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Abstract. In this paper we consider the inverse problem of determining,
within an elastic isotropic thick plate modelled by the Reissner-Mindlin the-
ory, the possible presence of an inclusion made of a different elastic material.
Under some a priori assumptions on the inclusion, we deduce constructive
upper and lower estimates of the area of the inclusion in terms of a scalar
quantity related to the work developed in deforming the plate by applying
simultaneously a couple field and a transverse force field at the boundary of
the plate. The approach allows to consider plates with boundary of Lipschitz
class.
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1 Introduction

The inverse problem of damage identification via non-destructive testing has
attracted increasing interest in the applied and mathematical literature of
the last years. Its applicability is particularly suited to those cases in which
a simple visual inspection of the damaged system is not sufficient to conclude
whether the defect is present or absent and, in the former case, how extended
it is. Non-destructive tests in dynamic regime are rather common for large
full-scale structures, such as bridges or buildings. However, in case of sim-
ple structural elements such as plates, the mechanical systems that will be
considered in this paper, static tests are easily executable and can provide
valuable information for solving the diagnostic problem.

In most of applications on plates, an accurate model describing the struc-
tural defect, such as diffuse cracking in reinforced concrete plates or yield-
ing phenomena in metallic plates, is not a priori available. Therefore, the
defected plate is usually modelled by introducing a variation of the elastic
properties of the material in an unknown subregion D (inclusion) of the mid-
surface Ω of the plate. Under the assumption that the reference undamaged
configuration of the plate is known, the inverse problem is reduced to the de-
termination of the inclusion D by comparing the results of boundary static
tests executed on the reference specimen (with D = ∅) and on the possibly
defected plate.

This appears to be a difficult inverse problem and a general uniqueness
result has not been obtained yet. Partial answers have been given in the last
ten years for thin elastic plates described by the Kirchhoff-Love theory by
pursuing a relative modest, but realistic goal: to estimate the area of the
unknown inclusion D from a single static experiment. More precisely, it was
supposed to apply a given couple field M̂ at the boundary ∂Ω of the plate in
the reference and in a possibly defected state, and to evaluate the work W0,
W exerted in deforming the undamaged and defected specimen, respectively.
Constructive estimates, from above and from below, of area(D) in terms of
the difference |W0 − W | were determined for Kirchhoff-Love elastic plates
when the background material is isotropic [MRV07] or belongs to a suitable
class of anisotropy [DiCLMRVW13]. Extensions to the limit cases of rigid
inclusions and cavities were also established [MRV13]. Analogous results
were derived for size estimates of inclusions in shell structures (i.e., curved
Kirchhoff-Love plates) [DiCLW13], [DiCLVW13]. For the sake of complete-
ness we recall that the size estimates approach traces back to the paper by
Friedman [Fri87] where, assuming that the measure of the possible inclusion
in a conducting body is a-priori known, a criterion was given to decide from a
single boundary measurement of current and corresponding voltage whether
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the inclusion is present of not. Subsequently, the method has been developed
in [AR98], [KSS97] and [ARS00], and extended also to the detection of inclu-
sions in elastic bodies [Ik98], [AMR02a]. Finally, we mention an interesting
approach to size estimates developed in [KKM12], [KM13] and in [MN12]
where the translation method and the splitting method were introduced,
respectively.

All the available size estimates results for plate-like systems have been
obtained using the Kirchhoff-Love mechanical model of plate, that is assum-
ing that the material fibre initially orthogonal to the mid-surface of the plate
remains straight and perpendicular to the mid-surface during deformation.
Experiments and numerical simulations show that this mechanical model ac-
curately describes the behavior of thin plates, whereas it definitely looses
precision as the thickness of the plate increases. Specifically, when the thick-
ness reaches the order of one tenth the planar dimensions, the plates should
be described by means of an extension of the Kirchhoff-Love model, namely
the Reissner-Mindlin model [Rei45], [Min51], that takes into account also the
shear deformations through the thickness of the plate. Moreover, it should
be recalled that size estimates for the Kirchhoff-Love plate model were de-
rived under the a priori condition that the mid-surface Ω is highly regular.
This technical assumption obstructs, for example, the application of the size
estimates to rectangular plates, in spite of their frequent use in practical ap-
plications. In this paper, both the two above mentioned limitations of the
existing theory are removed, and the size estimates approach is extended to
the Reissner-Mindlin model of plates with boundary ∂Ω of Lispchitz class.

Let us formulate our problem in mathematical terms. Let D, D ⊂⊂ Ω, be
the subdomain of the mid-surface Ω occupied by the inclusion, and denote by
h the constant thickness of the plate. A transverse force field Q and a couple
field M are supposed to be acting at the boundary ∂Ω of the plate. Working
in the framework of the Reissner-Mindlin theory (see also [PPGT07]), at any
point x = (x1, x2) ∈ Ω, we denote by w = w(x) and by ωα = ωα(x), α = 1, 2,
the infinitesimal transverse displacement at x and the infinitesimal rotation
of the transverse material fibre through x, respectively. The pair (ϕ,w), with
ϕ1 = ω2, ϕ2 = −ω1, satisfies the Neumann boundary value problem

div ((χΩ\DS + χDS̃)(ϕ+∇w)) = 0, in Ω,

div ((χΩ\DP + χDP̃)∇ϕ)− (χΩ\DS + χDS̃)(ϕ+∇w) = 0, in Ω,

(S(ϕ+∇w)) · n = Q, on ∂Ω,

(P∇ϕ)n = M, on ∂Ω,

(1.1)

(1.2)

(1.3)

(1.4)

where χA denotes the characteristic function of the set A and n is the unit
outer normal to ∂Ω. In the above equations, (S,P) and (S̃, P̃) are the second-
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order shearing tensor and the fourth-order bending tensor of the reference
and defected plate, respectively. The work exerted by the boundary loads
(Q,M) is denoted by

W =

∫
∂Ω

Qw +M · ϕ. (1.5)

When the inclusion D is absent, the equilibrium problem (1.1)–(1.4) becomes
div (S(ϕ0 +∇w0)) = 0, in Ω,

div (P∇ϕ0)− S(ϕ0 +∇w0) = 0, in Ω,

(S(ϕ0 +∇w0)) · n = Q, on ∂Ω,

(P∇ϕ0)n = M, on ∂Ω,

(1.6)

(1.7)

(1.8)

(1.9)

where (ϕ0, w0) is the deformation of the reference plate. The corresponding
work exerted by the boundary loads is given by

W0 =

∫
∂Ω

Qw0 +M · ϕ0. (1.10)

The first step towards the determination of the size estimates of the area of
the inclusion consists in proving that the strain energy of the reference plate
stored in the region D is comparable with the difference between the works
exerted by the boundary load fields in deforming the plate with and without
the inclusion. Under suitable assumptions on the jumps (P̃−P) and (S̃−S)
of the elastic coefficients between the defected region D and the surrounding
background material, and using the ellipticity of the tensors S and P, the
above property can be stated as

K1

∫
D

|∇̂ϕ0|2+|ϕ0+∇w0|2 ≤ |W−W0| ≤ K2

∫
D

|∇̂ϕ0|2+|ϕ0+∇w0|2, (1.11)

for suitable positive constants K1, K2 only depending on the data. Here,
∇̂ϕ0 = 1

2
(∇ϕ0 + (∇ϕ0)T ). We refer to Lemma 5.1 for the precise statement.

The lower bound for area(D) follows from the right hand side of (1.11)
and from regularity estimates for the solution (ϕ0, w0) to (1.6)–(1.9). It
should be noticed that such regularity estimates hold true also for anisotropic
background material, provided that the tensors P and S have suitable regu-
larity.

In order to obtain the upper bound for area(D), an estimate from below
of the strain energy expression appearing on the left hand side of (1.11)
is needed. This issue is rather technical and involves the determination of
quantitative estimates of unique continuation for the strain energy of the
solution (ϕ0, w0) to the reference plate problem.
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In this paper we assume that the inclusion D satisfies the fatness condi-
tion

area ({x ∈ D | dist(x, ∂D) > h1}) ≥
1

2
area(D), (1.12)

for a given positive number h1. Under the assumption of isotropic material,
and requiring suitable regularity of the tensors P and S, we shall prove a
three spheres inequality for the strain energy density (|∇̂ϕ0|2 + |ϕ0 +∇w0|2)
of the solution (ϕ0, w0) to (1.1)–(1.4), see Theorem 4.2. This three spheres
inequality for the energy strongly relies on a three spheres inequality for
(|ϕ0|2 + |w0|2), with optimal exponent, and on a generalized Korn inequality,
both derived in [MRV17]. Our main result (see Theorem 3.3) states that
if, for a given h1 > 0, the fatness-condition (1.12) holds, and some a priori
assumptions on the unknown inclusion are satisfied, then

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ area(D) ≤ C2

∣∣∣∣W −W0

W0

∣∣∣∣ , (1.13)

where the constants C1, C2 only depend on the a priori data. Clearly, the
lower bound for area(D) in (1.13) continues to hold even if the inclusion D
does not satisfy the fatness condition (1.12).

