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Let I'r be the class of plane, oriented, rectifiable curves -, such that, for almost every = € =,
the part of v preceding x is outside the open disk of radius R, centered in x + Rt,, where t,
is the unit tangent vector at z. In [I] the present authors have obtained bounds for the length
and the detour for C! regular curves in I'g. These bounds are proved here for all curves in
I'g.

Introduction

Let R > 0. Let ' be the class of the plane oriented local rectifiable curves ~ satisfying the
following property: for every = € «, let 7z be the part of v between the starting point and =
and almost everywhere let t be the tangent vector to v at x, then 7, is not contained in the
open circle centered at © + Rt and of radius R. These curves have been studied in [I] and
have been called R-curves.

I'r is a generalization of the class I" introduced in [2, [3] and studied in R™ [5,[9]: v € T" if
for every x € =y the arc 7, is contained in the half plane bounded by the line through =z
ortogonal to t. The class I' has also been recently studied in many other spaces: Riemannian
manifolds [6], finite-dimension normed spaces [§].

The steepest descent curves of quasi convex functions are curves of I [2 4] [9]; the interest
in the R-curves is that they are the steepest descent lines of functions whose level sets have
reach greater than R, see [I];

In all previous papers an important goal is to get the apriori global rectifiability
(boundeness of the length) of 4 € T'. Here this result is obtained for the bounded planar
curves vy € I'r, Theorem

In the previous definition of the curves of I' it is assumed that ~ is local rectifiable; it has
been proved that the defining property is equivalent to the so called self-expanding property
[10] (or self-contracted property [4] when opposite order is used for 7) for a continuous curve
t — ~(t), with ¢ not necessarily the parameter length:

[v(t) = y(t1)| > |y(t2) —~v(t1)] for 0<ty <ta <t (1)

Another definition of the class I' which comes out immediately from the geometric meaning
involves co(vz), the convex hull of v,. Then, v € T if for almost every z € « the tangent
vector t lies in the normal cone to co(yz) at x, that is:

(x—y,t) >0, Vyé€a. (2)

Metric and geometric relaxation of both previous two definitions have been introduced in
[I1] and it was proved that bounded planar curves ~ satisfying them have bounded length;
counterexamples for not planar curves are also showned.

*Corresponding author. Email: marco.longinettiQunifi.it
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On the other hand, the curves v € I'g, with length parameter s, satisfy the following two
properties [1]:

[y(s) —A(s1)| = I7(s2) —v(s1)[e527*)/CR) for  0< sy <sp< s (3)

|z —y|?

_yt) > Y
(x—y,t) > 2R

Yy € Yo 4)

These properties are a generalization of and of 2| respectively. In [I] a priori bounds for
the length and the detour of a bounded v € I'g have been proved under the assumption that
visa Cl curve.

In this work the same bounds are obtained if one assumes that ~ is merely rectifiable so
the defining property holds a.e., only; first natural or easily obtained properties for C'!
R-curves are extended to arbitrary rectifiable plane R-curves: Theorem and Corollary
14.6] Then these properties are used to prove the R-angle estimate property of v: Theorem
The main bounds for the length and the detour of v: Theorem and Theorem
then easily are obtained.

The plan of this work follows.

Some of the basic properties for v € I'g are recalled in

In @ properties of tangent sets to v € I'r are stated and proved. Theorem@proves that
any unit vector of the tangent set at = to cl(y \ 7¢) is the inner normal at x of a disk
excluding 7;; in Corollary it is proved that, at each point € ~, the tangent sets at x to
vz and to cl(y \ 7z) do not contain directions forming acute angles. These geometrical
properties are obvious for a C! curve but they have to be proved when = is rectifiable
R-curve, only.

In g5 rectifiable R-curves contained in a disk of arbitrary fixed radius are studied. If ~ is
contained in an open disk of radius R, the R-hull of v, (defined in @) is considered. In
Theorem @ it is proved that the amplitude of the normal cone at x to the R-hull of v, is
greater or equal to 7/2. This is an extension to the planar R-curves of the so called angle
estimate of [2], which plays a fundamental role in order to get the bound for the length of v
in different situations even in CAT(0)-spaces [12]. As a consequence, in the same way as in
[d], if v is contained in a smaller disk, a bound of its length is obtained (Theorem [5.5).
Moreover if v is contained in a disk of arbitrary radius 7, bounds for the detour of « and its
length, depending on R and 7, are proved (Theorem as in [1J.

