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Abstract

The interpolation of discrete spatial data — a sequence of points
and unit tangents — by G1 Pythagorean–hodograph (PH) quintic spline
curves, under shape constraints, is addressed. To achieve this, a local Her-
mite scheme incorporating a tension parameter for each spline segment is
employed, the imposed shape constraints being concerned with preserva-
tion of convexity at the knots and the sign of the discrete torsion over
each spline segment. An asymptotic analysis in terms of the tension pa-
rameters is developed, and it is shown that satisfaction of the prescribed
shape constraints can always be achieved for each spline segment by a
suitable choice of the free angular parameters that characterize each PH
quintic Hermite segment. In particular, it is proved that the CC crite-
rion ([12, 27]) for specifying these free parameters ensures satisfaction of
the desired shape–preserving properties, requiring only mild application
of the tension parameters that does not compromise the overall fairness
of the interpolant. The performance of the method is illustrated through
some computed examples.

∗Email: farouki@ucdavis.edu
†Email: manni@mat.uniroma2.it
‡Email: marialucia.sampoli@unisi.it
§Email: alessandra.sestini@unifi.it

1



spatial Pythagorean–hodograph curves; shape–preserving interpola-
tion; tension parameters; G1 spline curves; Hermite interpolation; quater-
nions.

1 Introduction

The ability to preserve the shape suggested by discrete data is an important
feature of planar and spatial spline interpolation schemes, in both the functional
and parametric case. To address this requirement, several shape–preserving
interpolation schemes (see the survey [18] and references therein) have been
developed in recent decades, within the more general context of constrained
interpolation — see, for example, [5, 22, 6].

Since classical polynomial or polynomial spline interpolants do not, in gen-
eral, guarantee shape–preserving properties, new representations have been in-
troduced, endowed with free parameters that can be adjusted to ensure satis-
faction of the shape–preservation constraints. Among such methods, the well-
known tension schemes, originally introduced for univariate functional interpo-
lation, employ free parameters that can be used to make a smooth interpolant
converge toward the piecewise–linear curve connecting the data points (which is
inherently shape–preserving). While shape–preserving planar interpolation can
be traced to the introduction of the exponential tension spline in [26], the de-
velopment of shape–preserving interpolation algorithms for spatial data is more
recent — see, for example, [20, 19, 21, 1, 3, 4, 25].

Polynomial Pythagorean–hodograph (PH) curves have the distinctive prop-
erty that the parametric speed — i.e., the derivative of arc length with respect
to the curve parameter — is simply a polynomial (rather than the square–root
of a polynomial). This key property confers several important computational
advantages on PH curves, in terms of arc length measurement, rational offset
curves, real–time motion control, spatial path planning, etc. — see [8] for a
short introduction, and [9] for a comprehensive treatment. The construction of
planar PH curves is facilitated by a complex–number model ([7]), while models
based on the quaternions or the Hopf map from R4 to R3 are used for spatial PH
curves ([2, 11]). Efficient algorithms to compute planar C2 PH quintic splines
interpolating given points were developed in [13, 24], and shape–preserving G1

and G2 extensions of them were proposed in [15] based on a local and a global
approach, respectively.

In the case of spatial curves, a scheme for local G1 interpolation of “reason-
able” Hermite data by PH cubics was described in [23]. Methods for interpola-
tion of C1 Hermite data by spatial PH quintics are also available ([10, 12, 28])
and have been generalized in [16, 14] to the case of C2 splines interpolating
a sequence of point data. In the case of interpolation by spatial PH quintics,
two free angular parameters are associated with each spline segment, incurring
underdetermined systems of equations. Since the values of these free parame-
ters can strongly influence the shape of the interpolant, optimization strategies
must be developed to ensure that they yield interpolants with desirable shape
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properties. The treatment of these free parameters makes the development of
shape–preserving spatial PH spline interpolation schemes, addressed herein for
the first time, a much more challenging task than for the planar case treated in
[15].

The focus of this study is on the development of a local method to con-
struct a G1 Hermite spatial PH quintic spline that interpolates at its knots an
ordered sequence of points p0, . . . ,pN and associated unit tangents t0 . . . , tN
under shape constraints. Specifically, these constraints are imposed by defining
discrete quantities in terms of the Hermite data — a left and right discrete bi-
normal at each data point, and a discrete torsion for each segment — and then
by requiring that at each knot the left and right spline binormals have a positive
projection on the corresponding left and right discrete binormals, and that the
sign of the torsion over each spline segment conforms to that of the related dis-
crete torsion. The scheme is local in nature, based on local PH quintic Hermite
interpolants. In cases where they do not hold initially, satisfaction of the shape
constraints is achieved by adjustment of the tension parameters (one for each
spline segment). In this local scheme, each spline segment incorporates two free
angular parameters (besides the tension parameter), that can strongly influence
the shape of the interpolant. An asymptotic analysis in terms of the tension
parameter associated with each spline segment shows that the admissibility re-
gion for the free angular parameters (that ensures satisfaction of the prescribed
shape constraints) is non–empty. In practice, the data–dependent CC criterion
for assigning the free parameters — introduced in [12], and subsequently ana-
lyzed in terms of approximation order in [27] — is used, and it is proved that
for reasonable data it ensures asymptotic satisfaction of the shape constraints.
Furthermore, the numerical experiments show that this criterion is also advan-
tageous in terms of shape quality, since it often requires only mild application
of the tension parameters, that does not significantly alter the overall fairness
of the resulting interpolant.