The paper is organized as follows. Section 2 collects some notation. The
formulation of the inverse problem is provided in Section 3, together with
our main result (Theorem 3.3). Section 4 contains quantitative estimates of
unique continuation in the form of three spheres inequality (Theorem 4.2)
and Lipschitz propagation of smallness property (Theorem 4.5) for the strain
energy density of solutions to the Neumann problem for the reference plate.
The proof of Theorem 3.3 is presented in Section 5, whereas Section 6 is
devoted to the proof of Theorem 4.2.

2 Notation

Let P = (x1(P ), x2(P )) be a point of R2. We shall denote by Br(P ) the disk
in R2 of radius r and center P and by Ra,b(P ) the rectangle Ra,b(P ) = {x =
(x1, x2) | |x1 − x1(P )| < a, |x2 − x2(P )| < b}. To simplify the notation, we
shall denote Br = Br(O), Ra,b = Ra,b(O).

Definition 2.1. (Ck,1 regularity) Let Ω be a bounded domain in R2. Given
k ∈ N, we say that a portion Σ of ∂Ω is of class Ck,1 with constants ρ0,
M0 > 0, if, for any P ∈ Σ, there exists a rigid transformation of coordinates
under which we have P = O and

Ω ∩Rρ0,M0ρ0 = {x = (x1, x2) ∈ Rρ0,M0ρ0 | x2 > ψ(x1)},
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where ψ is a Ck,1 function on (−ρ0, ρ0) satisfying

ψ(0) = 0,

ψ′(0) = 0, when k ≥ 1,

‖ψ‖
Ck,1

(
− ρ0
M0

,
ρ0
M0

) ≤M0ρ0.

When k = 0 we also say that Σ is of Lipschitz class with constants ρ0, M0.

Remark 2.2. We use the convention to normalize all norms in such a way that
their terms are dimensionally homogeneous with the L∞ norm and coincide
with the standard definition when the dimensional parameter equals one, see
[MRV07] for details.

For any t > 0 we denote

Ωt = {x ∈ Ω | dist(x, ∂Ω) > t}. (2.1)

Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,1, with k ≥ 0,
we consider as positive the orientation of the boundary induced by the outer
unit normal n in the following sense. Given a point P ∈ ∂Ω, let us denote by
τ = τ(P ) the unit tangent at the boundary in P obtained by applying to n a
counterclockwise rotation of angle π

2
, that is τ = e3×n, where × denotes the

vector product in R3, {e1, e2} is the canonical basis in R2 and e3 = e1 × e2.
We denote by M2 the space of 2× 2 real valued matrices and by L(X, Y )

the space of bounded linear operators between Banach spaces X and Y .
For every 2× 2 matrices A, B and for every L ∈ L(M2,M2), we use the

following notation:
(LA)ij = LijklAkl, (2.2)

A ·B = AijBij, |A| = (A · A)
1
2 , tr(A) = Aii, (2.3)

(AT )ij = Aji, Â =
1

2
(A+ AT ). (2.4)

Notice that here and in the sequel summation over repeated indexes is im-
plied.

3 The inverse problem

Let us consider a plate, with constant thickness h, represented by a bounded
domain Ω in R2 having boundary of Lipschitz class, with constants ρ0 and
M0, and satisfying

diam(Ω) ≤M1ρ0, (3.1)
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Bs0ρ0(x0) ⊂ Ω, (3.2)

for some M1 > 0, s0 > 0 and x0 ∈ Ω. Moreover, we assume that for r < h0ρ0,
where h0 > 0 only depends on M0, the domain

Ωr is of Lipschitz class with constants ρ0,M0. (3.3)

Condition (3.3) has been introduced to simplify the arguments. However, it
should be noticed that it is a rather natural assumption, for instance trivially
satisfied for polygonal plates.

The reference plate is assumed to be made by linearly elastic isotropic
material with Lamé moduli λ and µ satisfying the ellipticity conditions

µ(x) ≥ α0, 2µ(x) + 3λ(x) ≥ γ0, in Ω, (3.4)

for given positive constants α0, γ0, and the regularity condition

‖λ‖C0,1(Ω) + ‖µ‖C0,1(Ω) ≤ α1, (3.5)

where α1 is a given constant. Therefore, the shearing and bending plate
tensors take the form

SI2, S = hµ, S ∈ C0,1(Ω), (3.6)

PA = B
[
(1− ν)Â+ νtr(A)I2

]
, P ∈ C0,1(Ω), (3.7)

where I2 is the two-dimensional unit matrix, A denotes a 2× 2 matrix and

B =
Eh3

12(1− ν2)
, (3.8)

with Young’s modulus E and Poisson’s coefficient ν given by

E =
µ(2µ+ 3λ)

µ+ λ
, ν =

λ

2(µ+ λ)
. (3.9)

By (3.4) and (3.5), we have

hσ0 ≤ S ≤ hσ1, in Ω, (3.10)

and
h3

12
ξ0|Â|2 ≤ PA · A ≤ h3

12
ξ1|Â|2, in Ω, (3.11)

for every 2× 2 matrix A, where

σ0 = α0, σ1 = α1, ξ0 = min{2α0, γ0}, ξ1 = 2α1. (3.12)
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Moreover,
‖S‖C0,1(Ω) ≤ hα1, ‖P‖C0,1(Ω) ≤ Ch3, (3.13)

with C > 0 only depending on α0, α1, γ0.
Let the plate be subject to a transverse force field Q and a couple field

M acting on the boundary ∂Ω, and such that∫
∂Ω

Q = 0,

∫
∂Ω

(Qx−M) = 0, (3.14)

Q ∈ H−
1
2 (∂Ω), M ∈ H−

1
2 (∂Ω,R2). (3.15)

Under the above assumptions, the static equilibrium of the reference plate
is described within the Reissner-Mindlin theory by the following Neumann
boundary value problem

div (S(ϕ0 +∇w0)) = 0 in Ω,

div (P∇ϕ0)− S(ϕ0 +∇w0) = 0, in Ω,

(S(ϕ0 +∇w0)) · n = Q, on ∂Ω,

(P∇ϕ0)n = M, on ∂Ω.

(3.16)

(3.17)

(3.18)

(3.19)

Remark 3.1. It should be noticed that Reissner [Rei45] and Mindlin [Min51]
theories are in fact similar, but different ones. The former was originally
formulated within the static context only, whereas the latter was proposed
to improve the dynamic response of the classical Kirchhoff-Love plate theory
for sharp transients and for the eigenfrequencies of modes of vibration of
high order. Interestingly, both the Reissner and Mindlin theories lead to
the conclusion that three scalar boundary conditions are to be satisfied (e.g.
equations (3.18)-(3.19) above) rather than the two of the Kirchhoff-Love plate
theory.

Concerning the well-posedness of the Neumann problem for the Reissner-
Mindlin plate model, it was proved in [MRV17] (Proposition 5.2) that the
problem (3.16)–(3.19) admits a weak solution (ϕ0, w0) ∈ H1(Ω,R2)×H1(Ω),
that is for every ψ ∈ H1(Ω,R2) and for every v ∈ H1(Ω),∫

Ω

P∇ϕ0 · ∇ψ +

∫
Ω

S(ϕ0 +∇w0) · (ψ +∇v) =

∫
∂Ω

Qv +M · ψ, (3.20)

where
∫
∂Ω
Qv+M ·ψ stays for the duality pairing < Q, v|∂Ω >H−1/2(∂Ω),H1/2(∂Ω)

+ < M,ψ|∂Ω >H−1/2(∂Ω),H1/2(∂Ω). The solution (ϕ0, w0) can be uniquely iden-
tified provided it satisfies the normalization conditions∫

Ω

ϕ0 = 0,

∫
Ω

w0 = 0. (3.21)
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For this normalized solution, the following stability estimate holds

‖ϕ0‖H1(Ω) +
1

ρ0

‖w0‖H1(Ω) ≤
C

ρ2
0

(
‖M‖

H−
1
2 (∂Ω)

+ ρ0‖Q‖H− 1
2 (∂Ω)

)
, (3.22)

where the constant C > 0 only depends on M0, M1, s0, α0, α1, γ0 and ρ0

h
.