In our opinion, the geometrical properties contained in Theorem and Theorem
could be interesting independently of their application in this work.

Definitions and preliminaries

Let K C R2, Int(K) will be the interior of K, 9K the boundary of K, cl(K) the closure of
K, K¢ =R?\ K. For every set S C R2, co(S) is the convex hull of S. Let
B(z,p) = {x €R? : |z — 2| < p},S* = 3B(0,1) and let D(z, p) = cl(B(z, p)). The notations
By(x), Dyp(x) will also be used for open, closed disks of radius p centered at . The usual
scalar product between vectors u,v € R? will be denoted by (u, v).

Let K be a non empty closed set. Let ¢ € K; the tangent cone of K at g is defined in [I3]
as:

Tan g (q) = {v € R? : Ve > 03z € K N Bc(q) Ir > 0s.t. |r(z — q) —v| < €}
Let us recall that if Tan g (q) # {0} then

SN Tan g (q) = mcl({ z:z ,q#x € KN B(ge)}).

e>0 | ‘

The normal cone at ¢ to K is the non empty closed convex cone, given by:
Nor i (q) = {u € R? : (u,v) <0 Vo € Tan g(q)}. (5)

The dual cone of a set K is K* = {y € R? : (y,z) >0 Vz € K}. Thus
Nor g (q) = —{Tan x(¢)}*.

In the following definitions A will be a closed set. If a € A, then reach(A,a) is the
supremum of all numbers p such that for every = € B(a, p) there exists a unique point b € A
satisfying |b — z| = dist (z, A), see [13]. Also:

reach(A) := inf{reach(A,a) : a € A}.
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Let us define cog(A), the R-hull of A, as the closed set containing A, such that
(i) cor(A) has reach greater or equal to R;
(ii) if a set B D A and reach(B) > R, then B D cor(A).

See [14} pp.105-107] for the properties of R-hull. It can be shown that

cor(A) = {(Br(2)) : Br(z) N A =0}. (6)

The R-hull of a closed set A may not exist, see [14, Remark 4.9]. However

PROPOSITION 2.1 [T, Theorem 4.8] If A is a plane closed connected subset of an open disk of radius R,
then A has R-hull.

3. Properties of R-curves

In this paper a curve in R? is the image of a continuous function on an interval, valued into
R2. Let v C R? be an oriented rectifiable curve and let z(-) be its parametric representation
with respect to the arc length parameter s € [0, L]. If 1 = z(s1), 22 = z(s2) € v with

s1 < sa, the notation z1 < z2 will be used. Let us denote z(s) = z,

Yo ={y €7:Y 22} Vor,0y = {y €721 Jy J 22}

Definition 1 Let R be a fixed positive number. An R-curve v C R? is a rectifiable oriented curve with arc
length parameter s € [0, L], tangent vector t(s) = z’(s) such that the inequality

|z(s1) —a(s) — R t(s)| = R (M)

holds for almost all s and for 0 < s7 < s < L. I'g will denote the class of R-curves in R2.

The geometric meaning of is that for every point = z(s) € v, with tangent vector
t(s), the set v, is outside of the open disk of radius R through x centered at  + R t(s).
Let us notice the following equivalent formulations of @ for0<s1 <s<L:

|z(s1) — 2(s)|* = 2R (x(s1) — z(s)), t(s)) > 0; (8)

(s — xS 2
(a(s) — a(o2),8(s)) > ~ ZE 2O ©)

PRrROPOSITION 3.1 [1, Lemma 8.1, Corollary 3.2] An R-curve does not intersect itself.

