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A New Strategy for Dynamic Weighing 
in Motion of Railway Vehicles 

Benedetto Allotta, Member, IEEE, Pierluca D’Adamio, Lorenzo Marini, 
Enrico Meli, Member, IEEE, Luca Pugi, and Andrea Rindi 

Abstract—Weighing-in-motion (WIM) systems automatically 
perform the dynamic weighing of railway vehicles while the trains 
are running on the lines through a reasonable number of 
measurement points placed along the track. Such intelligent 
systems may overcome disadvantages in terms of costs and traffic 
management, which are typical of conventional static weighing 
systems. In this paper, we present an innovative algorithm for 
dynamical WIM applications aimed at estimating the axle and 
wheel loads of a generic train composition by means of indirect 
track measurements. The new approach allows the axle loads 
estimation at high vehicle speeds and can be customized for several 
input track measurements (rail shear, rail bending, vertical forces 
on the sleepers, etc.) as well as a combination of them. 
Consequently, it can be employed in different kinds of 
measurement stations. Having once studied the accuracy of the 
algorithm in estimating the loads, the same novel procedure is used 
to estimate the center-of-gravity position of the railway vehicle to 
avoid dangerous imbalances. The algorithm can receive as inputs 
both experimental and simulated data; simulated data are 
fundamental to test the algorithm (in terms of accuracy and 
robustness) under any operating conditions when experimental 
data are not available. A wide simulation campaign has been 
carried out to test the algorithm performances, obtaining 
promising results. In the near future, the proposed approach will 
be validated through suitable data coming from experimental tests 
organized in collaboration with Ansaldo STS and ECM SpA, 
which are the industrial partners of this research project. 

Index Terms—Weigh-in-motion systems, multibody modeling of 
railway vehicles, flexible multibody modeling of railway tracks. 

I. INTRODUCTION 

OWADAYS, the volume of freight transportation on 
railway vehicles is continuously increasing due to the fast 

growth of industry and commerce. Furthermore, the strong 
competition between transport modes and companies has 
enlarged the number of heavy fully loaded operating vehicles. 
In this context, an accurate estimation of the axle loads and a 
correct detection of overloads, imbalances and defects [1], [2] 
represent a primary concern for railways management 
companies, because they are strictly related to traffic safety and 
planning of the track maintenance. For these reasons, an 
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increasing interest is focused (both in the railway industry and 
in the scientific community [3]–[6]) on the development of 
intelligent Weigh-in-Motion (WIM) systems [7], [8], able to 
automatically and efficiently estimate the axle loads while the 
trains are running on the track (without stopping or slowing 
down the vehicles). 

The main goal of this work is the development of a new 
approach to estimate axle and wheel loads on railway vehicles 
at high vehicle speeds: the proposed WIM algorithm is able to 
estimate the loads starting from different physical input 
quantities T measured on the track, i.e. vertical forces on the 
sleepers [9], [10], rail shear [11]–[14] and rail bending [15], 
[16]. Consequently, it can be employed in different kinds of 
measurement stations. In the specific case study, the vertical 
forces on the sleepers Fz have been considered. 

The vertical loads on the train axle and wheels and the 
possible imbalances are computedfromthe track measurements 
according to the assumption that the effects of the single loads 
(related to the single wheels) on the track are superimposable. 
In other words, the system is considered approximately linear 
with respect to the single wheel loads and each wheel load is 
supposed not to be influenced by the adjacent ones. This way, 
the global track response can be approximated as a weighted 
linear combination of the effects due to the single wheel loads 
moving on the track (see Fig. 7). Finally, to minimize the 
approximation error in reproducing the global track response 
through the combination of single loads, the WIM algorithm 
makes use of procedures based on least square optimization 
techniques. This kind of techniques has been successfully 
employed in similar applications, providing accurate and robust 
results. More particularly, O’Brien et al. used the least square 
optimization in different bridge weighing in motion 
applications: in [17] O’Brien et al. applied these techniques to 
identify the moving loads acting on the bridge starting from the 
measured bridge responses, while in [18]–[20] this method is 
exploited to improve the performance of a bridge weighing in 
motion system in estimating the axle loads. 

The second aim of the new proposed algorithm is the 
accurate estimation of the unbalanced wheel loads to prevent 
dangerous vehicle imbalances. Starting from the estimated 
unbalanced wheel loads, the novel approach allows also the 
calculation of the vehicle center of gravity. 

To achieve the previous goals, the algorithm exploits an 
accurate flexible multibody model of the track, taking into 
account the stiffness of rails, sleepers and ballast. 

The algorithm can receive as inputs both experimental data 
and simulated ones, fundamentalto test the algorithm under any 
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Fig. 1. General architecture of the WIM system: the flexible multibody model of the track is used both in the physical model and in the estimation algorithm to 
generate the basis functions. 

operating conditions when experimental data are not available. 
To generate the simulated data, an accurate multibody model of 
the vehicle has been developed as well, interacting online with 
the track model through a global contact model developed by 
the authors in previous works [21], [22]. Finally, to reproduce 
real conditions, both physical uncertainties and measurement 
noise have been included into the developed model. 