Remark 3.2. Existence, uniqueness and H1-stability for the Neumann prob-
lem (3.16)–(3.19) can be proved for generic anisotropic linearly elastic ma-
terial with bounded shearing and bending plate tensors satisfying suitable
ellipticity conditions, see Proposition 5.2 in [MRV17] for details. In fact,
the additional hypotheses of isotropy and regularity we have required on
the elastic coefficients are needed to obtain the key quantitative estimate of
unique continuation of the solution (ϕ0, w0) in the form of the three spheres
inequality (4.1).

The inclusion D is assumed to be a measurable, possibly disconnected
subset of Ω satisfying

dist(D, ∂Ω) ≥ d0ρ0, (3.23)

where d0 is a positive constant. The shearing and bending tensors of the plate
with the inclusion are denoted by (χΩ\DS+χDS̃), (χΩ\DP+χDP̃), where χD is

the characteristic function of D and S̃ ∈ L∞(Ω,M2), P̃ ∈ L∞(Ω,L(M2,M2)).
Differently from the surrounding material, no isotropy condition is introduced
on the inclusion D, and the tensors S̃, P̃ are requested to satisfy the following
properties:

i) Minor and major symmetry conditions

S̃αβ = S̃βα, α, β = 1, 2, a.e. in Ω, (3.24)

P̃αβγδ = P̃βαγδ = P̃αβδγ = P̃γδαβ, α, β, γ, δ = 1, 2, a.e. in Ω. (3.25)

ii) Bounds on the jumps S̃ − S, P̃− P and uniform strong convexity for S̃

and P̃
Either there exist η > 0 and δ > 1 such that

ηS ≤ S̃ − S ≤ (δ − 1)S, a.e. in Ω, (3.26)

ηP ≤ P̃− P ≤ (δ − 1)P, a.e. in Ω, (3.27)

or there exist η > 0 and 0 < δ < 1 such that

−(1− δ)S ≤ S̃ − S ≤ −ηS, a.e. in Ω, (3.28)

−(1− δ)P ≤ P̃− P ≤ −ηP, a.e. in Ω. (3.29)
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As a further a priori information, let F > 0 be the following ratio of norms
of the boundary data

F =
‖M‖H−1/2(∂Ω) + ρ0‖Q‖H−1/2(∂Ω)

‖M‖H−1(∂Ω) + ρ0‖Q‖H−1(∂Ω)

. (3.30)

Under the above assumptions, the equilibrium problem for the plate with the
inclusion D is as follows

div ((χΩ\DS + χDS̃)(ϕ+∇w)) = 0, in Ω,

div ((χΩ\DP + χDP̃)∇ϕ)− (χΩ\DS + χDS̃)(ϕ+∇w) = 0, in Ω,

(S(ϕ+∇w)) · n = Q, on ∂Ω,

(P∇ϕ)n = M, on ∂Ω.

(3.31)

(3.32)

(3.33)

(3.34)

Problem (3.31)–(3.34) has a unique solution (ϕ,w) ∈ H1(Ω,R2) × H1(Ω)
satisfying the normalization conditions (3.21).

Finally, we introduce the works exerted by the boundary loads when the
inclusion is present or absent, respectively:

W =

∫
∂Ω

Qw +M · ϕ, (3.35)

W0 =

∫
∂Ω

Qw0 +M · ϕ0. (3.36)

Let us recall that, according to (2.1),

Dt = {x ∈ D | dist(x, ∂D) > t}

Our main theorem is as follows.

Theorem 3.3. Let Ω be a bounded domain in R2, such that ∂Ω is of C0,1

class with constants ρ0,M0 and satisfying (3.1)–(3.3). Let D be a measurable
subset of Ω satisfying (3.23) and

|Dh1ρ0| ≥
1

2
|D| , (3.37)

for a given positive constant h1. Let the reference plate be made by linearly
elastic isotropic material with Lamé moduli λ, µ satisfying (3.4), (3.5), and
denote by S, P the corresponding shearing and bending tensors given in (3.6),

(3.7), respectively. The shearing tensor S̃ ∈ L∞(Ω,M2) and the bending

tensor P̃ ∈ L∞(Ω,L(M2,M2)) of the inclusion D are assumed to satisfy the
symmetry conditions (3.24), (3.25).
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If (3.26) and (3.27) hold, then we have

1

δ − 1
C+

1 ρ
2
0

W0 −W
W0

≤ |D| ≤ δ

η
C+

2 ρ
2
0

W0 −W
W0

. (3.38)

If, conversely, (3.28) and (3.29) hold, then we have

δ

1− δ
C−1 ρ

2
0

W −W0

W0

≤ |D| ≤ 1

η
C−2 ρ

2
0

W −W0

W0

, (3.39)

where C+
1 , C−1 only depend on M0, M1, s0, ρ0

h
, d0, α0, α1, γ0, whereas C+

2 ,
C−2 only depend on M0, M1, s0, ρ0

h
, α0, α1, γ0, h1 and F .

Remark 3.4. Let us highlight that the upper bounds in (3.38), (3.39) hold
without assuming condition (3.23), that is the inclusion is allowed to touch
the boundary of Ω. This will be clear from the proof of Theorem 3.3 given
in Section 5.

Remark 3.5. The analytical procedure by which size estimates are found is
indeed constructive, but, in practice, is likely to lead to rather pessimistic
evaluations of the constants C±1 , C±2 . For this reason, it is interesting and
useful for concrete applications to obtain realistic estimates of such constants.
A detailed investigation attempting to estimate these constants by numerical
simulations is currently under preparation and will be the object of a forth-
coming paper. In the sequel, we shall consider some special cases for which
the exact solution to (3.16)–(3.19) is available and one can find theoretical
upper and lower bounds to the size of the inclusion D.

More precisely, we consider a rectangular plate Ω = {(x1, x2) ∈ R2| 0 <
x1 < a, 0 < x2 < b}, with constant thickness h, made of isotropic elastic ma-
terial with constant Lamè moduli λ, µ satisfying (3.4), and positive Poisson
coefficient ν. To simplify the notation, let us denote by `{x1=0}, `{x1=a} the
two sides of Ω belonging to the straight lines x1 = 0 and x1 = a, respectively.
Similarly, `{x2=0}, `{x2=b} are the other two sides of Ω. The transverse force
field Q at the boundary ∂Ω is assumed to be absent, whereas the couple field
M is given as follows:

Case 1) M = −Me2 on `{x1=a}, M = Me2 on `{x1=0}, M = 0 on the
sides `{x2=0}, `{x2=b};

Case 2) M = −Me2 on `{x1=a}, M = Me2 on `{x1=0}, M = Me1 on
`{x2=b}, M = −Me1 on `{x2=0},

where M is a non vanishing constant. These kinds of loads are rather special,
but they are easy to realize in experiments and are commonly employed in
non-destructive testing for the characterization of plate-like specimens. For
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the two cases above, we can compute the exact solution (ϕ0, w0) to (3.16)–
(3.19), obtaining:

Case 1) ∇̂ϕ0 =
M

B(1− ν2)

[
−1 0

0 ν

]
, ϕ0 +∇w0 = 0 in Ω; (3.40)

Case 2) ∇̂ϕ0 =
M

B(1 + ν)

[
−1 0

0 −1

]
, ϕ0 +∇w0 = 0 in Ω. (3.41)

We assume that the inclusion D ⊂ Ω is made by isotropic elastic material
with plate tensor

P̃ = fP, (3.42)

where the stiffness ratio f is a positive constant. We notice that 0 < f < 1
and f > 1 correspond to the case of softer inclusion and harder inclusion,
respectively. In the case of softer inclusion, the size estimates (3.39) can be
written as

C−1
W −W0

W0

≤ |D|
|Ω|
≤ C−2

W −W0

W0

, (3.43)

where the constants C−1 , C−2 are given by

Case 1) C−1 =
f

1− f
· 1− ν

1 + ν2
, C−2 =

1

1− f
· 1 + ν

1 + ν2
, (3.44)

Case 2) C−1 =
f

1− f
, C−2 =

1

1− f
· 1 + ν

1− ν
, (3.45)

and, in both cases,
C−2
C−1

=
1

f
· 1 + ν

1− ν
. (3.46)

When the inclusion is harder, we have

C+
1

W0 −W
W0

≤ |D|
|Ω|
≤ C+

2

W0 −W
W0

, (3.47)

with

Case 1) C+
1 =

1

f − 1
· 1− ν

1 + ν2
, C+

2 =
f

f − 1
· 1 + ν

1 + ν2
, (3.48)

Case 2) C+
1 =

1

f − 1
, C+

2 =
f

f − 1
· 1 + ν

1− ν
, (3.49)

12



and
C+

2

C+
1

= f · 1 + ν

1− ν
. (3.50)

As an example, if we assume ν = 0.3 (Poisson coefficient typical of a mild
steel) and f = 1

10
, then

C−2
C−1
' 18.5714. (3.51)

This last calculation shows that the theoretical estimates may be rather
pessimistic, since the angular sector determined in the cartesian plane with

coordinates
(
|W−W0|
W0

, |D||Ω|

)
may be very large. Based on previous results on

two and three-dimensional linear elasticity [ABFMRT07], it is expected that
the size estimates can improve significantly when the constants C1, C2 are
evaluated numerically. This is the object of ongoing research.

