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Università di Pavia

Via Ferrata, 1, 27100 Pavia, Italy

Maria Sosio

Dipartimento di Matematica “Felice Casorati”

Università di Pavia
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Abstract. We prove Harnack type inequalities for a wide class of parabolic

doubly nonlinear equations including ut = div(|u|m−1|Du|p−2Du). We will

distinguish between the supercritical range 3 − p
N

< p + m < 3 and the sub-

critical 2 < p+m ≤ 3− p
N

range. Our results extend similar estimates holding

for general equations having the same structure as the parabolic p-Laplace or
the porous medium equation and recently collected in [6].

1. Introduction. Consider an open set E ⊂ RN , T > 0, and quasi-linear parabolic
differential equations of the form

ut − divA
(
x, t, u,D(|u|

m−1
p−1 u)

)
= 0 (1)

in ET = E×(0, T ], with p+m > 2. The function A : ET ×RN+1 → RN is assumed
to be measurable and subject to the structure conditions{

A(x, t, z, η) · η ≥ C0|η|p

|A(x, t, z, η)| ≤ C1|η|p−1
(2)

for almost all (x, t) ∈ ET , for all z ∈ R and η ∈ RN , with C0, C1 positive constants.
Assume also that the function A is monotone in the variable η

(A(x, t, z, η1)−A(x, t, z, η2)) · (η1 − η2) ≥ 0 (3)

and Lipschitz continuous in the variable |z|
m−1
p−1 z in the following sense

|A(x, t, z1, η)−A(x, t, z2, η)| ≤ Λ
∣∣∣|z1|

m−1
p−1 z1 − |z2|

m−1
p−1 z2

∣∣∣(1 + |η|p−1) (4)
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2 SIMONA FORNARO MARIA SOSIO AND VINCENZO VESPRI

for some given Λ > 0, and for the variables in the indicated domains. A prototype
example is

ut −
(
maij(x, t)

∣∣D|u|m−1
p−1 u

∣∣p−2(|u|
m−1
p−1 u)xj

)
xi

= 0

which can be written also as

ut −
(
mp−1aij(x, t)|u|m−1|Du|p−2uxj

)
xi

= 0 (5)

weakly in ET , where the matrix (aij) is only measurable and positive definite in
ET . In the literature these equations are classified as doubly non–linear, due to the
fact that the diffusion term depends non-linearly on both the unknown function u
and its gradient Du. A particularly interesting equation belonging to this class is

ut − div(|u|m−1|Du|p−2Du) = 0. (6)

Such gradient-dependent diffusion equations appear in many different physical con-
texts such as, for instance, the description of turbulent filtration in porous media,
or the flow of a gas through a porous medium in a turbulent regime ([5]) or in
glaciology ([4]). In [12], a one dimensional version of (6) has been proposed to
describe the filtration of water in porous building materials, such as bricks.
Besides its physical interpretation, equation (6) has been widely studied also from a
theoretical point of view, since it unifies the well–known p–Laplace equation (m = 1)
with the classical porous media equation (p = 2). Therefore, it is interesting to
see how much of the regularity properties of the solutions of the p–Laplace and
the porous media equations is preserved in this more general case. The literature
related to doubly non-linear equations is quite rich and this fact shows that these
equations have attracted a lot of attention. Existence, uniqueness and regularity of
solutions expecially for the model (6) have been studied by several authors, see e.g.
[1], [2], [3], [10], [11], [14], [15], [16], [17], [18] and [19].
We will deal with the singular range for the parameters m, p, namely m + p < 3
and we will establish some Harnack type inequalities for non-negative local weak
solutions to the wide class of equations (1)-(2) in a specific geometry which is
intrinsic to the solution and reflects the singularity of the equation. We will show
that there is a critical threshold for such Harnack estimates, which occurs when
m+ p+ p

N = 3. In the singular supercritical range

3− p

N
< p+m < 3,

a Harnack inequality holds in the same intrinsic form of the degenerate case m+p >
3 (see [7]); in addition, another family of Harnack inequalities will be proved. These
will be simultaneously forward in time, backward in time, and elliptic. In the critical
and subcritical range

2 < p+m ≤ 3− p

N
no Harnack estimate in any of the forms mentioned above holds. However, we will
prove a different form of Harnack estimate for p,m in such a range, with constants
depending on the ratio of some integral norms of the solution u (see Section 4). This
inequality can be seen as a weak form of the Harnack inequality given in Section
3 for the supercritical range. Although the results are formally identical to those
for equations of p-Laplacian and porous medium type and thus well expected, their
proofs are not a straightforward extension, due to the double singularity exhibited
by the equation. The literature does not always contain complete formal proofs of
the results regarding doubly non-linear equations. For this reason, we have started
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a project aiming at providing all the technical details of the proofs of the Harnack
inequalities for weak solutions of the singular equations (1)-(2). Such project started
with the previous papers [8] and [9], where several preliminary results have been
proved (even for more general equations), as DeGiorgi type lemmas, expansion of
positivity, L∞ local bounds, and ends with the present one, devoted to Harnack
estimates. We have used the same ideas as in [6] where the cases p = 2 or m = 1
have been considered.
Concerning assumptions (3) and (4), we remark that they are needed to apply the
comparison principle (see Corollary 1). We require such result in our approach for
the supercritical range. However, to simplify the exposition, we have assumed such
hypotheses since the beginning for the whole singular range 2 < m+ p < 3.

Acknowledgement. The authors have been supported by the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the
Istituto Nazionale di Alta Matematica (INdAM).

2. Preliminaries. A function u : ET → R is a local weak solution of (1)-(2) if

u ∈ C(0, T ;L2
loc(E)) ∩W 1,1

loc (0, T ;L1
loc(E)), |u|

m−1
p−1 u ∈ Lploc(0, T ;W 1,p

loc (E)),

and ∫
K

uψdx

∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

(
− uψt +A(x, t, u,D(|u|

m−1
p−1 u)) ·Dψ

)
dxdt = 0 (7)

for every compact set K ⊂ E, for every sub-interval [t1, t2] ⊂ (0, T ] and for every
test function

ψ ∈W 1,2
loc (0, T ;L2(K)) ∩ Lploc(0, T ;W 1,p

0 (K)).