ProprosITION 3.2 [1, Theorem 3.8] Let v € T'g. For every s € (0,L), x = z(s), vz S 7, the following two
subsets of S':

Ub ={ues':3s® > 5, lim /(M) = u}, (10)
s(k) s

U, ={ue S1:3s®) <5 lim z/(s(k)) =u} (11)
s(k) s

are non empty. Moreover the following properties hold.
(i) if z(-) is differentiable at s, then o'(s) € U NU; ;
(i) if u € Uf UUy then
|z(s1) — z(s)|? — 2R (x(s1) — z(s),u) >0 for 0<s1 <s<L; (12)
(iii) let B = Br(z + Ru), u € S so that BO N~y =0, then
Jut € UF : (ut,u) <0, Ju~ €Uy : (u",u) > 0; (13)
(iv) if there exist S* 3 ug, — u, sF) — s, s < 5, with 2(s®)) € dBr(x + Ruy,), then
Ju~ €Uy : (u,u) <0. (14)

PROPOSITION 3.3 [1, Theorem 4.1]Let © € v € I'r, v contained in an open circle of radius R. Let

Wa = {u € S': (Br(z + Ru))® D vz} (15)
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Then

UF UU; CWa =Nor o (v, (@) N ST (16)

4. Tangent sets to rectifiable R-curves

The main theorem of this section is Theorem . 4.5} Corollary [4.6] - proves that the tangent
vectors at = to vz and to cl(7y \ 7z) make an angle at least /2 (if the curve v is C! these
tangent sets are opposite half lines).
In this section let us assume that v is a plane R-curve of length |y| = L contained in an
open disk of radius R. According to Proposition for every = € v, vz has R-hull cor(vz).
For a vector u = (a, b), let ut = (—b,a).

Definition 2 Let ui,uz € S, u1 # uz and u; = (cos0;,sin6;),i = 1,2, 01 < 02 < 01 + 27. Let A(u1,uz2)
be the closed counterclockwise oriented cone centered in O, with sides {Au;, A > 0}, =1,2.

Definition 3 When z,y are points on a circumference dB of radius R, with |z — y| < 2R, let us denote
with arcgp(z,y) the shorter arc on OB from z to y. When no ambiguity arises, let us denote arc(z,y) =

Definition 4 Let x,z be given points in R?, & # z, |t — 2| < 2R. Let

Their geometrical meaning follows. Let Biz, B, the two disks of radius R through z and x such that

their arc(z, x) is clockwise oriented, counterclockwise oriented respectively. Then wi (z) , wz (z) are the

unit interior normals at z to BB;Z, 0B, . respectively.

wl(z) =

T

wy (2) =

Remark 1 Obviously Br(z + Rv) is a disk through z not containing z iff
v € Awg (2), wi (2)). (19)

Let us notice that the cone A(wy (2), w3 (z)) is not convex.

Definition 5 Let D := Dg(yo) a given closed disk and z ¢ D. Let dist (2, D) < 2R. Let 0B, _, 8Bg , the
circumferences, with radius R, through z tangent to D at z~, 2z respectively. Let 2~ such that arc(z~, z)
on dBp _ is clockwise oriented, let 2+ such that arcyp+ (27, 2) on 83;5 , is counterclockwise oriented.

Let vy (2), UD( z) the unit interior normals at z to 0By, _, 8332 respectively.

Then v (2), v} (2) are the two unit vectors solutions to the equation

|z + Rv — yo|® = 4R%.

That is
3R2 _ _ 2
(v,z —yo) = % = |z — yo|cos v, (20)
with a € (0, 7). Thus
— —aa)L
vg(z) =27 cosat (2= yo) sin a, (21)
|z = ol |z = ol
— _ L
vy (z) = ETW0 osa— (2 = yo) sin a, (22)
|z = wol |z = wol
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Yo

Figure 1. Constraints for z.

Remark 2 Let us notice that, if dist (2, D) < (V3 — 1)R, the cone A(v,(2),v}(2)) is convex; moreover
if o € 0D

Zo — Yo

o~ Yo (23)
[0 — yol

im vt () = Lm v=(z) =
Jim B = lim, vp(e) =

Proof. As z — xo € 0D, then |z — yo| — R and from cosa — 1. Thus from , the thesis
follows. O

LEMMA 4.1 Under the same assumptions of the previous definitions, Br(z + Rv) is a disk through z not
intersecting D iff

v € A(vp(2), v} (2)) NSt (24)
Moreover, if © € 0D then, the following inclusion
Avp(2),v5(2)) C Alwg (2), wi () (25)

holds.
Proof. The proof of is obvious. Let us prove [25). If v € A(vp(2), vg (2)) then Br(z + Rv) does not
intersect D, therefore z ¢ Bgr(z + Rv). This implies that v € A(wg (2), w3 (2)).0

