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Abstract

Genetic differences that specify unique aspects of human evolution have typically been identified 

by comparative analyses between the genomes of humans and closely related primates1, including 

more recently the genomes of archaic hominins2,3. Not all regions of the genome, however, are 

equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 

accounts for ~1% of autism cases4,5 and is mediated by a complex set of segmental duplications, 

many of which arose recently during human evolution. We reconstructed the evolutionary history 

of the locus and identified BOLA2 (bolA family member 2) as a gene duplicated exclusively in 

Homo sapiens. We estimate that a 95 kbp segment containing BOLA2 duplicated across the 

critical region ~282 thousand years ago (kya), one of the latest among a series of genomic changes 

that dramatically restructured the locus during hominid evolution. All humans examined carry one 

or more copies of the duplication, which nearly fixed early in the human lineage—a pattern 

unlikely to have arisen so rapidly in the absence of selection (p < 0.0097). We show that the 

duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 
copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the 

greatest expression difference between human and chimpanzee in experimentally derived stem 

cells. Analyses of 152 patients carrying a chromosome 16p11.2 rearrangement showed that >96% 

of breakpoints occur within the Homo sapiens-specific duplication. In summary, the duplicative 

transposition of BOLA2 at the root of the Homo sapiens lineage ~282 kya simultaneously 

increased copy number of a gene associated with iron homeostasis and predisposed our species to 

recurrent rearrangements associated with disease.

To reconstruct the evolutionary history of the chromosome 16p11.2 region, we generated 

complete, reference-quality genome sequence6 (Table S1) for one orangutan, two 

chimpanzee and three human haplotypes (Fig. 1a and Extended Data Fig. 1). Comparison 

with mouse establishes the orangutan configuration as ancestral. In both humans and 

chimpanzees, the region has been independently restructured, nearly doubling in length 

primarily by the differential accumulation of segmental duplications (Fig. 1a and Extended 

Data Fig. 1a). We find six inversions have occurred in the African great apes within 

chromosome 16p11.2 (Extended Data Figs. 2–4 and Tables S2, S3), a nonrandom clustering 

(p < 1 × 10−6), with breakpoints mapping near an ~20 kbp LCR16a (low copy repeat 16a) 

core duplicon. The core encodes a positively selected gene family (NPIP) that emerged on 

the human-African great ape lineage7. Only within the human lineage do large (>100 kbp) 

segmental duplications exist in a direct orientation flanking the autism critical region at 

breakpoint regions BP4 and BP5 (Extended Data Fig. 5a and Table S4)8, implying that 

susceptibility to large-scale CNV associated with disease4,5,9 arose specifically within the 

human species.
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Structural differences between human haplotypes are largely restricted to integral changes in 

the copy number of a 102 kbp block within both the proximal and distal breakpoint regions 

(Extended Data Fig. 1b). This block is composed of two different segmental duplications 

originating from chromosome 16: a 72 kbp segment duplicated from chromosome 16p12.1 

carrying NPIP and a portion of the SMG1 serine-threonine kinase gene (SMG1P) and a 30 

kbp segment carrying three intact genes: BOLA2, SLX1 and SULT1A3 (Fig. 1a and 

Extended Data Fig. 1b). More than one dozen large-scale structural changes, including six 

duplicative transpositions (>830 kbp) from elsewhere on chromosome 16, are required to 

reconcile the organization of human and chimpanzee chromosome 16p11.2 (Extended Data 

Figs. 3, 4 and Table S3). Assuming a human–chimpanzee divergence time of 6 million years 

ago (mya)10 and a constant substitution rate, we estimate that a 95 kbp segment including 

BOLA2 duplicated across the critical region ~282 kya (95% confidence interval: 361–209 

kya), around the time when Homo sapiens emerged as a species11 (Fig. 1b, Fig. 2a, 

Extended Data Fig. 6, and Tables S5–S7).

We examined copy number diversity12 of the duplicated genes mapping to the 102 kbp 

cassette—BOLA2, SLX1, and SULT1A3—in humans, archaic humans, and apes (Fig. 2b–c, 

Extended Data Fig. 7, and Tables S8–S10). We found that BOLA2 is duplicated in all Homo 
sapiens individuals examined, including archaic representatives of Neolithic and Mesolithic 

populations13, as well as the oldest sequenced archaic human, Ust’-Ishim, estimated to have 

lived 45 kya14. In sharp contrast, BOLA2 is single copy (i.e., diploid copy number = 2) in 

nonhuman primates and the archaic hominins Neanderthal2 and Denisova3 (Fig. 2b–c and 

Table S8), consistent with our phylogenetic point estimate of the duplication age. Human 

genomes contain from 3 to 8 diploid BOLA2 copies, with at least one copy of the distal 

duplicate BOLA2B (range = 1–4; mean and median = 2 copies) and at least two copies of 

the proximal ancestral BOLA2A (range = 2–5 copies; mean and median = 4 copies, Fig. 2c 

and Table S8).

In light of its recent origin and its potential to promote disease-causing rearrangement, we 

considered it remarkable that 99.8% of humans carry four or more copies of this segment. 