At this initial phase of the research activity, the performances 
of the innovative WIM algorithm have been tested through 
suitable simulation campaigns (a simplified version of the 
proposed algorithm was partially and preliminary validated in 
[6]). Such campaigns are crucial to verify the algorithm 
accuracy and robustness under different operating conditions, 
including the most critical ones, when experimental data are not 
available. In particular the model is tested by varying the mass 
M of the vehicle car-body and the vehicle speed V and, 
subsequently, by varying the position of center of mass G and 
the speed V . 

The proposed estimation architecture showed a good 
accuracy under any operative conditions and provided 
promising results also in presence of quite high vehicle speeds 
and measurement noise. Concerning the future developments, 
more exhaustive experimental tests are scheduled by Ansaldo 
STS and ECM Spa, considering different wagon geometries and 
train compositions. 

II. GENERAL ARCHITECTURE OF THE MODEL 

The general architecture of the Weigh-in-Motion (WIM) 
system is represented in Fig. 1. The architecture is composed of 
two parts: the physical model and the estimation algorithm. The 
generic inputs of the estimation algorithm T can be of two types: 
experimental data related to the railway track or, in absence of 
them, simulated data. In this second case, the necessary track 
inputs are provided by the physical model through numerical 
simulations of the vehicle moving on the track. The required 
simulations are performed to obtain the dynamic response of the 
track and take into account the measurement chain and the noise 
sources. 

The physical model (Fig. 1) of the railway track consists of 
two sub-systems: 

• the 3D multibody model of the vehicle, implementedusing 
the ADAMS VI-Rail software; 

• the 3D flexible multibody model of the railway 
track,developed in the Comsol environment ([23], [24]). 

The two models interact to each other during the simulation 
through a global wheel-rail contact model developed by the 
authors in previous works [22]. 

At each time integration step, the vehicle multibody model 
evaluates the kinematic variables (position,orientationand their 
derivatives) of each wheel. At the same time, the flexible 
multibody model of the railway track calculates position, 
orientation and their derivatives for each node/point of the 
beam modeling the rail. Both the kinematic variables are then 
sent as inputs to the global wheel-rail contact model that 
evaluates the global contact forces to be applied to vehicle and 
track. 

The estimation part of the system (see Figs. 1 and 2) is 
composed of the innovative WIM algorithm to estimate the 
vertical loads on the wheels (implemented in Matlab 
environment) and the flexible multibody model of the track, 
used to generate the elementary solutions related to the single 
wheel loads moving on the track (see Fig. 7). This set of 
solutions (one for each wheel load) can be considered as a basis 
of functions. More precisely, each element of this function 
basis is the solution obtained considering only a single wheel 
load moving along the track (associated to a single wheel). 

The measured input signal T is approximated as a linear 
combination of the basis functions (associated to the single 
wheel loads), thanks to the assumption that the system is 
approximately linear with respect to the single wheel loads and 
the effects of the single wheel loads on the track are 
superimposable (see Fig. 7). This way, the estimated loads will 
be proportional to the coefficients of the linear combination. 

In order to minimize the estimation error in reproducing the 
global track response through the combination of the single 
load solutions contained into the function basis, the WIM 
algorithm makes use of least square optimization techniques 
([25]–[27]). 



  

During the estimation, some additional information is 
required concerning the vehicle speed V , the axle number ntot 

and the axle positions along the railway vehicle xai with i = 
1,...,ntot. These further physical quantities can be measured 
through additional sensors or transmitted by the vehicle by 
means of low cost technologies. 

 

Fig. 2. WIM algorithm: the estimation makes use of the flexible multibody 
model of the track to generate the basis functions. 

Starting from the knowledge of the track measured inputs T 
(in the case study the vertical forces on the sleepers Fz) and of 

, the WIM algorithm estimates both the wheel and 

axle loads N, and the longitudinal  and lateral  position of 
the vehicle center of mass G. The developed WIM algorithm is 
able to estimate the above-mentioned quantities even if the 
wheel load distribution is highly asymmetric. 

III. PHYSICAL MODEL OF THE RAILWAY TRACK 

In order to perform suitable simulation campaigns to test 
the WIM algorithm when experimental data are not provided, 
a model involving all the components of the track 
infrastructure and of the vehicle is required. An accurate model 
of the track is also required to build the basis functions used 
by the estimation algorithm. The physical model of the system 
consists of a 3D flexible multibody model of the infrastructure 
(including rail, sleepers and ballast), a 3D multibody model of 
the vehicle and a wheel-rail contact model describing the 
interaction between the vehicle wheels and the rails. The 
vehicle model and the infrastructure model interact online 
during the simulations by means of the 3D global contact 
model, specifically developed to improve the reliability and 
the accuracy of the contact points detection. In particular, the 
adopted contact model is based on a two step procedure: the 
contact points detection [21], [22] and the global contact forces 
evaluation [11]. 

In the rest of the paper the generic vertical right and wheel 

loads will be indicated as  . The 

corresponding estimated quantities NRi and NLi will be 
computed by the presented WIM algorithm. 

A. The Infrastructure Model 

Rail and infrastructures are modelled as 3D beams 
(discretized through BEAM elements with two nodes for 
element and 6 DOFs for each node; see Fig. 3), supported by 
an elastic discrete foundation representing sleepers and ballast. 
The rails are connected through visco-elastic elements to nsl 

2D rigid 

 

Fig. 3. Fixed reference system and rails. 

