co(γx) at x, that is:

〈x− y, t〉 ≥ 0, ∀y ∈ γx. (2)

Metric and geometric relaxation of both previous two definitions have been introduced in
[11] and it was proved that bounded planar curves γ satisfying them have bounded length;
counterexamples for not planar curves are also showned.

∗Corresponding author. Email: marco.longinetti@unifi.it
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On the other hand, the curves γ ∈ ΓR, with length parameter s, satisfy the following two
properties [1]:

|γ(s)− γ(s1)| ≥ |γ(s2)− γ(s1)|e(s2−s)/(2R) for 0 ≤ s1 ≤ s2 ≤ s; (3)

〈x− y, t〉 ≥ −
|x− y|2

2R
, ∀y ∈ γx. (4)

These properties are a generalization of 1 and of 2, respectively. In [1] a priori bounds for
the length and the detour of a bounded γ ∈ ΓR have been proved under the assumption that
γ is a C1 curve.

In this work the same bounds are obtained if one assumes that γ is merely rectifiable so
the defining property holds a.e., only; first natural or easily obtained properties for C1

R-curves are extended to arbitrary rectifiable plane R-curves: Theorem 4.5 and Corollary
4.6. Then these properties are used to prove the R-angle estimate property of γ: Theorem
5.2. The main bounds for the length and the detour of γ: Theorem 5.5 and Theorem 5.6
then easily are obtained.

The plan of this work follows.
Some of the basic properties for γ ∈ ΓR are recalled in §3.
In §4 properties of tangent sets to γ ∈ ΓR are stated and proved. Theorem 4.5 proves that

any unit vector of the tangent set at x to cl(γ \ γx) is the inner normal at x of a disk
excluding γx; in Corollary 4.6 it is proved that, at each point x ∈ γ, the tangent sets at x to
γx and to cl(γ \ γx) do not contain directions forming acute angles. These geometrical
properties are obvious for a C1 curve but they have to be proved when γ is rectifiable
R-curve, only.

In §5 rectifiable R-curves contained in a disk of arbitrary fixed radius are studied. If γx is
contained in an open disk of radius R, the R-hull of γx (defined in (6)) is considered. In
Theorem 5.2 it is proved that the amplitude of the normal cone at x to the R-hull of γx, is
greater or equal to π/2. This is an extension to the planar R-curves of the so called angle
estimate of [2], which plays a fundamental role in order to get the bound for the length of γ
in different situations even in CAT(0)-spaces [12]. As a consequence, in the same way as in
[1], if γ is contained in a smaller disk, a bound of its length is obtained (Theorem 5.5).
Moreover if γ is contained in a disk of arbitrary radius τ , bounds for the detour of γ and its
length, depending on R and τ , are proved (Theorem 5.6) as in [1].

In our opinion, the geometrical properties contained in Theorem 4.5 and Theorem 5.2
could be interesting independently of their application in this work.

2. Definitions and preliminaries

Let K ⊂ R2, Int(K) will be the interior of K, ∂K the boundary of K, cl(K) the closure of
K, Kc = R2 \K. For every set S ⊂ R2, co(S) is the convex hull of S. Let
B(z, ρ) = {x ∈ R2 : |x− z| < ρ}, S1 = ∂B(0, 1) and let D(z, ρ) = cl(B(z, ρ)). The notations
Bρ(x), Dρ(x) will also be used for open, closed disks of radius ρ centered at x. The usual
scalar product between vectors u, v ∈ R2 will be denoted by 〈u, v〉.

Let K be a non empty closed set. Let q ∈ K; the tangent cone of K at q is defined in [13]
as:

TanK(q) = {v ∈ R2 : ∀ε > 0 ∃x ∈ K ∩Bε(q) ∃r > 0 s.t. |r(x− q)− v| < ε}.

Let us recall that if TanK(q) 6= {0} then

S1 ∩ TanK(q) =
⋂
ε>0

cl({
x− q
|x− q|

, q 6= x ∈ K ∩B(q, ε)}).

The normal cone at q to K is the non empty closed convex cone, given by:

NorK(q) = {u ∈ R2 : 〈u, v〉 ≤ 0 ∀v ∈ TanK(q)}. (5)

The dual cone of a set K is K? = {y ∈ R2 : 〈y, x〉 ≥ 0 ∀x ∈ K}. Thus
NorK(q) = −{TanK(q)}?.

In the following definitions A will be a closed set. If a ∈ A, then reach(A, a) is the
supremum of all numbers ρ such that for every x ∈ B(a, ρ) there exists a unique point b ∈ A
satisfying |b− x| = dist (x,A), see [13]. Also:

reach(A) := inf{reach(A, a) : a ∈ A}.
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Let us define coR(A), the R-hull of A, as the closed set containing A, such that
(i) coR(A) has reach greater or equal to R;
(ii) if a set B ⊇ A and reach(B) ≥ R, then B ⊇ coR(A).