LEMMA 4.2 Let D = Dgr(yo) be a given closed disk. Let H be the closed half plane with yo € OH and
outer normal t € S'. Let xg = yo — Rt+ € 9D and G = H N D° N B(zo, R/2), see Fig.1. If

2€G,veS' and B(z+Rv)NDNH=0, (26)

then
v € A(vp (2), wiy (2)) (27

and
limsup A(vp(z),wi (2)) NSt = A(—t*,t)n St (28)

z—x0, 2€G
For 0 <r < R/2, let

zr=x0—rtt, G» :Gﬂ(BByxT)CﬂB(xo,r). (29)
If z € Gy, then the following inclusions between convex cones

A(vp (2), wi, (2)) C A(vp (), wif (2r)) C A(vp (2R/2), wi, (TR/2)) (30)
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and

li - = —t+ li + =t 31
T_l)rngUD(xT) , T_l)rg+wzo(xr) (31)

hold.

Proof. The constraint implies that zg ¢ B(z + Rv). By Remark
v € A(wg, (2), wi (2))-

As z € G, 0B(z + Rv) is tangent to D N H when v = v}, (2). So the bound wg, (z) has to be changed with
v, (2) and follows.

Let us choose for z € G a polar coordinate system at xq, with axis —t1. That is
z =0 + p(cosb,sinfh), 0 < p < R/2, — arccos(—%) <é6<o.

For p € (0,7] fixed, by using (17) of Definition [4] it is not difficult to see that the largest amplitude of
the angle between w;LO (2) and —t+ is reached when 6 = 0, to say at z = Tp 1= T — pt+. Moreover for
—tl

p € (0,7] the largest amplitude of the angle between w;ro (zp) and is reached when p = r, that is at

z. Then

ze = A(vB(z),w;ro (2)) C A(vp(2), wjo (zr)). (32)

For all z € Gy, let us consider the arc of the circumference B, ,, tangent to 9D at 2™, which intersects
OH in a point z,(,) between o and z,. All points z € arc(z™, :rp(z)) on OB[, , have the same B, _, and

L

p(z
the angle between v (z) and is maximum at z,(;) by construction. Moreover the amplitude of

A(vp (zp), —t1) is increasing for p € (0,7], 0 < r < R/2. From this property and (32, the inclusions
are proved. The cone A(vy, (zR/2), ch_o(xR/z)) is an half plane, as by and by

_ 1 V15 1 V15
UD(IR/Q):—ZtL—Tt, ij(IR/Q): Ztl+Tt

From with g = yo — Rt*, @, in place of z, the first limit in (31) follows; the second limit follows by
with x¢ in place of x. The proof of follows from and (30]). O

LEMMA 4.3 Let v € T with arc length parametrization [0,L] 3 s — z(s). Let 0 < so < L, o = z(s0).
Let A(u1,u2) convez. If 2/ (s) € A(u1,u2), for so < s < L a.e., then

z(s) —xo € A(ur,u2), so<s<L. (33)

Proof. Let w the direction of the bisector vector to A(u1,u2). Then

A(ur, uz) \ {0} = {u: ﬁ,w > cosa}, (34)

with cosa > 0. Therefore if 2/(s) € A(u1,us) for so < s < L, then

z(s) — zo w) — 1 sx'o wdo (s — so)cosa cosar
oo =l = o) Sl ] (Ol 2 SR > cosa
Thus
z(s) — o I
2(s) — o] < A0142)

and is proved. O

LEMMA 4.4 Let v € T with arc length parametrization [0,L] 3 s — z(s). Let 0 < so < L, o = z(s0).
Let U;;) the set defined by . Let us assume that there ewist w € S', a € (0,7/2] and a sequence
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Sn — 80,80 < Sn_satisfying

z(sn) — xo

() — 70| ,w) < cosa. (35)
n
Then there exists u € U;’O satisfying
(u, w) < cosa. (36)
Proof. Let

uj =wecosa+ (—1)whsine, (i =1,2).