Finally, the above calculations show that the size estimate from below
degenerates both as f → 0+ and f → +∞. These two limit cases, e.g.,
cavities (f = 0) and rigid inclusions (f = +∞), need a specific treatment
and cannot simply inferred as limit of the present theory, see [MRV13] for
analogous results in the Kirchhoff-Love model of thin plate.

4 Unique continuation estimates

The key quantitative estimate of unique continuation for the Reissner-Mindlin
reference plate is the following three spheres inequality, which was obtained
in [MRV17, Theorem 7.1].

Theorem 4.1. Under the assumptions made in Section 3, let (ϕ0, w0) ∈
H1(Ω,R2) × H1(Ω) be the solution to problem (3.16)–(3.19) normalized by
conditions (3.21). Let x̄ ∈ Ω and R1 > 0 be such that BR1(x̄) ⊂ Ω. Then
there exists θ ∈ (0, 1), θ depending on α0, α1, γ0,

ρ0

h
only, such that if 0 <

R3 < R2 < R1 and R3

R1
≤ R2

R1
≤ θ, then we have

∫
BR2

(x̄)

|V |2 ≤ C

(∫
BR3

(x̄)

|V |2
)τ (∫

BR1
(x̄)

|V |2
)1−τ

(4.1)

where

|V |2 = |ϕ0|2 +
1

ρ2
0

|w0|2, (4.2)

τ ∈ (0, 1) depends on α0, α1, γ0,
R3

R1
, R2

R1
, ρ0

h
only and C depends on α0, α1, γ0,

R2

R1
, ρ0

h

only.
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In order to obtain the size estimates we need an estimate analogous to
(4.1) for the strain energy density

E(ϕ0, w0) =

(
|∇̂ϕ0|2 +

1

ρ2
0

|ϕ0 +∇w0|2
) 1

2

. (4.3)

Theorem 4.2. Under the assumptions made in Section 3, let (ϕ0, w0) ∈
H1(Ω,R2) × H1(Ω) be the solution to problem (3.16)–(3.19) normalized by
conditions (3.21). There exist θ ∈ (0, 1), τ ∈ (0, 1), C > 0 only depending
on α0, α1, γ0, ρ0

h
, such that for every ρ ∈ (0, ρ0) and for every x̄ ∈ Ω such

that dist(x̄, ∂Ω) ≥ 7
2θ
ρ, we have

∫
B3ρ(x̄)

E2(ϕ0, w0) ≤ C

(
ρ0

ρ

)2
(∫

Bρ(x̄)

E2(ϕ0, w0)

)τ
∫

B 7
2θ
ρ
(x̄)

E2(ϕ0, w0)

1−τ

.

(4.4)

The main tool used to derive inequality (4.4) from inequality (4.1) is the
following Korn’s inequality of constructive type, which was established in
[MRV17, Theorem 4.3].

Theorem 4.3 (Generalized second Korn inequality). Let Ω be a bounded
domain in R2, with boundary of Lipschitz class with constants ρ0, M0, satis-
fying (3.1), (3.2). There exists a positive constant C only depending on M0,
M1 and s0, such that, for every ϕ ∈ H1(Ω,R2) and for every w ∈ H1(Ω,R),

‖∇ϕ‖L2(Ω) ≤ C

(
‖∇̂ϕ‖L2(Ω) +

1

ρ0

‖ϕ+∇w‖L2(Ω)

)
. (4.5)

It is also convenient to recall the following Poincaré inequalities.

Proposition 4.4 (Poincaré inequalities). Let Ω be a bounded domain in
R2, with boundary of Lipschitz class with constants ρ0, M0, satisfying (3.1).
There exists a positive constant CP only depending on M0 and M1, such that
for every u ∈ H1(Ω,Rn), n = 1, 2,

‖u− uΩ‖L2(Ω) ≤ CPρ0‖∇u‖L2(Ω), (4.6)

‖u− uG‖H1(Ω) ≤

(
1 +

(
|Ω|
|G|

) 1
2

)√
1 + C2

P ρ0‖∇u‖L2(Ω), (4.7)

where G, G ⊆ Ω, is any measurable subset of Ω with positive measure and
uG = 1

|G|

∫
G
u.
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We refer to [AMR08, Example 3.5] and also [AMR02b] for a quantitative
evaluation of the constant CP .

Proof of Theorem 4.2. Let us apply Theorem 4.1 to the solution (ϕ∗, w∗) to
(3.16)–(3.19), where

ϕ∗ = ϕ0 − cρ, w∗ = w0 + cρ · (x− x̄)− dρ, (4.8)

with

cρ =
1

|Bρ|

∫
Bρ(x̄)

ϕ0, dρ =
1

|Bρ|

∫
Bρ(x̄)

w0, (4.9)

R3 = ρ, R2 =
7

2
ρ, R1 =

7

2θ
ρ. (4.10)

Since ϕ∗ +∇w∗ = ϕ0 +∇w0 and ∇ϕ∗ = ∇ϕ0, we have

∫
B 7

2 ρ
(x̄)

|ϕ∗|2+
1

ρ2
0

|w∗|2 ≤ C

(∫
Bρ(x̄)

|ϕ∗|2 +
1

ρ2
0

|w∗|2
)τ
∫

B 7
2θ
ρ
(x̄)

|ϕ∗|2 +
1

ρ2
0

|w∗|2
1−τ

,

(4.11)
where τ ∈ (0, 1), C > 0 only depend on α0, α1, γ0 and ρ0

h
.

By applying Poincaré inequality (4.6) to the functions w∗ and ϕ∗ and
Korn inequality (4.5) to ϕ∗ in the domain Bρ(x̄) where these functions have
zero mean value, we have∫

Bρ(x̄)

|ϕ∗|2 +
1

ρ2
0

|w∗|2 ≤ C

∫
Bρ(x̄)

|ϕ∗|2 +
ρ2

ρ2
0

|∇w0 + cρ|2 ≤

≤ C

∫
Bρ(x̄)

|ϕ∗|2 +
ρ2

ρ2
0

|∇w0 + ϕ0|2 +
ρ2

ρ2
0

|ϕ0 − cρ|2 ≤

≤ C

∫
Bρ(x̄)

(
1 +

ρ2

ρ2
0

)
|ϕ∗|2 +

ρ2

ρ2
0

|∇w0 + ϕ0|2 ≤

≤ C

∫
Bρ(x̄)

ρ2

(
1 +

ρ2

ρ2
0

)
|∇ϕ∗|2 +

ρ2

ρ2
0

|∇w0 + ϕ0|2 ≤

≤ C

∫
Bρ(x̄)

ρ2

(
1 +

ρ2

ρ2
0

)
|∇̂ϕ0|2 +

(
1 +

ρ2

ρ2
0

)
|∇w0 + ϕ0|2 ≤

≤ Cρ2
0

(∫
Bρ(x̄)

|∇̂ϕ0|2 +
1

ρ2
0

|∇w0 + ϕ0|2
)
, (4.12)

with C an absolute constant.
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Similarly, we can estimate the integral over B 7
2θ
ρ(x̄) by using Poincaré

inequality (4.7) with G = Bρ(x̄), Ω = B 7
2θ
ρ(x̄), obtaining

∫
B 7

2θ
ρ
(x̄)

|ϕ∗|2+
1

ρ2
0

|w∗|2 ≤ Cρ2
0

∫
B 7

2θ
ρ
(x̄)

|∇̂ϕ0|2 +
1

ρ2
0

|∇w0 + ϕ0|2
 , (4.13)

with C > 0 only depending on α0, α1, γ0, ρ0

h
.