See [14, pp.105-107] for the properties of R-hull. It can be shown that

coR(A) = ∩{(BR(z))c : BR(z) ∩A = ∅}. (6)

The R-hull of a closed set A may not exist, see [14, Remark 4.9]. However

Proposition 2.1 [14, Theorem 4.8] If A is a plane closed connected subset of an open disk of radius R,
then A has R-hull.

3. Properties of R-curves

In this paper a curve in R2 is the image of a continuous function on an interval, valued into
R2. Let γ ⊂ R2 be an oriented rectifiable curve and let x(·) be its parametric representation
with respect to the arc length parameter s ∈ [0, L]. If x1 = x(s1), x2 = x(s2) ∈ γ with
s1 ≤ s2, the notation x1 � x2 will be used. Let us denote x(s) = x,

γx = {y ∈ γ : y � x}; γx1,x2 = {y ∈ γ : x1 � y � x2}.

Definition 1 Let R be a fixed positive number. An R-curve γ ⊂ R2 is a rectifiable oriented curve with arc
length parameter s ∈ [0, L], tangent vector t(s) = x′(s) such that the inequality

|x(s1)− x(s)−R t(s)| ≥ R (7)

holds for almost all s and for 0 ≤ s1 ≤ s ≤ L. ΓR will denote the class of R-curves in R2.

The geometric meaning of (7) is that for every point x = x(s) ∈ γ, with tangent vector
t(s), the set γx is outside of the open disk of radius R through x centered at x+R t(s).

Let us notice the following equivalent formulations of (7) for 0 ≤ s1 < s ≤ L :

|x(s1)− x(s)|2 − 2R 〈x(s1)− x(s)), t(s)〉 ≥ 0; (8)

〈x(s)− x(s1), t(s)〉 ≥ −
|x(s1)− x(s)|2

2R
. (9)

Proposition 3.1 [1, Lemma 3.1, Corollary 3.2] An R-curve does not intersect itself.

Proposition 3.2 [1, Theorem 3.3] Let γ ∈ ΓR. For every s ∈ (0, L), x = x(s), γx ( γ, the following two
subsets of S1:

U+
x = {u ∈ S1 : ∃s(k) ≥ s, lim

s(k)→s
x′(s(k)) = u}, (10)

U−x = {u ∈ S1 : ∃s(k) ≤ s, lim
s(k)→s

x′(s(k)) = u} (11)

are non empty. Moreover the following properties hold.
(i) if x(·) is differentiable at s, then x′(s) ∈ U+

x ∩ U−x ;

(ii) if u ∈ U+
x ∪ U−x then

|x(s1)− x(s)|2 − 2R 〈x(s1)− x(s), u〉 ≥ 0 for 0 ≤ s1 < s < L; (12)

(iii) let B0 = BR(x+Ru), u ∈ S1 so that B0 ∩ γ = ∅, then

∃u+ ∈ U+
x : 〈u+, u〉 ≤ 0, ∃u− ∈ U−x : 〈u−, u〉 ≥ 0; (13)

(iv) if there exist S1 3 uk → u, s(k) → s, s(k) < s, with x(s(k)) ∈ ∂BR(x+Ruk), then

∃u− ∈ U−x : 〈u−, u〉 ≤ 0. (14)

Proposition 3.3 [1, Theorem 4.1]Let x ∈ γ ∈ ΓR, γ contained in an open circle of radius R. Let

Wx = {u ∈ S1 : (BR(x+Ru))c ⊃ γx}. (15)

3
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Then

U+
x ∪ U−x ⊂Wx = Nor coR(γx)(x) ∩ S1. (16)

4. Tangent sets to rectifiable R-curves

The main theorem of this section is Theorem 4.5; Corollary 4.6 proves that the tangent
vectors at x to γx and to cl(γ \ γx) make an angle at least π/2 (if the curve γ is C1 these
tangent sets are opposite half lines).

In this section let us assume that γ is a plane R-curve of length |γ| = L contained in an
open disk of radius R. According to Proposition 2.1, for every x ∈ γ, γx has R-hull coR(γx).

For a vector u = (a, b), let u⊥ = (−b, a).

Definition 2 Let u1, u2 ∈ S1, u1 6= u2 and ui = (cos θi, sin θi), i = 1, 2, θ1 < θ2 < θ1 + 2π. Let A(u1, u2)
be the closed counterclockwise oriented cone centered in O, with sides {λui, λ ≥ 0}, i = 1, 2.

Definition 3 When x, y are points on a circumference ∂B of radius R, with |x − y| < 2R, let us denote
with arc∂B(x, y) the shorter arc on ∂B from x to y. When no ambiguity arises, let us denote arc(x, y) =
arc∂B(x, y).