The integrability hypothesis on u ensures that the integrals in (7) are well defined.
Sharp integrability hypothesis can be assumed by distinguishing the cases m > 1
and m < 1. For simplicity, we prefer to maintain a univalent definition.
We notice that weak solutions are also required to be in the class W 1,1

loc (0, T ;L1
loc(E))

as we need, in the supercritical range, the comparison principle (see Corollary 1),
which is related to the uniqueness of solutions. In the subcritical range we can
remove this hypothesis.
We denote by Kρ(y) the cube of RN centered at y with edge 2ρ. If y = 0, we simply
write Kρ instead of Kρ(0). If Ω is a bounded open set contained in E with smooth
boundary ∂Ω, consider the boundary value problem

u ∈ C(0, T ;L2(Ω)) ∩W 1,1(0, T ;L1(Ω)), |u|
m−1
p−1 u ∈ Lp(0, T ;W 1,p(Ω))

ut − divA(x, t, u,D(|u|
m−1
p−1 u)) = 0 weakly in Ω× (0, T )

(|u|
m−1
p−1 u)(·, t)

∣∣
∂Ω

= g(·, t) ∈ Lp(0, T ;W 1− 1
p (∂Ω))

u(·, 0) = u0 ∈ L2(Ω).

(8)

Proposition 1. Let A satisfy (2)-(3)-(4). Then the boundary value problem (8)
has at most one solution.
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Proof. For ε > 0 let Hε(·) be the approximation to the Heaviside function defined
by

Hε(s) =


0 if s ≤ 0
s

ε
if 0 < s < ε

1 if s ≥ ε.
If u and v are two weak solutions to (8), in their respective weak formulation take
the test function Hε(ξ), with ξ = |u|

m−1
p−1 u− |v|

m−1
p−1 v, and subtract the expressions

so obtained to get∫ t

0

∫
Ω

∂τ (u− v)Hε(ξ)dxdτ

+
∫ t

0

∫
Ω

H ′ε(ξ)
(
A(x, τ, u,D(|u|

m−1
p−1 u))−A(x, τ, u,D(|v|

m−1
p−1 v))

)
·Dξdxdτ

=
∫ t

0

∫
Ω

H ′ε(ξ)
(
A(x, τ, v,D(|v|

m−1
p−1 v))−A(x, τ, u,D(|v|

m−1
p−1 v))

)
·Dξdxdτ

for all t ∈ (0, T ). The second term on the left-hand side is discarded by the mono-
tonicity assumption (3). As ε→ 0, the first term tends to∫ t

0

∫
Ω

∂τ (u− v)+dxdτ =
∫

Ω

(u− v)+(x, t)dx,

for all t ∈ (0, T ). The term on the right-hand side is estimated by making use of
the Lipschitz continuity (4), and is majorized by

Λ
ε

∫∫
Ω×(0,T )∩[0<ξ<ε]

ξ
(
1 +

∣∣D|v|m−1
p−1 v

∣∣p−1)|Dξ|dxdτ
≤ Λ

∫∫
Ω×(0,T )∩[0<ξ<ε]

(
1 +

∣∣D|v|m−1
p−1 v

∣∣p−1)|Dξ|dxdτ → 0 as ε→ 0.

This proves that u ≤ v in Ω× (0, T ). Analogously v ≤ u in Ω× (0, T ) and thus the
thesis follows.

As an immediate consequence we have the comparison principle for weak solutions.

Corollary 1 (Weak Comparison Principle). Let A satisfy (2)-(3)-(4). Let ui for
i = 1, 2 be weak solutions to (8) corresponding to initial and boundary data u0,i and
gi in the indicated functional classes. If u0,1 ≤ u0,2 a.e. in Ω and g1 ≤ g2 a.e. in
∂Ω× (0, T ), then u1 ≤ u2 a.e. in Ω× (0, T ).

In the proofs of our results we will make use of some local properties of non-
negative, local, weak solution to the singular equations (1)-(2). For the sake of
completeness, we recall the statements below.
In [8, Theorem 5.1] the following L1

loc form of the Harnack inequality has been
proved in the range 2 < m+ p < 3.

Theorem 2.1. Let u be a non-negative, local, weak solution to the singular equa-
tions (1)-(2) in ET . There exists a positive constant γ̃ depending only upon the
data {p,m,N,C0, C1}, such that for all cylinders K2ρ(y)× [s, t] ⊂ ET

sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx ≤ γ̃ inf
s<τ<t

∫
K2ρ(y)

u(x, τ)dx+ γ̃

(
t− s
ρλ

) 1
3−m−p

, (9)
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where
λ = N(p+m− 3) + p.

The constant γ̃ = γ̃(p,m)→∞ as either m+ p→ 3, 2.

For λ > 0, the parametersm, p are in the singular, super-critical rangem+p > 3− p
N ,

and if λ ≤ 0, m, p are in the critical and sub-critical range m+ p ≤ 3− p
N . However

the Harnack type estimate in the topology of L1
loc (9) holds true for all 2 < m+p < 3

and accordingly, λ could be of either sign.
In the sequel we also need the Lrloc−L∞loc estimates below, which have been proved
in [9, Theorem 3.1].

Theorem 2.2. Let u be a non-negative, locally bounded, local, weak solution to the
singular equations (1)-(2) in ET , and let r ≥ 1 be such that

λr = N(p+m− 3) + rp > 0.

Then there exists a positive constant γ depending only on the data {p,m,N,C0, C1}
such that for all cylinders Kρ(y)× [2s− t, t] ⊂ ET

sup
K 1

2 ρ
(y)×[s,t]

u ≤ γ
(

ρp

t− s

) N
λr

(
1

ρN (t− s)

∫ t

2s−t

∫
Kρ(y)

urdxdτ

) p
λr

+
(
t− s
ρp

) 1
3−m−p

.

Combining Theorem 2.1 with Theorem 2.2 with r = 1 we obtain the following
L1

loc − L∞loc Harnack type estimate valid for λ > 0.

Theorem 2.3. Let u be a non-negative, locally bounded, local, weak solution to the
singular equations (1)-(2) in ET and assume that λ = N(p+m− 3) + p > 0. Then
there exists a positive constant γ depending only upon the data {p,m,N,C0, C1},
such that for all cylinders K2ρ(y)× [2s− t, t] ⊂ ET

sup
Kρ(y)×[s,t]

u ≤ γ

(t− s)Nλ

(
inf

2s−t<τ<t

∫
K2ρ(y)

u(x, τ)dx
) p
λ

+ γ
( t− s
ρp

) 1
3−m−p

.