It follows that w = “1F%2_ ig the bisector vector to the cone
[ug+uz]

A(ur,uz) = {u: <|ZT

,w) > cosa}.
Then implies that
z(sn) — o & A(u1,u2).

Thus of Lemmadoes not hold; then 37, — sa' with (z’(7n),w) < cos a. By possibly passing to a
subsequence, we get =/ (1) — u € Ujo, with u satisfying . 0

Let us recall that cor(vz,) is by @
cor(Vzo) = (Br(2)) : Br(2) N vz = 0}

THEOREM 4.5 Let v € T'gr, v contained in an open disk of radius R. Let 0 < so < L, ©o = z(so). Then
Tan cl(’y\'yxo)(xo) C Nor coR('ny)(xO)' (37)

Proof. Let t € S! be the bisector vector to Nor (z0) namely

cor(Vzq)
NorcoR(%O)(azo) ={ w:A>0,v€ St (v,t) > 1> 0}. (38)

Let us split the proof in two cases:
I) I >0, ie. Nor CDR(%O)(JJO) is strictly convex;
IT) Il =0, i.e. Nor COR(%O)(xo) is an half plane.

Case I).
Assume by contradiction that there exists

0 e Sl N Tancl(,y\%o)(xo), 0 Q NCOR(’YmO)(:BO)' (39)

Then there exists a sequence s, — sa’, satisfying

(,0) = lim (Z1m) 70

— ) < L
3 o) o] ¥

As I > 0 there exists a positive § < [, for which, for n sufficiently large, the inequalities

LGOI

[z(sn) — ol

hold. Let us apply Lemmawith cosa = 1—§ > 0. Therefore, there exists u € U;E), satisfying (u,t) < 1—4.
This is impossible as U, C Nor COR('Ym())(:DO)’ see (I6).
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Case II).
In this case zg — Nor coR(vxo)(xO) is a closed half plane H with outer normal ¢ at zg € 9H and

Tan COR(’Y:E())(IO) nst = Tan (zo) N sl = {—t}.

Let T € 7zy,0 <7 = [T—xo| < R/2 such that vz ,, \{Z} C Br(xo). Then the open set Int(H)NBx(z0) \Vaq
is disconnected in two open sets QT, Q~ where zg — 7t+ € 0Q ™.
Let us consider now the cases: 11,), I1p); I1.).

I1,): there exists 0 < r < 7 such that
cl(v \ Vo) N Br(zo) C cl(H®).
Then
Tan ¢i(4\ vy, ) (T0) C w0 — H = Nor ¢4 (4, ) (Z0)

and the thesis holds in this case.

IIy): there exists 0 < 71 < 7 such that
cl(¥\ Vzo) N Dry (®0) N H = Yag,01, @1 = x(51), 51 > 0.
Let

MY ={z:z=u1x9— X, \>0},

M~ :={z:z=z0+ M,\>0}

As Yz,2, does not intersect vz 2, (except at xg) then either Yzo,21 C Q+ UMt or Yeg,zy C QT UM,
Up to a reflection we can assume that vzy,2; C Q1 U MT. Therefore

Yao,e1 C (Br(zo + RtL))ca Ywo,21 C H N Dy (20).

Let D = Dgr(zo + Rt%).

Claim 1: if 2/(s) exists for sop < s < s1, then Br(z(s) + Rz’(s)) does not meet the half disk DN H.

By contradiction, let us assume that there exists y € Br(z(s) + Rz/(s)) N D N H, then y € Q7. As
z(s) € QT U M™ then, on the segment yz(s), there should exist a point of vz 4, N Br(z(s) + Rz'(s)).
This is impossible as v is an R-curve. Let x,, = xo — r1tt and s(r1) < s1 such that Vag,x(s(r1)) C

(Bp .. )¢N B(xo,r1). By previous claim, the assumptions of Lemma are satisfied with

D,zry
yo = xo + Rtz = 2(s),v = 2'(s), r =71.
Then z'(s) satisfies the constraint and by (30):
x'(s) € A(vg(xrl),wjo (zry)) ae.  so <s<s(ri).
From Lernma as A(vy(@r), way (T, ) is convex, it follows that

z(s) — zo
|z(s) — o

€ A(wp (zr), wl (zr,)), s0<s<s1. (40)
Therefore
Tan ci(4\ v, ) (@0) C A(vp (2r), wi (@)