Ancient humans such as Ust’-Ishim as well as some of the oldest branches of modern 

humans (e.g., San and Biaka pygmy15) typically carry five or six copies, indicating that it 

spread rapidly early in human history. We modeled various evolutionary scenarios by 

simulation based on the observed genotypes and a realistic model of human demographic 

history (Extended Data Fig. 8a), assuming neutral evolution16–18. The observed genotypes 

or genotypes with higher BOLA2B frequencies only in humans were improbable (p < 

0.0097, Extended Data Fig. 8b), even when the duplication age parameter was varied by an 

order of magnitude. Scenarios incorporating recurrent duplication were also deemed 

unlikely (p < 0.0062). We next implemented a model incorporating the 282 kya age estimate 

but varying the selection coefficient (s) as an input parameter, yielding a maximum 

likelihood estimate of s = 0.0015 (Extended Data Fig. 8c). Interestingly, the unique ~550 

kbp critical region flanked by BOLA2 duplications showed signatures consistent with a 

region under positive selection: the absence of archaic introgression19, low diversity (bottom 

2.7%) and an excess of rare variants (Extended Data Fig. 8d–e).
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Because humans show extensive copy number variation, we assessed whether copy number 

correlated with mRNA and protein levels. We found a significant correlation between 

BOLA2 copy number and expression at the RNA level based on analysis of 366 

lymphoblastoid cell lines (LCLs)20 (r = 0.36, p = 2.09 × 10−12, Fig. 3a and Tables S11, S12) 

and at the protein level based on analysis of whole-protein lysates from 34 LCLs (r = 0.64, p 

= 4.34 × 10−5, Fig. 3b and Tables S13, S14).

We also performed RT-PCR and identified an alternate gene structure composed of the first 

two exons from BOLA2 joined with three novel 3′ exons from an older segmental 

duplication containing SMG1P (Fig. 3c). This fusion isoform contains an open reading 

frame (ORF) predicted to encode a 217 residue protein including 53 residues from BOLA2 

and 164 residues from SMG1P. Both canonical and fusion transcripts are co-expressed in a 

wide variety of tissues and developmental stages (Extended Data Fig. 9). Although the 

predicted fusion protein cannot be detected by existing antibodies, it is interesting that 

ribosome profiling data provide evidence that the mRNA is translated (Table S15). 

Importantly, since the ancestral BOLA2 at BP5 lacked the SMG1P duplication downstream, 

the origin of the fusion product must have coincided with the juxtaposition of BOLA2 and 

SMG1P by the tandem 102 kbp segmental duplication ~650–300 kya at BP5. We conclude 

that this fusion isoform is Homo sapiens-specific.

BOLA2 was previously identified as one of the top 50 genes differentially expressed 

between humans and nonhuman apes in induced pluripotent stem cells (iPSCs)21, implying 

that this gene might be particularly relevant early in development. Based on our 

characterization of the different BOLA2 isoforms, we revisited this observation by 

quantifying BOLA2 mRNA levels by RNA-seq in human and chimpanzee iPSCs, iPSC-

derived neural progenitor cells (NPCs), and eight-week-old neurons. Remarkably, we found 

the greatest differences in canonical BOLA2 expression at the iPSC state (2-fold) and to a 

lesser extent in NPCs (1.5-fold) (Fig. 3d and Table S16). Quantification of BOLA2 
expression in two primary human embryonic stem cell (ESC) lines revealed transcript levels 

comparable to human iPSCs (Fig. 3d and Table S16). In contrast, examination of a panel of 

adult tissues22 revealed no substantial differences in BOLA2 mRNA levels between human 

and chimpanzee (Extended Data Fig. 9d). As expected, expression of the fusion BOLA2-
SMG1P transcript was detected exclusively in human.

The duplication of BOLA2 across the critical region expanded by threefold the size of 

flanking high-identity, directly oriented sequence blocks (Extended Data Fig. 5a–b and 

Tables S4, S17, S18), theoretically predisposing the locus to recurrent CNV via unequal 

crossover (Extended Data Fig. 5c) specifically in the human lineage. To test this, we refined 

breakpoint locations in autism and developmental delay patients carrying either the 

chromosome 16p11.2 microduplication or microdeletion event23. Using whole-genome 

sequence (WGS) data and a molecular inversion probe (MIP) assay24, we localized 

breakpoints in 152 patients corresponding to 105 independent rearrangement events (Fig. 4a, 

Extended Data Fig. 10, and Table S19). We found 96% (101 of 105) of the disease-causing 

rearrangement breakpoints map within the Homo sapiens-specific duplication containing 

BOLA2 (Fig. 4b). Thus, the expansion of this segment rendered the chromosome 16p11.2 

locus susceptible to recurrent rearrangement.
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In summary, the level of genetic difference between humans and chimpanzees for 

chromosome 16p11.2 stands in sharp contrast to the oft-quoted 99% genetic identity 

between the species. The region has undergone extensive inversion and duplication, 

including a 95 kbp segment containing BOLA2 that duplicated after our divergence with 

ancient hominins. This event contributes more derived sequence specific to Homo sapiens 
than 35,500 previously reported human-specific single-nucleotide variants and indels 

combined2. The rapid rise and dispersal of this duplicated segment at the root of Homo 
sapiens (~282 kya) are unlikely to have occurred under neutral evolution but rather are 

consistent with modest positive selection (s = 0.0015). The estimated strength of selection 

on the BOLA2 duplication is an order of magnitude weaker than what is typically observed 

for recent positive selection (such as the emergence of lactase persistence ~10 kya25) but an 

order of magnitude stronger than nearly neutral mutations. Remarkably, the BOLA2 
duplication rapidly rose to high frequency in humans despite predisposing our species to 

recurrent CNV associated with disease. The expansion of this segment resulted in the 

formation of a novel fusion transcript and dramatic BOLA2 expression differences between 

chimpanzee and human iPSCs. Although the phenotypic consequences of increased BOLA2 

expression and the novel fusion transcript await future in vivo characterization, it is known 

that BOLA2 physically interacts in a heterotrimeric complex with GLRX3 (glutaredoxin 