Definition 4 Let x, z be given points in R2, x 6= z, |x− z| < 2R. Let

w+
x (z) =

x− z
2R

−
√

1− |
x− z
2R
|2

(x− z)⊥

|x− z|
, (17)

w−x (z) =
x− z
2R

+

√
1− |

x− z
2R
|2

(x− z)⊥

|x− z|
. (18)

Their geometrical meaning follows. Let B+
x,z , B

−
x,z the two disks of radius R through z and x such that

their arc(z, x) is clockwise oriented, counterclockwise oriented respectively. Then w+
x (z) , w−x (z) are the

unit interior normals at z to ∂B+
x,z , ∂B

−
x,z respectively.

Remark 1 Obviously BR(z +Rv) is a disk through z not containing x iff

v ∈ A(w−x (z), w+
x (z)). (19)

Let us notice that the cone A(w−x (z), w+
x (z)) is not convex.

Definition 5 Let D :≡ DR(y0) a given closed disk and z 6∈ D. Let dist (z,D) < 2R. Let ∂B−D,z , ∂B+
D,z the

circumferences, with radius R, through z tangent to D at z−, z+ respectively. Let z− such that arc(z−, z)

on ∂B−D,z is clockwise oriented, let z+ such that arc∂B+ (z+, z) on ∂B+
D,z is counterclockwise oriented.

Let v−D(z), v+
D(z) the unit interior normals at z to ∂B−D,z , ∂B+

D,z respectively.

Then v−D(z), v+
D(z) are the two unit vectors solutions to the equation

|z +Rv − y0|2 = 4R2.

That is

〈v, z − y0〉 =
3R2 − |z − y0|2

2R
= |z − y0| cosα, (20)

with α ∈ (0, π). Thus

v+
D(z) =

z − y0

|z − y0|
cosα+

(z − y0)⊥

|z − y0|
sinα, (21)

v−D(z) =
z − y0

|z − y0|
cosα−

(z − y0)⊥

|z − y0|
sinα, (22)

4
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D

H G

x0
y0

t

Figure 1. Constraints for z.

Remark 2 Let us notice that, if dist (z,D) ≤ (
√

3 − 1)R, the cone A(v−D(z), v+
D(z)) is convex; moreover

if x0 ∈ ∂D

lim
z→x0

v+
D(z) = lim

z→x0
v−D(z) =

x0 − y0

|x0 − y0|
. (23)

Proof. As z → x0 ∈ ∂D, then |z − y0| → R and from (20) cosα → 1. Thus from (21), (22) the thesis
follows.

Lemma 4.1 Under the same assumptions of the previous definitions, BR(z +Rv) is a disk through z not
intersecting D iff

v ∈ A(v−D(z), v+
D(z)) ∩ S1. (24)

Moreover, if x ∈ ∂D then, the following inclusion

A(v−D(z), v+
D(z)) ⊂ A(w−x (z), w+

x (z)) (25)

holds.

Proof. The proof of (24) is obvious. Let us prove (25). If v ∈ A(v−D(z), v+
D(z)) then BR(z +Rv) does not

intersect D, therefore x 6∈ BR(z +Rv). This implies that v ∈ A(w−x (z), w+
x (z)).

Lemma 4.2 Let D = DR(y0) be a given closed disk. Let H be the closed half plane with y0 ∈ ∂H and
outer normal t ∈ S1. Let x0 = y0 −Rt⊥ ∈ ∂D and G = H ∩Dc ∩B(x0, R/2), see Fig.1. If

z ∈ G, v ∈ S1 and B(z +Rv) ∩D ∩H = ∅, (26)

then

v ∈ A(v−D(z), w+
x0

(z)) (27)

and

lim sup
z→x0, z∈G

A(v−D(z), w+
x0

(z)) ∩ S1 = A(−t⊥, t) ∩ S1. (28)

For 0 < r ≤ R/2, let

xr = x0 − rt⊥, Gr = G ∩ (B−D,xr )c ∩B(x0, r). (29)

If z ∈ Gr, then the following inclusions between convex cones

A(v−D(z), w+
x0

(z)) ⊂ A(v−D(xr), w
+
x0

(xr)) ⊂ A(v−D(xR/2), w+
x0

(xR/2)) (30)

5
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and

lim
r→0+

v−D(xr) = −t⊥, lim
r→0+

w+
x0

(xr) = t. (31)

hold.

Proof. The constraint (26) implies that x0 6∈ B(z +Rv). By Remark 1

v ∈ A(w−x0 (z), w+
x0

(z)).

As z ∈ G, ∂B(z+Rv) is tangent to D ∩H when v = v−D(z). So the bound w−x0 (z) has to be changed with

v−D(z) and (27) follows.

Let us choose for z ∈ G a polar coordinate system at x0, with axis −t⊥. That is

z = x0 + ρ(cos θ, sin θ), 0 < ρ ≤ R/2, − arccos(−
ρ

2R
) ≤ θ ≤ 0.