The expansion of positivity is the content of the next proposition. It is at the heart
of any form of Harnack inequality. We refer to [9] for the proof. For (y, s) ∈ ET
and some given positive constant M , consider the cylinder

K16ρ(y)× (s, s+ δM3−m−pρp]

where δ > 0 is given by Proposition 2 below and ρ > 0 is so small that the cylinder
is included in ET .

Proposition 2. Assume that u is a non-negative local weak solution to (1)-(2) and
that there holds

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). Then there exist constants ε, δ, η ∈ (0, 1) and
γ > 1 depending only upon the data {p,m,N,C0, C1} and α, and independent of
(y, s), ρ,M , such that

u(·, t) ≥ ηM in K2ρ(y)

for all times
s+ (1− ε)δM3−m−pρp ≤ t ≤ s+ δM3−m−pρp.

Finally, we need the following DeGiorgi type lemma (see [8] for the proof).
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Lemma 2.4. Let u be a non-negative, locally bounded, local, weak solution to the
equation (1)-(2) in ET . Let (y, s) ∈ ET and assume that the cylinder K2ρ(y) ×
(s, s+ θ(2ρ)p] ⊂ ET and

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y),

for some M > 0 and ξ ∈ (0, 1]. Let a ∈ (0, 1). Then there exists ν0 ∈ (0, 1),
depending only upon a and the data {N,m, p, C0, C1}, such that, if

|[u ≤ ξM ]∩[K2ρ(y)×(s, s+θ(2ρ)p] ]| ≤ ν0

θ(ξM)p+m−3
|K2ρ(y)×(s, s+θ(2ρ)p]|, (10)

then
u ≥ aξM in Kρ(y)× (s, s+ θ(2ρ)p].

3. Intrinsic Harnack inequality for super-critical, singular equations. Let
u be a continuous, non-negative, local, weak solution to the singular equations
(1)-(2) in ET , for p,m in the super-critical range

3− p

N
< m+ p < 3. (11)

Fix (x0, t0) ∈ ET such that u(x0, t0) > 0 and construct the cylinders

(x0, t0) +Q±ρ (θ) = Kρ(x0)× (t0 − θρp, t0 + θρp), θ =
(
u(x0, t0)

c

)3−m−p

(12)

where c is a constant that will be fixed later. These cylinders are “intrinsic” to the
solution since their length is determined by the value of u at (x0, t0). The Harnack
inequality holds in such an intrinsic geometry, as made precise in Theorems 3.1–3.2
below. The first is an intrinsic, Harnack inequality similar to that for degenerate
equations (see [7]). This Harnack estimate is stable as p + m → 3. The second
is a “time insensitive” Harnack inequality, valid for all times t ranging in a whole
interval according to the intrinsic geometry of (12) and including t0. This inequality
is unstable as p+m→ 3. Indeed, it is well known that the elliptic Harnack inequality
is false for the heat equation.

Theorem 3.1 (The Intrinsic Harnack Inequality). There exist constants ε, c ∈
(0, 1) and γ > 1 depending only upon the data {p,m,N,C0, C1}, such that for all
(x0, t0) ∈ ET such that u(x0, t0) > 0, and all the intrinsic cylinders (x0, t0)+Q±8ρ(θ)
as in (12), contained in ET ,

γ−1 sup
Kρ(x0)

u
(
·, t0 − εu(x0, t0)3−m−pρp

)
≤ u(x0, t0)

≤ γ inf
Kρ(x0)

u
(
·, t0 + εu(x0, t0)3−m−pρp

)
.

(13)
The constants γ, c→∞ as m+ p+ p

N → 3, but they are stable as m+ p→ 3.

Theorem 3.2 (Time insensitive, Intrinsic Harnack Inequalities). There exists con-
stants ε̄ ∈ (0, 1) and γ̄ > 1, depending only upon the data {p,m,N,C0, C1}, such
that for all (x0, t0) ∈ ET such that u(x0, t0) > 0, and all the intrinsic cylinders
(x0, t0) + Q±8ρ(θ) as in (12), where c is the constant of Theorem 3.1, contained in
ET ,

γ̄−1 sup
Kρ(x0)

u(·, σ) ≤ u(x0, t0) ≤ γ̄ inf
Kρ(x0)

u(·, τ) (14)
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for any pair of time levels σ, τ in the range

t0 − ε̄u(x0, t0)3−m−pρp ≤ σ, τ ≤ t0 + ε̄u(x0, t0)3−m−pρp.

The constants ε̄ and γ̄−1 tend to zero as either p+m+ p
N → 3 or as p+m→ 3.

Choosing σ = τ = t0 in the last theorem, we are led to the elliptic Harnack inequal-
ity.

Corollary 2 (Elliptic Harnack Inequality). For all (x0, t0) ∈ ET with u(x0, t0) > 0,
and all the intrinsic cylinders (x0, t0) + Q±8ρ(θ) as in (12), where c is the constant
of Theorem 3.1, contained in ET ,

γ̄−1 sup
Kρ(x0)

u(·, t0) ≤ u(x0, t0) ≤ γ̄ inf
Kρ(x0)

u(·, t0),

for the same constant γ̄ of Theorem 3.2.

Remark 1. The Theorems have been stated for continuous solutions, to give mean-
ing to u(x0, t0). Actually locally bounded, local, weak solutions to (1)-(2), for all
m+ p > 2 are locally Hölder continuous. The proof of such result can be found in
[20], up to some adjustments needed to correct a mistake contained therein. To this
aim, one can give a look to the recent monograph [6], where the p-Laplacian and
porous medium equations are treated in full details, and try to imitate the tecnique.
The reader may also consider the reference [13], where the same issue is studied for
a specific type of doubly non linear equation.

The intrinsic Harnack inequality, in turn, can be used to prove local Hölder
continuity of weak solutions. This can be seen by combining the arguments used to
prove Hölder regularity of weak solutions to p-Laplacian and porous medium type.