Next we need to derive a suitable Caccioppoli type inequality, see [C51]
for the classical version for elliptic equations and [Gi83, Proposition 2.1] for
a recent reference for elliptic systems. To this aim, let us consider a function
η ∈ C∞0 (R2), having compact support contained in B 7

2
ρ(x̄), satisfying η ≡ 1

in B3ρ(x̄), η ≥ 0, |∇η| ≤ C
ρ

, C > 0 being an absolute constant. Inserting in

the weak formulation (3.20) the test functions ψ = η2ϕ∗, v = η2w∗, we have∫
B 7

2 ρ
(x̄)

η2P∇̂ϕ∗ · ∇̂ϕ∗ + S(ϕ∗ +∇w∗) · (η2(ϕ∗ +∇w∗)) ≤

≤ C

∫
B 7

2 ρ
(x̄)

(
h

3
2 |∇η||ϕ∗|

)(
h

3
2η|∇̂ϕ∗|

)
+
(
h

1
2η|ϕ∗ +∇w∗|

)(
h

1
2 |∇η||w∗|

)
,

(4.14)

where C is an absolute constant.
By applying the ellipticity assumptions (3.10), (3.11) and by using the

standard inequality 2ab ≤ εa2 + b2

ε
, ε > 0, we have∫

B 7
2 ρ

(x̄)

η2h3|∇̂ϕ∗|2 + hη2|ϕ∗ +∇w∗|2 ≤

≤ Cε

∫
B 7

2 ρ
(x̄)

η2h3|∇̂ϕ∗|2 + hη2|ϕ∗ +∇w∗|2 +
C

ερ2

∫
B 7

2 ρ
(x̄)

h3|ϕ∗|2 + h|w∗|2,

(4.15)

with C only depending on α0, α1, γ0. For a suitable value of ε, only depending
on α0, α1, γ0, we obtain the following Caccioppoli type inequality∫

B3ρ(x̄)

|∇̂ϕ0|2 +
1

ρ2
0

|ϕ0 + ∇w0|2 ≤
C

ρ2

∫
B 7

2 ρ
(x̄)

|ϕ∗|2 +
1

ρ2
0

|w∗|2, (4.16)

with C only depending on α0, α1, γ0 and ρ0

h
. By (4.11), (4.12), (4.13), (4.16),

the thesis follows.
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Finally, the last mathematical tool of quantitative unique continuation is
the following result, whose proof is deferred in Section 6.

Theorem 4.5 (Lipschitz propagation of smallness). Under the assumptions
made in Section 3, for every ρ > 0 and for every x ∈ Ω 7

2θ
ρ, we have∫

Bρ(x)

E2(ϕ0, w0) ≥ Cρ

∫
Ω

E2(ϕ0, w0), (4.17)

where Cρ only depends on α0, α1, γ0, ρ0

h
, M0, M1, s0, F and ρ, and θ ∈ (0, 1)

has been introduced in Theorem 4.1, θ depending on α0, α1, γ0,
ρ0

h
only.

5 Proof of Theorem 3.3

The basic result connecting the presence of an inclusion to the difference of
the works corresponding to problems (3.16)–(3.19) and (3.31)–(3.34) is the
following Lemma.

Lemma 5.1 (Energy Lemma). Let Ω be a bounded domain in R2 with bound-

ary of Lipschitz class. Let S, S̃ ∈ L∞(Ω,M2) satisfy (3.24) and P, P̃ ∈
L∞(Ω,L(M2,M2)) satisfy (3.25). Let us assume that the jumps (S̃ − S) and

(P̃ − P) satisfy either (3.26)–(3.27) or (3.28)–(3.29). Let (ϕ0, w0), (ϕ,w) ∈
H1(Ω,R2)×H1(Ω) be the weak solutions to problems (3.16)–(3.19), (3.31)–
(3.34), respectively.

If (3.26)–(3.27) hold, then we have

η

δ

∫
D

h3

12
ξ0|∇̂ϕ0|2 + hσ0|ϕ0 +∇w0|2 ≤

∫
∂Ω

Q(w0 − w) +M · (ϕ0 − ϕ) ≤

≤ (δ − 1)

∫
D

h3

12
ξ1|∇̂ϕ0|2 + hσ1|ϕ0 +∇w0|2. (5.1)

If (3.28)–(3.29) hold, then we have

η

∫
D

h3

12
ξ0|∇̂ϕ0|2 + hσ0|ϕ0 +∇w0|2 ≤

∫
∂Ω

Q(w0 − w) +M · (ϕ0 − ϕ) ≤

≤ 1− δ
δ

∫
D

h3

12
ξ1|∇̂ϕ0|2 + hσ1|ϕ0 +∇w0|2. (5.2)
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Proof of Theorem 3.3. Let us notice that by (4.5) and (4.6), and by the triv-
ial estimate ‖∇w0‖L2(Ω) ≤ ‖ϕ0 +∇w0‖L2(Ω) + ‖ϕ0‖L2(Ω), we have

‖ϕ0‖H1(Ω) +
1

ρ0

‖w0‖H1(Ω) ≤
C

ρ 0

(
‖∇̂ϕ0‖L2(Ω) +

1

ρ0

‖ϕ0 +∇w0‖L2(Ω)

)
≤

≤ C

(∫
Ω

E2(ϕ0, w0)

) 1
2

, (5.3)

with C only depending on M0, M1, s0.
By standard regularity estimates for elliptic systems (see [Cam80, The-

orem 6.1]), by (5.3) and by the weak formulation of the Neumann problem
(3.16)–(3.19), we have

‖ϕ0‖L∞(D)+ρ0‖∇̂ϕ0‖L∞(D)+‖∇w0‖L∞(D) ≤ C

(
‖ϕ0‖H1(Ω) +

1

ρ0

‖w0‖H1(Ω)

)
≤

≤ C

(∫
Ω

E2(ϕ0, w0)

) 1
2

≤ C

ρ
3
2
0

(∫
∂Ω

Qw0 +M · ϕ0

) 1
2

, (5.4)

where the constant C depends only on M0, M1, s0, α0, α1, γ0, ρ0

h
, d0.

The lower bound for |D| in (3.38), (3.39) follows from the right hand side
of (5.1), (5.2) and from (5.4).

Now, let us prove the upper bound for |D| in (3.38), (3.39). Note that∫
D

h3

12
ξ0|∇̂ϕ0|2 + hσ0|ϕ0 +∇w0|2 ≥ C

∫
D

E2(ϕ0, w0), (5.5)

with C only depending on α0, γ0, ρ0

h
.

Let us cover Dh1 with internally non overlapping closed squares Qj of side
l, for j = 1, ..., J , with l = 4θh1

2
√

2θ+7
, where θ ∈ (0, 1) is as in Theorem 4.5. By

the choice of l the squares Qj are contained in D. Hence∫
D

E2(ϕ0, w0) ≥
∫
⋃J
j=1Qj

E2(ϕ0, w0) ≥ |Dh1|
ln

∫
Qj̄

E2(ϕ0, w0), (5.6)

where j̄ is such that
∫
Qj̄
E2(ϕ0, w0) = minj

∫
Qj
E2(ϕ0, w0). Let x̄ be the

center of Qj̄. From (5.5), (5.6), estimate (4.17) with x = x̄ and ρ = l/2,
(3.10), (3.11) and from the weak formulation of (3.16)–(3.19) we have∫

D

h3

12
ξ0|∇̂ϕ0|2 + hσ0|ϕ0 +∇w0|2 ≥ K|D|W0, (5.7)

where K depends only on α0, α1, γ0, M0, M1, s0, ρ0

h
, h1 and F .

The upper bound for |D| in (3.38), (3.39) follows from the left hand side
of (5.1),(5.2) and from (5.7).
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6 Proof of Theorem 4.5

Let us premise the following Proposition.

Proposition 6.1. Let Ω be a bounded domain in R2, with boundary of Lip-
schitz class with constants ρ0, M0, satisfying (3.1). Let S ∈ C0,1(Ω,M2) and
P ∈ C0,1(Ω,L(M2,M2)) given by (3.6), (3.7) with the Lamé moduli satisfying

(3.4), (3.5). Let M ∈ H− 1
2 (∂Ω,R2) and Q ∈ H− 1

2 (∂Ω) satisfy the compati-
bility conditions (3.14). Let (ϕ0, w0) ∈ H1(Ω,R2)×H1(Ω) be the solution of
the problem (3.16)–(3.19), normalized by the conditions (3.21). Then there
exists a positive constant C only depending on M0, M1, α0, α1, γ0, ρ0

h
, such

that

‖M‖H−1(∂Ω,R2) + ρ0‖Q‖H−1(∂Ω) ≤ Cρ2
0

(
‖ϕ0‖L2(∂Ω,R2) +

1

ρ0

‖w0‖L2(∂Ω)

)
.

(6.1)

Remark 6.2. Let us highlight that the above Proposition, as well as Lemma
6.3, on which its proof is based, hold true for anisotropic materials.

Proof of Theorem 4.5. By Proposition 5.5 in [ARRV09] and by (3.3), there
exists h2 > 0 only depending on M0 such that Ω 4

θ
ρ is connected and of

Lipschitz class with constant ρ0, M0, for every ρ ≤ θ
4
h2ρ0. Let ρ ≤ θ

4
h2ρ0.