3)26. This complex is conserved from prokaryotes to humans27 and was shown to have a role 

in iron sensing in yeast28. In vertebrates, BOLA2 has been hypothesized to play important 

roles in iron regulation29 and iron-sulfur protein biogenesis30. We speculate that the 

expansion of this conserved gene may enhance iron utilization and homeostasis, especially 

during human embryonic development.

METHODS1–30

Single-molecule, real-time (SMRT) sequencing was used to generate high-quality sequence6 

from bacterial artificial chromosome (BAC) clones obtained from genomic libraries. Clone 

sequences were assembled using HGAP and error-corrected using Quiver31. Contig 

assembly was performed using Sequencher (Gene Codes Corporation, Ann Arbor, MI) and 

validated by FISH. Copy number genotyping of genes and segmental duplications was 

performed using a read-depth method12 and WGS data from humans32,33, nonhuman 

primates34, and archaic genomes2,3,13,14, as well as single molecule MIPs (smMIPs)35 

targeted to paralogous sequence variants24. We estimated evolutionary timing of segmental 

duplication events based on comparative sequencing and phylogenetic analyses (neighbor-

joining method), adjusting branch lengths for trees that failed the Tajima’s relative rate test 

and assuming divergence times of 6 mya (human–chimpanzee)10 and 15 mya (human–

orangutan). Evolutionary conservation analysis of BOLA2 was performed by maximum 

likelihood (PAML). Likelihoods of BOLA2B fixation under different scenarios were 

assessed using the coalescent simulators ms17 and msms18, adapting a previously published 

demographic model16. BOLA2 copy number estimates were correlated (Pearson’s r) using 

RNA-seq quantifications20 (PEER-normalized RPKM) and Western blot BOLA2 densities 

in human LCLs grown in complete RPMI medium and lysed in RIPA buffer. After SDS-

PAGE and transfer to PVDF membrane, blots were incubated with an anti-BOLA2 antibody 

(Santa Cruz Biotechnology, Dallas, TX) and an anti-actin antibody (Sigma) for 
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normalization purposes. Band densities were quantified using the Bio1D software. BOLA2 
coding DNA sequence (CDS) was cloned using the Gateway system (Invitrogen, Carlsbad, 

CA). HeLa cells were transfected with cytomegalovirus-BOLA2 CDS (both 10 and 17 kDa 

forms) and analyzed by Western blotting. BOLA2 gene models were established via RT-

PCR, cloning, and capillary sequencing. RNA-seq data were generated from previously 

described ESC and iPSC lines21, as well as iPSC lines differentiated into NPCs and neurons. 

BOLA2 mRNA expression was quantified in transcripts per million (TPM) with Kallisto36 

(version 0.42.1) using a custom catalog of transcripts including all human RefSeq transcripts 

with the three BOLA2 isoforms. Breakpoints of chromosome 16p11.2 rearrangements were 

refined using Illumina whole-genome shotgun sequencing37,38 and smMIP analysis24,35,37 

of patient DNA obtained from the Simons Variation in Individuals Project (Simons VIP)23 

and Simons Simplex Collection (SSC)39. All procedures for clinical assessment and blood 

extraction were approved by the institutional review boards (IRBs) of participating 

institutions, and informed consent was obtained for participation in this research.
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Extended Data

Extended Data Figure 1. Comparative sequence analysis of chromosome 16p11.2 among apes
a) Schematic depicts the genomic organization of chromosome 16p11.2 for one orangutan 

and two chimpanzee haplotypes along with the human reference haplotype (GRCh37 

chr16:28195661–30573128; see ideogram for approximate chromosomal location). Blocks 

of segmental duplications within this locus mediate recurrent rearrangements in humans; 

thus, these blocks have been defined as breakpoint regions BP1–BP5 (ref. 8). The ~550 kbp 

critical region (pink) and a >1 Mbp chimpanzee-specific inversion polymorphism (orange) 

are highlighted. Tiling paths of sequenced clones are indicated above each haplotype, with 
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chimpanzee clones that could not be fully resolved marked with asterisks. Colored boxes 

and thick arrows indicate the extent and orientation of segmental duplications (with different 

colors denoting duplicons from different ancestral genomic loci, and hashed boxes 

indicating sequence duplicated in humans but not in the species represented). Thin 

numbered arrows show orientations of gene-rich regions of unique sequence. Numbers (left) 

indicate the size of each orthologous haplotype, with the number of segmentally duplicated 

base pairs shown in parentheses. Note that, for chimpanzee, these sizes are lower bounds due 

to gaps in the contigs (dotted line sections) and the contigs not reaching unique sequence 

beyond BP1 (i.e., unique region 1). b) Schematic depicts distinct human structural 

haplotypes over the chromosome 16p11.2 critical region and flanking sequences (three 

complete haplotypes extending from unique sequence distal to BP3 to unique sequence 

proximal to BP5 and one partial haplotype including BP3–BP4 and BP5 sequence contigs). 