For ρ ∈ (0, r] fixed, by using (17) of Definition 4, it is not difficult to see that the largest amplitude of

the angle between w+
x0 (z) and −t⊥ is reached when θ = 0, to say at z = xρ :≡ x0 − ρt⊥. Moreover for

ρ ∈ (0, r] the largest amplitude of the angle between w+
x0 (xρ) and −t⊥ is reached when ρ = r, that is at

xr. Then

z ∈ G =⇒ A(v−D(z), w+
x0

(z)) ⊂ A(v−D(z), w+
x0

(xr)). (32)

For all z ∈ Gr, let us consider the arc of the circumference ∂B−D,z , tangent to ∂D at z−, which intersects

∂H in a point xρ(z) between x0 and xr. All points z ∈ arc(z−, xρ(z)) on ∂B−D,z have the same B−D,z , and

the angle between v−D(z) and −t⊥ is maximum at xρ(z) by construction. Moreover the amplitude of

A(v−D(xρ),−t⊥) is increasing for ρ ∈ (0, r], 0 < r ≤ R/2. From this property and (32), the inclusions (30)

are proved. The cone A(v−D(xR/2), w+
x0 (xR/2)) is an half plane, as by (22) and by (17)

v−D(xR/2) = −
1

4
t⊥ −

√
15

4
t, w+

x0
(xR/2) =

1

4
t⊥ +

√
15

4
t.

From (23) with x0 = y0 −Rt⊥, xr in place of z, the first limit in (31) follows; the second limit follows by
(17) with x0 in place of x. The proof of (28) follows from (31) and (30).

Lemma 4.3 Let γ ∈ ΓR with arc length parametrization [0, L] 3 s → x(s). Let 0 < s0 < L, x0 = x(s0).
Let A(u1, u2) convex. If x′(s) ∈ A(u1, u2), for s0 < s < L a.e., then

x(s)− x0 ∈ A(u1, u2), s0 < s < L. (33)

Proof. Let w the direction of the bisector vector to A(u1, u2). Then

A(u1, u2) \ {0} = {u : 〈
u

|u|
, w〉 ≥ cosα}, (34)

with cosα ≥ 0. Therefore if x′(s) ∈ A(u1, u2) for s0 < s < L, then

〈
x(s)− x0

|x(s)− x0|
, w〉 =

1

|x(s)− x0|

∫ s

s0

〈x′(σ), w〉dσ ≥
(s− s0) cosα

|x(s)− x0|
≥ cosα.

Thus

x(s)− x0

|x(s)− x0|
∈ A(u1, u2)

and (33) is proved.

Lemma 4.4 Let γ ∈ ΓR with arc length parametrization [0, L] 3 s → x(s). Let 0 < s0 < L, x0 = x(s0).

Let U+
x0 the set defined by (10). Let us assume that there exist w ∈ S1, α ∈ (0, π/2] and a sequence

6
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sn → s0, s0 < sn satisfying

〈
x(sn)− x0

|x(sn)− x0|
, w〉 < cosα. (35)

Then there exists u ∈ U+
x0 satisfying

〈u,w〉 ≤ cosα. (36)

Proof. Let

ui = w cosα+ (−1)iw⊥ sinα, (i = 1, 2).

It follows that w = u1+u2
|u1+u2|

is the bisector vector to the cone

A(u1, u2) = {u : 〈
u

|u|
, w〉 ≥ cosα}.

Then (35) implies that

x(sn)− x0 6∈ A(u1, u2).

Thus (33) of Lemma 4.3 does not hold; then ∃ τn → s+0 with 〈x′(τn), w〉 < cosα. By possibly passing to a

subsequence, we get x′(τn)→ u ∈ U+
x0 , with u satisfying (36).

Let us recall that coR(γx0 ) is by (6)

coR(γx0 ) = ∩{(BR(z))c : BR(z) ∩ γx0 = ∅}.

Theorem 4.5 Let γ ∈ ΓR, γ contained in an open disk of radius R. Let 0 < s0 < L, x0 = x(s0). Then

Tan cl(γ\γx0
)(x0) ⊂ Nor coR(γx0

)(x0). (37)

Proof. Let t ∈ S1 be the bisector vector to Nor coR(γx0
)(x0) namely

Nor coR(γx0 )(x0) = {λv : λ ≥ 0, v ∈ S1, 〈v, t〉 ≥ l ≥ 0}. (38)

Let us split the proof in two cases:
I) l > 0, i.e. Nor coR(γx0

)(x0) is strictly convex;

II) l = 0, i.e. Nor coR(γx0
)(x0) is an half plane.

Case I).
Assume by contradiction that there exists

θ ∈ S1 ∩ Tan cl(γ\γx0
)(x0), θ 6∈ NcoR(γx0

)(x0). (39)

Then there exists a sequence sn → s+0 , satisfying

〈t, θ〉 = lim
n→∞

〈
x(sn)− x0

|x(sn)− x0|
, t〉 < l.

As l > 0 there exists a positive δ < l, for which, for n sufficiently large, the inequalities

〈
x(sn)− x0

|x(sn)− x0|
, t〉 < l − δ

hold. Let us apply Lemma 4.4 with cosα = l−δ > 0. Therefore, there exists u ∈ U+
x0 , satisfying 〈u, t〉 ≤ l−δ.