Given any point y ∈ Ω 4
θ
ρ, let γ be an arc in Ω 4

θ
ρ joining x and y. Let us

define the points {xi}, i = 1, ..., L, as follows: x1 = x, xi+1 = γ(ti), where
ti = max{t s.t. |γ(t) − xi| = 2ρ} if |xi − y| > 2ρ, otherwise let i = L and
stop the process. By construction, the disks Bρ(xi) are pairwise disjoint and
|xi+1 − xi| = 2ρ, i = 1, ..., L− 1, |xL − y| ≤ 2ρ.

By applying Theorem 4.2 and denoting E(ϕ0, w0) = E to simplify the
notation, we have

∫
Bρ(xi+1)

E2 ≤ C

(
ρ0

ρ

)2
(∫

Bρ(xi)

E2

)τ
∫

B 7
2θ
ρ
(xi)

E2

1−τ

, (6.2)

for i = 1, ..., L − 1, where τ ∈ (0, 1) and C > 0 only depend on α0, α1, γ0

and ρ0

h
.

Let us apply the Caccioppoli inequality (4.16) to estimate from above the
second integral on the right hand side of (6.2), namely∫

B 7
2θ
ρ
(xi)

E2 ≤ C

ρ2

∫
B 4
θ
ρ
(xi)

|ϕ∗0|2 +
1

ρ2
0

|w∗0|2 ≤
C

ρ2

∫
Ω

|ϕ∗0|2 +
1

ρ2
0

|w∗0|2, (6.3)
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where ϕ∗0 = ϕ0 − c, w∗0 = w0 + c · (x− x)− d, with c ∈ R2, d ∈ R, x ∈ R2 to
be chosen later, and where C > 0 only depends on α0, α1, γ0 and ρ0

h
.

By (6.2) and (6.3), and using an iteration argument, we have

ρ2
∫
Bρ(y)

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

≤ C

(
ρ0

ρ

)2
(

ρ2
∫
Bρ(x)

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

)τL

, (6.4)

where, by (3.1), L ≤ C1

(
ρ0

ρ

)2

, with C1 > 0 only depending on M1, and C is

as above.
Let us tessellate Ω 5

θ
ρ with internally non overlapping closed squares of

side l = 2ρ√
2
. By (3.1), their number is dominated by N = |Ω|

2ρ2 ≤ C
(
ρ0

ρ

)2

,

with C > 0 only depending on M1. Then, by (6.4) we have

ρ2
∫

Ω 5
θ
ρ

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

≤ C

(
ρ0

ρ

)4
(

ρ2
∫
Bρ(x)

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

)τL

, (6.5)

where C > 0 only depends on α0, α1, γ0, ρ0

h
and M1.

In the next step, we shall estimate from below
∫

Ω 5
θ
ρ

E2. Let us choose

c =
1

|Ω 5
θ
ρ|

∫
Ω 5
θ
ρ

ϕ0, d =
1

|Ω 5
θ
ρ|

∫
Ω 5
θ
ρ

w0, x =
1

|Ω 5
θ
ρ|

∫
Ω 5
θ
ρ

x (6.6)

and let ρ ≤ θ
5
h2ρ0, so that Ω 5

θ
ρ is connected and of Lipschitz class with

constants ρ0, M0. By using Korn inequality (4.5) and Poincaré inequality
(4.6) in (6.5), and recalling that E(ϕ∗0, w

∗
0) = E(ϕ0, w0), we have

C

(
ρ

ρ0

)6

∫
Ω 5
θ
ρ

|ϕ∗0|2 + 1
ρ2

0
|w∗0|2∫

Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

≤

(
ρ2
∫
Bρ(x)

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

)τL

, (6.7)

where C > 0 only depends on M0, M1, s0, α0, α1, γ0 and ρ0

h
.

Recalling that
∫

Ω
ϕ0 = 0,

∫
Ω
w0 = 0, and since

|Ω \ Ω 5
θ
ρ| ≤ Cρρ0, |Ω 5

θ
ρ| ≥ Cρ2

0, (6.8)

with C > 0 only depending on M0 and M1 (see [AR98, Appendix] for details),
by Hölder inequality we have

|c| ≤ C

ρ0

(
ρ

ρ0

) 1
2

∫
Ω\Ω 5

θ
ρ

|ϕ0|2
 1

2

, (6.9)
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|d| ≤ C

ρ0

(
ρ

ρ0

) 1
2

∫
Ω\Ω 5

θ
ρ

|w0|2
 1

2

(6.10)

and, therefore,∣∣∣∣∣∣∣
∫

Ω\Ω 5
θ
ρ

|ϕ∗0|2
 1

2

−

∫
Ω\Ω 5

θ
ρ

|ϕ0|2
 1

2

∣∣∣∣∣∣∣ ≤ C1
ρ

ρ0

∫
Ω\Ω 5

θ
ρ

|ϕ0|2
 1

2

, (6.11)

∣∣∣∣∣
(∫

Ω

|ϕ∗0|2
) 1

2

−
(∫

Ω

|ϕ0|2
) 1

2

∣∣∣∣∣ ≤ C1

(
ρ

ρ0

) 1
2

∫
Ω\Ω 5

θ
ρ

|ϕ0|2
 1

2

, (6.12)

where C1 > 0 depends only on M0 and M1. Assuming, in addition, ρ ≤
min{ 1

2C1
, 1

4C2
1
}ρ0, from (6.11), (6.12) we have∫

Ω\Ω 5
θ
ρ

|ϕ∗0|2 ≤
9

4

∫
Ω\Ω 5

θ
ρ

|ϕ0|2, (6.13)

∫
Ω

|ϕ∗0|2 ≥
1

4

∫
Ω

|ϕ0|2. (6.14)

By (6.9), (6.10) we can estimate∣∣∣∣∣∣∣
∫

Ω\Ω 5
θ
ρ

|w∗0|2
 1

2

−

∫
Ω\Ω 5

θ
ρ

|w0|2
 1

2

∣∣∣∣∣∣∣ ≤
∫

Ω\Ω 5
θ
ρ

|c · (x− x) + d|2
 1

2

≤

≤ C(ρ0|c|+|d|)|Ω\Ω 5
θ
ρ|

1
2 ≤ C2ρ


∫

Ω\Ω 5
θ
ρ

|ϕ0|2
 1

2

+
1

ρ0

∫
Ω\Ω 5

θ
ρ

|w0|2
 1

2


(6.15)

and, taking the squares, we obtain∫
Ω\Ω 5

θ
ρ

|w∗0|2 ≤

(
2 + 4C2

2

(
ρ

ρ0

)2
)∫

Ω\Ω 5
θ
ρ

|w0|2 + 4C2
2ρ

2

∫
Ω\Ω 5

θ
ρ

|ϕ0|2, (6.16)

where C2 > 0 only depends on M0 and M1. From (6.13) and (6.16), and
assuming also ρ ≤ 3

4C2
ρ0, we have∫

Ω\Ω 5
θ
ρ

|ϕ∗0|2 +
1

ρ2
0

|w∗0|2 ≤
9

2

∫
Ω\Ω 5

θ
ρ

|ϕ0|2 +
1

ρ2
0

|w0|2. (6.17)
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By repeating calculations similar to those performed in obtaining (6.15), we
have∣∣∣∣∣
(∫

Ω

|w∗0|2
) 1

2

−
(∫

Ω

|w0|2
) 1

2

∣∣∣∣∣ ≤ C3(ρρ0)
1
2

((∫
Ω

|ϕ0|2
) 1

2

+
1

ρ0

(∫
Ω

|w0|2
) 1

2

)
,

(6.18)
where C3 > 0 only depends on M0 and M1. Taking the squares, we deduce

1

ρ2
0

∫
Ω

|w∗0|2 ≥
1

ρ2
0

∫
Ω

|w0|2+

(
2C2

3

ρ

ρ0

− 2
√

2C3

(
ρ

ρ0

) 1
2

)(∫
Ω

|ϕ0|2 +
1

ρ2
0

|w0|2
)
,

(6.19)
where C3 > 0 only depends on M0 and M1. By (6.14) and (6.19), and taking
ρ ≤ 1

2·162C2
3
ρ0, we have∫

Ω

|ϕ∗0|2 +
1

ρ2
0

|w∗0|2 ≥
1

8

∫
Ω

|ϕ0|2 +
1

ρ2
0

|w0|2. (6.20)

Let us rewrite the quotient appearing on the left hand side of (6.7) as∫
Ω 5
θ
ρ

|ϕ∗0|2 + 1
ρ2

0
|w∗0|2∫

Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

= 1−

∫
Ω\Ω 5

θ
ρ

|ϕ∗0|2 + 1
ρ2

0
|w∗0|2∫

Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

. (6.21)