This paper is organized as follows. The spatial PH quintic spline Hermite
interpolation problem under shape constraints is introduced in Section 2, and
the construction and basic properties of spatial PH quintics are briefly reviewed
in Section 3. Section 4 then discusses the local G1 construction, and summarizes
the CC criterion for selecting the free parameters. The asymptotic analysis with
respect to the tension parameter is presented in Section 5, with special atten-
tion to the behavior of the interpolant defined by invoking the CC criterion.
Several computed examples are reported in Section 6, which serve to illustrate
the shape–preservation properties of the scheme. Finally, Section 7 summa-
rizes the main results obtained herein, and identifies issues that deserve further
investigation.
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2 Spatial PH quintic spline interpolation with
shape constraints

Let p0, . . . ,pN be given points in R3 with pj 6= pj+1 and let t0, . . . , tN be given
unit tangent vectors associated with those points. The goal is to construct a
PH spline curve S(u) for u ∈ [ a, b ] with assigned knots a = u0 < · · · < uN = b
that interpolates the given data, i.e.,

S(uj) = pj and
S′(uj)

|S′(uj)|
= tj for j = 0, . . . , N ,

and also satisfies certain shape constraints. Let [a,b, c ] denote the scalar triple
product (a × b) · c of given vectors a,b, c ∈ R3. In order to define the shape
constraints, the following notations are introduced

∆pj := pj+1 − pj , Nj,i :=
tj×∆pj

|tj×∆pj | ,

τj :=

[
tj ,

∆pj

|∆pj |
, tj+1

]
Nj,f :=

∆pj×tj+1

|∆pj×tj+1|
(1)

for j = 0, . . . , N − 1. ∆pj is the displacement vector for the spline segment
u ∈ [uj , uj+1 ]; Nj,i and Nj,f are the discrete binormals1 at its end–points;
and τj has the same sign as the discrete torsion for that segment ([20]). Now
if |S′(u)| 6= 0 and |S′(u) × S′′(u)| 6= 0 , the curvature vector and torsion are
defined by

kS(u) :=
S′(u)× S′′(u)

|S′(u)|3
and τS(u) :=

[S′(u),S′′(u),S′′′(u) ]

|S′(u)× S′′(u)|2

for each segment u ∈ (uj , uj+1) of S(u), j = 0, . . . , N − 1. Note that kS(u) is
aligned with the binormal vector of S(u), and |kS(u)| is the scalar curvature.
In terms of these quantities, the shape constraints are defined as follows

• convexity constraint — if Nj,i 6= 0 , then limu→u+
j
kS(u) ·Nj,i > 0 ,

if Nj,f 6= 0 , then limu→u−
j+1

kS(u) ·Nj,f > 0 ,

• torsion constraint — if τj 6= 0, then τS(u) τj > 0 for u ∈
[u+

j , u
−
j+1 ] .

The requirement that a property should hold for u ∈ [u+
j , u

−
j+1 ] means that it

holds on the open interval (uj , uj+1) and as a left and right limit at the end–
points of the interval. Note that, since unit tangents are asssumed as input data,
these shape–preserving criteria are actually a subset of those usually considered
in the literature (e.g., [21, 1]), as the convexity constraints are relaxed herein.

1It is assumed that Nj,i := 0 if |tj ×∆pj | = 0, and Nj,f := 0 if |∆pj × tj+1| = 0.
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3 Properties of spatial PH quintics

A spatial Pythagorean–hodograph (PH) curve r(t), t ∈ [ 0, 1 ] can be constructed
from a quaternion2 polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k and its
conjugate A∗(t) = u(t)− v(t) i− p(t) j− q(t)k by integrating the derivative or
hodograph ṙ(t) = (ẋ(t), ẏ(t), ż(t)) specified by the product

ṙ(t) := A(t)uA∗(t) , (2)

where u is a unit vector and dots denote derivatives with respect to the local
parameter t. The components of ṙ(t) satisfy the Pythagorean condition

ẋ2(t) + ẏ2(t) + ż2(t) = σ(t) ,

where the polynomial

σ(t) = |ṙ(t)| = |A(t)|2 = u2(t) + v2(t) + p2(t) + q2(t) (3)

is the parametric speed of r(t), i.e., the derivative of its arc length with respect
to the parameter t. Integration of (2) yields a spatial PH curve r(t) of degree
n = 2m+ 1, if A(t) is of degree m.

The lowest–order spatial PH curves capable of first–order Hermite interpo-
lation are the quintics, generated by quadratic quaternion polynomials specified
in Bernstein form as

A(t) := A0(1− t)2 + A12(1− t)t + A2t
2 . (4)

Integrating the hodograph defined by substituting (4) into (2) yields the Bézier
form

r(t) :=

5∑
k=0

qk b
5
k(t) , t ∈ [ 0, 1 ] (5)

of the PH quintic, where the degree–n Bernstein basis functions are defined by

bnk (t) :=

(
n

k

)
(1− t)n−ktk , k = 0, . . . , n ,

and the control points q0, . . . ,q5 of (5) are given in terms of the coefficients of
(4) by

q1 := q0 + 1
5 A0 uA∗0 ,

q2 := q1 + 1
10 (A0 uA∗1 +A1 uA∗0) ,

q3 := q2 + 1
30 (A0 uA∗2 + 4A1 uA∗1 +A2 uA∗0) ,

q4 := q3 + 1
10 (A1 uA∗2 +A2 uA∗1) ,

q5 := q4 + 1
5 A2 uA∗2 . (6)

2Calligraphic characters such as A denote quaternions, the scalar and vector parts being
indicated by scal(A) and vect(A). A synopsis of the quaternion algebra may be found in
Section 2 of [12]. Bold characters denote vectors in R3.
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A PH quintic is thus completely specified by the three quaternion coefficients
A0, A1, A2 and the initial control point q0. However, for any quaternion U =
exp(θ u) := cos θ + sin θ u satisfying U uU∗ = u, the quaternion polynomial
B(t) = A(t)U also generates the hodograph (2) — see [11]. Hence, one of the
12 degrees of freedom embodied in A0, A1, A2 is redundant.

The parametric speed (3) of the PH quintic defined by (2) and (4) can be
expressed as

σ(t) = |A(t)|2 =

4∑
k=0

σk b
4
k(t) , (7)

with the quartic Bernstein coefficients

σ0 := |A0|2 , σ1 = 1
2 (A0A∗1 +A1A∗0) ,

σ2 := 1
6 (A0A∗2 + 4 |A1|2 +A2A∗0) ,

σ3 := 1
2 (A1A∗2 +A2A∗1) , σ4 = |A2|2 . (8)

Consequently, the total arc length of this PH quintic is given by

L :=

∫ 1

0

σ(t) dt =
σ0 + σ1 + σ2 + σ3 + σ4

5
. (9)

4 Local G1 scheme based on PH quintics with
tension

The approach considered here is a local G1 scheme, based on spatial PH quintics.
Each segment u ∈ [uj , uj+1 ] of S(u) is independently defined, and parameter-
ized in terms of the local variable

t :=
u− uj

uj+1 − uj
∈ [ 0, 1 ] .