Moreover if case I}, occurs for some r1 then, for all 0 < r < rq, there exists z, = x(s,) such that

c(v\ "/xo) NDy(xo) NH = Yzo,
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and holds with 7 in place of r1, s, in place of s1 , for all 0 < r < r1. Thus
Tan cl(.y\%o)(mo) C A(vB(xT),w;rO (zr)),VO< 7 <7y.
By it follows that
Tan Cl(ﬂ/\wo)(mo) C A(—t*,t) C Nor COR(,“:O)(:E())

and the thesis holds in this case too.
I1.): let us assume now that the cases 11, and I, do not occur.

Let z(s) € (7 \ Vxo) N Br(zo) N Int(H) with r < 7. Either z(s) € QT or z(s) € Q~. Let z(s) € Q. Let
z(s'y),z(s'} ), 80 < s/, < s < s'/, the end points of the maximal connected component in QT of ¥\ Yo

containing z(s), with z(s,) € MT. With no restriction we can assume Va(s y C (Bp(zr))©. The

MEICH
same arguments of case I, prove that

z'(s) € A(UB(JT),UJ:{O (@), sy <s<sy. (41)

Let vt = xox(s’y) U Ya( ) the curve obtained by joining the segment zox(s',) with Va(s

! ),z(s L)m(s)
Obviously the unit tangent vector to the points of v+ a.e. satisfies the constraint (4I)) since —t+ €

A(vp (zr), wiky (2r)).
Then, by Lemma[4.3] it follows that

z(s) — o

T e Ay (xn), wi (), s < s < s 42
T € AW () uy ), sy << sl (42)
Let us argue now by contradiction: if does not hold then there exists ¢ € S so that

q € Tan cl('y\’yggo)(xo)v <q7t> <0

and

. x(sn) —x0
q= lim ————,
n—o0 |z(sn) — ol

with z(s,) € QT U Q™. By passing to a subsequence, we assume (up to a reflection) that z(s,) € Q.
Since by (31)

. — + _ 4L
Tl_lfg_"_A(vD(xT)vwzo(xr))_'A( t 7t)7

then passing to the limit in ([@2), with z(s,) in place of x(s), the vector q¢ € A(—t*,¢). This is in contra-
diction with (g,t) < 0.0
COROLLARY 4.6 Lety € I'r and let x € v be not the end point of . Let
w € Tan~, (), v € Tan g(4\y,) (@)
Then
(w,v) <0. (43)

Proof. As vz C cor(7z) then

Nor ¢o (v,) (@) C Nor o, ().

By the inequality follows. O
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Figure 2. Curved angles

5. Bounds for the length of rectifiable R-curves

The aim of this section is to extend to rectifiable R-curves -, not necessarily C1, the results
on the length and the detour obtained in [1J.
Let us recall the following geometric definition and a comparison result:

Definition 6 Let b,c € R2, 0 < |b—c| < 2R. Let Br(b) and Bg(c) two open disks, of radius R and center
b, c respectively. Let z € 0Bgr(b) N0BRr(c). Let | be the line through b and ¢, let H be the half plane with
boundary ! containing x.

The unbounded region ang(bzc) := Bgr(b)¢ N Br(c)¢ N H will be called curved angle. Moreover

meas(ang(brc)) := meas(Tan 474(pzc) () N sh

is the measure of the angle between the half tangent lines at = to the boundary of ang(bxzc).

ProPOSITION 5.1 [1, Lemma 4.2]Let x,x2 € R2, |z — 22| < R. Let B?> = Br(b) with 0B% D {z,z2}.
Let B* = Bgr(cx) the disk of radius R, with OB* orthogonal at x2 to B2 and x € B*, see Fig.2. Let us
assume that there exists x1 € (B* U B2)¢ with the properties:
(i) |z1 —z| < R,|z2 — z1| < R;
(ii) 1 lies in the half plane with boundary the line through x and x2 not containing b;
(iii) there exists B = Br(c1) with {z1,2} C OB, with arc(z,x1) C (B?)¢, such that the line through x
and x1 separates c1 and T2.

