
ar
X

iv
:1

30
1.

29
67

v1
 [

cs
.D

M
]

14
 J

an
 2

01
3

Recurrence relations versus succession rules

S. Bilotta∗ E. Pergola∗ R. Pinzani∗ S. Rinaldi†

Abstract

In this paper we present a method to pass from a recurrence relation having constant
coefficients (in short, a C-recurrence) to a finite succession rule defining the same number
sequence. We recall that succession rules are a recently studied tool for the enumeration of
combinatorial objects related to the ECO method. We also discuss the applicability of our
method as a test for the positivity of a number sequence.

keywords: Positivity problem; recurrence relation; succession rule.

1 Introduction

Succession rules (sometimes called ECO-systems) have been proved an efficient tool to solve
several combinatorial problems. A succession rule Ω is a system constituted by an axiom (a),
with a ∈ N, and a set of productions of the form:

(k) (e1(k))(e2(k)) . . . (ek(k)), k ∈ N, ei : N → N.

A production constructs, for any given label (k), its successors (e1(k)), (e2(k)), . . . , (ek(k)).
The rule Ω can be represented by means of a generating tree having (a) as the label of the
root and each node labelled (k) at level n produces k sons labelled (e1(k)), (e2(k)), . . . , (ek(k)),
respectively, at level n+ 1.

A succession rule Ω defines a sequence of positive integers {fn}n≥0 where fn is the number
of the nodes at level n in the generating tree defined by Ω. By convention the root is at level 0,
so f0 = 1. The function fΩ(x) =

∑

n≥0 fnx
n is the generating function determined by Ω.

The concept of a succession rule was introduced in [9] by Chung et al. to study reduced
Baxter permutations, and was later applied to the enumeration of permutations with forbidden
subsequences [25].

Only later this has been recognized as an extremely useful tool for the ECO method, a
methodology applied for the enumeration [6], random generation [4], or exhaustive generation
[1] of various combinatorial structures.

More recently, succession rules have been considered as a remarkable object to be studied
independently of their applications, and they have been treated by several points of view. In
[2], Banderier et al. explore in detail the relationship between the form and the generating
function of a succession rule, and then provide a classification of rules as rational, algebraic, or
transcendental, according to their generating function type; besides some algebraic properties of
succession rules – represented in terms of a rule operator – have been determined and studied
in [13].

∗Dipartimento di Sistemi e Informatica, viale Morgagni 65, 50134 Firenze, Italy bilotta@dsi.unifi.it

elisa@dsi.unifi.it pinzani@dsi.unifi.it
†Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy

rinaldi@unisi.it

1

http://arxiv.org/abs/1301.2967v1

Furthermore, some extensions of the concept of succession rule have been proposed. In [14]
the authors admit that a label produces sons at different levels of the generating tree, introducing
the so called jumping succession rules, while in [10] the author presents marked succession rules,
where labels can be marked or not. The main difference with ordinary succession rules is that
marked labels annihilate non-marked labels having the same value and lying at the same level.

Finally, to explore the relationship between succession rules and other formal tools for the
enumeration is a rather popular trend of research. A tentative in this direction has been made
in [11] with the definition of the so called production matrix, which is just a way to represent
a given succession rule in terms of an infinite matrix, and supplies the possibility to work with
succession rules using some of the algebraic tools developed for matrices.

More recently, there have been some efforts in developing methods to pass from a recurrence
relation defining an integer sequence to a succession rule defining the same sequence - in this
case we say that the succession rule and the recurrence relation are equivalent.

Our work fits into this research line, and tries to deepen the relations between succession
rules and recurrence relations.

It is worth mentioning that almost all studies realized until now on this topic have re-
garded linear recurrence relations with integer coefficients [8, 12]. Following Zeilberger [26], we
will address to these as C-finite recurrence relations, and to the defined sequences as C-finite
sequences.

Accordingly, our work will start considering C-finite recurrences. Compared with the meth-
ods presented in [8, 12], our approach is completely different.

To achieve this goal, we first translate the given C-finite recurrence relation into an extended
succession rule, which differs from the ordinary succession rules since it admits both jumps and
marked labels. Then we recursively eliminate jumps and marked labels from such an extended
succession rule, thus obtaining a finite succession rule equivalent to the previous one. We need to
point out that this translation is possible only if a certain condition – called positivity condition
– is satisfied. Such a condition ensures that all the labels of the generating tree are non marked,
hence the sequence defined by the succession rule has all positive terms.

If the recurrence relation has degree k with coefficients a1, . . . , ak, such a condition can be
expressed in terms of a set of k inequalities which can be obtained from a set of quotients and
remainders given by the coefficients. To the authors’ knowledge, such a condition is completely
new in literature. It directly follows that our positive condition provides a sufficient condition
for testing the positivity of a C-finite sequence then it relates to the so called positivity problem.