Since the method is local in nature, it suffices to focus henceforth on the j–th
spline segment. Denoting this segment by r(t), and its end points and tangents
pj , pj+1 and tj , tj+1 by pi, pf and ti, tf it must satisfy the local Hermite
interpolation conditions

r(0) = pi , ṙ(0) = s2λi ti , and r(1) = pf , ṙ(1) = s2λf tf , (10)

where λi, λf and s are positive free parameters, and dots denote derivatives
with respect to the local parameter t. Note that, without loss of generality,
one can assume λ2

i + λ2
f = c for any positive constant c, so there are only two

independent parameters in (10) that influence the shape of the local interpolant:
the ratio λf/λi and the value s — the former determines the ratio of the initial
and final parametric speeds of the PH quintic segment, while the latter controls
their magnitudes. To make the scheme more automatic, a strategy is proposed
in Section 6 below to fix a reasonable value for the ratio λf/λi, while s is used
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as a free parameter that causes the interpolant to converge on the line segment
joining pi and pf as s→ 0. In practice, an initial reasonable s value is selected,
and it is reduced only when necessary to guarantee satisfaction of the prescribed
shape–preserving criteria (see Section 6). For brevity, the quantities (1) for the
generic j–th segment will henceforth be denoted by ∆p, Ni, Nf , and τ .

4.1 PH quintic Hermite interpolation

The interpolation conditions (10) are satisfied ([10, 12]) by choosing q0 = pi

and specifying A0, A1, A2 in the form

A0 := s
√
λi U0 , A1 := 1

4 D−
3
4 s
[√

λi U0 +
√
λf U2

]
, A2 := s

√
λf U2 ,

(11)
where the unit quaternions U0, U2 and non–unit quaternion D satisfy the three
(vector) equations

U0 uU∗0 = ti , U2 uU∗2 = tf , D uD∗ = d , (12)

with the vector d being defined by

d := 120 ∆p + s2
[

5
√
λi λf (U0 uU∗2 + U2 uU∗0 ) − 15 (λi ti + λf tf )

]
. (13)

The first two equations in (12) have solutions of the form

U0 := ni exp((α− 1
2β)u) , U2 := nf exp((α+ 1

2β)u) , (14)

where α, β are free angular parameters, and

ni :=
u + ti
|u + ti |

, nf :=
u + tf
|u + tf |

(15)

are the unit bisectors of u, ti and u, tf . As observed in [12], the free parameters
α and β can strongly influence the shape of the PH quintic Hermite interpolant.
In this regard, it is interesting to note ([12]) that the arc length of the PH
quintic Hermite interpolant depends only on β. Moreover, if β is fixed and
an admissible arc length is thus determined, the appropriate selection of α is
often crucial to ensure a reasonable control polygon through equations (6) and
(11)–(17).

Since (as noted above), the coefficients A0, A1, A2 incorporate one re-
dundant degree of freedom, one may assume without loss of generality that
scal(D) = 0, and the third equation in (12) then has the solution

D :=
√
|d|n , (16)

with n being the unit bisector of u and a unit vector in the direction of d,
namely

n :=
u + t

|u + t |
, where t :=

d

|d |
. (17)
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For the asymptotic analysis developed in the following section, it will be conve-
nient (see [12]) to re–write the vector (13) as

d = d(0) + s2 d(2) , (18)

where

d(0) = 120 ∆p , d(2) = 10
√
λiλf (e cosβ + f sinβ) − 15 (λi ti + λf tf ) ,

(19)
with the vectors e and f being defined as

e :=
(1 + u · tf ) ti + (1 + u · ti) tf + (1− ti · tf )u

|u + ti| |u + tf |
, f :=

(tf − ti)×u− ti×tf
|u + ti| |u + tf |

.

(20)

4.2 Local shape control

From the properties of the Bernstein basis, one can verify that the convexity
criterion of Section 2 is locally satisfied if and only if

[q1 − q0 , q2 − q1 , Ni ] > 0 and [q4 − q3 , q5 − q4 , Nf ] > 0 . (21)

For the torsion criterion, we require that

[qk − qk−1,qk+1 − qk,qk+2 − qk+1 ] τ > 0 k = 1, 2, 3, if τ 6= 0 . (22)

We recall (see, for example, [17, Example 7]) that the number of sign changes
in the torsion of r(t) is bounded by the number of sign changes in the dis-
crete torsion of its control polygon if there exists a (not necessarily orthogonal)
strictly–convex projection of the control polygon onto some plane. However,
this is not a problem for quintics. In fact, if the conditions (22) hold, it can
be shown that a non–vanishing vector v exists, such that the control polygon
has a strictly convex projection onto the plane orthogonal to v. The following
general result can be used to prove this fact.

Proposition 1. Let g1, . . . ,g5 be vectors such that

[gi , gi+1 , gi+2 ] > 0 for i = 1, 2, 3 . (23)

Then a vector v exists, such that

[gi , gi+1 ,v ] > 0 for i = 1, 2, 3, 4 . (24)

Proof : For suitable positive constants ε1, ε2 we define

v := g3 + ε1 g2 × g3 + ε2 g3 × g4 .

Note that the second condition in (23) implies that g2 × g3 and g3 × g4 are
linearly independent. Now by selecting ε1, ε2 suitably small, the first and third
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conditions in (23) imply satisfaction of instances i = 1 and i = 4 of the inequal-
ities (24). One can easily see that instances i = 2 and i = 3 are satisfied for any
choice of the positive constants ε1, ε2 if (g2 × g3) · (g3 × g4) ≥ 0. If this is not
the case, their satisfaction is ensured by requiring the ratio ε1/ε2 to satisfy the
bounds

|(g2 × g3) · (g3 × g4)|
|(g2 × g3)|2

<
ε1
ε2

<
|(g3 × g4)|2

|(g2 × g3) · (g3 × g4)|
,

which are admissible due to the Cauchy–Schwartz inequality and the linear
independence of g2 × g3 and g3 × g4. Hence, v can always be chosen such that
conditions (24) hold.