High-quality sequence for each haplotype was generated by sequencing a total of 40 BACs 

and 15 fosmids from three different human genomic libraries. Regions of copy number 

variation (highlighted in yellow along the first two haplotypes) occur on both sides of the 

critical region and involve the same 102 kbp unit in direct orientation, including a 30 kbp 

block containing BOLA2 and two other genes and a 72 kbp block harboring a partial 

segmental duplication of SMG1 (SMG1P). Expansion and contraction of this cassette 

underlie hundreds of kbp of structural diversity between human haplotypes. BOLA2 
paralog-specific copy number genotype data suggest that H1 and H3 likely represent the 

most common haplotype structures in humans.
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Extended Data Figure 2. Comparison of chromosome 16p11.2 structure between apes
a) Sequences (thin horizontal lines) from human (GRCh37 chr16:28195661–30573128) and 

orangutan (contig sequence) at chromosome 16p11.2 are compared using Miropeats (s = 

1,000) and annotated with locations of human segmental duplications and FISH probes used 

to validate the organization of the region. Lines connecting the sequences show regions of 

homology, and line colors highlight differences in the order and orientation of distinct gene-

rich regions of unique sequence across the locus (numbered 1–6). Numbers below FISH 

probes correspond to numbers within the images on the right, specifying which probes were 

used in each experiment. Experiment 1 used the same probes as experiment 3, and 
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experiment 2 used the same probes as experiment 4. Three-color interphase FISH on human 

and orangutan chromosomes confirms the accuracy of our assembled orangutan contig. b) 

Sequences (thin horizontal lines) from human (GRCh37 chr16:28195661–30573128) and 

two chimpanzee structural haplotypes at chromosome 16p11.2 are compared using 

Miropeats (s = 1,500) and annotated with locations of human segmental duplications and 

FISH probes used to validate the organization of the region. Thick red horizontal lines 

indicate gaps in the chimpanzee contigs, and black boxes correspond to chimpanzee-specific 

segmental duplications (i.e., sequences not duplicated in humans). Lines connecting the 

sequences show regions of homology, and line colors highlight differences in the order and 

orientation of distinct gene-rich regions of unique sequence across the locus (numbered 2–

6). Numbers below FISH probes correspond to numbers within the images on the right, 

specifying which probes were used in each experiment. Gray rectangles show mapping 

locations of FISH probes in human. Three-color interphase FISH on chimpanzee 

chromosomes confirms the accuracy of our assembled contigs.
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Extended Data Figure 3. Dynamic evolution of human chromosome 16p11.2
a) A model for the evolution of the chromosome 16p11.2 BP1–BP5 region (ref. 8) during 

great ape evolution. The schematic depicts structural changes over time leading to the 

present-day human architecture (see Supplementary Information for details). The orangutan 

structure (top) is largely devoid of segmental duplications and deemed to represent the ape 

ancestral organization because it is conserved with mouse. Subsequent steps were inferred 

based on phylogenetic reconstruction, origins of the duplicated sequences, and the most 

parsimonious path with respect to changes in gene order (inversions). (See Supplementary 

Information for a detailed discussion of all supporting evidence and confidence levels for 
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each step.) Note that, without access to genomes containing intermediate chromosome 

16p11.2 structures, it is impossible to know with certainty the entire step-by-step 

evolutionary history. Some details presented here may not be accurate.

Extended Data Figure 4. Dynamic evolution of chimpanzee chromosome 16p11.2
A model for the evolution of the chromosome 16p11.2 BP1–BP5 region (ref. 8) during great 

ape evolution. The schematic depicts structural changes over time leading to the present-day 

chimpanzee architecture (see Supplementary Information for details and discussion of all 

supporting evidence and confidence levels for each step.).
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Extended Data Figure 5. Comparison of duplications around the chromosome 16p11.2 autism 
critical region among apes and NAHR model underlying CNV at human chromosome 16p11.2
a) Local directly oriented (green) and inversely oriented (blue) intrachromosomal segmental 

duplications flanking the chromosome 16p11.2 autism critical region (purple) are visualized 

using Miropeats (s = 1,000). Gaps in the chimpanzee C1 contig are shown in red. The 

smaller size (<50 kbp) and lower average sequence identity (at most 98.6%) of directly 

oriented duplications flanking the critical region in chimpanzee compared to human 

haplotypes including BOLA2 on both sides of the critical region (at least 147 kbp of directly 

oriented duplications having at least 99.3% average sequence identity) suggest that 

susceptibility to NAHR resulting in microdeletions and microduplications at this locus 
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evolved specifically in humans. b) Perfect sequence identity tract lengths (>500 bp) within 

directly oriented duplications flanking the critical region for human vs. chimpanzee. 