Positivity Problem: given a C-finite sequence {fn}n≥0, establish if all its terms are positive.
This problem was originally proposed as an open problem in [7], and then re-presented in

[23] (Theorems 12.1-12.2, pages 73-74), but no general solution has been found yet.
It is worth mentioning that the positivity problem can be solved for a large class of C-

finite sequences, precisely those whose generating function is a N-rational series. We also recall
that the class of N-rational series is precisely the class of the generating functions of regular
languages, and that Soittola’s Theorem [24] states that the problem of establishing whether a
rational generating function is N-rational is decidable.

Soittola’s Theorem has recently been proved in different ways in [8, 22], using different
approaches and some algorithms to pass from an N-rational series to a regular expression enu-
merated by such a series have been proposed [3, 18]. However, none of these techniques provides
a method to face C-finite recurrence relations which are not N-rational.

Following the attempt of enlightening some questions on positive sequences, some researches
have recently focused on determining sufficient conditions to establish the eventual positivity of
a given C-finite recurrence relation, as interestingly described in [16]. As a matter of fact, up to
now, we only know that the positivity problem is decidable for C-finite recurrences of two [15]

2

or three terms [19]. Another possible approach to tackle the positivity problem is to develop
algorithms to test eventual positivity of recursively defined sequences (and, in particular, C-finite
sequences) by means computer algebra, as in [17].

Our work fits into this research line, since the positive condition we propose is a sufficient
condition for testing the positivity of a C-finite sequence.

In the last section we consider the more general case of holonomic integer sequences, i.e.,
those satisfying a linear recurrence with polynomial coefficients. We show that also in this
case we can easily translate the recurrence relation into an infinite succession rule (possibly
having marked labels and jumps). A further goal is to find a way to convert such a rule into
an ordinary succession rule, and find a more general criterion for proving the positivity of an
holonomic sequence. Here we present an example in which we show a possible strategy to
perform the desired conversion.

2 Basic definitions and notations

In this section we present some basic definitions and notations related to the concept of
succession rule. For further definitions and examples we address the reader to [9].

An (ordinary) succession rule Ω can be written in the compact notation:

{
(a)
(k) (e1(k))(e2(k)) . . . (ek(k))

(1)

The rule Ω can be represented by means of a generating tree, that is a rooted tree whose
vertices are the labels of Ω; where (a) is the label of the root and each node labelled (k) produces
k sons labelled (e1(k)), (e2(k)), . . . , (ek(k)), respectively. As usual, the root lies at level 0, and a
node lies at level n if its parent lies at level n − 1. If a succession rule describes the growth of
a class of combinatorial objects, then a given object can be coded by the sequence of labels in
the unique path from the root of the generating tree to the object itself.

A succession rule Ω defines a sequence of positive integers {fn}n≥0 where fn is the number
of the nodes at level n in the generating tree defined by Ω. By convention the root is at level 0,
so f0 = 1. The function fΩ(x) =

∑

n≥0 fnx
n is the generating function determined by Ω.

Two succession rules are equivalent if they have the same generating function. A succession
rule is finite if it has a finite number of labels and productions.

For example, the two succession rules:

{
(2)
(2) (2)(2)

{
(2)
(k) (1)k−1(k + 1)

are equivalent rules, and define the sequence fn = 2n. The one on the left is a finite rule, since
it uses only the label (2), while the one on the right is an infinite rule.

A slight generalization of the concept of ordinary succession rule is provided by the so called
jumping succession rule. Roughly speaking, the idea is to consider a set of succession rules
acting on the objects of a class and producing sons at different levels.

The usual notation to indicate a jumping succession rule Ω is the following:







(a)

(k)
j1
 (e11(k))(e12(k)) . . . (e1k(k))

(k)
j2
 (e21(k))(e22(k)) . . . (e2k(k))

...

(k)
jm
 (em1(k))(em2(k)) . . . (emk(k))

(2)

3

The generating tree associated with Ω has the property that each node labelled (k) lying at
level n produces k sets of sons at level n+ j1, n+ j2, . . . , n+ jm, respectively and each of such
set has labels (ei1(k)), (ei2(k)), . . . , (eik(k)) respectively, 1 ≤ i ≤ m.

A jumping succession rule Ω defines a sequence of positive integers {fn}n≥0 where, as usual,
fn is the number of the nodes at level n in the generating tree of Ω. The function fΩ(x) =
∑

n≥0 fnx
n is the generating function determined by Ω.

We need to point out that, according to the above definitions, a node labelled (k) has
precisely k sons. A rule having this property is said to be consistent. However, in many cases we
can relax this constraint and consider rules (as in [10]), where the number of sons is a function
of the label k.

For example, the jumping succession rule (3) counts the number of 2-generalized Motzkin
paths and Figure 1 shows some levels of the associated generating tree. For more details about
these topics, see [14].







(1)

(k)
1
 (1)(2) · · · (k − 1)(k + 1)

(k)
2
 (k)

(3)

(1)

(1)(3) (1)(3)(1)(3)(5)(3)(2)(1)(3)(1)(2)(1)(3)(1)

(2)(2)(4)(2)(1)(2)

(1)(3)(1)

(2)

Figure 1: Four levels of the generating tree associated with the succession rule (3)

Another generalization of succession rules is introduced in [21], where the authors deal with
marked succession rules. In this case the labels appearing in a succession rule can be marked or
not, therefore marked are considered together with usual labels. In this way a generating tree
can support negative values if we consider a node labelled (k) as opposed to a node labelled (k)
lying on the same level.