4.3 The CC criterion

The CC (cubic–cubic) criterion was introduced in [12] as a simple means of
choosing the free angles α, β using analytic data–dependent expressions that
generally produce interpolants of good shape quality. The approximation or-
der of this approach has recently been analyzed in greater detail in [27]. The
method ensures that the PH quintic interpolant to given first–order Hermite
data coincides with the “ordinary” cubic interpolant when it is a PH curve, and
may be briefly summarized as follows (for complete details, see3 [12]). First,
the angle β is uniquely determined by solving the vector equation

e cosβ + f sinβ =
1

s2
√
λiλf

wh , (25)

where e and f are the vectors defined in (20), which belong to the plane Π
orthogonal to tf − ti (see [12]), and wh is a suitable scaling4 of the projection
of the vector

w := 3 ∆p − s2(λi ti + λf tf ) (26)

onto the plane Π. To analyze the asymptotic behavior of the CC criterion, it
is convenient to introduce the right–handed system of mutually orthogonal unit
vectors

g− :=
tf − ti
|tf − ti|

, g+ :=
ti + tf
|ti + tf |

, ĝ :=
ti × tf
|ti × tf |

, (27)

which is well–defined for non–planar data. The vector on the right in (25) can
then be written as

1

s2
√
λiλf

wh :=
|ti × tf |√

(wp · g+)2 |ti × tf |2 + (wp · ĝ)2 |ti + tf |2
wp , (28)

where
wp := w − (w · g−)g− . (29)

3Note however that the analysis in [12] is made under the assumption u = ti.
4This scaling is necessary because, as β varies, the vector on the left in (25) describes an

ellipse in the plane Π.
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The CC criterion ([12]) proceeds by first determining a value for β, and then
identifying a corresponding α value from the conditions

tanα =
a tan 1

2β − b
c+ d tan 1

2β
, (c+ d tan 1

2β) cosα+ (a tan 1
2β − b) sinα > 0 ,

(30)
where{

a := (
√
λi ni −

√
λf nf ) · n , b := (

√
λi (u× ni) +

√
λf (u× nf )) · n ,

c := (
√
λi ni +

√
λf nf ) · n , d := (

√
λi (u× ni)−

√
λf (u× nf )) · n .

(31)
Since the conditions (30) depend only on tan 1

2β one may assume, without loss
of generality, that

cos 1
2β > 0 . (32)

In the following section we first show that it is possible to select the free
angles α, β so as to produce a shape–preserving interpolant when the tension
parameter s is sufficiently small, and we then also prove that the CC crite-
rion produces PH quintic spline interpolants which are asymptotically shape–
preserving, in the sense specified in Section 2.

5 Asymptotic analysis

5.1 Asymptotic existence of shape–preserving interpolants

Based on the above results, the behavior of the local control polygon q0, . . . ,q5

is now studied as the tension parameter introduced in (10) satisfies s → 0,
beginning with the following preliminary result.

Proposition 2. The total arc length (9) of the PH quintic segment r(t), t ∈
[ 0, 1 ] satisfies L→ |∆p| as s→ 0, regardless of the values of the free parameters
α and β.

Proof. From (11), (14), and (16), the total arc length (9) can be expressed as

L =
|d|+ 5 s2

[
6−

√
λi λf (U0 U∗2 + U2 U∗0 )

]
120

, (33)

where |d| → 120 |∆p| as s→ 0 from (13).

To obtain a more detailed analysis of the limit behavior of the curve as
the tension parameter tends to zero, the directions of the control polygon legs
qk − qk−1 for k = 1, . . . , 5 must be investigated as s→ 0. For this purpose the
analysis may be simplified, without loss of generality, by assuming that

u =
∆p

|∆p |
. (34)
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For brevity, the angles φ0, φ2 ∈ (−π, π ] defined by

φ0 := α− 1
2β , φ2 := α+ 1

2β , (35)

are introduced. Writing

U0(φ0) = (ui(φ0),ui(φ0)) and U2(φ2) = (uf (φ2),uf (φ2)) , (36)

it follows from (1), (14), (15), and (34) that

ui(φ0) = [(u + ti) cosφ0 + |u×ti |Ni sinφ0]/|u + ti | ,
uf (φ2) = [(u + tf ) cosφ2 + |u×tf |Nf sinφ2]/|u + tf | .

(37)

Now the expression (18) for d implies that the quaternion (16) is of the form

D =
√

120 |∆p| u + O(s2) . (38)

Consequently, we have

A0 = s
√
λi U0 , A1 = A(0)

1 + sA(1)
1 + O(s2) , A2 = s

√
λf U2 , (39)

where

A(0)
1 := 1

2

√
30 |∆p| u , A(1)

1 := − 3
4 (
√
λi U0 +

√
λf U2) , (40)

and hence

A0 uA∗1 =
√
λi

[
sU0 uA(0)∗

1 + s2 U0 uA(1)∗
1 + O(s3)

]
,

A1 uA∗1 = A(0)
1 uA(0)∗

1 + s (A(0)
1 uA(1)∗

1 + A(1)
1 uA(0)∗

1 ) + O(s2) ,

A1 uA∗2 =
√
λf

[
sA(0)

1 uU∗2 + s2A(1)
1 uU∗2 + O(s3)

]
, (41)

where

U0 uA(0)∗
1 = 1

2

√
30 |∆p| (ui(φ0),ui(φ0)) ,

A(0)
1 uA(0)∗

1 = 15
2 |∆p| u ,

A(0)
1 uU∗2 = 1

2

√
30 |∆p| (uf (φ2),uf (φ2)) .