The proofs of Theorem 3.1 and Theorem 3.2 are interwined. In either case the key
inequalities to establish are the right-hand side estimates in (13) and (14). The left
estimates will follow from these by geometrical arguments.

3.1. Proof of the right-hand side Harnack inequality of Theorem 3.2. We
start by stating and proving independently the right-hand side of (14).

Proposition 3. Let u be a continuous, locally bounded, non-negative, local, weak
solution to the singular equation (1)-(2) in the super-critical range (11). Then there
exist positive constants ε̄ and γ̄, that can be determined quantitatively, a priori only
in terms of the data {p,m,N,C0, C1}, such that for all (x0, t0) ∈ ET such that
u(x0, t0) > 0, and all the intrinsic cylinders K8ρ(x0)×

(
t0−u(x0, t0)3−m−p(8ρ)p, t0+

u(x0, t0)3−m−p(8ρ)p
)

contained in ET ,

u(x0, t0) ≤ γ̄ inf
Kρ(x0)

u(·, t)

for all times

t0 − ε̄u(x0, t0)3−m−pρp ≤ t ≤ t0 + ε̄u(x0, t0)3−m−pρp.

The constant ε̄ and γ̄ tend to zero as either m+ p→ 3 or λ→ 0.
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3.1.1. Changing variables. Introduce the change of variables and unknown function

z =
x− x0

ρ
, τ =

t− t0
u(x0, t0)3−m−pρp

, v(z, τ) =
u(x, t)
u(x0, t0)

.

This maps the original cylinder into

Q = K8 × (−8p, 8p].

The function v is a weak solution to

vτ − divĀ(z, τ, v,D(|v|
m−1
p−1 v)) = 0 in Q,

where the transformed function Ā satisfies (2) with the same constants C0, C1.
Establishing Proposition 3 consists in finding positive constants ε̄ and γ̄, depending
only upon the data, such that

v(·, τ) ≥ γ̄−1 in K1 for all τ ∈ [−ε̄, ε̄].
Hereafter we relabel by x, t the new coordinates z, τ .

Remark 2. We notice that the function Ā satisfies also (3) and (4) with a new
constant Λ̄ depending on Λ and u(x0, t0).

3.1.2. Locating the supremum of v in K1. For s ∈ (0, 1) introduce the family of
nested expanding cubes {Ks} in RN centered at the origin, and the increasing
family of positive numbers

Ms = sup
Ks

v(·, 0), Ns = (1− s)−
p

3−m−p .

By definition, M0 = N0 and Ns → +∞, as s → 1, whereas Ms remains finite.
Therefore the equation Ms = Ns has roots. Denoting by τ∗ the largest root we have

Mτ∗ = (1− τ∗)−
p

3−m−p and Ms ≤ Ns for all s ≥ τ∗.
Since v is continuous, the supremum Mτ∗ is achieved at some x̄ ∈ Kτ∗ . Choose
τ̄ ∈ (0, 1) from

(1− τ̄)−
p

3−m−p = 4(1− τ∗)−
p

3−m−p i.e. τ̄ = 1− 4−
3−m−p

p (1− τ∗).
Set also

2r := τ̄ − τ∗ = (1− 4−
3−m−p

p )(1− τ∗).
For those choices, K2r(x̄) ⊂ Kτ̄ ,Mτ̄ ≤ Nτ̄ , and

sup
Kτ∗

v(·, 0) = (1−τ∗)−
p

3−m−p = v(x̄, 0)≤ sup
K2r(x̄)

v(·, 0) ≤ sup
Kτ̄

v(·, 0) ≤ 4(1−τ∗)−
p

3−m−p .

3.1.3. Estimating the supremum of v in some intrinsic neighbourhood about (x̄, 0).
Consider the cylinder centered at (x̄, 0)

Q2r = K2r(x̄)× (−θ∗(2r)p, θ∗(2r)p], θ∗ = (1− τ∗)−p.
Such a cylinder is included in the box Q since

θ∗(2r)p = (1− τ∗)−p(1− 4−
3−m−p

p )p(1− τ∗)p ≤ 1 < 8.

Lemma 3.3. There exists a positive constant γ1, depending only on the data
{p,m,N,C0, C1}, and independent of ρ, such that

sup
Qr

v ≤ γ1(1− τ∗)−
p

3−m−p .

The constant γ1 → +∞ as either p+m→ 3 or λ→ 0.
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Proof. Apply Theorem 2.3 to the function v over the pair of cylinders Qr ⊂ Q2r.
Apply it first for the choice

ρ = r, y = x̄, s = 0, t = θ∗(2r)p,

and we obtain

sup
Kr(x̄)×[0,θ∗(2r)p]

v ≤ γ

(θ∗(2r)p)
N
λ

(
inf

−θ∗(2r)p<τ<θ∗(2r)p

∫
K2r(x̄)

v(x, τ)dx
) p
λ

+ γ(2pθ∗)
1

3−m−p

≤ γ(1− τ∗)p
N
λ

(∫
K2r(x̄)

v(x, 0)dx
) p
λ

+ γ2
p

3−m−p (1− τ∗)−
p

3−m−p

≤ γ(1− τ∗)−
p

3−m−p [4
p
λ + 2

p
3−m−p ] = γ1(1− τ∗)−

p
3−m−p .

Then apply it again, for the choice

ρ = r, y = x̄, s = −θ∗rp, t = 0.

We obtain

sup
Kr(x̄)×[−θ∗rp,0]

v ≤ γ

(θ∗rp)
N
λ

(
inf

−2θ∗rp<τ<0

∫
K2r(x̄)

v(x, τ)dx
) p
λ

+ γ(θ∗)
1

3−m−p

≤ γ1(1− τ∗)−
p

3−m−p ,

by possibly changing the constant γ1. Hence the statement is proved.

Introduce next the cylinder

Qr(δ̄) = Kr(x̄)× (−δ̄θ∗rp, δ̄θ∗rp] ⊂ Q2r,

where δ̄ ∈ (0, 1) is to be chosen.

Lemma 3.4. There exist numbers δ̄, c̄, and α ∈ (0, 1), depending only upon the
data {p,m,N,C0, C1}, and independent of ρ, such that

|[v(·, t) ≥ c̄(1− τ∗)−
p

3−m−p ∩Kr(x̄)| > α|Kr| for all t ∈ [−δ̄θ∗rp, δ̄θ∗rp].