Amarked generating tree is a rooted labelled tree where marked or non-marked labels appear
according to the corresponding succession rule. The main property is that, on the same level,
marked labels kill or annihilate the non-marked ones with the same label value, in particular
the enumeration of the combinatorial objects in a class is the difference between the number of
non-marked and marked labels lying on a given level.

For any label (k), we introduce the following notation for generating tree specifications:

(k) = (k);

(k)n = (k) . . . (k)
︸ ︷︷ ︸

n

n > 0;

(k)−n = (k) . . . (k)
︸ ︷︷ ︸

n

n > 0.

For example, the classical succession rule for Catalan numbers can be rewritten in the form

4

(4) and Figure 2 shows some levels of the associated generating tree.






(2)

(k)
1
 (2)(3) . . . (k)(k + 1)(k)

(k)
1
 (k)

(4)

(2)

(2)

(2)(2)(3)(2)

(2)(2)(3)(2)(2)(2)(3)(2)(3)(3)(4)(3)(2)(2)(2)(3)

Figure 2: Three levels of the generating tree associated with the succession rule (4)

The concept of marked labels has been implicity used for the first time in [20], then in [10]
in relation with the introduction of signed ECO-systems.

3 A general method to translate C-sequences into succession

rules

The main purpose of our research is to develop a general formal method to translate a
given recurrence relation into a succession rule defining the same number sequence. By abuse
of notation, in this case we will say that the recurrence relation and the succession rules are
equivalent.

As a first step we deal with linear recurrence relations with integer coefficients [8, 12].
Following Zeilberger [26], we will address to these as C-finite recurrence relations, and to the
defined sequences as C-finite sequences.

This section is organized as follows.

i) First we deal with C-sequences of the form

fn = a1fn−1 + a2fn−2 + · · ·+ akfn−k ai ∈ Z, 1 ≤ i ≤ k (5)

with default initial conditions, i.e. f0 = 1 and fh = 0 for all h < 0. We translate the given
C-finite recurrence relation into an extended succession rule, possibly using both jumps
and marked labels (Section 3.1).

ii) Then, we recursively eliminate jumps and marked labels from such an extended succession
rule, thus obtaining a finite succession rule equivalent to the previous one (Section 3.2).
We remark that steps i) and ii) can be applied independently of the positivity of {fn}n≥0,
but at this step we cannot be sure that all the labels of the obtained rule are nonnegative
integers.

iii) We state a condition to ensure that the labels of the obtained succession rule are all
nonnegative. If such a condition holds, then the sequence {fn}n≥0 has all positive terms,
thus we refer to this as positivity condition (Section 3.3).

iv) We show how our method can be extended to C-sequences with generic initial conditions
(Section 3.4).

5

3.1 C-sequences with default initial conditions

Let us consider a C-finite recurrence relation expressed as in (5), with default initial condi-
tions and the related C-sequence {fn}n≥0. We recall that the generating function of {fn}n≥0 is
rational, and precisely it is

f(x) =
∑

n≥0

fnx
n =

1

1− a1x− a2x2 − · · · − akx
k
. (6)

The first step of our method consists into translating the C-finite recurrence relation (5)
into an extended succession rule. The translation is rather straightforward, since in practice it
is just an equivalent way to represent the recurrence relation.

Proposition 3.1 The recurrence relation (5) with default initial conditions is equivalent to the
following extended succession rule:







(a1)

(a1)
1
 (a1)

a1

(a1)
2
 (a1)

a2

...

(a1)
k
 (a1)

ak

(7)

For example, the recurrence relation fn = 3fn−1+2fn−2−fn−3 with default initial conditions,
defines the sequence 1, 3, 11, 38, 133, 464, 1620, 5655, . . . , and it is equivalent to the following
extended succession rule: 





(3)

(3)
1
 (3)3

(3)
2
 (3)2

(3)
3
 (3)

(8)

3.2 Elimination of jumps and marked labels

The successive step of our method consists into recursively eliminating jumps from the
extended succession rule (7) in order to obtain a finite succession rule which is equivalent to the
previous one. Once jumps have been eliminated we will deal with marked labels.

Proposition 3.2 The succession rule:







(a1)
(a1) (a1 + a2)(a1)

a1−1

(a1 + a2) (a1 + a2 + a3)(a1)
a1+a2−1

...

(
∑k−1

l=1 al) (
∑k

l=1 al)(a1)
(
∑k−1

l=1
al)−1

(
∑k

l=1 al) (
∑k

l=1 al)(a1)
(
∑k

l=1 al)−1

(9)

is equivalent to the recurrence relation fn = a1fn−1 + a2fn−2 + · · ·+ akfn−k, ai ∈ Z, 1 ≤ i ≤ k,
with default initial conditions.