The control points (6) can then be expressed as

q1 − q0 = 1
5 s

2 λi ti ,

q2 − q1 = 1
10

√
λi

[√
30 |∆p| ui(φ0) s + 2 vect(U0 uA(1)∗

1 ) s2 + O(s3)
]
,

q3 − q2 = 1
30

[
30 |∆p|u + 8 vect(A(0)

1 uA(1)∗
1 ) s + O(s2)

]
,

q4 − q3 = 1
10

√
λf

[√
30 |∆p| uf (φ2) s + 2 vect(U2 uA(1)∗

1 ) s2 + O(s3)
]
,

q5 − q4 = 1
5 s

2 λf tf .
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Consequently, for any given vector v, we obtain the following expansions

[q1 − q0,q2 − q1,v ] =
1

50

√
30λi |∆p| λi [ ti,ui(φ0),v ] s3 + O(s4) ,

[q2 − q1,q3 − q2,v ] =
1

10

√
30λi |∆p| |∆p| [ui(φ0),u,v ] s + O(s2) ,

[q3 − q2,q4 − q3,v ] =
1

10

√
30λf |∆p| |∆p| [u,uf (φ2),v ] s + O(s2) ,

[q4 − q3,q5 − q4,v ] =
1

50

√
30λf |∆p| λf [uf (φ2), tf ,v ] s3 + O(s4) .(42)

Now from (15) and (36), we obtain

[ ti,ui(φ0),Ni ] =
|u×ti|
|u + ti|

cosφ0 , [uf (φ2), tf ,Nf ] =
|u×tf |
|u + tf |

cosφ2 ,

(43)
which are both positive quantities under the assumption φ0, φ2 ∈ (− 1

2π,+
1
2π).

Using these expressions with the choices v = Ni and v = Nf in the first and last
expansions in (42), respectively, one may verify that for φ0, φ2 ∈ (− 1

2π,+
1
2π)

the two inequalities (21) are satisfied asymptotically.
Consider now the conditions under which the inequalities (22) hold asymp-

totically. From (6), we obtain

[q1 − q0,q2 − q1,q3 − q2 ] =

√
30

50
(λi|∆p|)3/2 [ ti,ui(φ0),u ] s3 +O(s4) ,

[q2 − q1,q3 − q2,q4 − q3 ] =
3

10

√
λi λf |∆p|2 [ui(φ0),u,uf (φ2) ] s2 +O(s3) ,

[q3 − q2,q4 − q3,q5 − q4 ] =

√
30

50
(λf |∆p|)3/2 [u,uf (φ2), tf ] s3 +O(s4) ,(44)

where, setting

δ := |ti×u| |u×tf | (Ni ·Nf ) = (ti×u) · (u×tf ) , (45)

we have

[ ti,ui(φ0),u ] = − |u×ti|
2

|u + ti|
sinφ0 ,

[ui(φ0),u,uf (φ2) ] =
τ cosβ − δ sinβ

|u + ti| |u + tf |
,

[u,uf (φ2), tf ] =
|u×tf |2

|u + tf |
sinφ2 . (46)

Consequently, the inequalities in (22) hold asymptotically if φ0, φ2 satisfy the
conditions

τ sinφ0 < 0 ,
δ

τ
sinβ < cosβ , τ sinφ2 > 0 . (47)

Considering also Proposition 1, the above results may be summarized as
follows.

12



Proposition 3. If the PH quintic spline segments are defined by selecting in
each case the angles φ0, φ2 ∈ (− 1

2π,+
1
2π) such that the inequalities in (47)

hold, then r(t) asymptotically satisfies the shape–preserving criteria specified in
Section 2.

Thus we can conclude that if φ0, φ2 ∈ (− 1
2π,+

1
2π) are non–zero, of appropriate

sign, and sufficiently small magnitude, the inequalities in (47) are satisfied.
Hence, the admissibility region for such φ0, φ2 is non–empty. The following
remark completes the present results.

Remark 1. If τ 6= 0, the choice φ0 = φ2 = 0 is not admissible. This can
be seen as follows. If φ0 = φ2 = 0, one must consider higher–order terms to
evaluate the asymptotic sign of the first and last expressions on the left in (44).
Since, in this case, U0 = ui(0) = ni and U2 = uf (0) = nf , we have

A(1)
1 = − 3

4 (ni + nf ) ,

and consequently

vect(U0 uA(1)∗
1 ) = − 3

4 (ti+e) , vect(A(0)
1 uA(1)∗

1 ) = − 3
4

√
30 |∆p| (ni+nf ) .

Using the expression for e in (20), we then obtain

1

τ
[q1 − q0,q2 − q1,q3 − q2 ] = − 3|∆p| s4

50 |u+ti| |u+tf | (1−
1
4 (1 + u · ti)) +O(s5) ,

1

τ
[q3 − q2,q4 − q3,q5 − q4 ] = − 3|∆p| s4

50 |u+ti| |u+tf | (1−
1
4 (1 + u · tf )) +O(s5) .

Since the highest order term of both these expressions is negative, the choice
φ0 = φ2 = 0 is inadmissible when τ 6= 0 if the torsion constraint introduced in
Section 2 is required. In fact, since the signs of τ(u+

j ) and of τ(u−j+1) are the
same as those of [q1 − q0,q2 − q1,q3 − q2 ] and [q3 − q2,q4 − q3,q5 − q4 ],
respectively, they are evidently asymptotically incorrect.