The constants c̄ and α tend to zero as either p+m→ 3 or λ→ 0. The constant δ̄
tends to zero as p+m→ 3.

Proof. Apply Theorem 2.3 to the function v over the pair of cylinders Q r
2
(δ̄) ⊂

Qr(δ̄), for the choices ρ = r
2 , y = x̄, s = 0, t = δ̄θ∗r

p. For all t ∈ [−δ̄θ∗rp, δ̄θ∗rp]

(1− τ∗)−
p

3−m−p = v(x̄, 0) ≤ sup
K r

2
(x̄)

v(·, 0)

≤ γ

(δ̄θ∗rp)
N
λ

(∫
Kr(x̄)

v(x, t)dx
) p
λ

+ γ
( δ̄θ∗rp

rp

) 1
3−m−p

≤ γ (1− τ∗)p
N
λ

δ̄
N
λ

(∫
Kr(x̄)

v(x, t)dx
) p
λ

+ γ(δ̄)
1

3−m−p (1− τ∗)−
p

3−m−p .

Choose δ̄ from

γ(δ̄)
1

3−m−p ≤ 1
2
,

and set

γ2 = 2γ, γ3 =
2
N
λ (3−m−p)γ2

δ̄
N
λ

.
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For such choices, the constants δ̄, γ2, γ3 depend only upon the data p,m,N,C0, C1.
Then, for all t ∈ [−δ̄θ∗rp, δ̄θ∗rp]

1
γ2

(1− τ∗)−
p

3−m−p ≤ (1− τ∗)p
N
λ

δ̄
N
λ

(∫
Kr(x̄)

v(x, t)dx
) p
λ

.

From this, for c̄ ∈ (0, 1),

1
γ3

(1− τ∗)−
p

3−m−p ≤ (1− τ∗)p
N
λ

2
N
λ (3−m−p)

(∫
Kr(x̄)

v(x, t)dx
) p
λ

≤ (1− τ∗)p
N
λ

2
N
λ (3−m−p)

(∫
Kr(x̄)

v(x, t)χ
[v(·,t)<c̄(1−τ∗)

− p
3−m−p ]

dx

+
∫
Kr(x̄)

v(x, t)χ
[v(·,t)≥c̄(1−τ∗)

− p
3−m−p ]

dx

) p
λ

≤ (1− τ∗)p
N
λ

(∫
Kr(x̄)

v(x, t)χ
[v(·,t)<c̄(1−τ∗)

− p
3−m−p ]

dx

) p
λ

+ (1− τ∗)p
N
λ

(∫
Kr(x̄)

v(x, t)χ
[v(·,t)≥c̄(1−τ∗)

− p
3−m−p ]

dx

) p
λ

≤ c̄
p
λ (1− τ∗)−

p
3−m−p

+ γ
p
λ
1 (1− τ∗)−

p
3−m−p

∣∣Kr(x̄) ∩
[
v(·, t) ≥ c̄(1− τ∗)−

p
3−m−p ]

∣∣ pλ∣∣Kr

∣∣ pλ .

To prove the thesis choose

c̄
p
λ =

1
2γ3

and set α =
1
γ1

( 1
2γ3

)λ
p

. (15)

3.1.4. Expanding the positivity of v. The information provided by Lemma 3.4 is the
assumption required by the expansion of positivity for all

−δ̄θ∗rp ≤ s ≤ δ̄θ∗rp.

Apply then the expansion of positivity (Proposition 2) to v with ρ = r, M =
c̄(1− τ∗)−

p
3−m−p and for s ranging in the indicated interval. It gives

v(·, t) > ηc̄(1− τ∗)−
p

3−m−p in K2r(x̄) (16)

and for all times

−δ̄θ∗rp + (1− ε)δM3−m−prp < t < δ̄θ∗r
p,

for constants δ, ε ∈ (0, 1) depending only upon the data {p,m,N,C0, C1} and the
constant α in (15), which itself is determined only in terms of the data. In order to
expand the positivity of v to the full cube K1 we apply the comparison principle.
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Consider the boundary value problem

w ∈ C(−t0, 1;L2(K4(x̄))) ∩W 1,1(−t0, 1;L1(K4(x̄))),

w
m+p−2
p−1 ∈ Lp(−t0, 1;W 1,p

0 (K4(x̄))),

wt − divĀ(x, t, w,D(w
m+p−2
p−1 )) = 0, in K4(x̄)× [−t0, 1],

w = 0, on ∂K4(x̄)× [−t0, 1],

w(·,−t0) = w0 in K4(x̄)

where

w0(x) =
{
ηc̄(1− τ∗)−N , x ∈ K2r(x̄),
0, x ∈ K4(x̄) \K2r(x̄),

and −t0 is any time in the interval (−δ̄θ∗rp + (1− ε)δM3−m−prp, 0). The problem
has a unique solution w. Moreover

w ≤ v on ∂K4(x̄)× [−t0, 1]

and if x ∈ K2r(x̄) by (16)

v(x,−t0)− w(x,−t0) ≥ ηc̄(1− τ∗)−
p

3−m−p − ηc̄(1− τ∗)−N

= ηc̄(1− τ∗)−N [(1− τ∗)−
λ

3−m−p − 1] > 0,

since λ > 0. Therefore, by the comparison principle Corollary 1 (see also Remark
2)

v ≥ w in K4(x̄)× [−t0, 1].

To prove the Proposition 3, it suffices to show that we can determine two constants
γ̄ and ε̄, depending only upon the data, such that

w(x, t) ≥ γ̄−1 in K1 for all t ∈ [−ε̄, ε̄].