 

Fig. 4. Model of the interaction among rails, sleeper and ballast. 

bodies representing the sleepers, which are in turn supported by 
a visco-elastic foundation including the ballast properties (see 
Fig. 4). The discretized equation of the rail is defined as: 

  (1) 

in which M, C and K are the mass, damping and stiffness matrices 
of the rail, ql/r are the discretized rail displacements and Fl/r are 
the applied external forces: 
 l l l l 

 Fr = Fslr + Fcr + Ffr (2) 

where Fl/rsl , Fl/rc and Fl/rb are, respectively, the sleeper forces, 
the contact forces (provided the wheel-rail contact model and to 
be considered if the model is used to simulate the vehicle and 
track dynamics) and the forces due to the crossing of the single 
wheel loads along the track (to be considered if the model is 



  

used to build the basis functions required by the estimation 
algorithm). In other words, both the contact forces 

Fl/rc and the single wheel loads Fl/rb are loads moving along the 
rail applied to the 3D rail beams. Since the rail beams are 
connected to all the sleeper-ballast systems through suitable 
visco-elastic elements, the moving wheel loads influence all the 
sleepers (especially the ones near to the positions of the loads). 
If the complete system dynamics (track and vehicle) is studied, 
the wheel loads Fl/rc moving on the track are provided by the 
wheel-rail contact model used to describe the vehicletrack 
interaction. Otherwise, if the track responses to the single wheel 
loads have to be calculated to evaluate the basis functions (used 
into the estimation algorithm),the wheel loads moving on the 
track are just the single wheel loads Fl/rb . 

The variables related to the generic node ql/ri ∈ R6 are the 

linear displacements v ∈ R3 and the rotational displacements θ ∈ 

R3: 

 q  (3) 

where the vector vil/r includes longitudinal ul/rirail, lateral vil/rrail 

and vertical  displacements expressed in the fixed reference 
system Osysxsysysyszsys. The vector θl/ri comprises the rotational 

displacements  and  expressed in the fixed 
reference system Osysxsysysyszsys (see Fig. 3). 

In this work the structural damping of the rail is modelled 
using the “proportional” or Rayleigh damping; the damping 
matrix C is evaluated as a linear combination of the inertia M 
and stiffness K matrices of the structure: 

 C = αrM + βrK. (4) 

The coefficients αr and βr are calibrated to fit the typical rail 
dynamical behavior expected from experimental results and 
physical considerationsavailable in the literature [3], [28], [29]. 

In this work the UIC60 rail profile (with cant angle equal to 
1/20) has been adopted. The main physical characteristics of the 
rail beam model are reported in [9]. The length of the straight 
track section studied in the work is L = 72 m and the separation 
distance between two adjacent sleepers is equal to l = 0.60 m. 
The sleepers are modelled as 2D rigid bodies connected to the 
rails by means of visco-elastic elements including lateral kysl, 
vertical kzsl and rotational kϑsl stiffness and lateral cysl, vertical czsl 

and rotational cϑsl damping properties (see Fig. 4). The 
longitudinal position xslp along the track of the p−th 2D system 
modeling the sleepers-ballast ensemble can be expressed as 
follows: 

 xslp = LI + (p − 1)l, k = 1,2,...,nsl (5) 

where xsl1 = LI, xslnsl = LF (LI and LF are the beginning and the end 
of the straight track respectively)and nsl is the total number of 
sleepers. 

The generic 2D sleeper is supported by a flexible foundation: 
the behavior of the ballast is characterized through the lateral 
kybal, vertical kzbal and rotational kϑball stiffness and through 
lateral cybal, vertical czbal and rotational cϑbal damping (see Fig. 4). 
The 3DOF bodymodelingthe sleepers-ballastensemble is 
described by the lateral ysl and vertical zsl translations and the 
rotation ϑsl around the xsl − axis of the sleeper reference system 
(all expressed in the reference system Osysxsysysyszsys (see Fig. 
4)). 

At this point, the dynamic model of the sleeper can be 
expressed through the following equation: 

 
 + Csl(v˙slpl − vrail˙ pl) + Kbalvslp + Cbalv˙slp = 0 (6) 
where the subscript sl refers to the sleeper, the subscript bal is 
related to the ballast quantities, the subscript rail refers to the 
rails and l/r is related to the left and right sides of the track. 

The vector vslp includes the lateral , vertical  and rotational 

displacements of the sleeper expressed in the fixed reference 
system Osysxsysysyszsys (see Fig. 4); Msl is the sleeper mass matrix 
while Ksl and Csl are respectively the stiffness and damping 
matrices characterizing the rail-sleeper visco-elastic 
connection. The Kbal and Cbal are respectively the stiffness and 
damping matrices of the ballast. The vectors vslpl, vslpr are 
defined as: 

 v  (7) 

 v  (8) 

where s indicates the railway gauge between the rails. The 

vectors v  are defined as: 

 v  . (9) 

The main physical quantities related to the sleepers-ballast 
system can be found in [6]. 