Then the measure of the curved angle ang(bxcy) is less than 7/2.

THEOREM 5.2 (R-angle estimate) Let v € I'r. Assume that for every x € ~, vz s contained in an open
disk Br(z). Then, the measure of Nor o (v,)(x) NSt is greater or equal to m/2.

Proof. Let x be a fixed point of 7. Let u1,us € S' such that, see

W, = Nor )(x)ﬁSIZA(u1,uz)ﬂ51.

cor(Va

A(u1,u2) is a convex cone counterclockwise oriented by definition. Let A; = (Br(x 4+ Ru;))¢, ¢ = 1,2. If

u1 = —ug then Nor . (4, () is an half plane and the thesis holds. Let u1 # —us. Let ¢; = z+Ru;,i = 1,2.

If u1 # ug let us consider the curved angle ang(cizcz). Let us consider Z := ang(cize2) N D(zx, R); its

boundary is splitted in three circular arcs arcga, (2, 21), arcan, (¢, 22), arcap(z,r) (21, 22). In case u1 = uz

then Ay = Ay = A, let Z = AN D(z,R). Again 0Z is splitted in three arcs with z1,x, z2 on the same

circumference of radius R (z1, 22 on the opposite sides with respect to x). By construction cor(vz) C Z.
There are three possible cases:

(a1) at least one of the two sets vz Narcoa, (z, z:) \ {2}, i=1,2, is empty;

(a2) for i =1 or ¢ = 2 the point x is an accumulation point of v, N dA;

(b) there exist two points x; € vz Narcya, (x, 2;), z; # = (i=1,2), such that

Voie NON; = {xy,x},i=1,2.

10
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Case (a1): with no loss of generality one can assume that

e Narcoa, (z,z1) \ {z} = 0.

Let u; = (cosai,sinay), 0 < a1 < 27 and let, for § > 0,
u® := (cos(ai — &), sin(a — §)).
Since the vector u; bounds W, by , for § sufficiently small, one has
Yo N Br(z 4+ Rud) # 0.

This means that, for 6 = % > 0 and k sufficiently large, there exists a sequence s(*) — s~ such that

z(s®)) > x, ut - uy and
2(s®)) € 9Br(z + Ru®)\ Dr(z + Ruy).

Then by (iv) of Proposition there exists u~ € U, so that (u=,u1) < 0. As U, C Wy by (16)), the
thesis follows.
Case (a2): with no loss of generality one can assume that ¢ = 1; then exists a sequence s(®) — s= such that

x(s()) € A1. Then by (iv) of Proposition with u® = u1, there exists u~ € U, so that (u™,u1) < 0;
as in Case (a1) the thesis follows.
Case (b): Let z; = x(s;),1 = 1,2 with s1 < s2 < s. Let 42 so that z + uoR = z2 + W2 R. Let

B? .= Br(z 4+ u2R) = Br(x2 + i2R), B':= Br(z+u1R).

Let us notice that, by construction, vz C cor(vz) C Z C (B?)¢. Let Q be the closed region of Z bounded
by arcon, (2, ), arcaa, (%, 1), Yzq,z,; up to a reflection (with respect to the line {x + A(u1 +u2), X € R})
we can assume that the points x1,z2, z are in the clockwise order of 9Q.

Let A~ = A(ua™t, —a), AT = A(—1a, —ia+). By the definition of Q

Tan g(z2) C A~ UAT  and — it € Tan g(z2).
By the non intersection property, vz,, is contained in @ \ Yz, x5, then the inclusions
Tan y,, . (v2) C Tang(w2) C A~ UAT (44)

hold.
Claim: Tan ,, . (z2) cannot have a vector v € A™.

By contradiction, let us assume that v € Tan,,, , (z2) N A~ N St; then, by Theorem v €
NOTCOR(%MDZ)(QUQ) and vz;,z, C (Br(z2 + Rv))°. Furthermore by construction vz 2, C Z.

There are two possibilities: v # —uy or v = —ua.