By the definition ∫
K4(x̄)

w(x,−t0)dx = ηc̄ν0,

where ν0 = (1− 4−
3−m−p

p )N . From Theorem 2.3, we deduce

sup
K2(x̄)×[− t02 ,

t0
2 ]

w(·, t) ≤ γ t−
N
λ

0

(∫
K4(x̄)

w(x,−t0)dx
) p
λ

+ γ t
1

3−m−p
0

= γ t
−Nλ
0

(
ηc̄ν0

) p
λ + γ t

1
3−m−p
0 . (17)

On the other hand, by Theorem 2.1, for all t ∈ [−t0, t0]

ηc̄ν0 =
∫
K1(x̄)

w(x,−t0)dx ≤ γ̃
∫
K2(x̄)

w(x, t)dx+ γ̃ t
1

3−m−p
0 ,

We choose t0 such that in the last line

γ̃ t
1

3−m−p
0 =

1
2
ηc̄ν0,

namely

t0 =
(1

2
γ̃−1ηc̄ν0

)3−m−p
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This is clearly possible if ( 1
2γ
−1ηc̄ν0)3−m−p ≤ δ̄θ∗r

p − (1 − ε)δM3−m−prp. If not,
it suffices to choose a smaller η which does not change the validity of (16). At this
point ∫

K2(x̄)

w(x, t)dx ≥ 1
2
ηc̄ν0γ̃

−1,

for all t ∈ [−t0, t0]. Moreover, with the choice of t0 above, (17) yields

sup
K2(x̄)×[− t02 ,

t0
2 ]

w(·, t) ≤ γ∗ηc̄ν0
def= γ∗,

for a suitable γ∗ depending on the data. For any t ∈ [− t02 ,
t0
2 ] we have

1
2
ηc̄ν0γ̃

−1 ≤
∫
K2(x̄)

w(x, t)dx =
∫
K2(x̄)∩[w(·,t)<c0]

w(x, t)dx

+
∫
K2(x̄)∩[w(·,t)≥c0]

w(x, t)dx

≤ c0|K2|+ γ∗|[w(·, t) ≥ c0] ∩K2(x̄)|,

where c0 is any positive number. Choosing

c0 =
1

4|K2|
ηc̄ν0γ̃

−1,

the previous inequality gives

|[w(·, t) ≥ c0] ∩K2(x̄)| ≥ ᾱ|K2|, ᾱ =
1

4γ∗γ̃|K2|
,

for all t ∈ [− t02 ,
t0
2 ]. By the expansion of positivity (Proposition 2)

w(x, t) ≥ ηc0 in K4(x̄) for all t ∈ [−ε̄, ε̄],

for a sufficiently small ε̄ depending only the data. This ends the proof. �

3.2. Proof of the right-hand side Harnack inequality of Theorem 3.1. The
estimate in the proof of Theorem 3.2 deteriorate as p+m→ 3 and as m+p+ p

N → 3.
Stable estimates for p+m→ 3 required in the proof of the right-hand side inequality
of Theorem 3.1 can be derived as in the case of equations of p-Laplacian type (see
[6]). As remarked in that contest, the proof is based on the stability of the expansion
of positivity and some geometrical arguments. �

3.3. Proof of the left-hand side Harnack inequality of Theorem 3.1. Let
ε, γ be the constants appearing on the right-hand side Harnack inequality of Theo-
rem 3.1. Set

t̄ = t0 − εu(x0, t0)3−m−pρp

α = (2γ)
m+p−3

p .

Consider the cube Kαρ(x0), and introduce the set

Uα = Kαρ(x0) ∩ [u(·, t̄) ≤ γu(x0, t0)].

Since u is continuous, Uα is closed. We will prove that the choice of the parameter
α yields that Uα is also open. Then, if Uα is not empty, it coincides with Kαρ,
thereby establishing the left-hand side, intrinsic Harnack inequality in (13), modulo
a suitable re-definition of ρ and ε.
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Assume momentarily that Uα is not empty, and fix z ∈ Uα. Since u is continuous,
there exists a cube Kε(z) ⊂ Kαρ(x0) such that

u(y, t̄) ≤ 2γu(x0, t0) for all y ∈ Kε(z). (18)

For each y ∈ Kε(z) construct the intrinsic p-paraboloid

P(y, t̄) = {(x, t)| |t− t̄| ≥ εu(y, t̄)3−m−p|x− y|p}.
Due to the choice of α and (18) we have that (x0, t0) ∈ P(y, t̄), so that by the
right-hand side Harnack inequality in (13)

u(y, t̄) ≤ γ u(x0, t0)

and hence y ∈ Uα, proving Uα to be open. Notice that the right-hand side Harnack
inequality can be applied since, in view of (18), the cylinder

(y, t̄) +Q±8ρ(θ̄) with θ̄ =
(
u(y, t̄)
c

)3−m−p

can be assumed to be contained in ET , by possibly redefining the constant c ap-
pearing in (12).
It remains to show that Uα 6= ∅. Having determined α, consider the cylinder

Kαρ(x0)× (t̄, t̄+ ν(γu(x0, t0))3−m−p(αρ)p], (19)

where ν ∈ (0, 1) is to be chosen, depending only on the data {p,m,N,C0, C1}. Such
a cylinder crosses the time level t0 if

t0 − εu(x0, t0)3−m−pρp + ν(γu(x0, t0))3−m−p(αρ)p > t0.

Recalling the value of α, this occurs if

νγ3−m−pαp > ε ⇒ ε < ν2p+m−3,

which, by reducing ε if necessary, we assume. If Uα = ∅, then

u(·, t̄) > γu(x0, t0) in Kαρ(x0).

Apply Lemma 2.4 in the cylinder (19) with

a =
1
2
, ξ = 1, M = γu(x0, t0), ν = ν0, θ = ν0(γu(x0, t0))3−m−p,

where ν0 is the number in the hypothesis (10) of Lemma 2.4. For such a choice of
θ, (10) is satisfied and the lemma yields

u(x, t0) >
1
2
γu(x0, t0) for all x ∈ K 1

2αρ
(x0).

Computing this for x = x0 gives a contradiction if γ > 2, which without loss of
generality we may assume. �

3.4. Proof of the left-hand side Harnack inequality of Theorem 3.2. Let
the assumptions of Theorem 3.2 be in force and consider first the left-hand side
inequality (14) for the specific value of σ

σ̄ = t0 − ε̄u(x0, t0)3−m−pρp.

For such fixed value of σ, the left-hand side inequality in (14) can be derived exactly
as in the case of the left-hand side inequality (13) of Theorem 3.1 as established in
the previous section. Thus, by possibly redefining γ̄ and ε̄,

sup
Kρ(x0)

u(·, σ̄) ≤ γ̄u(x0, t0).
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Apply Theorem 2.3 over the cubes K 1
2ρ

(x0) ⊂ Kρ(x0) for the time levels

t0 − ε̄u(x0, t0)3−m−pρp < s < t0 −
1
2
ε̄u(x0, t0)3−m−pρp

< t0 < t < t0 + ε̄u(x0, t0)3−m−pρp
(20)

so that
1
2
ε̄u(x0, t0)3−m−pρp ≤ t− s ≤ 2ε̄u(x0, t0)3−m−pρp.