B. The Vehicle Model 

The railway vehicle chosen for the dynamic simulations is 
the Manchester Wagon, the geometric and mechanical 
characteristics of the wagon are easily available in the literature 
[30]. The 3D multibody model of this vehicle has been widely 
studied and validated under different operating conditions. The 



  

model of the Manchester Wagon, implemented in the Adams 
VI-Rail environment, consists of seven rigid bodies (one car 
body, two bogies and four wheelsets). The rigid bodies are 
connected by means of appropriate elastic and damping 
elements; more particularly, the vehicle is equipped with two 
suspension stages. The primary suspensions connect the 
wheelsets to the bogies and comprise two coil springs and six 
dampers (longitudinal, lateral and vertical ones), while the 
secondary suspensions connect the bogies to the coach and 
consist of the following elements: 

• two coil springs; 
• four dampers (lateral and vertical ones); 
• the traction rod; 
• the roll bar;• two lateral bumpstops. 

Both the suspension stages have been modelled by means of 
three-dimensional nonlinear force elements like bushings, 
dampers, and bumpstops [31]. In this work the ORE S1002 
profile has been used for the wheel profiles. 

C. Global Contact Model 

The vehicle model and the infrastructure model interact 
online during the simulation by means of a 3D global contact 
model developed by the authors in previous works to improve 
the reliability and the accuracy of the contact points detection 
(see Fig. 5). In particular, the global contact model comprises 
both an innovative contact points detection algorithm [21], 
[22] and the contact forces evaluation part [11]. The vehicle 
and infrastructure models calculate the wheel kinematic 
variables (related to each wheel) and the rail kinematic 
variables (related to each rail node). Starting from these 
quantities, the global contact model evaluates the contact 
forces to be applied to the wheel and the rail. 

D. Measurement Error 

To improve the accuracy of the physical model of the 
railway track (infrastructure and vehicle model), the following 
disturbances on the generic measured input T (in this work the 
vertical forces on the sleepers Fz) have been considered: 

• frequency effects on the input signals Tr, Tl due to the 
limited band of physical system and measurement chain: 
the frequency effects due to the limited band of the real 
system and the rail measurement chain have been 
modelled through a second order low pass filter directly 

applied to the simulated signals Tsimrk , Tsimlk related to 
the k-th measure points xrk and xlk of the measurement 
station (where k = 1,...Nm and r, l are referred to the right 
and left track sides): 

Tfrk(t) = B2,ωn(s)Tsimrk (t),Tflk(t) = B2,ωn(s)Tsimlk (t) 

(10) 

inwhichB2,ωn(s)isthesecondorderButterworthfilterand 

ωn=2πfn isthecutfrequency(ωn inrad/sandfn inHz). • 

numerical disturbances and bias errors on the signal 

Tfrk,Tflk: besides the frequency effects, also numerical 

disturbances and bias errors on the signals Tfrk,Tflk have 

been modelled: 

 T  (11) 

 Tfnlk (t) = Tflk(t) + UTl  (12) 

where μTr,μTl and δTl/2,δTr/2 are the mean and the variance 
of the disturbancedistributionUTr,UTr. The aim 

 

Fig. 6. Measurement layout. 

of numerical disturbances and bias errors on the signals 
Tfnrk ,Tfnlk is to properly reproduce the numerical noise 
affecting the measurement; therefore they have to be 
applied to the signals only after the low pass filter. 

The measurement errors will play a fundamental role when 
the physical model of the railway track is employed to test the 
accuracy and the robustness of the WIM algorithm in absence 
of experimental data. 

IV. WIM ALGORITHM 

 

Fig. 5. Global contact model: interaction between the multibody vehicle model and the flexible model of the track. 



  

In this chapter the innovative WIM algorithm for the 

estimation of the vertical wheel loads  and  with i = 
1,...,ntot on railway vehicles is described. The nominal values of 
the loads NRi and NLi are taken from the model in the simulated 
case, or are the nominal wheel load values in the experimental 
case. As previously stated, the WIM system presented in the 
current paper is based on the measurements of the vertical forces 
Fz acting on the sleepers, acquired by means of dedicated force 
sensitive elements placed over the sleepers in the sections 

corresponding to the rail baseplate. The WIM system consists 
of various measure points (few if possible to reduce both 
measure station dimensions and costs) placed along the railway 
track (see Fig. 6). 

A. Architecture of the WIM Algorithm 

The general architecture of the system is described in the 
diagram in Fig. 2. The developed WIM algorithm performs the 

estimation of the actual vertical right  and left  wheel 
loads starting from the generic track measurements chosen as 
input signals Trk and Tlk (with k = 1,..,Nm), measured 
Fig. 7. Schematic representation of the quasi-linearity hypothesis. 

respectively at xrk and xlk (the right and left abscissas of the k−th 
measurement point (see Fig. 6)). 