This is impossible as U+
x0 ⊂ Nor coR(γx0

)(x0), see (16).

7
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Case II).
In this case x0 −Nor coR(γx0

)(x0) is a closed half plane H with outer normal t at x0 ∈ ∂H and

Tan coR(γx0
)(x0) ∩ S1 = Tan γx0

(x0) ∩ S1 = {−t}.

Let x ∈ γx0 , 0 < r = |x−x0| ≤ R/2 such that γx,x0 \{x} ⊂ Br(x0). Then the open set Int(H)∩Br(x0)\γx0
is disconnected in two open sets Q+, Q− where x0 − rt⊥ ∈ ∂Q+.
Let us consider now the cases: IIa), IIb); IIc).

IIa): there exists 0 < r < r such that

cl(γ \ γx0 ) ∩Br(x0) ⊂ cl(Hc).

Then

Tan cl(γ\γx0
)(x0) ⊂ x0 −H = Nor coR(γx0

)(x0)

and the thesis holds in this case.

IIb): there exists 0 < r1 < r such that

cl(γ \ γx0 ) ∩Dr1 (x0) ∩H = γx0,x1 , x1 = x(s1), s1 > s0.

Let

M+ := {x : x = x0 − λt⊥, λ > 0},

M− := {x : x = x0 + λt⊥, λ > 0}.

As γx,x0 does not intersect γx0,x1 (except at x0) then either γx0,x1 ⊂ Q+ ∪M+ or γx0,x1 ⊂ Q− ∪M−.

Up to a reflection we can assume that γx0,x1 ⊂ Q+ ∪M+. Therefore

γx0,x1 ⊂ (BR(x0 +Rt⊥))c, γx0,x1 ⊂ H ∩Dr1 (x0).

Let D = DR(x0 +Rt⊥).
Claim 1: if x′(s) exists for s0 < s < s1, then BR(x(s) +Rx′(s)) does not meet the half disk D ∩H.
By contradiction, let us assume that there exists y ∈ BR(x(s) + Rx′(s)) ∩ D ∩ H, then y ∈ Q−. As
x(s) ∈ Q+ ∪M+ then, on the segment yx(s), there should exist a point of γx,x0 ∩ BR(x(s) + Rx′(s)).

This is impossible as γ is an R-curve. Let xr1 = x0 − r1t⊥ and s(r1) < s1 such that γx0,x(s(r1)) ⊂
(B−D,xr1

)c ∩B(x0, r1). By previous claim, the assumptions of Lemma 4.2 are satisfied with

y0 = x0 +Rt⊥, z = x(s), v = x′(s), r = r1.

Then x′(s) satisfies the constraint (27) and by (30):

x′(s) ∈ A(v−D(xr1 ), w+
x0

(xr1 )) a.e. s0 < s < s(r1).

From Lemma 4.3, as A(v−D(xr1 ), w+
x0 (xr1 )) is convex, it follows that

x(s)− x0

|x(s)− x0|
∈ A(v−D(xr1 ), w+

x0
(xr1 )), s0 < s < s1. (40)

Therefore

Tan cl(γ\γx0
)(x0) ⊂ A(v−D(xr1 ), w+

x0
(xr1 )).

Moreover if case IIb occurs for some r1 then, for all 0 < r < r1, there exists xr = x(sr) such that

cl(γ \ γx0 ) ∩Dr(x0) ∩H = γx0,xr

8
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and (40) holds with r in place of r1, sr in place of s1 , for all 0 < r < r1. Thus

Tan cl(γ\γx0
)(x0) ⊂ A(v−D(xr), w

+
x0

(xr)), ∀ 0 < r < r1.

By (31) it follows that

Tan cl(γ\γx0 )(x0) ⊂ A(−t⊥, t) ⊂ Nor coR(γx0 )(x0)

and the thesis holds in this case too.

IIc): let us assume now that the cases IIa and IIb do not occur.
Let x(s) ∈ (γ \ γx0 )∩Br(x0)∩ Int(H) with r < r. Either x(s) ∈ Q+ or x(s) ∈ Q−. Let x(s) ∈ Q+. Let

x(s′+), x(s′′+), s0 < s′+ < s < s′′+, the end points of the maximal connected component in Q+ of γ \ γx0
containing x(s), with x(s′+) ∈ M+. With no restriction we can assume γx(s′+),x(s′′+) ⊂ (B−D(xr))c. The

same arguments of case IIb prove that

x′(s) ∈ A(v−D(xr), w
+
x0

(xr)), s′+ < s < s′′+. (41)

Let γ+ = x0x(s′+) ∪ γx(s′+),x(s′′+) the curve obtained by joining the segment x0x(s′+) with γx(s′+),x(s′′+).

Obviously the unit tangent vector to the points of γ+ a.e. satisfies the constraint (41) since −t⊥ ∈
A(v−D(xr), w

+
x0 (xr)).