With these choices,

sup
K 1

2 ρ
(x0)

u(·, t) ≤ γ

ε̄
N
λ u(x0, t0)

N(3−m−p)
λ

(∫
Kρ(x0)

u(x, σ̄)dx
) p
λ

+ γ(2ε̄)
1

(3−m−p)u(x0, t0)

≤ (γγ̄
p
λ ε̄

−N
λ + γ(2ε̄)

1
3−m−p )u(x0, t0)

= ¯̄γu(x0, t0).

This establishes the left-hand side inequality (14) for all σ = t in the range (20), by
possibly redefining γ̄ and ε̄. �

4. Harnack estimates for sub-critical singular equations. For the sake of
simplicity, we continue to deal with the homogeneous equation (1), but the result
can be extended, by minor changes, to slightly more general non homogeneous
equations (see [8] and [9]). In this section we will not need assumptions (3) and (4)
since we will not make use of the comparison principle. Therefore weak solutions
do not need to belong to W 1,1

loc (0, T ;L1
loc(E)).

Let u be a non-negative, local, weak solutions to the singular equation (1) in ET ,
for p,m in the critical and sub-critical range

2 < p+m ≤ 3− p

N
. (21)

Now weak solutions are not required to belong to W 1,1
loc (0, T ;L1

loc(E)). An analysis
of the model equation (5) suggests that neither of the previous Harnack inequalities
holds in the sub-critical range (2 < m+ p < 3− p

N ); as discussed by Vespri in [21],
the solutions to the Cauchy problem{

ut = div(|u|m−1|Du|p−2Du) in RN × (0,∞)

u(x, 0) = u0(x) ∈ L1(RN ) ∩ L(3−m−p)(N/p)(RN ), u0(x) ≥ 0
(22)

become extinct after a finite time, and this contradicts the Harnack estimate in any
of the forms (13)-(14). Nevertheless a different form of Harnack estimate holds for
p,m in the range (21), with constants depending on the ratio of some integral norms
of the solution u. Fix (x0, t0) ∈ ET and ρ such that K4ρ(x0) ⊂ E, and introduce
the quantity

θ =

ε(∫
Kρ(x0)

uq(·, t0)dx

) 1
q

3−m−p

, (23)

where ε ∈ (0, 1) is to be chosen, and q ≥ 1 is arbitrary. If θ > 0 assume that

(x0, t0) +Q−8ρ(θ) = K8ρ(θ)× (t0 − θ(8ρ)p, t0] ⊂ ET ,
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and set

σ =


(∫

Kρ(x0)

uq(·, t0)dx
) 1
q

(∫
K4ρ(x0)

ur(·, t0 − θρp)dx
) 1
r


rp
λr

(24)

where r ≥ 1 is any number such that

λr = N(p+m− 3) + rp > 0. (25)

Theorem 4.1. Let u be a non-negative, locally bounded, local, weak solution to the
singular equation (1)-(2) in ET , for 2 < m + p < 3. Introduce θ as in (23) and
assume that θ > 0. There exist constants ε ∈ (0, 1), and γ, β > 1, depending only
on the data {p,m,N,C0, C1} and the parameters q, r, such that

inf
(x0,t0)+Q−ρ ( 1

2 θ)
u ≥ γσβ sup

(x0,t0)+Q−ρ (θ)

u, (26)

where σ is defined in (24), q ≥ 1 and r ≥ 1 satisfies (25). The constant ε→ 0, and
γ, β →∞ as either λr → 0 or λr →∞.

Remark 3. Inequality (26) is not a true Harnack inequality, since σ depends upon
the solution itself. It would reduce to a Harnack inequality if σ ≥ σ0 for some
absolute constant σ0 depending only upon the data. This however cannot occur
since a Harnack inequality for solutions to (22) does not hold. Inequality (26) can
be regarded as a “weak” form of a Harnack estimate valid for all 2 < m+ p < 3.

4.1. Components of the proof of Theorem 4.1. We will need the expansion
of positivity (Proposition 2) and some Lrloc estimates backward in time proved in
[9]. For the sake of completeness we recall them.

Proposition 4. Let u be a locally bounded, local, weak solution to (1)–(2) in ET ,
and let κ > 1. Assume that the cylinder K2ρ(y) × [s, t] is included in ET . Then
there exists a positive constant γ, depending only upon the data {p,m,N,C0, C1}
and κ, such that

sup
s≤τ≤t

∫
Kρ(y)

uκ±(x, τ)dx ≤ γ

(∫
K2ρ(y)

uκ±(x, s)dx+
( (t− s)κ

ρλκ

) 1
3−m−p

)
.

Theorem 4.2. Let u be a non-negative, locally bounded, local, weak solutions to
the singular equation (1) in ET , for 2 < p + m < 3, and let r ≥ 1 satisfy (25).
There exists a positive constant γr, depending only upon the data {p,m,N,C0, C1},
and r, such that

sup
Kρ(y)×[s,t]

u ≤ γr

(t− s)
N
λr

(∫
K2ρ(y)

ur(x, 2s− t)dx
) p
λr + γr

( t− s
ρp

) 1
3−m−p

for all cylinders

K2ρ(y)× [s− (t− s), s+ (t− s)] ⊂ ET .