6

Proof. Let Ak(x) be the generating function of the label (
∑k

l=1 al) related to the succes-
sion rule (9). We have:

A1(x) = 1 + (a1 − 1)xA1(x) + (a1 + a2 − 1)xA2(x) + · · ·+ (a1 + a2 + · · ·+ ak − 1)xAk(x);

A2(x) = xA1(x);

A3(x) = xA2(x) = x2A1(x);
...

Ak−1(x) = xAk−2(x) = xk−2A1(x);

Ak(x) = xAk−1(x) + xAk(x) =
xk−1

1−x
A1(x).

Therefore,

A1(x) = 1 + x(a1 − 1)A1(x) + x2(a1 + a2 − 1)A1(x) + · · ·+
xk

1− x
(a1 + a2 + · · ·+ ak − 1)A1(x),

and we obtain the generating function A1(x) =
1−x

1−a1x−a2x2−···−akx
k .

At this point we can consider the generating function determined by the succession rule (9)
as following:

A1(x) +A2(x) + · · · +Ak−1(x) +Ak(x) = A1(x) + xA1(x) + · · ·+ xk−2A1(x) +
xk−1

1− x
A1(x) =

=
(1− x) + x(1− x) + · · · + xk−2(1− x) + xk−1

1− a1x− a2x2 − · · · − akxk
=

1

1− a1x− a2x2 − · · · − akxk
.

�

Following the previous statement, the extended succession rule (8) – determined in the
previous section – can be translated into the following succession rule:







(3)
(3) (5)(3)2

(5) (4)(3)4

(4) (4)(3)3

(10)

Figure 3 shows some levels of the generating tree associated with (10).

(5)(3)(3)

11

3

1

(5)(3)

(3) (3) (5) (3) (5)(3)

(3)

(3)

(3)(3)

(5)(3)(3) (4)(3)(3)(3)(5)(3)(3)

(3)

(5)(3)(3) (5)(3)(3)

(3) (4)

(5)(3)(3) (5)(3)(3) (4)(3)(3)(3)(3)(5)(3)(3) (4)(3)(3)(3)(3) 38

Figure 3: Four levels of the generating tree associated with the succession rule (10)

We observe that the previously obtained succession rule is an ordinary finite succession rule,
but it may happen that the value of the label (

∑i
l=1 al) is negative, for some i with i ≤ k, then

the succession rule (9) contains marked labels.

7

For example, the recurrence relation fn = 5fn−1 − 6fn−2 + 2fn−3, with default initial con-
ditions, which defines the sequence 1,5,19,67,231,791,2703, . . . , (sequence A035344 in the The
On-Line Encyclopedia of Integer Sequences) is equivalent to the following succession rule:







(5)
(5) (−1)(5)4

(−1) (1)(5)2

(1) (1)

(11)

and Figure 4 shows some levels of the associated generating tree represented using a “compact
notation”, i.e., by convention, the number of nodes at a given level n is obtained by means of
the algebraic sum of the exponents of the labels lying at level n.

64

(5)

(5)(−1)

(−1) (5) (5)(1) (−1) (5)

(5)(1)

(5)

(1)

1

5

19

67

4

2 4 16

2 8 4 8 16

(−1)

Figure 4: Compact notation for the generating tree associated with the succession rule (11)

Therefore our next goal is to remove all possible marked labels from the succession rule.
We observe that in order to obtain this goal, the recurrence relation fn = a1fn−1 + a2fn−2 +
· · · + akfn−k with default initial conditions needs a1 > 0. We assume that this condition holds
throughout the rest of the present section.

In order to furnish a clearer description of our method, we start considering the case k = 2.

Proposition 3.3 The C-finite recurrence fn = a1fn−1+a2fn−2, with default initial conditions,
and having a1 > 0, is equivalent to







(a1)

(a1) (0)q2(r2)(a1)
a1−(q2+1)

(r2)
(

(0)q2(r2)
)q2

(0)q2(r2)(a1)
r2−(q2+1)2

(12)

where, by convention, the label (0) does not produce any son, and q2, r2 are defined as follows:

- if a1 + a2 ≤ 0 then q2, r2 > 0 such that |a1 + a2| = q2a1 − r2;

- otherwise q2 = 0, r2 = a1 + a2.

Proof. We have to distinguish two cases: in the first one a1 + a2 ≤ 0 and in the second
one a1 + a2 > 0.

If a1 + a2 ≤ 0, we have to prove that the generating tree associated to the succession rule
(12) is obtained by performing some actions on the generating tree associated to the extended
succession rule (13) which is obviously equivalent to the recurrence fn = a1fn−1+a2fn−2 having
a1 > 0 and a2 < 0, with f0 = 1 and fh = 0 for each h < 0.







(a1)

(a1)
1
 (a1)

a1

(a1)
2
 (a1)

a2

(13)

8

The proof consists in eliminating jumps and marked labels at each level of the generating
tree associated with succession rule (13), sketched in Figure 5, by modifying the structure of the
generating tree, still maintaining fn nodes at level n, for each n.