Let v # —2. Let T be the closed connected component of (B2)¢ N (Bg(x2 + Rv))¢N Dg(x2) containing
arcon, (z2,). As

arcon, (22, ) Uz 2o CT  and 7y .z, Narcoa, (z,z1) = {z1},
then arcaga, (x,x1) C T. Therefore 9Q C T, so Q C 7. Then
Tan g (z2) C Tan 7 (z2) = A(vt, —iat) C AT. (45)

By it follows that v € AT \ {—2}, contradiction.

If v = —ai2, then (B2)°N (Bgr(r2 + Rv))¢ N Dg(x2) consists of two curvilinear triangles symmetric with
respect to z2. Let T that one containing arcpa,(z2,x). When u1 = uz then x € arcaga, (w2, 1), then
x1 € T. When uj # ug then 1 € T otherwise Z cannot be defined. In both cases 1 € T. Again Q C T
and

Tan g(z2) C Tan 7(z2) = {—Mi2t A > 0}.

It follows that v € A1 \ {2}, contradiction. The claim is proved.

11
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Then
Tan ,, , (z2) C A(v™, —1iz™")

with v~ € Tan ., (z2), v~ € AT, v~ # —a.
By Theorem , vT € NorCOR(,YIl_IQ)(

—aiat € arcg1 (v ,42) then, by convexity,

z2) and by construction u» € Nor cor(Vay IZ)(JCQ) N St too. As

— 02T € NoTeop vy, 4y)(72)- (46)
Therefore
T1 € Vzy,z0 C (Br(z2 — RIZQL))C-

In particular, this fact implies that u1 # ua. As © € Br(xa — Rua1), the assumptions of Proposition
are satisfied with

B* = Br(za — Ruab), b= 2 + Ruz, ¢ = 29 — Riua™’, ¢1 = 2 + Ru.
Then
meas(ang(brc1)) = m — meas(Nor .4, (4,) () N Sty < /2.

Then the measure of Nor ., . (,,)(z) N ST is greater or equal to /2 and the thesis follows.O
The following corollary is a consequence of Theorems and

COROLLARY 5.3 For every x € v € ', x not end point of v, v contained in an open disk of radius R,
the following

(=Tan cop, (v, () U Tan g\, (@) NS C W (47)

holds.

Proof. From Theorem [5.2, Tan ¢, p (~,) (%) N S1 has measure less than 7/2. Then Vv, w, € Tan cop(ve) (®)
(v,w) > 0.

Thus —v € Nor ¢4, (+,) (%), this implies, by Proposition that —Tan o (v,) (%) T NOT o (+,) () = We.

The inclusion Tan (x)) N ST C W, follows by Theorem EI

cl(v\z)

Next theorems are related to the tangent cone of the classic convex hull co(yz).
THEOREM 5.4 Let v € I'r. Assume that for every x € v, vz is contained in D(xz, R/N), N > 1. Then for
every x € vy

"t
meas(Tan co(+,)(z)) < /2 + 2arcsin SN

holds.

Proof. With the same arguments of the proof of [I, Theorem 4.1], the thesis holds by replacing [T, Lemma
4.5] with Theorem [5.2]0

Let |y| be the length of 7, and p(s) the perimeter of co(y(z(s))).

THEOREM 5.5 Let N > 1. Let zo be a fized point in the plane. If v € T'r and v C D(z0, R/(2N)) then

T 1
MSﬁR’ PI(S)Zl—N a.e. se[0,|y]].

Proof. With the same arguments of the proof of [I, Theorem 4.2], the thesis holds by using Theorem EI

|’Ya.'1,a:‘
EX2N

Let us recall that the detour of vz, ¢ is

12
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THEOREM 5.6 Let wg € R?, 7 > 0. Let v € T'r, ¥ C D(wo, 7). Then there exists a positive constant
¢(R,T), depending only on R and T such that

Iyl < e(R,7), (48)

where

(i) ¢(R,7) < 4dnT < 7R if 7 < % ;

(i) c(R,7) < (14 (16v/2e™/2)2(F))wR if 7 > &.
Moreover the detour of v is bounded:

V21,2 < 3C(R )

t}
|z — 21| R

Vry <z € 7. (49)

Proof. By Theorem with the same arguments of the proof of [I, Theorem 5.1,Theorem 5.2], the
inequalities , are obtained. O
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