Histograms show counts of tracts of perfect sequence identity (lacking single-nucleotide 

variants and indels) between directly oriented segmental duplications of interest within each 

indicated haplotype and the distribution of these tracts over different size ranges. Human 

haplotypes having BOLA2 on both sides of the critical region (bottom panels) contain the 

highest number of such tracts and the longest such tracts, including one tract spanning 

10,774 bp. In contrast, the longest tract of perfect sequence identity between duplications of 

interest in chimpanzee (considering both the C1 and C2 haplotypes) spans 450 bp. c) NAHR 

model underlying normal and disease-associated CNV at human chromosome 16p11.2.
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Extended Data Figure 6. Sequence refinement of interspersed BOLA2 duplication breakpoints, 
inference of BOLA2 duplication mechanism, and phylogenetic BOLA2 duplication timing
a) H1 human BP4 sequence (orange, green, orange, and blue arrows in inset) was aligned to 

its allelic (black arrows in inset) and paralogous (red arrows in inset) counterparts. The 

sequence identity for each alignment was computed and plotted over 2 kbp windows, sliding 

by 100 bp. Black lines indicate sequence identity for allelic comparisons, whereas red lines 

correspond to paralogous comparisons. While the allelic comparisons exhibit uniform, near-

perfect sequence identity across the entirety of the alignment, paralogous comparisons reveal 

three distinct levels of sequence identity, with the highest level in the middle. This pattern 

suggests that the BOLA2 duplication (highest-identity region, 95 kbp) landed within an 

evolutionarily older segmental duplication having paralogs at BP4 and BP5. Dashed vertical 

lines (numbered i–iv) indicate putative breakpoints for events that occurred after this older 

segmental duplication. Junction sequence from the BP5 102 kbp tandem duplication (i.e., 

the SMG1P-BOLA2 junction) was clearly included in the 95 kbp duplication from BP5 to 

BP4. b) Alignment of BP4 sequences containing the putative left (red arrows in inset) and 

right (dark blue arrows in inset) BOLA2 duplication breakpoints to the BP5 paralog 

associated with the evolutionarily older segmental duplication (orange and light blue arrows 

in inset) and sliding window sequence identity analysis supports the hypothesis outlined 

above. Sequence identity lines for comparisons involving left and right BP4 sequences 

intersect in the vicinity of the hypothesized BOLA2 duplication breakpoints. Comparing this 

result with the same analysis of the human H2 BP4 sequence lacking BOLA2 (green arrows 

in inset and green identity line) suggests this BP4 sequence represents the ancestral state of 

BP4 before the BOLA2 duplication arrived. Thus, two levels of sequence identity existed 

between BP4 and BP5 before the BOLA2 duplication, consistent with an interlocus gene 

conversion event. c) Alignment of BP4 sequences (orange arrows in insets) containing the 

putative BOLA2 duplication breakpoints to their ancestral BP4 (top plot) and their ancestral 

BP5 (middle plot) counterparts and sliding window sequence identity analysis reveals an ~7 

kbp window (highlighted in orange) defining the BOLA2 duplication breakpoints. Analysis 

of the underlying multiple sequence alignment (Table S5) identified positions with 

signatures informative for breakpoint localization (blue vertical lines, left BP4 72 kbp block 

outside of the BOLA2 duplication and right BP4 72 kbp block within the BOLA2 
duplication; yellow vertical lines, left BP4 72 kbp block within the BOLA2 duplication and 

right BP4 72 kbp block outside of the BOLA2 duplication). Gray vertical lines indicate 

positions showing signatures of interlocus gene conversion. As both left and right 72 kbp 

block BP4 sequences within the ~7 kbp window are more highly identical to ancestral BP4 

sequence (20/24 informative positions match the ancestral BP4 sequence) than to ancestral 

BP5 sequence, it is likely that this interval was involved in the BOLA2 duplication but 

duplicated only within BP4. Its boundaries define the most likely BOLA2 duplication 

breakpoints, and this pattern of sequence identity suggests a template switching replicative 

mechanism as most likely underlying the BOLA2 duplication event. d) Template-switching 

model for the formation of BOLA2B. This mechanism was inferred from the sequence 

identity analyses in panels a–c and from analysis of a multiple sequence alignment (Table 

S5). e) Phylogenetic characterization of the 95 kbp duplication containing BOLA2 from BP5 

to BP4. Cladogram representation of an unrooted neighbor-joining phylogenetic tree based 

on a 21,102 bp multiple sequence alignment spanning BOLA2 and most of the 30 kbp block 

including human sequences from BP4 and BP5 and single-copy orthologous sequences from 
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chimpanzee, gorilla, and orangutan. Branch lengths (substitutions per site) are shown on 

each branch (black decimal numbers), and bootstrap support is indicated (black integers at 

nodes). Blue numbers correspond to nodes and indicate average branch lengths for all 

sequences in corresponding clades. Branch lengths were used to estimate the time 

corresponding to the 95 kbp duplication containing BOLA2 from BP5 to BP4 as shown.

Extended Data Figure 7. Analyses of BOLA2 aggregate and paralog-specific copy number 
variation in humans
a) Interphase FISH confirms both BOLA2A and BOLA2B show copy number variation. 

Previous interphase FISH analysis (data not shown) suggests the individual NA20127 has 
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six total copies of BOLA2. Diagram outlines a three-color FISH assay including two probes 

(blue, green) targeting sequences within the autism critical region and one probe (red) 

targeting ~18 kbp of sequence (including BOLA2) over the 30 kbp duplication block. 