5.2 Asymptotic behaviour of the CC criterion

We first observe that

lim
s→0

wh

s2
√
λiλf

=
|ti × tf |√

(u · g+)2 |ti × tf |2 + (u · ĝ)2 |ti + tf |2
[u− (u · g−)g−] ,

(48)
with the assumption that u = ∆p/|∆p|. Setting βL := lims→0 β, we consider
the expressions for sinβL and cosβL satisfying (25) in this limit, i.e., when the
right–hand side of (25) is the limit vector given by (48). Since (25) defines a
relation between vectors in the plane Π, and we assume that ti 6= ±tf , we can
reduce (25) to the two scalar equations

τ cosβL + (1 + gl + gr + gc) sinβL = µ τ/(1− gc) ,
(1 + gl + gr + gc) cosβL − τ sinβL = µ (gl + gr)/2 ,

13



by considering (e cosβ + f sinβ) · (ti× tf ) and (e cosβ + f sinβ) · (ti + tf ),
respectively, where µ is an immaterial positive value, and we introduce the
notations

gl := ti · u , gr := tf · u , gc := ti · tf . (49)

Consequently, we have

sinβL =
S√

S2 + C2
, cosβL =

C√
S2 + C2

, (50)

where

S := τ
(1 + gc)(2 + gl + gr)

2(1− gc)
, C :=

τ2

1− gc
+
gl + gr

2
(1 + gc + gl + gr) . (51)

This implies that
τ sinβL > 0 ,

i.e., the sign of sinβL is the same as that of the discrete torsion. Furthermore,
under the mild assumption

gl + gr = (ti + tf ) · u > 0 (52)

on the data, we also have
cosβL > 0 . (53)

Now with the choice (34) the unit vector n in (17) tends to u as s→ 0, and
writing αL = lims→0 α, from (30) and (31) we obtain

tanαL = ρ tan 1
2β , (54)

where

ρ := lim
s→0

a

c
=

√
λi (ni · u)−

√
λf (nf · u)

√
λi (ni · u) +

√
λf (nf · u)

,

and |ρ| < 1 since (15) implies that ni · u > 0 and nf · u > 0. Note that, in the
limit s→ 0, the inequality on the right of (30) implies that

cosαL > 0 , (55)

since the coefficients b and d both tend to zero. Thus, considering also (54),
this inequality can be written as

cL cosαL (1 + ρ2 tan2 1
2βL) > 0 ,

where cL is the positive limit value of c introduced in (31). To show that, in
the limit s→ 0, the CC criterion yields a PH quintic interpolant whose torsion
sign agrees with that of τ , we first prove the following proposition.

Proposition 4. Setting φ0,L := αL − 1
2βL, φ2,L := αL + 1

2βL, we have

sinφ0,L sinφ2,L < 0 , (56)

with
τ sinφ0,L < 0 . (57)

14



Proof : By standard trigonometric addition formulae, it follows that condition
(56) holds if and only if | cosαL sin 1

2βL| > | sinαL cos 1
2βL|, i.e.,

tan2 αL < tan2 1
2βL ,

which is certainly true, since the absolute value of ρ in (54) is less than one. In
order to verify that (57) also holds, we use (54) to write

τ sinφ0,L = τ (sinαL cos 1
2βL − cosαL sin 1

2βL) = γ sin 1
2βL (ρ− 1) cosαL ,

which verifies (57) since |ρ| < 1, cosαL > 0, γ sinβL > 0, and sinβL sin 1
2βL > 0

(as cos 1
2βL > 0).

This proposition indicates that, in the limit s → 0, the first and third in-
equalities in (47) are satisfied. Now considering (50), the second inequality in
(47) implies asymptotically that

C >
δ

τ
S , (58)

where C and S are defined in (51). The following proposition proves that this
inequality is satisfied, at least under the assumption (52) and that

gc = ti · tf > 0 . (59)

Proposition 5. If the data satisfy the conditions (52) and (59), the inequality
(58) holds.

Proof : For brevity we use the notations introduced in (49). Then S can be
written as

S = τ

[
1 + gl + gc + gr

1− gc
− gl + gr

2

]
,

and noting that the scalar δ introduced in (45) is such that δ = gl gr − gc, with
some algebra one can obtain

C − δ

τ
S =

τ2

1− gc
+
gl + gr

2
(1 + gl)(1 + gr) − (gl gr − gc) (1 + gl + gr + gc)

1− gc
.

Since gl+gr > 0 and gl, gr, gc are all of absolute value less than 1 for space data,
then (58) clearly holds if gl gr − gc ≤ 0. On the other hand, if gl gr − gc > 0, we
have 1 + gl + gr + gc < (1 + gl)(1 + gr), and thus

C − δ

τ
S >

τ2

1− gc
+

[
gl + gr

2
− (gl gr − gc)

1− gc

]
(1 + gl)(1 + gc)

=
τ2

1− gc
+

(gl + gr − 2glgr) + gc(2− gl − gr)

2(1− gc)
(1 + gl)(1 + gc) .

Thus, using (59) and the fact that gl + gr > 2gl gr and gl + gr < 2 (since (52)
holds and gl, gr are of absolute value less than 1), we see that the inequality
(58) holds.
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Finally, note that the CC criterion also ensures satisfaction of the pre-
scribed end–point convexity constraints, i.e., the positivity of both cosφ0,L and
cosφ2,L. Using standard trigonometric formulae, these conditions are equivalent
to cosαL cos 1

2βL being positive and greater than | sinαL sin 1
2βL|. Satisfaction

of the first requirement is guaranteed by (32) and (55). Furthermore, (53) and
(54) ensure that | tanαL tan 1

2βL | < 1, since tanαL = ρ tan 1
2βL with |ρ| < 1

and tan2 1
2βL = (1− cosβL)/(1 + cosβL) with cosβL > 0, and this immediately

implies that cosαL cos 1
2βL > | sinαL sin 1

2βL|.
The key points of the preceding asymptotic analysis may be summarized as

follows.

Proposition 6. If, in each spline segment, sufficiently small tension parameters
are used and the two free angular parameters are selected using the CC criterion,
then — under the assumption that the data for each segment satisfy (52) and
(59) — the hypothesis of Proposition 3 holds, and the resulting G1 PH quintic
spline Hermite interpolant is shape–preserving in the sense specified in Section 2.