Let (a1) be a label at a given level n. We denote by B1 the set of a1 labels (a1) at
level n + 1 and by B2 the set of a2 labels (a1) at level n + 2, see Figure 5. We remark that
(a1)

a2 = (a1) . . . (a1)
︸ ︷︷ ︸

−a2

.

B()a . . . a()1
B

2 1()a. ..a()12
B

1()a . . . a()1
B

21()a a()1. . .B
1

1()a. ..a()12
B. ..

1()aa()1
B

1

a()1

B
1 1()a . ..

1()a 1()a . . . a()1

1()a a()1. . .B
1

. ..
1()aa()1

B
11()a a()1. . .B

1
. ..

. ..
1()aa()1

B
1

. . . a()11()a

.

. . .
11

Figure 5: Step 1

In order to eliminate both jumps and marked labels in B2 at level 2 produced by the root
(a1) at level 0, we have to consider the set of a1 labels (a1) in B1 at level 2 obtained by (a1)
which lie at level 1. At level 2, each label (a1) in a given set B1 kills one and only one marked
label (a1) in B2. At this point |a1 + a2| labels (a1) in B2 always exist at level 2.

In order to eliminate such marked labels we have to consider more than a single set B1 of
label (a1) at level 2. Let q2 be a sufficient number of sets B1 at level 2 able to kill all the labels
(a1) in B2 at level 2. Therefore |a1 + a2| = q2a1 − r2 with q2, r2 > 0.

By setting q2 labels (a1) at level 1 equal to (0) and one more label (a1) to (r2), we have the
desired number of labels (a1) at level 2. Note that the marked labels at level 2 are not generated
and the labels (a1) at level 1 are revised in order to have the right number of labels at level 2,
see Figure 6.

()2

1()a . ..
1()a

a()1 . . . a()1 a()1

B
1

2

1()a . ..

1()a . . . a()1
B

2 1()a. ..a()12
B

1()a . . . a()1
B

2

a()1

. . .

. ..

. ..

. . .

1
B

q

() 00 ()r

Figure 6: Step 2

Note that, when a label (a1) kills a marked label (a1) at a given level n, then the subtree,
having such label (a1) as its root, kills the subtree having (a1) as its root. So, at level 2 when a
label (a1) of B1 kills a label (a1) of B2 then the two subtrees having such labels as their roots
are eliminated too, see Figure 6.

On the other hand, the q2+1 sets B2 at level 3 obtained by the q2+1 labels at level 1, once
labelled with (a1) and now having value r2, 0, . . . , 0, respectively, are always present in the tree,
see Figure 6. In order to eliminate such undesired marked labels we can only set the production
of (r2). As a set B2 at a given level is eliminated by using q2 + 1 labels at previous level then

9

(r2) must give (r2) (0) . . . (0)
︸ ︷︷ ︸

q2

exactly q2 +1 times. This explains the first part of the production

rule of the label (r2) in rule (12). Since (r2) has r2 sons then the remaining r2 − (q2 +1)2 labels
are set to be equal to (a1) as in the previous case, see Figure 7.

()

00()r2()2r() ()0 0(). .a()1. . .a()11()a . ..
1()a ()00()r2() 2r() ()0 0(). .

a()1 . . . a()1

2
q

. . . 0()()02r() . . .
2

q

. . . 0()()02r()

. ..

2
q

0()r2()1()a . ..

a()1

. . .

. ..

. . .

1
B 0

()

Figure 7: Step 3

By the way, the modified q2+1 labels having value r2, 0, . . . , 0, respectively, at a given level

n, produce the labels
(

(0)q2(r2)
)q2+1

(a1)
r2−(q2+1)2 at level n + 1. Just as obtained for levels 1

and 2, the labels
(

(0)q2(r2)
)q2+1

automatically annihilate the remaining q2+1 sets B2 of marked

labels at level n+ 2, once obtained by the modified q2 + 1 labels at level n, see Figure 7.
Till now we have modified a portion P of the total generating tree in a way that it does

not contain any marked label. Note that, the remaining labels (a1) will be the roots of subtrees
which are all isomorphic to P .

The value fn defined by the tree associated to the extended succession rule (13), is given
by the difference between the number of non-marked and marked labels. The just described
algorithm modifies the number of generated non-marked labels and sets to 0 the number of
marked ones in a way that fn is unchanged, for each n, so the succession rule (12) is equivalent
to the recurrence fn = a1fn−1 + a2fn−2.

In the case a1 + a2 > 0 we have marked labels only if a2 < 0. In this case a single set B1 is
sufficient to kill all the marked labels in B2 at level 2. By the way, both in the case a2 < 0 and
a2 > 0 we have that q2 = 0 and r2 = a1 + a2, and the succession rule (12) has the same form
of the rule (9) which is equivalent to the recurrence fn = a1fn−1 + a2fn−2 having a1 > 0 and
a2 ∈ Z, with f0 = 1 and fh = 0 for each h < 0. �

The statement of Proposition 3.3 can be naturally extended to the general case k > 2.