Then, by Lemma 4.3, it follows that

x(s)− x0

|x(s)− x0|
∈ A(v−D(xr), w

+
x0

(xr)), s′+ < s < s′′+. (42)

Let us argue now by contradiction: if (37) does not hold then there exists q ∈ S1 so that

q ∈ Tan cl(γ\γx0
)(x0), 〈q, t〉 < 0

and

q = lim
n→∞

x(sn)− x0

|x(sn)− x0|
,

with x(sn) ∈ Q+ ∪ Q−. By passing to a subsequence, we assume (up to a reflection) that x(sn) ∈ Q+.
Since by (31)

lim
r→0+

A(v−D(xr), w
+
x0

(xr)) = A(−t⊥, t),

then passing to the limit in (42), with x(sn) in place of x(s), the vector q ∈ A(−t⊥, t). This is in contra-
diction with 〈q, t〉 < 0.

Corollary 4.6 Let γ ∈ ΓR and let x ∈ γ be not the end point of γ. Let

w ∈ Tan γx (x), v ∈ Tan cl(γ\γx)(x).

Then

〈w, v〉 ≤ 0. (43)

Proof. As γx ⊂ coR(γx) then

Nor coR(γx)(x) ⊂ Nor γx (x).

By (37) the inequality (43) follows.

9
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5. Bounds for the length of rectifiable R-curves

The aim of this section is to extend to rectifiable R-curves γ, not necessarily C1, the results
on the length and the detour obtained in [1].

Let us recall the following geometric definition and a comparison result:

Definition 6 Let b, c ∈ R2, 0 < |b− c| < 2R. Let BR(b) and BR(c) two open disks, of radius R and center
b, c respectively. Let x ∈ ∂BR(b)∩ ∂BR(c). Let l be the line through b and c, let H be the half plane with
boundary l containing x.

The unbounded region ˇang(bxc) :≡ BR(b)c ∩BR(c)c ∩H will be called curved angle. Moreover

meas( ˇang(bxc)) := meas(Tan ˇang(bxc)(x) ∩ S1)

is the measure of the angle between the half tangent lines at x to the boundary of ˇang(bxc).

Proposition 5.1 [1, Lemma 4.2]Let x, x2 ∈ R2, |x − x2| < R. Let B2 = BR(b) with ∂B2 ⊃ {x, x2}.
Let B∗ = BR(c∗) the disk of radius R, with ∂B∗ orthogonal at x2 to ∂B2 and x ∈ B∗, see Fig.2. Let us
assume that there exists x1 ∈ (B∗ ∪B2)c with the properties:
(i) |x1 − x| < R, |x2 − x1| < R;
(ii) x1 lies in the half plane with boundary the line through x and x2 not containing b;
(iii) there exists B1 = BR(c1) with {x1, x} ⊂ ∂B1, with arc(x, x1) ⊂ (B2)c, such that the line through x
and x1 separates c1 and x2.

Then the measure of the curved angle ˇang(bxc1) is less than π/2.

Theorem 5.2 (R-angle estimate) Let γ ∈ ΓR. Assume that for every x ∈ γ, γx is contained in an open
disk BR(x). Then, the measure of Nor coR(γx)(x) ∩ S1 is greater or equal to π/2.

Proof. Let x be a fixed point of γ. Let u1, u2 ∈ S1 such that, see (16)

Wx = Nor coR(γx)(x) ∩ S1 = A(u1, u2) ∩ S1.

A(u1, u2) is a convex cone counterclockwise oriented by definition. Let ∆i = (BR(x + Rui))
c, i = 1, 2. If

u1 = −u2 then Nor coR(γx)(x) is an half plane and the thesis holds. Let u1 6= −u2. Let ci = x+Rui, i = 1, 2.

If u1 6= u2 let us consider the curved angle ˇang(c1xc2). Let us consider Z :≡ ˇang(c1xc2) ∩ D(x,R); its
boundary is splitted in three circular arcs arc∂∆1

(x, z1), arc∂∆2
(x, z2), arc∂D(x,R)(z1, z2). In case u1 = u2

then ∆1 = ∆2 = ∆, let Z = ∆ ∩ D(x,R). Again ∂Z is splitted in three arcs with z1, x, z2 on the same
circumference of radius R (z1, z2 on the opposite sides with respect to x). By construction coR(γx) ⊂ Z.

There are three possible cases:
(a1) at least one of the two sets γx ∩ arc∂∆i

(x, zi) \ {x}, i=1,2, is empty;
(a2) for i = 1 or i = 2 the point x is an accumulation point of γx ∩ ∂∆i;
(b) there exist two points xi ∈ γx ∩ arc∂∆i

(x, zi), xi 6= x (i=1,2), such that

γxi,x ∩ ∂∆i = {xi, x}, i = 1, 2.

10
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Case (a1): with no loss of generality one can assume that

γx ∩ arc∂∆1
(x, z1) \ {x} = ∅.

Let u1 = (cosα1, sinα1), 0 ≤ α1 < 2π and let, for δ > 0,

uδ := (cos(α1 − δ), sin(α1 − δ)).