6 Numerical examples

The implementation of the above procedures is now illustrated through some
computed examples. For cases in which the given data are sampled from a
smooth analytic curve c(u), u ∈ [ a, b ] — i.e., pj = c(uj) and tj = c′(uj)/|c′(uj)|
for j = 0, . . . , N — the spline knots are set equal to the parameter values
u0, . . . , uN of the data points. In all other cases, they are assigned using the
standard chord–length parameterization, namely u0 = 0 and uj+1 = uj +
|∆pj |/(|∆p0| + · · · + |∆pN−1|) for j = 0, . . . , N − 1. Also, when the data
are sampled from an analytic curve c(u), the positive parameters λi and λf for
the j–th spline segment are fixed as

λi = (uj+1 − uj) |c′(uj)| , λf = (uj+1 − uj) |c′(uj+1)| . (60)

Note that this choice implies the normalization

λ2
i + λ2

f = (uj+1 − uj)2
(
|c′(uj)|2 + |c′(uj+1)|2

)
,

while the shape parameter λf/λi is set equal to the ratio |c′(uj+1)|/|c′(uj)|.
When the data are not sampled from an analytic curve, the parameter values

λi = λf = uj+1 − uj (61)

are used, corresponding to the normalization λ2
i + λ2

f = 2 (uj+1 − uj)
2, and

the shape parameter λf/λi is set equal to 1. These choices, together with the
assignment of spline knots using the chord–length parameterization, amount to
regarding the parameter u as an (approximate) arc length. Furthermore, the
tension parameter s is always initially set equal to 1, and is reduced (as little as
possible) only when necessary to guarantee satisfaction of the prescribed shape–
preserving criteria. Note that, if the tension parameter is equal to 1 in all the
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spline segments, both strategies used to select the parameters λi, λf ensure that
the PH spline interpolant is C1. Specifically, when unit tension parameters are
used, we have S′(uj) = c′(uj) with the first strategy, and S′(uj) = tj with the
second, for j = 0, . . . , N .

For completeness we also mention that, in the experiments, the choice (34)
is always used for the unit vector u in the representation (2). This is immaterial
when the CC is adopted ([27]), but is important if the angles (35) are set equal
to constant values (e.g., zero), independent of the data. Since the convexity
criterion of Section 2 is satisfied in all the experiments described below, the ac-
companying figures focus on displaying the spline interpolant and its associated
torsion plot.

The first example is concerned with non–uniformly sampled data from a
circular helix c(u) = (cosu, sinu, 1

2u), u ∈ [ 0, 4π ], which has constant torsion

equal to 1/
√

5 ≈ 0.45. It is evident in Fig. 1 that, when α and β are set
to zero, the resulting PH spline curve does not satisfy the shape–preserving
constraints, since in the seventh segment the sign of the torsion is not everywhere
the same as that of the discrete torsion. Note that, according to Remark 1, this
defect cannot be remedied by reducing the segment tension parameter if we fix
α = β = 0. If, instead, the CC criterion is used to define α, β the shape–
preserving constraints are satisfied even without any reduction of the tension
parameter, and the resulting spline curve also exhibits better overall shape —
see Fig. 2.

In the second example, the interpolation points are from a benchmark test
for shape–preserving spline interpolation, proposed in [20] — see Remark 2
below for the unit tangents. The data specify a symmetric closed curve, with
three collinear points and also several coplanar points. Comparing Fig. 3 and
Fig. 4, we observe that the PH quintic spline constructed using the CC criterion
satisfies the shape–preserving constraints, but the torsion constraint is violated
in some segments if it is constructed by setting α and β to zero (again, no
tension is used in this example). Note also that the range of variation of the
torsion is reduced when the CC criterion is used, and that the “back” of the
chair can be made less rounded by a reduction of the tension parameters in the
first and last spline segments, if desired. A further point of interest concerning
this example is that, for the four segments corresponding to coplanar data, the
PH spline segments are precisely planar, when both the choice α = β = 0 and
the CC criterion is used (in fact, the CC criterion yields α = β = 0 for these
segments — see Section 4.3).

The third example is concerned with a single PH quintic segment that in-
terpolates (see case #3 in [12]) the data

pi = (0, 0, 0) , ti = vi/|vi| , vi = (0.4,−1.5,−1.2) ,
pf = (1, 1, 1) , tf = vf/|vf | , vf = (−1.2,−0.6,−1.2) .

(62)

Note that, in this case, condition (52) is not satisfied. For this example, the
choice α = β = 0 clearly does not satisfy the torsion constraint, as seen in Fig. 5,
and this remains true as s is reduced. For the CC criterion without tension, the
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Figure 1: Example 1: Data defined by non-uniform sampling of a circular helix.
The PH quintic spline is constructed by setting α = β = 0 and s = 1 in each
segment. Left: the resulting PH quintic spline curve (red) together with the
given interpolation points and unit tangents (green). Right: the torsion of the
PH quintic spline curve (green) and the sign of the discrete torsion (blue).
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Figure 2: Example 1: Non–uniformly sampled data from a circular helix. The
PH quintic spline is constructed by using the CC criterion to define α, β and
setting s = 1 in each segment. Left: the resulting PH quintic spline curve (red)
with the prescribed points and unit tangents (green). Right: the torsion of the
PH quintic spline (green) and the sign of the discrete torsion (blue).
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Figure 3: Example 2: The “chair” data from [20]. The PH quintic spline is
constructed by setting α = β = 0 and s = 1 in each segment. Left: the
resulting PH quintic spline curve (red) with the given points and unit tangents
(green), assigned according to (63). Right: the torsion of the PH quintic spline
curve (green), and the sign of the discrete torsion (blue).

torsion constraint is mildly violated at one end — see Fig. 6. However, satisfac-
tion of the torsion constraint can be recovered by introducing some tension, as
seen in Fig. 7.

In addition to the CC criterion, the alternative HC and BV criteria pro-
posed in [12] for selecting the free angular parameters have also been studied
for the data sets described above. It was shown in [12] that these alternative
criteria can also be used for general data, and that they also generally produce
interpolants of fair shape. For brevity, we present here only a brief summary of
the results obtained with these alternative methods. Recall that, like the CC
criterion, the HC criterion selects β first, and then α. It differs from CC only
in the strategy adopted for choosing β — namely, by maximizing the curve arc
length. The BV criterion, on the other hand, selects α and β simultaneously
by minimizing5 | A1 − 1

2 (A0 + A2) |. Note that the HC and BV criteria have
greater computational cost than the CC criterion (BV requires use of a numer-
ical scheme to identify the minimum of a bivariate function, while HC entails
determination of the roots of a quartic polynomial).