Proposition 3.4 The C-sequence {fn}n satisfying fn = a1fn−1 + a2fn−2 + · · · + akfn−k, with
default initial conditions and a1 > 0 is equivalent to







(a1)

(a1) (0)q2(r2)(a1)
a1−(q2+1)

(r2)
(

(0)q2(r2)
)q2

(0)q3(r3)(a1)
r2−(q2(q2+1)+q3+1)

...

(ri)

(

(0)q2(r2)
)qi

(0)qi+1(ri+1)(a1)
ri−(qi(q2+1)+qi+1+1) , 3 ≤ i ≤ k − 1

...

(rk)
(

(0)q2(r2)
)qk

(0)qk(rk)(a1)
rk−(qk(q2+1)+qk+1)

(14)

10

where the parameters qi and ri, with 2 ≤ i ≤ k, can be determined in the following way:

- if
∑i

l=1 al ≤ 0 then qi, ri > 0 such that |
∑i

l=1 al| = qia1 − ri,

- otherwise qi = 0 and ri =
∑i

l=1 al.

The proof of the Proposition 3.4 is quite similar to the proof of Proposition 3.3. It has the
same level of difficulty but it is more cumbersome, so it is omitted for brevity.

Using Proposition 3.4, we can translate the previously considered recurrence relation fn =
5fn−1 − 6fn−2 + 2fn−3, with default initial conditions, into the following ordinary succession
rule: 





(5)
(5) (0)(4)(5)3

(4) (0)(4)(1)(5)
(1) (1)

(15)

being q2 = 1, r2 = 4, q3 = 0 and r3 = 1.

3.3 Positivity condition

The statement of Proposition 3.4 is indeed a tool to translate C-recurrences into finite
succession rules. However this property turns out to be effectively applicable only when the
labels of the succession rule are all positive, and the reader can easily observe that Proposition
3.4 does not give us an instrument to test whether this happens or not.

In particular, if the labels of the succession rule are all positive then the terms of the C-
sequence are all positive. It is then interesting to relate our problem with the so called positivity
problem, which we have already mentioned in the Introduction.

Positivity Problem: given a C-finite sequence {fn}n≥0, establish if all its terms are positive.

We recall that the problem was originally proposed as an open problem in [7], and then
re-presented in [23] (Theorems 12.1-12.2, pages 73-74), but no general solution has been found
yet.

Moreover, the positivity problem can be solved for a large class of C-finite sequences, pre-
cisely for N-rational sequences. We recall that the class of N-rational series is precisely the class
of the generating functions of regular languages, and that Soittola’s Theorem [24] states that
the problem of establishing whether a rational generating function is N-rational is decidable.

Let us start examining the case of C-recurrences of degree 2. So, let fn = a1fn−1 + a2fn−2

be a recurrence relation, with a1 > 0 and a2 ∈ Z.
By referring to the succession rule (12), precisely to the case a1+a2 ≤ 0, we observe that the

succession rule equivalent to the recurrence relation is an ordinary rule (i.e., it has all positive
labels) if and only if the following condition is verified:

{
a1 − (q2 + 1) ≥ 0
r2 − (q2 + 1)2 ≥ 0

(16)

As r2 = q2a1 − |a1 + a2| = q2a1 + a1 + a2 then r2 − (q2 + 1)2 ≥ 0 means q2
2 + (2− a1)q2 +

1 − a1 − a2 ≤ 0. This inequality has solution if and only if a1
2 + 4a2 ≥ 0, and this is clearly a

necessary and sufficient condition to ensure the positivity of all the terms of fn [8] .
Let us now consider a generic C-recurrence of degree k. Using a similar reasoning, and

following Proposition 3.4 we can prove:

11

Corollary 3.1 Let us consider the recurrence relation fn = a1fn−1 + a2fn−2 + · · · + akfn−k

having a1 > 0 and ai ∈ Z, 2 ≤ i ≤ k, with f0 = 1 and fh = 0 for each h < 0. If







a1 − (q2 + 1) ≥ 0
r2 − (q2(q2 + 1) + q3 + 1) ≥ 0
...
ri − (qi(q2 + 1) + qi+1 + 1) ≥ 0 , 3 ≤ i ≤ k − 1
...
rk − (qk(q2 + 1) + qk + 1) ≥ 0

(17)

then fn > 0 for all n.

As ri =
∑i

l=1 al + qia1, 2 ≤ i ≤ k, then the system (17) can be rewritten as







a1 − (q2 + 1) ≥ 0
...
∑i

l=1 al + qia1 − (qi(q2 + 1) + qi+1 + 1) ≥ 0 , 2 ≤ i ≤ k − 1
...
∑k

l=1 al + qka1 − (qk(q2 + 1) + qk + 1) ≥ 0.

(18)

As previously mentioned, condition (18) ensures that all the labels of the succession rules
equivalent to the given C-recurrence relation are positive, hence all the terms fn are positive.
Thus it can be viewed as a sufficient condition to test the positivity of a given C-recurrence
relation.