The main idea behind the new WIM algorithm arises from the 
quite intuitive hypothesis that the system is approximately linear 
with respect to the vertical loads NRi, NLi with i = 1,...,ntot (the so-
called quasi-linearity hypothesis (QLH)). In other words, the 
effect of the generic load NRi and NLi on the generic track 
measurementinput Trk and Tlk (in the case study the vertical 
forces on the sleepers Fzrk and Fzlk) is assumed not to be affected 
by the presence of other loads (especially the adjacent ones). Of 
course, in order to properly apply the superposition principle, 
the quasi-linearity hypothesis (QLH) must hold within the 
whole range of considered velocities V and cut frequencies fn. 
Thanks to the previous assumption, the application of the 
superposition principle allows the calculation of the track inputs 
Trk and Tlk. More specifically, the track inputs Trk and Tlk are 
approximated through a linear combination of 2ntot track input 
signals (namely the basis functions) produced by 2ntot single 
wheel loads Nf (one for each vehicle wheel): the single wheel 
loads movealong the track at the speed V and are properly shifted 
in the time of a delay ti to exactly follow the i−th wheel (see 
chapter IV-B and Fig. 7). In order to calculate this basis, the 

algorithm makes use of the flexible multibody model of the 
track described in Par. III-A. The linear and will allow the easy 
calculation of NRiand NLi.  combination coefficients will be equal 

to  
Obviously, since the system is only approximately linear, a 

Least Squares Optimization (LQSO) is needed to minimize the 
approximation error and, at the same time, to optimize the 

values of . 

B. The Quasi-Linearity Hypothesis 

As previously stated, if the quasi-linearity hypothesis (QLH) 
holds, the application of the superposition effects allows the 
approximation of the right Trk and left Tlk track inputs produced 
by the transit of the entire vehicle through a linear combination 
of track responses (namely the basis functions) produced by 
single wheel loads Nf (see for example Fig. 7). The presented 
WIM algorithm takes into account the coupling effect between 
the left and the right rail deformations caused by the dynamical 
behavior of the sleeper-ballast ensemble. For this reason, in the 
most general version of the WIM algorithm, the function basis 
must include the responses to the transit of both the left and the 
right single wheel loads. 

More specifically, the quantities BrkRi and BrkLi represent the 

track responses to the transit of the i−th single wheel load 

respectively on the right and on the left rail (subscripts R and 

L), measured at the right (r) side of the k−th measurement 

point. 

Analogously,BlkRi and BlkLi are the track responses to the transit 
of the i−th single wheel load respectively on the right and on 
the left rail, measured at the left (l) side of the k−th 
measurement station. At this preliminary phase of the research 
activity, the model of the rail infrastructure used to evaluate the 
basis function is analogous to the one adopted to simulate the 
whole physical system (described in SectionIII and III-A), 
except for the effects due to noise and limited band, inserted to 
make the complete physical model more realistic. All the 2ntot 

right-sidesingle load responses BrkRi and BrkLi and the 2ntot 

leftside single load responses BlkRi and BlkLi (with i = 1,..,ntot and 
k = 1,..,Nm) produced by the 2ntot single wheel loads Nf (with 
initial position xaf) can be efficiently assessed by introducing 
suitable time delays ti: 

  (13) 



  

and by applying such delays to the single load responses to the 

transit of a unique single load B  previously calculated: 

 B  (14) 

 B  (15) 

BlkRi(t) = BlkR(t + ti) (16) 

BlkLi(t) = BlkL (t + ti) (17) 

where t ∈ [TI,TF − ti]. 

At this point, thanks to the superposition principle, the 
generic track inputs Trk, Tlk produced by the transit of the entire 
train can be approximated according to the following 
expressions: 
 ntot ntot 

 T BrkLiαLi (18) 
i=1 i=1 ntot ntot 

T  ( ) T app( ) = BRi Ri +
 BlkLiαLi (19) 
 i=1 i=1 

where the linear combination coefficients αRi, αLi, the estimated 

vertical loads  and the single wheel vertical load Nf 

are connected by the following expressions: 

 . (20) 
C. Least Squares Estimation 

Since the studied system is only approximately linear, a 
Least Squares Optimization (LSO) is necessary to minimize 

the approximationerror between Trk, Tlk and T app 

and, at the same time, to optimize the values of NRi, NLi. In this 
specific case, linear not-weighted least squares have been 
considered [25]–[27]. 

In the present research activity the vertical forces acting on 
the sleepers Fzrk and Fzlk have been considered as track inputs. 
Consequently, equations (18) and (19) become: 

 

with k = 1, 2,...,Nm. Furthermore, to simulate the sampling due 

to the measurement process, the time domain t ∈ [TI,TF − ti] has 

been discretized with a sample time equal to Δt = 0.001 s. 

Therefore, the track inputs Fzrk and Fzlk and the single wheel 

load responses BRirk, BLirk, BRilk , BLilk (in this case forces too) 

are known only at the times th with h = 1, 2,...ns (ns is the sample 

number). The following discretized expressions hold for Fzrk 

and Fzlk: 

 Fzrk(t1) Fzlk(t1) 

 ⎢⎡⎢ .
.. ⎤ ⎡⎢⎢ ..

. ⎤⎥⎥ 

F 

 .. ⎢⎣ ... s ⎥⎦ 

Fz (tn ) 

The same time discretization can be considered also for the 

single wheel load responses BRirk, BLirk, BRilk , BLilk employed to 

estimate Fzrk and Fzlk: 

 B  (24) 

 B  (25) 

 B  (26) 

 B . (27) 

 

Fig. 8. Evaluation of the lateral YG and longitudinal XG coordinates of the vehicle 
center of gravity. 