The constant γr →∞ if either λr → 0 or λr →∞.
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4.2. Estimating the positivity set of the solution. Having fixed (x0, t0) ∈ ET ,
assume it coincides with the origin, write Kρ(0) = Kρ and introduce the quantity
θ as in (23), which is assumed to be positive. Apply Proposition 4 (Theorem 2.1 if
q = 1) for κ = q, y = 0, and s ∈ (−θρp, 0]. Using the definition (23) of θ gives∫

Kρ

uq(x, 0)dx ≤ γq

∫
K2ρ

uq(x, s)dx+ γq

( (θρp)q

ρλq

) 1
3−m−p

≤ γq

∫
K2ρ

uq(x, s)dx+ γqε
q

∫
Kρ

uq(x, 0)dx,

for a constant γq depending only on the data {p,m,N,C0, C1} and q. Choosing ε
from

γqε
q ≤ 1

2
,

yields ∫
K2ρ

uq(x, s)dx ≥ 1
2γq

∫
Kρ

uq(x, 0)dx (27)

for all s ∈ (−θρp, 0]. Next apply Theorem 4.2 over the cylinder

K2ρ × (−1
2
θρp, 0]

with r ≥ 1 such that λr > 0, to get

sup
K2ρ×(− 1

2 θρ
p,0]

u ≤ γr
(4ρ)

Np
λr

(θρp)
N
λr

(∫
K4ρ

ur(x,−θρp)dx
) 1
r
rp
λr + γrθ

1
3−m−p

≤ γ′r

ε
N(3−m−p)

λr

1
σ

(∫
Kρ

uq(x, 0)dx
) 1
q

+ γ′rε
(∫
Kρ

uq(x, 0)dx
) 1
q

= γ′rε
(

1 +
1

σε
rp
λr

)(∫
Kρ

uq(x, 0)dx
) 1
q

for a constant γ′r depending only upon the data {p,m,N,C0, C1} and r. One verifies
that γ′r →∞, as either λr → 0 or λr →∞.

Assume momentarily that 0 < σ < 1 so that in the round brackets containing σ,
the second term dominates the first one. In such a case

sup
K2ρ×(− 1

2 θρ
p,0]

u ≤ 1
ε′σ

(∫
Kρ

uq(x, 0)dx
) 1
q

=: M,

where

ε′ =
ε
N(3−m−p)

λr

2γ′r
.

From this

ε′σM =
(∫

Kρ

uq(x, 0)dx
) 1
q

. (28)
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Let ν ∈ (0, 1) to be chosen. Using (27) and (28) estimate

(ε′σM)q ≤ 2N+1γq

∫
K2ρ

uq(x, s)dx

≤ 2N+1γq

(∫
K2ρ∩[u<νσM ]

uq(x, s)dx+
∫
K2ρ∩[u≥νσM ]

uq(x, s)dx

)

≤ 2N+1γqν
q(σM)q + 2N+1γqM

q |[u(·, s) > νσM ] ∩K2ρ|
|K2ρ|

for all s ∈ (− 1
2θρ

p, 0]. From this

|[u(·, s) > νσM ] ∩K2ρ| ≥ ασq|K2ρ|,
where

α =
ε′q − νq2N+1γq

2N+1γq
,

for all s ∈ (− 1
2θρ

p, 0]. By choosing ν ∈ (0, 1) sufficiently small, only dependent on
the data {p,m,N,C0, C1} and γq, we can ensure that α ∈ (0, 1) depends only upon
the data {p,m,N,C0, C1} and q, and is independent of σ. We summarize

Proposition 5. Let u be a non-negative, locally bounded, local, weak solution to the
singular equations (1)-(2), for 2 < p + m < 3. Fix (x0, t0) ∈ ET , let K4ρ(x0) ⊂ E
and let θ and σ be defined by (23), (24) respectively, for some ε ∈ (0, 1). Suppose
0 < σ < 1. For every r ≥ 1 satisfying (25) and every q ≥ 1, there exist constants
ε, ν, α ∈ (0, 1), depending only upon the data {p,m,N,C0, C1}, q and r, such that

|[u(·, t) > νσM ] ∩K2ρ(x0)| ≥ ασq|K2ρ(x0)|
for all t ∈ (t0 − 1

2θρ
p, t0].

4.3. A first form of the Harnack inequality. The definitions (23) of θ and the
parameters ε′ and α imply that

1
2
θ = ε(νσM)3−m−p, where ε =

1
2

(εε′
ν

)3−m−p
.

By Proposition 2 with M replaced by νσM and α replaced by ασq, there exist
constants η and δ in (0, 1), depending upon the data {p,m,N,C0, C1} and α, σ and
ε such that

u(·, t) > η νσM in K4ρ(x0),
for all times

t ∈ (t0 −
1
2
θρp + δ(νσM)3−m−p(2ρ)p, t0]

where δ includes the quantity 1− ε of Proposition 2. Without loss of generality we
can assume that this time interval contains (t0 − 1

4θρ
p, t0].

Proposition 6 (A first form of the Harnack inequality). Let u be a non-negative,
locally bounded, local, weak solution to the singular equations (1)-(2), for 2 < p +
m < 3. Fix (x0, t0) ∈ ET , let K4ρ(x0) ⊂ E and let θ and σ be defined by(23)-(24)
for some ε ∈ (0, 1). Suppose 0 < σ < 1. For every r ≥ 1 satisfying (25) and every
q ≥ 1, there exist ε ∈ (0, 1), and a continuous, increasing function σ → f(σ) defined
in R+ and vanishing at σ = 0, that can be quantitatively determined a priori only
in terms of the data {p,m,N,C0, C1}, q, and r, such that

inf
K4ρ(x0)

u(·, t) ≥ f(σ) sup
(x0,t0)+Q−

2ρ( 1
4 θ)

u, (29)
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for all t ∈ (t0 − 1
4θρ

p, t0], provided (x0, t0) +Q−8ρ(θ) ⊂ ET .

Remark 4. The proof of Proposition 2 shows that the function f(·) can be taken
of the form

f(σ) ≈ σB−
1
σd ,

for constants B, d > 1 depending only upon the data, q and r. The function f(·)
depends on θ only through the parameter ε in the definition (23) of θ.

Remark 5. The inequality (29) has been derived by assuming that 0 < σ < 1. If
σ ≥ 1 the same proof gives (29) where f(σ) ≥ f(1), thereby establishing a strong
form of the Harnack estimate for these solutions. Such a strong form is false for
p,m in the critical, and sub-critical range 2 < p+m ≤ 3− p

N .

4.4. Proof of Theorem 4.1 concluded. The final step in the proof of Theorem
4.1 consists in improving the dependence on σ so that f(σ) can be replaced by σβ , for
some β depending on the data. This can be done by using the local Hölder continuity
of u (see Remark 1) and some technical arguments which are independent of the
partial differential equations and can be found in [6] for the singular p–Laplacian
equation.
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