Unfortunately, this is not a necessary condition to test positivity, then there are cases of
positive C-sequences for which our method fails to prove positivity. A simple example is given
by any positive non N-rational C-sequence. The reader can find an instance of such sequences
in [18]. It would be more interesting to give an example of a N-rational C-sequence for which
our method is not able to prove positivity, but we have not been able to find any such example.

Clearly, any C-sequence satisfying the positivity condition has a N-rational generating func-
tion (in fact, any finite succession rule may be regarded as a finite state automaton), thus our
method can be suitably used to test the N-rationality of a sequence. Though it is not our inten-
tion to deepen the computational complexity of our test, we remark that, despite the methods
presented in [8, 18, 22], our method does not deal with calculating polynomial roots.

In order to give an idea of the computational cost to solve the system (18) we consider the
worst case that is when

∑i
l=1 al ≤ 0, 2 ≤ i ≤ k, and the system itself has no solution.

In this case all the possible values for each qi, 2 ≤ i ≤ k, must be checked in order to
conclude that the system (18) does not admit any solution.

As q2 can range in the close set [1, a1 − 1] and qi+1 in [1,
∑i

l=1 al + qia1 − (qi(q2 + 1) − 1]
then we have

1 + (a1 − 1)

k−1∏

i=2

(
i∑

l=1

al + a1qi − qi(q2 + 1)− 1
)

where the first 1 accounts the check to verify
∑k

l=1 al + qka1 − (qk(q2 + 1) + qk + 1) ≥ 0.
An average complexity study of our test is a further development. Anyway, the referred

experimental results give a sufficiently short computational time to test condition (18).

12

3.4 Generic initial conditions

Now it is possible to use the statement of Proposition 3.4 to treat the case of C-recurrence
relations with generic initial conditions. The following result is obtained by simply adapting the
productions of the labels in the first levels of the generating tree to the given initial conditions,
then using the productions of Proposition 3.4. So, we have two sets of productions: the ones
stating the initial conditions, and the remaining ones defining all the other levels.

Proposition 3.5 Let us consider the C-finite recurrence relation fn = a1fn−1 + a2fn−2 + · · ·+
akfn−k, ai ∈ Z, 1 ≤ i ≤ k, and let us assume that the initial conditions are f0 = 1 and fi = hi,
with hi ∈ Z, 1 ≤ i < k, then it can be translated into the following extended succession rule:







(h1)

(h1)
1
 (a1)

h1

...

(h1)
i
 (a1)

hi−
∑i−1

j=1
hjai−j , 1 < i < k

...

(h1)
k
 (a1)

ak

(a1)
1
 (a1)

a1

(a1)
2
 (a1)

a2

...

(a1)
k
 (a1)

ak

(19)

For example, the recurrence relation fn = 3fn−1 + 2fn−2 − fn−3 with f0 = 1, f1 = 2 and
f2 = 3, which defines the sequence 1, 2, 3, 12, 40, 141, 491, 1715, . . ., is equivalent to the following
extended succession rule: 





(2)

(2)
1
 (3)2

(2)
2
 (3)3

(2)
3
 (3)

(3)
1
 (3)3

(3)
2
 (3)2

(3)
3
 (3)

(20)

and Figure 8 shows some levels of the generating tree associated to it.
Following the described method in Section 3.2 to eliminate jumps and marked labels, we

can translate the extended succession rule (20) into the ordinary succession rule (21), where the
labels (3), (3)1 and (3)2 are different labels with different productions.







(2)
(2) (0)(3)1
(3)1 (6)(3)2

(6) (3)5(3)2
(3)2 (4)(3)2

(3) (5)(3)2

(5) (4)(3)4

(4) (4)(3)3

(21)

13

(3) 40

12

3

2

1

36271254122

9184

36

2

(2)

(3)

(3)(3)

(3)(3)(3)(3)

(3)(3)(3)(3)(3)(3)

Figure 8: Compact notation for the generating tree associated with the succession rule (20)

4 Concluding remarks

In this paper we have presented a general method to translate a given C-finite recurrence
relation into an ordinary succession rule and we have proposed a sufficient condition for testing
the positivity of a given C-finite sequence.

A further development could take into consideration the average complexity necessary to
prove the positivity of a given C-finite sequence.

Afterwards, it should be interesting to develop the study concerning the C-recurrence rela-
tions with generic initial conditions in order to examine in depth the potentiality of our method.

Finally, we would like to show that some of our ideas can be applied to the case of holonomic
integer sequences, i.e., those satisfying a linear recurrence relation with polynomial coefficients.

Just to have a simple example, let us consider the involutions of n, enumerated by the
sequence {fn} defined by the holonomic recurrence relation

fn = fn−1 + (n− 1)fn−2, (22)

with f0 = 1, f1 = 1 (sequence A000085 in the The On-Line Encyclopedia of Integer Sequences).
We easily observe that, using the same argument of Proposition 3.2, we can translate the

recurrence relation (22) into an infinite succession rule (possibly having marked labels and
jumps), where now we adopt the convention that a generic label (k) is placed at the level k of
the generating tree: 





(0)

(k)
1
 (k + 1)

(k)
2
 (k + 2)k+1

(23)

The successive step is to find a way how to convert such a rule into an ordinary succession rule.
Referring to (23), this can be done by eliminating “by hand” marked labels and jumps, then
re-writing the (ordinary) rule as follows:

{
(1)
(k) (k − 1)k−1(k + 1)

(24)

We believe that such a method should be formalized in some further work, and then applied
to automatically convert the obtained rule into an ordinary succession rule.