By (6.17) and (6.20) we have∫
Ω\Ω 5

θ
ρ

|ϕ∗0|2 + 1
ρ2

0
|w∗0|2∫

Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

≤ 36

∫
Ω\Ω 5

θ
ρ

|ϕ0|2 + 1
ρ2

0
|w0|2∫

Ω
|ϕ0|2 + 1

ρ2
0
|w0|2

. (6.22)

From Hölder’s inequality, Sobolev embedding theorem and (6.8) we have∫
Ω\Ω 5

θ
ρ

|ϕ0|2 ≤ Cρ1− 2
pρ

1+ 2
p

0

∫
Ω

|∇ϕ0|2, (6.23)

∫
Ω\Ω 5

θ
ρ

|w0|2 ≤ Cρ1− 2
pρ

1+ 2
p

0

∫
Ω

|∇w0|2, (6.24)

with C > 0 only depending on M0 and M1, and p a given number, p > 2, for
instance p = 3. By (6.23) and (6.24), we have∫

Ω\Ω 5
θ
ρ

|ϕ0|2 + 1
ρ2

0
|w0|2∫

Ω
|ϕ0|2 + 1

ρ2
0
|w0|2

≤ Cρ1− 2
pρ

1+ 2
p

0

∫
Ω
|∇ϕ0|2 + 1

ρ2
0
|∇w0|2∫

Ω
|ϕ0|2 + 1

ρ2
0
|w0|2

, (6.25)
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with C and p as above.
Now, let us recall the following trace inequality (see [Gr85, Theorem

1.5.1.10])∫
∂Ω

|w0|2 ≤ C

((∫
Ω

|∇w0|2
) 1

2

·
(∫

Ω

|w0|2
) 1

2

+
1

ρ0

∫
Ω

|w0|2
)
, (6.26)

with C only depending on M0 and M1. Therefore, by (6.26) and Poincaré
inequality (4.6),∫

∂Ω

|w0|2 ≤ Cρ0

(∫
Ω

|w0|2
) 1

2
(∫

Ω

|∇ϕ0|2 +
1

ρ2
0

|∇w0|2
) 1

2

, (6.27)

where C > 0 only depends on M0 and M1. Similarly, by a trace inequality
analogous to (6.26) and by Poincaré inequality (4.6), we have∫

∂Ω

|ϕ0|2 ≤ C

(∫
Ω

|ϕ0|2
) 1

2
(∫

Ω

|∇ϕ0|2 +
1

ρ2
0

|∇w0|2
) 1

2

, (6.28)

with C > 0 only depending on M0 and M1. Therefore, by (6.27) and (6.28)
we have ∫

Ω

|ϕ0|2 +
1

ρ2
0

|w0|2 ≥ C

(∫
∂Ω
|ϕ0|2

)2
+ 1

ρ4
0

(∫
∂Ω
|w0|2

)2∫
Ω
|∇ϕ0|2 + 1

ρ2
0
|∇w0|2

. (6.29)

with C > 0 only depending on M0 and M1. From (3.22), (6.1) and (6.29),
we deduce ∫

Ω
|∇ϕ0|2 + 1

ρ2
0
|∇w0|2∫

Ω
|ϕ0|2 + 1

ρ2
0
|w0|2

≤ C

ρ2
0

F4, (6.30)

with C > 0 only depending on M0, M1, s0, α0, α1, γ0 and ρ0

h
. From (6.25)

and (6.30), there exists C > 0 only depending on M0, M1, s0, α0, α1, γ0 and
ρ0

h
, such that if we further assume ρ ≤

(
1

72CF4

) p
p−2 ρ0, where p > 2 is as in

(6.25), then ∫
Ω\Ω 5

θ
ρ

|ϕ0|2 + 1
ρ2

0
|w0|2∫

Ω
|ϕ0|2 + 1

ρ2
0
|w0|2

≤ 1

72
. (6.31)

Therefore, from (6.7), (6.21), (6.22) and (6.31), we have(
ρ2
∫
Bρ(x)

E2∫
Ω
|ϕ∗0|2 + 1

ρ2
0
|w∗0|2

)τL

≥ C

(
ρ

ρ0

)6

(6.32)
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and, by (6.20), ∫
Bρ(x)

E2 ≥ C

(
ρ

ρ0

) 6

τL 1

ρ2

∫
Ω

|ϕ0|2 +
1

ρ2
0

|w0|2, (6.33)

with C > 0 only depending on M0, M1, s0, α0, α1, γ0 and ρ0

h
.

The integral on the right hand side of (6.33) can be estimated from below
first by using (6.30), namely∫

Bρ(x)

E2 ≥ C

F4

(
ρ

ρ0

) 6

τL
−2 ∫

Ω

|∇ϕ0|2 +
1

ρ2
0

|∇w0|2, (6.34)

and then by Poincaré inequality, obtaining∫
Bρ(x)

E2 ≥ C

F4

(
ρ

ρ0

) 6

τL
−2 ∫

Ω

E2, (6.35)

with C > 0 only depending on M0, M1, s0, α0, α1, γ0 and ρ0

h
. Hence (4.17)

holds for ρ ≤ γρ0, with γ depending on M0, M1, s0, α0, α1, γ0 and ρ0

h
. If

ρ ≥ γρ0, then the thesis follows a fortiori.

In order to prove Proposition 6.1, let us introduce the following Lemma.

Lemma 6.3. Under the hypotheses of Proposition 6.1, let us assume that
ϕ|∂Ω ∈ H1(∂Ω,R2) and w|∂Ω ∈ H1(∂Ω). Then there exists a positive constant
C only depending on M0, M1, α0, α1, γ0, ρ0

h
, such that

‖M‖L2(∂Ω,R2) +ρ0‖Q‖L2(∂Ω) ≤ Cρ2
0

(
‖ϕ0‖H1(∂Ω,R2) +

1

ρ0

‖w0‖H1(∂Ω)

)
. (6.36)

Proof of Proposition 6.1. For brevity, we shall write ϕ, w instead of ϕ0, w0

respectively. Let us consider the standard Dirichlet-to-Neumann map

Λ = ΛP,S : H1/2(∂Ω,R2)×H1/2(∂Ω)→ H−1/2(∂Ω,R2)×H−1/2(∂Ω),

Λ(g1, g2) = ((P∇ϕ)n, S(ϕ+∇w) · n),

where (ϕ,w) ∈ H1(Ω,R2) × H1(Ω) is the unique solution to the Dirichlet
problem 

div (S(ϕ+∇w)) = 0 in Ω,

div (P∇ϕ)− S(ϕ+∇w) = 0, in Ω,

ϕ = g1, on ∂Ω,

w = g2, on ∂Ω.

(6.37)

(6.38)

(6.39)

(6.40)
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Here the norm in the domain of Λ is normalized by

‖(g1, g2)‖H1/2(∂Ω,R2)×H1/2(∂Ω) = ‖g1‖H1/2(∂Ω,R2) + ρ−1
0 ‖g2‖H1/2(∂Ω)

and similar normalizations will be implied in the sequel for other norms in
the domain of Λ and in the codomain of its adjoint Λ∗, whereas the norm in
the codomain of Λ is normalized by

‖(h1, h2)‖H−1/2(∂Ω,R2)×H−1/2(∂Ω) = ‖h1‖H−1/2(∂Ω,R2) + ρ0‖h2‖H−1/2(∂Ω)

and similar normalizations will be implied in the sequel for other norms in
the codomain of Λ and in the domain of its adjoint Λ∗.

Let us set

E = H1(∂Ω,R2)×H1(∂Ω), F = L2(∂Ω,R2)× L2(∂Ω).

By Lemma 6.3 we know that the map Λ can be defined as a bounded
linear operator with domain E and codomain F , precisely

Λ : E → F, (6.41)

‖Λ(g1, g2)‖F ≤ Cρ2
0‖(g1, g2)‖E, (6.42)

where we recall that the norms in E and F , according to the above conven-
tion, are defined as follows

‖(g1, g2)‖E = ‖g1‖H1(∂Ω,R2) + ρ−1
0 ‖g2‖H1(∂Ω),

‖(h1, h2)‖F = ‖h1‖L2(∂Ω,R2) + ρ0‖h2‖L2(∂Ω).