Since the vector u1 bounds Wx, by (15), for δ sufficiently small, one has

γx ∩BR(x+Ruδ) 6= ∅.

This means that, for δ = 1
k
> 0 and k sufficiently large, there exists a sequence s(k) → s−, such that

x(s(k))→ x, u
1
k → u1 and

x(s(k)) ∈ ∂BR(x+Ru
1
k ) \DR(x+Ru1).

Then by (iv) of Proposition 3.2, there exists u− ∈ U−x so that 〈u−, u1〉 ≤ 0. As U−x ⊂ Wx by (16), the
thesis follows.
Case (a2): with no loss of generality one can assume that i = 1; then exists a sequence s(k) → s−, such that

x(s(k)) ∈ ∂∆1. Then by (iv) of Proposition 3.2, with u
1
k = u1, there exists u− ∈ U−x so that 〈u−, u1〉 ≤ 0;

as in Case (a1) the thesis follows.
Case (b): Let xi = x(si), i = 1, 2 with s1 < s2 < s. Let ũ2 so that x+ u2R = x2 + ũ2R. Let

B2 := BR(x+ u2R) = BR(x2 + ũ2R), B1 := BR(x+ u1R).

Let us notice that, by construction, γx ⊂ coR(γx) ⊂ Z ⊂ (B2)c. Let Q be the closed region of Z bounded
by arc∂∆2

(x2, x), arc∂∆1
(x, x1), γx1,x2 ; up to a reflection (with respect to the line {x+λ(u1 +u2), λ ∈ R})

we can assume that the points x1, x2, x are in the clockwise order of ∂Q.
Let A− = A(ũ2

⊥,−ũ2),A+ = A(−ũ2,−ũ2
⊥). By the definition of Q

TanQ(x2) ⊂ A− ∪ A+ and − ũ2
⊥ ∈ TanQ(x2).

By the non intersection property, γx2,x is contained in Q \ γx1,x2 , then the inclusions

Tan γx2,x (x2) ⊂ TanQ(x2) ⊂ A− ∪ A+ (44)

hold.
Claim: Tan γx2,x (x2) cannot have a vector v ∈ A−.

By contradiction, let us assume that v ∈ Tan γx2,x (x2) ∩ A− ∩ S1; then, by Theorem 4.5, v ∈
NorcoR(γx1,x2

)(x2) and γx1,x2 ⊂ (BR(x2 +Rv))c. Furthermore by construction γx1,x2 ⊂ Z.

There are two possibilities: v 6= −ũ2 or v = −ũ2.
Let v 6= −ũ2. Let T be the closed connected component of (B2)c∩ (BR(x2 +Rv))c∩DR(x2) containing

arc∂∆2
(x2, x). As

arc∂∆2
(x2, x) ∪ γx1,x2 ⊂ T and γx1,x2 ∩ arc∂∆1

(x, x1) = {x1},

then arc∂∆1
(x, x1) ⊂ T . Therefore ∂Q ⊂ T , so Q ⊂ T . Then

TanQ(x2) ⊂ Tan T (x2) = A(v⊥,−ũ2
⊥) ⊂ A+. (45)

By (44) it follows that v ∈ A+ \ {−ũ2}, contradiction.
If v = −ũ2, then (B2)c ∩ (BR(x2 +Rv))c ∩DR(x2) consists of two curvilinear triangles symmetric with

respect to x2. Let T that one containing arc∂∆2
(x2, x). When u1 = u2 then x ∈ arc∂∆2

(x2, x1), then
x1 ∈ T . When u1 6= u2 then x1 ∈ T otherwise Z cannot be defined. In both cases x1 ∈ T . Again Q ⊂ T
and

TanQ(x2) ⊂ Tan T (x2) = {−λũ2
⊥ λ ≥ 0}.

It follows that v ∈ A+ \ {−ũ2}, contradiction. The claim is proved.

11
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Then

Tan γx2,x (x2) ⊂ A(v−,−ũ2
⊥)

with v− ∈ Tan γx2,x (x2), v− ∈ A+, v− 6= −ũ2.

By Theorem 4.5, v− ∈ NorcoR(γx1,x2 )(x2) and by construction ũ2 ∈ Nor coR(γx1,x2 )(x2) ∩ S1 too. As

−ũ2
⊥ ∈ arcS1 (v−, ũ2) then, by convexity,

− ũ2
⊥ ∈ NorcoR(γx1,x2 )(x2). (46)

Therefore

x1 ∈ γx1,x2 ⊂ (BR(x2 −Rũ2
⊥))c.

In particular, this fact implies that u1 6= u2. As x ∈ BR(x2 − Rũ2
⊥), the assumptions of Proposition 5.1

are satisfied with

B∗ = BR(x2 −Rũ2
⊥), b = x2 +Rũ2, c∗ = x2 −Rũ2

⊥, c1 = x+Ru1.

Then

meas( ˇang(bxc1)) = π −meas(Nor coR(γx)(x) ∩ S1) ≤ π/2.