Moreover, from this method, we could also develop a more general criterion for proving the
positivity of an holonomic sequence.

14

References

[1] S. Bacchelli, E. Barcucci, E Grazzini, E. Pergola. Exhaustive generation of combinatorial
objects using ECO. Acta Informatica 40 (8) (2004) 585-602.

[2] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, D. Gouyou-
Beauchamps. Generating functions for generating trees. Discrete Mathematics 246 (2002)
29–55.

[3] E. Barcucci, A. Del Lungo, A. Frosini, S. Rinaldi. A technology for reverse-engineering a
combinatorial problem from a rational generating function. Advances in Applied Mathemat-
ics 26 (2) (2001) 129-153.

[4] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani. Random generation of trees and other
combinatorial objects. Theoretical Computer Science 218 (1999) 219-232.

[5] E. Barcucci, S. Rinaldi. Some linear recurrences and their combinatorial interpretation by
means of regular languages. Theoretical Computer Science 255 (2001) 679-686.

[6] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani. ECO: a methodology for the Enumera-
tion of Combinatorial Objects. Journal of Difference Equations and Applications 5 (1999)
435-490.

[7] J. Berstel, M. Mignotte. Deux propriétés décidables des suites récurrentes linéaires. Bulletin
de la Société Mathématique de France 104 (2) (1976) 175–184.

[8] J. Berstel, C. Reutenauer. Another proof of Soittola’s Theorem. Theoretical Computer Sci-
ence 393 (2008) 196-203.

[9] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, M. Kleimann. The number of Baxter
permutations. Journal of Combinatorial Theory Series A 24 (1978) 382–394.

[10] S. Corteel. Series generatrices exponentielles pour les eco-systemes signes. Proceedings of
the 12-th International Conference on Formal Power Series and Algebraic Combinatorics,
Moscow (2000).

[11] E. Deutsch, L. Ferrari, S. Rinaldi. Production matrices. Advances in Applied Mathematics
34 (2005) 101–122.

[12] E. Duchi, A. Frosini, R. Pinzani, S. Rinaldi. A note on rational succession rules. Journal of
Integer Sequences 6 (2003) Article 03.1.7.

[13] L. Ferrari, E. Pergola, R. Pinzani, S. Rinaldi. An algebraic characterization of the set of
succession rules. Theoretical Computer Science 281 (2002) 351–367.

[14] L. Ferrari, E. Pergola, R. Pinzani, S. Rinaldi. Jumping succession rules and their generating
functions. Discrete Mathematics 271 (2003) 29–50.

[15] V. Halava, T. Harju, M. Hirvensalo. Positivity of second order linear recurrent sequences.
Discrete Applied Mathematics 154 (2006) 447–451.

[16] I. Gessel. Rational functions with nonnegative integer coefficients. In The 50th seminaire
Lotharingien de Combinatoire, page Domaine Saint-Jacques, March (2003). Unpublished,
available at Gessels homepage.

[17] S. Gerhold. Sequences: Non-Holonomicity and Inequalities. Ph.D. Thesis.

15

[18] C. Koutschan. Regular languages and their generating functions: The inverse problem.
Theoretical Computer Science 391 (2008) 65–74.

[19] V. Laohakosol, P. Tangsupphathawat. Positivity of third order linear recurrence sequences.
Discrete Applied Mathematics 157 (2009) 3239–3248.

[20] D. Merlini, R. Sprugnoli, M. C. Verri. An Algebra for proper generating tree. In Algorithms,
trees, combinatorics and probabilities. Trends in Mathematics, Mathematics and Computer
Science (2000) 127–139.

[21] D. Merlini, M. C. Verri. Generating trees and proper Riordan Arrays. Discrete Mathematics
218 (2003) 167–183.

[22] D. Perrin. On positive matrices. Theoretical Computer Science 94 (2) (1992) 357–366.

[23] A. Salomaa, M. Soittola. Automata-Theoretic Aspects of Formal Power Series, Springer-
Verlag, New York, 1978.

[24] M. Soittola. Positive rational sequences. Theoretical Computer Science 2 (3) (1976) 317-322.

[25] J. West. Generating trees and the Catalan and Schröder numbers. Discrete Mathematics
146 (1995) 247–262.

[26] D. Zeilberger. A holonomic systems approach to special functions identities. Journal of
Computational and Applied Mathematics 32 (1990) 321–368.

16

	1 Introduction
	2 Basic definitions and notations
	3 A general method to translate C-sequences into succession rules
	3.1 C-sequences with default initial conditions
	3.2 Elimination of jumps and marked labels
	3.3 Positivity condition
	3.4 Generic initial conditions

	4 Concluding remarks