Since equations (21) and (22) must hold for all the times th, 

defining the matrix A ∈ R2nsNm×2ntot and the vector b ∈ R2nsNm×1 in 

(28) and (29), shown at the bottom of the page. The discretized 
form of equations (21) and (22) can be obtained: 

 b sim (30) 

  (31) 

where 

(32) 

 .
 (33) 

By means of a least squares optimization (LSO) (in this case 
linear and not-weighted), it is now possible to minimize the 



  

squared 2-norms  of the approximation error E = 
Aαsim − b present in (30): 

 αsim = (AT A)−1AT bfn (34) 

where the matrixAT A is invertibleif and onlyif the rankof A is 

maximum.FinallythevaluesoftheestimatedverticalloadsNRi, 

 

⎢⎢⎢⎢⎢⎢ 

A = 
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
 ⎥

 (28) 

B ⎥⎥⎥ 

B 

 b = FTDzr1 ...F ...FTDzrNmF ...FDzlkT ...FDzlNTm (29) 

 

Fig. 9. Vertical forces acting on xr2 = 34.2; comparison between the forces calculated by the physical model Fzr2(t), Fzl2(t) and the ones obtained according 
to the quasi-linearity hypothesis Fzr2app(t), Fzl2app(t).  can be computed starting from the knowledge of αsim: 



  

αsim =  

where 

(36) 

with 

(37) 

 .
 (38) 

D. Center of Gravity Estimation 

The innovative WIM algorithm, starting from the estimated 

wheel loads , is able to evaluate the lateral 

YG and longitudinal XG coordinates of the vehicle center of 
gravity. Considering the horizontal plane containing the center 
of gravity (COG) of the railway vehicle and introducing the 
reference system OxByB shown in Fig. 8 where the origin O 
coincides with the geometric center of the car-body, the 
momentum equilibrium around XB−axis and YB−axis can be 
respectively expressed as: 

0 (39) .

 (40) 

Taking into account the nominal values of the geometrical 
quantities of the vehicle (i.e. the longitudinal position inside the 
train of each axle xai and the distance between the two nominal 
rolling radii s), the coefficients bR, bL, ai can be re-written as a 
function of the COG coordinates XG, YG. More specifically, the 
following expressions hold for the coefficients bR, bL: 

s 

 (41) 

 

whereas the coefficients ai can be calculated as follows: 

(42) 

a1 = −((xa1 − xa4)/2 + XG = c1 + XG (43) 

a2 = −((xa2 − xa3)/2 + XG = c2 + XG (44) 

a3 = ((xa2 − xa3)/2 + XG = c3 + XG (45) 

a4 = −((xa1 − xa4)/2 + XG = c4 + XG. (46) 

At this point, the momentum equilibrium equations can be re-
written as: 

 d (47) 

where  and 

(49) d. (50) 

Hence, the values of the estimated longitudinal  and lateral 

inverting the C matrix according to the following expression: 

YG coordinates of the center of gravity G can be computed by 

 . (51) 
TABLE I 

VARIATION RANGES OF V, M AND fn ADOPTED FOR 

THE SIMULATIONS CAMPAIGN 

 

V. PERFORMANCE OF THE WIM ALGORITHM 

The present section describes the 
performance of the WIM algorithm in 
estimating the vertical wheel loads(with i = 1,...,ntot), starting 
from the knowledge of the vertical forces acting on the sleepers 
Fzrk and Fzlk. More particularly, the performances of the 
algorithm have been evaluated in terms of accuracy by varying 
different parameters of the vehicle and different characteristics 
of the measurement chain (i.e. the vehicle car-body mass M, 
the vehicle speed V , the longitudinal and lateral positions of 
the center of gravity G and the cut-off frequency fn of the 
measurement chain). 

A. WIM Algorithm Performance 

The basic procedure used to test the algorithm consists in 
comparing the nominal vertical wheel loads, NRi and NLi with 

the estimated loads  calculated by the WIM 
estimation algorithm. This kind of comparison is really helpful 
to test the algorithm accuracy when experimental data are not 
available. During the test campaign, the attention is focused on 
the estimation behavior as a function of the car-body mass M, 



  

the vehicle speed V and the position of the center of gravity G, 
considering different values of the cut frequency 
fn. 

1) Estimation of the Vertical Wheel Loads NRi, NLi: Initially, 
by way of example, the vertical forces on the sleepers 
Fzrk(t)=Fzr(xrk,t) and Fzlk(t)=Fzl(xlk,t) simulated through the 
physical model of the railway track (see chapter III) are 
compared with the vertical forces on the sleepers Fzrkapp(t) = 
Fzrapp(xrk,t) and Fzlkapp(t) = Fzlapp(xlk,t) estimated by means of 
the WIM algorithm. At this phase of the research activity, the 
layout of the measurement station consists of three 
measurement points (Nm = 3) on both the rail sides (xR1 = xL1 = 
33 m, xR2 = xL2 = 34.2 m and xR3 = xL3 = 38.4 m). Fig. 9 shows 
both the simulated 

Fzr2(t), Fzl2(t) and the approximatedFzr2app(t), Fz l2 app(t) right 
and left vertical forces acting on the second measurement point 
(xr2 = 34.2 m) related to a simulation performed at a speed 
value V = 40 ms−1, a car-body mass M = 50 t and a cut 
frequency fn = 20 Hz. The comparison highlights a good 
agreement between simulated and estimated quantities, 
confirming the accuracy of the WIM algorithm. 