Then the measure of Nor coR(γx)(x) ∩ S1 is greater or equal to π/2 and the thesis follows.

The following corollary is a consequence of Theorems 4.5 and 5.2.

Corollary 5.3 For every x ∈ γ ∈ ΓR, x not end point of γ, γ contained in an open disk of radius R,
the following

(−Tan coR(γx)(x) ∪ Tan cl(γ\γx)(x)) ∩ S1 ⊂Wx (47)

holds.

Proof. From Theorem 5.2, Tan coR(γx)(x) ∩ S1 has measure less than π/2. Then ∀v, w,∈ Tan coR(γx)(x)

〈v, w〉 ≥ 0.

Thus −v ∈ Nor coR(γx)(x), this implies, by Proposition 3.3, that −Tan coR(γx)(x) ⊂ Nor coR(γx)(x) = Wx.

The inclusion Tan cl(γ\γx)(x)) ∩ S1 ⊂Wx follows by Theorem 4.5.

Next theorems are related to the tangent cone of the classic convex hull co(γx).

Theorem 5.4 Let γ ∈ ΓR. Assume that for every x ∈ γ, γx is contained in D(x,R/N), N > 1. Then for
every x ∈ γ

meas(Tan co(γx)(x)) ≤ π/2 + 2 arcsin
1

2N

holds.

Proof. With the same arguments of the proof of [1, Theorem 4.1], the thesis holds by replacing [1, Lemma
4.5] with Theorem 5.2.

Let |γ| be the length of γ, and p(s) the perimeter of co(γ(x(s))).

Theorem 5.5 Let N > 1. Let z0 be a fixed point in the plane. If γ ∈ ΓR and γ ⊂ D(z0, R/(2N)) then

|γ| ≤
π

N − 1
R, p′(s) ≥ 1−

1

N
a.e. s ∈ [0, |γ|].

Proof. With the same arguments of the proof of [1, Theorem 4.2], the thesis holds by using Theorem 5.4.

Let us recall that the detour of γx1,x is
|γx1,x|
|x−x1|

.

12
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Theorem 5.6 Let w0 ∈ R2, τ > 0. Let γ ∈ ΓR, γ ⊂ D(w0, τ). Then there exists a positive constant
c(R, τ), depending only on R and τ such that

|γ| ≤ c(R, τ), (48)

where
(i) c(R, τ) ≤ 4πτ ≤ πR if τ ≤ R

4
;

(ii) c(R, τ) ≤ (1 + (16
√

2eπ/2)2( τ
R

)2)πR if τ > R
4

.
Moreover the detour of γ is bounded:

|γx1,x|
|x− x1|

< 3
c(R, τ)

R
∀x1 ≺ x ∈ γ. (49)

Proof. By Theorem 5.5, with the same arguments of the proof of [1, Theorem 5.1,Theorem 5.2], the
inequalities (48), (49) are obtained.
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[3] Mǎinik I F. An estimate of the length of the curves of descent. Sibirsk Mat Zh.
1992;33:215-218.

[4] Daniilidis A, Ley O, Sabourau S. Asymptotic behaviour of self-contracting planar
curves and gradient orbits of convex functions. J Math Pures Appl. 2010;94:183-199.

[5] Daniilidis A, David G, Durand-Cartagena E, Lemenant A. Rectifiability of self-
contracted curves in the Euclidean Space and applications. The Journal of Geometric
Analysis. 2015;25:1211-1239.

[6] Daniilidis A, Deville R, Durand-Cartagena E, Rifford L. Self-contracted curves in Rie-
mannian manifolds. J. Math. Anal. Appl. 2018;457:1333-1352.

[7] Lemenant A. Rectifiability of non Euclidean planar self-contracted curves. Confluentes
Math. 2016;8:23-38.

[8] Stepanov E, Teplitskaya Y. Self-contracted curves have finite length. Journal of the
London Mathematical Society. 2017;96:455-481.

[9] Longinetti M, Manselli P, Venturi A. On steepest descent curves for quasi convex
families in Rn. Math Nachr. 2015;288:420-442.

[10] Aichholzer O, Aurenhammer F, Icking C, Klein R, Langetepe E, Rote G. Generalized
self-approaching curves. Discr Appl Math. 2001;109:3-24.

[11] Daniilidis A, Deville R, Durand-Cartagena E. Metric and geometric relaxation
of self-contracted curves Journal of Optimization Theory and Applications. DOI:
10.1007/s10957-018-1408-0

[12] Ohta S. Self-contracted curves in CAT(0)-spaces and their rectifiability. J.Geom.
Anal., 2019 to appear.

[13] Federer H. Curvature measure. Trans Amer Math Soc. 1959;93:418-481.
[14] Colesanti A, Manselli P. Geometric and Isoperimetric Properties of sets of Positive

Reach in Ed. Atti Semin Mat Fis Univ Modena Reggio Emilia. 2010;57:97-113.

13