The experiments indicate that the HC and BV criteria also offer good shape–
preserving properties: using the parameter values employed in the case of the CC
criterion has produced shape–preserving interpolants in all cases except the first

5Equation (30) implies that this quantity is also minimized by the CC and HC criteria,
but only with respect to α.
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Figure 4: Example 2: The “chair” data from [20]. The PH quintic spline
is constructed by defining α, β through the CC criterion and setting s = 1
in each segment. Left: the PH quintic spline curve (red) together with the
prescribed interpolation points and unit tangents (green), assigned according to
(63). Right: the torsion of the PH quintic spline curve (green), and the sign
of the discrete torsion (blue). Note that the vertical scale differs from that in
Fig. 3.

21



and last segments of the “chair” data, for which it was necessary to reduce the
tension parameter to satisfy the convexity constraints. Although these results
are promising, a rigorous proof for the shape–preserving capabilities of the HC
or BV criteria is impractical, because closed–form expressions for the α and β
parameters are not available in these cases.

Remark 2. Often, in practice, only the interpolation points p0, . . . ,pN are
specified, and a strategy for associating suitable unit tangents with each point
must be devised. In particular, it is desirable that this strategy should preserve
the shape incidated by the data points, i.e., that the conditions

sign([ tj ,∆pj , tj+1 ]) = sign([∆pj−1,∆pj ,∆pj+1]) ,

sign(Nj,i ·Nj,f ) = sign((∆pj−1×∆pj) · (∆pj×∆pj+1)) (63)

hold for j = 0, . . . , N − 1 (in the case of closed curves with p0 = pN , it is
assumed that ∆p−1 = ∆pN−1 and ∆pN = ∆p0; in the case of open curves,
∆p−1 and ∆pN are defined by assigning suitable left and right auxiliary points,
p−1 and pN+1). In fact, in the absence of unit tangents, the discrete quantities
defining the shape of the point data are actually the expressions on the right in
(63) — as in Example 2. A suitable method for defining unit tangents, proposed
in Section 3 of [1], was used to define the unit tangents when the data points
p0, . . . ,pN are not derived from a given analytic curve.
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Figure 5: Example 3: A single PH quintic interpolant to the data (62), computed
with α = β = 0 and s = 1. Left: the curve (red) with the given points and unit
tangents (green). Right: the torsion of the curve (green) and the sign of the
discrete torsion (blue).
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Figure 6: Example 3: A single PH quintic interpolant to the data (62), with
s = 1 and α, β chosen by the CC criterion. Left: the resulting curve (red) along
with the prescribed interpolation points and unit tangents (green). Right: the
torsion of the curve (green) and the sign of the discrete torsion (blue). Note
that the torsion constraint is marginally violated at t = 1.
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Figure 7: Example 3: A single PH quintic interpolant to the data (62), with
s = 5/6 and α, β chosen by the CC criterion. Left: the resulting curve (red)
together with the prescribed point and unit tangent data (green). Right: the
torsion of the curve (green) and the sign of the discrete torsion (blue). Note
that the torsion constraint is now satisfied.
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Remark 3. In many applications, G1 continuity does not suffice, and one must
seek interpolants with higher parametric or geometric continuity. If a low–degree
spline interpolant is also required, the use of global solution methods is, in gen-
eral, necessary. C2 spatial PH quintic splines, for example, require the solution
of a global system of equations if they are to interpolate a sequence of points
at given knot values. In particular, they incur systems of quadratic equations
in quaternion or complex variables — see [16, 14] — and careful initial esti-
mates are required to ensure rapid convergence of iterative solution methods. A
possible further extension of the present study involves generalizing the scheme
of [14] by introducing tension parameters to relax from C2 to G2 smoothness.
Such parameters could, in principle, be used to ensure the satisfaction of shape
constraints, while still maintaining desirable global shape properties. However,
this appears to be a non–trivial problem, since preliminary experiments sug-
gest that, for general data sets, the desired torsion signs cannot be realized by
straightforward extension of the initialization strategy employed in [14].

7 Conclusion

The shape–preserving interpolation of discrete data by space curves is a chal-
lenging problem, that has received considerable recent attention in the litera-
ture. The shape constraints imposed on space curves are typically concerned
with the sign of the torsion, and also the sign of the curvature of certain planar
projections of the curve (see [20]). The available shape–preserving interpolation
methods — both local and global approaches — are usually tension schemes,
in which the interpolant depends on parameters that can be used to make the
curve converge to the piecewise–linear interpolant. Although the shape con-
straints are satisfied for a sufficiently strong tension, this degrades the overall
fairness of the curve, and may result in extremely large curvature and/or tor-
sion values. Thus, the main goal is to seek a reasonable compromise between
shape–preservation and fairness.

Although they offer many useful advantages in applications, the imposition of
shape constraints on spatial Pythagorean–hodograph (PH) spline curves is more
challenging than for “ordinary” polynomial splines, due to the non–linear na-
ture of the construction algorithms. This study presents the first known scheme
for interpolation of spatial data by PH quintic spline curves under shape con-
straints, based on incorporating a “tension” parameter into each spline segment.
In particular, a local G1 Hermite scheme has been formulated. An asymptotic
analysis reveals that a non–empty subset of the parameter space is always com-
patible with the shape constraints and also that, for “reasonable” data, the CC
criterion ([12]) for selecting the free angular parameters on each segment pro-
duces interpolants that asymptotically satisfy the prescribed shape constraints.
Furthermore, the numerical experiments show that shape preservation is often
obtained with no tension or only mild tension and also for more general data
than was assumed in the theoretical asymptotic analysis.

The shape constraints considered herein focus on the orientation of the cur-
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vature vector at the given interpolation points, and on the sign of the torsion
over each spline segment between these points. The investigation of solutions
under more general shape constraints and their limiting behavior with respect
to the tension parameters, remain challenging open problems, as does the devel-
opment of schemes that can produce shape–preserving PH splines with higher–
order smoothness.
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