Signals from the red probe are detected on the telomeric (BP4) and centromeric (BP5) sides 

of the critical region (adjacent to the blue and green probes, respectively) on both 

chromosome 16 homologs. However, the red probe signal intensity is strongest adjacent to 

the green probe for one homolog but, in contrast, is strongest adjacent to the blue probe for 

the other chromosome 16 homolog, consistent with higher BOLA2A copy number in the 

first case and higher BOLA2B copy number in the second case. These data indicate that 

individual NA20127 has three copies each of BOLA2A and BOLA2B. This differential 

signal intensity pattern does not result from an inversion of the chromosome 16p11.2 critical 

region in this individual, as data from another FISH experiment (data not shown) refute this 

possibility. Information on probes used in these FISH experiments is provided in Table S2. 

b) Interphase FISH experiments using a probe targeting BOLA2 and surrounding sequence 

for individuals having the lowest (3) and highest (8) confirmed aggregate BOLA2 copy 

numbers. c) Left and middle schematics detail three distinct sectors of the 72 kbp blocks 

(orange arrows). Each block has paralogous sequence variants that are informative for 

particular region(s) when compared to others in chromosome 16p11.2. These markers are 

color-coded into three sectors within the 72 kbp block of paralogy (a 59 kbp sector, blue and 

red boxes; a 7 kbp sector, green and orange boxes; and a 6 kbp sector, purple and yellow 

boxes), indicating which particular regions they distinguish. Right schematic shows known 

haplotype structures for individual NA12878. d) Analyzing WGS data from NA12878 yields 

copy number estimates for BOLA2A and BOLA2B that match the known BOLA2 PSCN for 

this individual. Each point shows a relative marker-specific read count frequency (y-axis) 

and its position within the duplication blocks (x-axis). Point colors correspond to different 

marker sets for each sector, as diagramed in panel c. Fractions indicate the relative copy 

number of each marker set. Estimates of 4/6 (red marker set) vs. 2/6 (blue marker set) for the 

59 kbp sector confirms the sequenced architecture (panel c) with an aggregate of 4 BOLA2 
copies, and the estimate of 3/6 (orange marker set) confirms three copies of BOLA2A. WGS 

analysis also yields accurate PSCN estimates for the 45 kbp block. e) Using MIPs, we 

employed the same relative read-depth strategy. Genotyping results for the same sample as 

in panel d are shown, with additional markers (points not color-coded as in panels c–d) 

added based on polymorphic variants (symbols indicate different patterns of presence/

absence among 72 kbp blocks, considering all such blocks from our four contiguous human 

haplotypes). MIP genotypes confirm WGS estimates (in panel d). f) BOLA2 PSCN 

genotypes (points, jittered around their integer values for clarity) were inferred from MIP 

sequence data for 894 humans. Numbers indicate total counts of individuals in each 

population having a particular BOLA2 PSCN genotype. Low-confidence estimates were 

excluded.
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Extended Data Figure 8. Population genetic modeling of the BOLA2B duplication and critical 
region analyses
a) Demographic model (adapted from ref. 16) used to simulate BOLA2B evolution under 

different scenarios. NANC, effective population size of Homo ancestor, 21,600. NARC, 

effective population size of Neanderthal-Denisova ancestor, 500. NHUM, effective population 

size of human ancestor, 24,000. NYRE, effective size of Yoruban population after expansion, 

45,000. NDEN, effective population size of Denisova, 500. NNEA, effective population size of 

Neanderthal, 500. NYRI, effective size of extant Yoruban population, 10,000. NSAN, effective 

size of extant San population, 10,000. T1, time of archaic hominin divergence from modern 

humans, 650,000 years. T2, time of Neanderthal-Denisova divergence, 525,000 years. Tdup, 
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time of formation of BOLA2B, 282,000 years. T3, time of Yoruban-San divergence, 200,000 

years. T4, time of Yoruban population expansion, 157,500 years. T5, time of Yoruban 

population decline, 37,500 years. b) Simulation results (n = 1,000,000) assuming that the 

duplication that formed BOLA2B occurred once, 282 kya, along the modern human 

ancestral lineage and evolved under neutrality compared to the observed genotype 

frequencies of BOLA2B in 8 San and 110 Yoruban haplotypes. Nearly all (999,531) 

simulations resulted in BOLA2B being lost from both populations; results from the 

remaining 469 simulations (black) are shown alongside the observed data (red, circled). 

Under this simple neutral model incorporating BOLA2B age, the observed BOLA2B 
frequency is never approached. c) Simulation was repeated exploring a range of selection 

coefficients from 0.0009 to 0.0024 (increments of 0.0001), and the relative probability of the 

observed data under each scenario was calculated as the proportion of simulations yielding 

the observed BOLA2B genotypes among simulations where BOLA2B was not lost relative 

to the maximum such proportion for any single selection coefficient considered. The 

maximum likelihood estimate for the selection coefficient was s = 0.0015. Smoothed line is 

LOESS regression curve. d) Low average heterozygosity of the chromosome 16p11.2 BP4–

BP5 critical region. Distribution of average heterozygosity values for 100,000 ~550 kbp 

regions of unique sequence randomly sampled with replacement from the autosomal genome 

compared to average heterozygosity values for the critical region (black line) and flanking 

unique sequences (colored lines). The critical region lies in the bottom 2.6% of the 

distribution, showing low diversity consistent with potential positive selection. Bottom 

schematic indicates locations of the critical region and flanking unique regions in relation to 

segmental duplications across the locus—note that BOLA2A is located at BP5 and 

BOLA2B at BP4. e) Low Tajima’s D score for the chromosome 16p11.2 BP4–BP5 critical 

region. Distribution of Tajima’s D scores for 2,987 non-overlapping ~550 kbp regions across 

the genome compared to Tajima’s D scores for the critical region (black line) and flanking 

unique sequences (colored lines). The critical region lies in the bottom 2.7% of the 

distribution, consistent with possible positive selection. The distribution is centered near −2 

rather than 0 because most SNVs in the 1000 Genomes dataset are rare variants having 

arisen during the large expansions of human populations over the past 100,000 years. 