To compare the nominal NRi, NLi and estimated Nˆ
Ri, Nˆ

Li 

vertical loads on the wheels, an extensive simulations 
campaign has been carried out. In particular, the dependence 

of the relative errors  and esimLi = 

 − NLi)/NLi on the vehicle car-body mass M, the vehicle 
speed V and the cut frequency fn of the measurement chain is 
investigated.In Table I the considered variation ranges for the 
previous quantities are reported together with the resolutions 

TABLE II 

ESTIMATED VERTICAL LOADS ON THE VEHICLE WHEELS, : V = 
40 ms−1, M = 50 t, WITH DIFFERENT VALUES OF fn 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

adopted for the range discretization (ΔV , ΔM, Δfn), where Nsim 

representsthenumberofsimulatedvaluesofM,V andfn. 

The global performances of the WIM algorithm have been 

studied by considering the maximum relative error  

. (52) 

The values of the nominal NRisim, NLisim and estimated , 

 vertical loads acting on the vehicle wheels evaluated in a 
test performed with vehicle speed equal to V = 40 ms−1, a car-
body mass M = 50 t and different values of fn, are listed in Table 
II. This case has been shown because it represents the worst case 
in terms of error. The good algorithm accuracy in estimating the 
vertical loads is mainly due to the capability of correctly 
describing the global shape of the input signals (both in space 
and in time) and not only the peaks, that are more affected by 
errors and noise. Table II shows the good accuracy 



  

 

Fig. 10. Behavior of the relative error  as a function of speed V, 
car-body mass M and cut-off frequency fn. (a) M = 20 t. (b) M = 30 t. (c) M = 40 
t. 

 

Fig. 11. Positions of car-body center of gravity Gb = (Xb,Yb)T used to change Gb 

=(XG,YG)T . 

of the WIM algorithm even for relatively low values of fn. The 
maximum resulting error is equal to 1.9% and is related to a 
simulation performed considering the following values: 
V = 40 ms−1, M = 50 t and fn = 10 s−1. 

Fig. 10 shows a comparison among the maximum relative 

errors  and their behavior as a function of speed 
V and cut-off frequency fn; each graph is related to a different 
value of the vehicle car-body mass M. 

Despite the good algorithm performance, these results show 
how the estimation of vertical loads becomes more difficult if 
the travel speed V increases and the cut-off frequency fn 

decreases.Inthis case,thequasi-linearityhypothesisbeginstobea 
criticalconditionandtheadjacentwheelloadsactingonthe track 
can no longer be considered independent and superimposable. 

TABLE III 
LONGITUDINAL Xb AND LATERAL Yb POSITIONS OF THE 

CENTER OF GRAVITY Gb OF THE CAR-BODY 

  

  

  

  

  

  

  

TABLE IV 

RELATIVE ERRORS esimmax ON THE ESTIMATED LOADS WITH 

DIFFERENT SPEEDS V AND LONGITUDINAL POSITIONS OF 
THE CAR-BODY CENTER OF GRAVITY Xb, PERFORMED 

WITH A CAR-BODY MASS M = 10 t AND 
A CUT-OFF FREQUENCY fn = 20 s−1 

      

      

      

      

      

2) Estimation of the Longitudinal XG and Lateral YG Positions 
of the Vehicle Center of Gravity G: The good accuracy 
exhibited by the new WIM approach in estimating the vertical 
loads acting on the wheels makes the novel algorithm suitable 
for the estimation of the longitudinal XG and lateral YG positions 
of the vehicle center of gravity G, to avoid possible dangerous 
imbalances. The considered measurement layout is the one 
described in Par. V-A1. 

The vehicle center of gravity G position has been varied in 
both longitudinal and lateral directions to simulate different 
unbalancedloads.Thedisplacementvaluesareestablishedinsidea 
rangethatsatisfiesthelimits imposed by the real vehicle 
dimensions, with the aim of reproducing a real scenario. The 
actual longitudinal XG, and the lateral YG positions of the vehicle 
center of gravity G have been varied by changingthe position 
of the center of gravity of the car-body Gb (and hence Xb and 
Yb), according to the values reported in Fig. 11 and Table III. 
The test campaign has been performed considering a car-body 
mass value M = 10 t, a cut-off frequency fn = 20 s−1 and four 
different values of the vehicle velocity (V = 10, 20, 30, 40 
ms−1). 

Table IV summarizes the maximum relative errors on 
the estimated loads as a function of the vehicle speed V and the 
longitudinal displacement Xb of center of gravity Gb, performed 
with a car-body mass M = 10 t and a cut-off frequency fn = 20 
s−1. 



  

Fig. 12 shows the estimated loads Nˆ
R, Nˆ

L with different 

values of the longitudinal displacement Xb performed at a 
vehicle speed V = 10 ms−1: it can be seen that loads are perfectly 
symmetrical with respect to the longitudinal vehicle plane, 
being the center of gravity G placed along the longitudinal axis 
of the vehicle (the vehicle is not unbalanced along the lateral 
axis). The position of the car-body center of gravity Gb is 
translated longitudinally toward the head of the train, with a 
consequent increase of the loads acting on the wheels of the 

Blue bar: load on the left wheels—Red bar: load on the right wheels. 