The idea is to use a duality argument in order to deduce the continuity of Λ
as an operator acting between larger spaces. Let us consider the adjoint Λ∗

of the Dirichlet-to-Neumann map (6.41)–(6.42). Since F is a reflexive space,
the domain of the adjoint operator D(Λ∗) can be estended by density to all
of F ′,

Λ∗ : F ′ → E ′

< Λ∗(h1, h2), (g1, g2) >E′,E=< (h1, h2),Λ(g1, g2) >F ′,F ∀(g1, g2) ∈ E,∀(h1, h2) ∈ F ′.
(6.43)

By (6.42)–(6.43), we have

‖Λ∗(h1, h2)‖E′ ≤ Cρ2
0‖(h1, h2)‖F ′ ∀(h1, h2) ∈ F ′, (6.44)

Given any (h1, h2) ∈ E ⊂ F ∼= F ′, let us consider the unique weak solution
to the Dirichlet problem
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div (S(ψ +∇v)) = 0 in Ω,

div (P∇ψ)− S(ψ +∇v) = 0, in Ω,

ψ = h1, on ∂Ω,

v = h2, on ∂Ω.

(6.45)

(6.46)

(6.47)

(6.48)

By using the weak formulation of problems (6.37)–(6.40) and (6.45)–(6.48),
by the symmetry properties of S and P, see (3.24)-(3.25), and by identifying
the reflexive space F with its dual space F ′, we have

< Λ∗(h1, h2), (g1, g2) >E′,E=< (h1, h2),Λ(g1, g2) >F ′,F=

=

∫
∂Ω

h1 ·(P(∇ϕ))n+h2S(ϕ+∇w) ·n =

∫
∂Ω

ψ ·(P(∇ϕ))n+vS(ϕ+∇w) ·n =

=

∫
Ω

P∇ϕ·∇ψ+S(ϕ+∇w)·(ψ+∇v) =

∫
Ω

P∇ψ·∇ϕ+S(ψ+∇v)·(ϕ+∇w) =

=

∫
∂Ω

ϕ ·(P(∇ψ))n+wS(ψ+∇v) ·n =

∫
∂Ω

g1 ·(P(∇ψ))n+g2S(ψ+∇v) ·n,

(6.49)

that is

< Λ∗(h1, h2), (g1, g2) >E′,E=< Λ(h1, h2), (g1, g2) >F ′,F ∀(h1, h2), (g1, g2) ∈ E.
(6.50)

Therefore

Λ∗(h1, h2) = Λ(h1, h2), ∀(h1, h2) ∈ E ⊂ F ∼= F ′. (6.51)

By (6.44), we have

‖Λ(h1, h2)‖H−1/2(∂Ω,R2)×H−1/2(∂Ω) ≤ Cρ2
0‖(h1, h2)‖L2(∂Ω,R2)×L2(∂Ω) ∀(h1, h2) ∈ E.

(6.52)
Since E is dense in L2(∂Ω,R2)× L2(∂Ω), the above inequality extends to

‖Λ(h1, h2)‖H−1(∂Ω,R2)×H−1(∂Ω) ≤ Cρ2
0‖(h1, h2)‖L2(∂Ω,R2)×L2(∂Ω), (6.53)

for every (h1, h2) ∈ L2(∂Ω,R2)× L2(∂Ω).

In order to derive Lemma 6.3, we need to premise some notation and two
auxiliary lemmas which were proved in [AMR02b] and in [MR03] respectively.

Given the notation for the local representation of the boundary of Ω
introduced in Definition 2.1, let us set, for t < ρ0,

R+
t = Ω ∩Rt,M0t = {x = (x1, x2) ∈ R2 | |x1| < t, ψ(x1) < x2 < M0t},
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∆t = {x = (x1, x2) ∈ R2 | |x1| < t, x2 = ψ(x1)}.

The following Lemma is a straightforward consequence of Lemma 5.2 in
[AMR02b] and of Lemma 4.3 in [MR03], which were established in general
anisotropic setting.

Lemma 6.4. Let S ∈ C0,1(Ω,M2) and P ∈ C0,1(Ω,L(M2,M2)) given by
(3.6), (3.7) respectively, with Lamé moduli satisfying (3.4), (3.5).

For every w̃ ∈ H3/2(R+
ρ0

) such that div(S∇w̃) ∈ L2(R+
ρ0

) and w̃ = |∇w̃| =
0 on ∂R+

ρ0
\∆ρ0, we have∫

∆ρ0/2

|S∇w̃·n|2 ≤ C

(
h2

∫
∆ρ0

|∇T w̃|2 +
1

ρ0

∫
R+
ρ0

h2|∇w̃|2 + hρ0|∇w̃||div(S∇w̃)|

)
,

(6.54)
where C > 0 only depends on M0, α0 and α1.

For every ϕ̃ ∈ H3/2(R+
ρ0
,R2) such that div(P∇ϕ̃) ∈ L2(R+

ρ0
,R2) and |ϕ̃| =

|∇ϕ̃| = 0 on ∂R+
ρ0
\∆ρ0, we have∫

∆ρ0/2

|(P∇ϕ̃)n|2 ≤ C

(
h6

∫
∆ρ0

|∇T ϕ̃|2 +
1

ρ0

∫
R+
ρ0

h6|∇ϕ̃|2 + ρ0h
3|∇ϕ̃||div(P∇ϕ̃)|

)
,

(6.55)
where C > 0 only depends on M0, α0, α1 and γ0.

Proof of Lemma 6.3. We follow the lines of the proof of Proposition 5.1 in
[AMR02b]. As a first step, we assume that ϕ ∈ H3/2(R+

ρ0
,R2) and w ∈

H3/2(R+
ρ0

). Let us consider a cut-off function in R2

η(x1, x2) = χ(x1)τ(x2), (6.56)

where

χ ∈ C∞0 (R), χ(x1) ≡ 1 if |x1| ≤
ρ0

2
, χ(x1) ≡ 0 if |x1| ≥

3

4
ρ0, (6.57)

‖χ′‖∞ ≤ C1ρ
−1
0 , ‖χ′′‖∞ ≤ C1ρ

−2
0 , (6.58)

τ ∈ C∞0 (R), τ(x2) ≡ 1 if |x2| ≤
M0ρ0

2
, τ(x2) ≡ 0 if |x2| ≥

3

4
M0ρ0,

(6.59)
‖τ ′‖∞ ≤ C2ρ

−1
0 , ‖τ ′′‖∞ ≤ C2ρ

−2
0 , (6.60)

where C1 is an absolute constant and C2 is a constant only depending on M0.
Let

w̃ = ηw,
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ϕ̃ = ηϕ.

In view of equations (3.16)–(3.17), it will be useful in the sequel to rewrite
div(S∇w) in terms of first derivatives of ϕ and div(P∇ϕ) in terms of first
derivatives of w and in terms of ϕ

div (S∇w) = −div (Sϕ), (6.61)

div (P∇ϕ) = S(ϕ+∇w). (6.62)

By (6.61), it follows that div(S∇w̃) ∈ L2(R+
ρ0

) and by (6.62), it follows that
div(P∇ϕ̃) ∈ L2(R+

ρ0
,R2). Therefore we can apply estimates (6.54) and (6.55)

of Lemma 6.4 to w̃ and ϕ̃, respectively. Taking into account (6.56)–(6.62) we
easily obtain∫

∆ρ0/2

|S∇w · n|2 ≤

Ch2

[∫
∆ρ0

(
|∇Tw|2 +

w2

ρ2
0

)
+

1

ρ0

∫
R+
ρ0

(
|∇w|2 +

w2

ρ2
0

+ ρ2
0|∇ϕ|2 + |ϕ|2

)]
,

(6.63)∫
∆ρ0/2

|P∇ϕ · n|2 ≤

Ch6

[∫
∆ρ0

(
|∇Tϕ|2 +

|ϕ|2

ρ2
0

)
+

1

ρ0

∫
R+
ρ0

(
|∇ϕ|2 +

|ϕ|2

ρ2
0

+
|∇w|2

ρ2
0

)]
, (6.64)

where C > 0 only depends on M0, α0, α1 and γ0.
By (6.63) and (6.64) we have∫
∆ρ0/2

|P∇ϕ · n|2 + ρ2
0|S(ϕ+∇w) · n|2 ≤

Ch6

[∫
∆ρ0

(
|∇Tϕ|2 +

|ϕ|2

ρ2
0

+
|∇Tw|2

ρ2
0

+
w2

ρ4
0

)
+

1

ρ0

∫
R+
ρ0

(
|∇ϕ|2 +

|ϕ|2

ρ2
0

+
w2

ρ4
0

+
|∇w|2

ρ2
0

)]
,

(6.65)

where C > 0 only depends on M0, α0, α1 and γ0.
The hypotheses ϕ ∈ H3/2(R+

ρ0
,R2), w ∈ H3/2(R+

ρ0
) can be removed by

following the lines of the approximation argument used in Step 3 of [AMR02b,
Lemma 5.2] and [MR03, Lemma 4.3] respectively, obtaining again (6.65).
Finally, by (6.65) and the well-posedness of the Dirichlet problem (6.37)–
(6.40), inequality (6.36) follows.
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