Bottom schematic indicates locations of the critical region and flanking unique regions in 

relation to segmental duplications across the locus.
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Extended Data Figure 9. BOLA2 expression and antibody validation
a) RT-PCR expression profile for canonical BOLA2. The expected product size for 

canonical BOLA2 (838 bp) was observed in all eight human tissues. 1 kb + DNA ladder 

(Thermo Fisher). b) RT-PCR expression profile for BOLA2-SMG1 fusion product. The 

expected product size for the BOLA2 fusion transcript (1,239 bp) was observed as a doublet 

in all tissues except skeletal muscle. Intensity of upper band differs between tissues. 1 kb + 

DNA ladder (Thermo Fisher). c) BOLA2 RNA-seq expression analysis. Canonical (BOLA2) 

and fusion transcripts (BOLA2F, BOLA2T) were assessed across 25 humans from GTEx 

RNA-seq data. Bar heights indicate mean expression levels for each tissue in TPM with 
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standard errors shown (error bars). Colors correspond to different BOLA2 isoforms as 

indicated. d) BOLA2 expression among primates in six adult tissues. Each point indicates a 

BOLA2 expression estimate from a single tissue sample, with samples obtained from a total 

of 18 humans, 6 chimpanzees, and 3 bonobos. Open circles correspond to individuals 

analyzed in a single experiment, while closed shapes denote data from multiple experiments 

involving the same individual, with each distinct color + shape pattern showing all 

experiments for a particular individual. Horizontal lines show mean expression values for 

each species and tissue. Combined with our expression analyses of iPSCs, these data show 

BOLA2 expression differs substantially between human, chimpanzee, and bonobo only in 

stem cells. e) Western blotting of HeLa cells transfected with the human BOLA2 annotated 

CDS and probed with an anti-BOLA2 antibody (Sc-163747). Whole-cell lysate of HeLa 

cells non-transfected with the overexpression construct (lane 1) and transfected with the 

human BOLA2 annotated CDS (lane 2) were probed with anti-BOLA2 antibody. Two bands 

with molecular weights of 10 and 17 kDa are identified and more abundant in transfected 

cells and correspond to two BOLA2 protein isoforms arising from different translation start 

sites.
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Extended Data Figure 10. Chromosome 16p11.2 rearrangement breakpoint refinement
a) Schematic depicts NAHR between directly oriented segmental duplications at BP4 and 

BP5. This unequal crossover results in chromosome 16p11.2 microdeletions and 

microduplications (Extended Data Fig. 5c). Colored arrows and boxes correspond to 

duplication blocks and sectors within them color-coded as in Extended Data Fig. 7c. 

Unequal crossover could occur in eight distinct regions with regard to duplication block and 

sector boundaries. Three such regions are located within the ~95 kbp Homo sapiens-specific 

duplication (dashed lines). Only unequal crossover events outside the Homo sapiens-specific 

duplication produce recombinants having a sector with non-uniform marker-specific copy 
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number across its extent. b) Plot shows relative marker-specific read count frequencies 

(points) determined from WGS analysis for a microdeletion proband. Fractions indicate 

relative marker-specific copy numbers, as in Extended Data Fig. 7d, and diagrams adjacent 

to the plot show inferred haplotype structures for each chromosome 16 homolog for this 

individual. Though the data in the plot provide only diploid genotypes (and not resolved 

haplotypes), the haplotypes suggested here reflect this genotype information together with 

data from the parents (not shown) and the assumption (supported by our PSCN data) that 

haplotypes having two BOLA2A copies and a single BOLA2B copy are the most common. 

Because marker-specific copy number is uniform across each sector, unequal crossover 

breakpoints must have occurred within the Homo sapiens-specific duplication. c) Breakpoint 

refinement based on MIP PSCN marker data. Plots show relative marker-specific read count 

frequencies (points) determined using MIPs for a typical microdeletion patient (left) and a 

typical microduplication patient (right). Shapes and color code designate different markers, 

and fractions indicate relative marker-specific copy numbers (as in Extended Data Fig. 7). 