 

Fig. 13. Behavior of the maximum error as a function of speed V and cut-off 
frequency fn (Xb = 3 m and vehicle mass M = 40 t). 

front bogie (  ) and a decrease 
of the ones acting on the rear bogie (NR3, NL3, NR4, NL4). 
Regarding the algorithm robustness with respect to the 
measurement chain, Fig. 13 highlights the maximum errors for 
cut-off frequencies fn from 10 s−1 to 40 s−1: results are shown 
for two significant values of speed V , 20 ms−1 and 40 ms−1, 
with the maximum longitudinal displacement of the center of 

gravity of the carbody Xb equal to +3 m and a vehicle mass M 
= 40 t. 

Analogously, the next results are focused on the lateral 
displacement YG of the vehicle center of gravity for different 
values of speed V . Table V summarizes the behavior of the 
errors as a function of speed, performed with a car-body mass 
M = 40 t and a cut-off frequency fn = 20 s−1. A simulation 
campaign considering different unbalanced loads is reported: 
in particular, five steps of 0.1 m are considered along the 

lateral coordinate Yb of the car-body center of gravity Gb and a 
slight increase of the errors with the speed can be observed. 

TABLE V 
RELATIVE ERRORS ON THE ESTIMATED LOADS WITH DIFFERENT 

SPEEDS V AND LATERAL POSITIONS OF THE CAR-BODY 
CENTER OF GRAVITY Yb, PERFORMED WITH 

A CAR BODY MASS M = 10 t AND A 
CUT-OFF FREQUENCY fn = 20 s−1 

     

     

     

     

     

     

As in the previous case, Fig. 14 shows the estimated Nˆ
R, Nˆ

L 

loads with different values of the lateral displacement Yb 

performedat a vehicle speed V = 10 ms−1: in this scenario, the 

 

Fig. 12. Estimated loads Nˆ
R, Nˆ

L with different values of longitudinal displacement Xb of the centre of gravity, performed at a vehicle speed V = 10 ms−1. 



  

loads are quite asymmetrical with respect to the longitudinal 
plane, being the center of gravity G placed along the lateral axis 
of the vehicle (the vehicle is now unbalanced along the lateral 
axis). The position of the car-body center of gravity Gb is 
translated laterally toward the right side of the train, with a 
consequent increase of the loads acting on the right wheels of 

the vehicle (  ) and a decrease of 
the ones acting on the left wheels (NL1, NL2, NL3, NL4). 

Finally, in Fig. 15 the error trend as a function of speed V and 
cut-off frequency fn has been reported, with a car-body mass M 
= 40 t and for a lateral displacement Yb equal to 0.5 m. These 
results confirm the good performance of the proposed 

Blue bar: load on the left wheels—Red bar: load on the right wheels. 

 

Fig. 15. Error trend as a function of speed V and cut-off frequency fn (Yb = 0.5 m, 
with a vehicle mass M = 40 t). 

WIM algorithm in estimating unbalanced loads. Consequently, 

it can be effectively used to estimate the vehicle center of on the 

wheels. 

gravity G, starting from the values of the vertical loads acting 

 

Fig. 14. Estimated loads Nˆ
R, Nˆ

L with different values of lateral displacement Yb of the car-body center of mass, performed with a vehicle speed V = 10 ms−1. 



  

VI. CONCLUSION AND FURTHER DEVELOPMENTS 

In this paper the authors present an new intelligent high 
speed WIM system aimed at automatically estimating the 

vertical wheel loads and the longitudinal XG and lateral 
YG position of the center of gravity G of railway vehicles to 
avoid possible dangerous imbalances. 

The WIM algorithm is based on the measurement of the 
vertical forces acting on the sleepers Fz (the inputs of the 
algorithm) performed through force sensitive elements placed 
over the sleepers in the section corresponding to the rail 
baseplate/ pads. The new method can also manage different 
types of input signals (as the rail shear and bending, the 
longitudinal strain and stress on the rail, etc.). These physical 
quantities are then properly processed by means of suitable 
estimation procedures exploiting the quasi-linearity of the 
considered system and based on least squares optimization 
(LSO) techniques. 

The performance of the WIM algorithm in terms of accuracy 
and robustness has been accurately studied. The algorithm has 
been tested for different values of velocity, car-body mass, cut 
frequency of the measurement chain and position of the 
vehicle center of mass. Results have shown the good 
performance of the new approach under any operating 
conditions. 

Concerning the future developments, different estimation 
methods (like weighted least square optimization (WLSO) and 
nonlinear least square optimization (NLSO)) will be analyzed. 
Thanks to the algorithm capability of managing different types 
of physical inputs, further physical quantities as rail stresses σ 
and deformations ε will be considered as inputs of the 
procedure. From an experimental point of view, a simplified 
version of the proposed algorithm was partially and 
preliminary validated in [6]. However, more exhaustive 
experimental tests are scheduled for the future by Ansaldo STS 
and ECM Spa, the industrial partners of the project. 
Experimental data will mainly concern wagons travelling at 
high speeds and trains characterized by different geometries. 
Moreover further experimental campaigns will be performed 
on different railway tracks with different measurement 
layouts. 
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