Because marker-specific copy number is uniform across each sector for both individuals, in 

both cases, unequal crossover breakpoints must have occurred within the Homo sapiens-

specific duplication. d) Data from an atypical patient where the breakpoints are inferred to 

map outside of the Homo sapiens-specific segmental duplication. The plots show paralog-

specific copy number for a chromosome 16p11.2 microdeletion proband, his sibling, and his 

mother over a 45 kbp duplication block shared between BP4 and BP5. Paralog-specific copy 

number was estimated using a MIP assay targeting 54 informative markers over this region, 

with data from 43 markers fixed among haplotypes H1–H4 shown (points). Dashed lines 

indicate calls inferred using an automated caller, which were also confirmed by visual 

inspection. Adjacent schematics indicate the inferred haplotypes for each individual based 

on these data, with approximate breakpoint locations shown (arrows). The results demarcate 

the location of the unequal crossover interval based on the reciprocal copy number transition 

between the BP5 (red) and BP4 (blue) 45 kbp block segmental duplications. In this case, the 

breakpoints clearly map to a 22 kbp region outside of the typical hotspot. Analysis of the 

sibling suggests that this region was the site of an interlocus gene conversion event from 

BP5 to BP4, and data from the mother imply that chromosomes having this event were 

present in the paternal germline. DNA from the father was not available for testing.
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Acknowledgments

We thank families at the participating Simons VIP and SSC sites, as well as the Simons VIP Consortium. Approved 
researchers can obtain the Simons VIP dataset, the SSC dataset, and/or biospecimens by applying at https://
base.sfari.org. We thank M. Chaisson for SMRT WGS data, B. Vernot for archaic introgression data, B.J. Nelson 
and K. Munson for technical assistance, M.L. Gage for editorial comments, and T. Brown for assistance with 
manuscript preparation. This work was supported by the Paul G. Allen Foundation (grant #11631 to E.E.E.), the 
Simons Foundation Autism Research Initiative (SFARI #303241 to E.E.E. and #274424 to A.R.), the U.S. National 
Institutes of Health (NIH grant 2R01HG002385 to E.E.E.), the Swiss National Science Foundation 
(31003A_160203 and CRSII33-133044 to A.R.), and funds from NIH TR01 MH095741, the Helmsley Charitable 
Fund, the Mathers Foundation, and the JPB Foundation (to F.H.G.). X.N. was supported by a U.S. National Science 
Foundation Graduate Research Fellowship under grant #DGE-1256082. G.G. was awarded a Pro-Women 
Scholarship from the Faculty of Biology and Medicine, University of Lausanne. M.H.D. is supported by U.S. 

Nuttle et al. Page 23

Nature. Author manuscript; available in PMC 2017 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://base.sfari.org
https://base.sfari.org


National Institute of Mental Health grant 1F30MH105055-01. L.B. is supported by the EC grant N653706, project 
iNEXT. S.C.B. and F.C. were supported by Ente Cassa di Risparmio grant (ID no. 2013/7201). E.E.E. is an 
investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript.

References

1. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science (New York, 
NY). 1975; 188:107–116.

2. Prufer K, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 
2014; 505:43–49. DOI: 10.1038/nature12886 [PubMed: 24352235] 

3. Meyer M, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 
(New York, NY). 2012; 338:222–226. DOI: 10.1126/science.1224344

4. Weiss LA, et al. Association between microdeletion and microduplication at 16p11.2 and autism. 
The New England journal of medicine. 2008; 358:667–675. DOI: 10.1056/NEJMoa075974 
[PubMed: 18184952] 

5. Kumar RA, et al. Recurrent 16p11.2 microdeletions in autism. Human molecular genetics. 2008; 
17:628–638. DOI: 10.1093/hmg/ddm376 [PubMed: 18156158] 

6. Huddleston J, et al. Reconstructing complex regions of genomes using long-read sequencing 
technology. Genome research. 2014; 24:688–696. DOI: 10.1101/gr.168450.113 [PubMed: 
24418700] 

7. Johnson ME, et al. Positive selection of a gene family during the emergence of humans and African 
apes. Nature. 2001; 413:514–519. DOI: 10.1038/35097067 [PubMed: 11586358] 

8. Zufferey F, et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and 
neuropsychiatric disorders. Journal of medical genetics. 2012; 49:660–668. DOI: 10.1136/
jmedgenet-2012-101203 [PubMed: 23054248] 

9. Jacquemont S, et al. Mirror extreme BMI phenotypes associated with gene dosage at the 
chromosome 16p11.2 locus. Nature. 2011; 478:97–102. DOI: 10.1038/nature10406 [PubMed: 
21881559] 

10. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D. Genetic evidence for complex speciation 
of humans and chimpanzees. Nature. 2006; 441:1103–1108. DOI: 10.1038/nature04789 [PubMed: 
16710306] 

11. Auton A, et al. A global reference for human genetic variation. Nature. 2015; 526:68–74. DOI: 
10.1038/nature15393 [PubMed: 26432245] 

12. Sudmant PH, et al. Diversity of human copy number variation and multicopy genes. Science (New 
York, NY). 2010; 330:641–646. DOI: 10.1126/science.1197005

13. Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day 
Europeans. Nature. 2014; 513:409–413. DOI: 10.1038/nature13673 [PubMed: 25230663] 

14. Fu Q, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 
2014; 514:445–449. DOI: 10.1038/nature13810 [PubMed: 25341783] 

15. Tishkoff SA, et al. The genetic structure and history of Africans and African Americans. Science 
(New York, NY). 2009; 324:1035–1044. DOI: 10.1126/science.1172257

16. Yang MA, Harris K, Slatkin M. The projection of a test genome onto a reference population and 
applications to humans and archaic hominins. Genetics. 2014; 198:1655–1670. DOI: 10.1534/
genetics.112.145359 [PubMed: 25324161] 

17. Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. 
Bioinformatics (Oxford, England). 2002; 18:337–338.

18. Ewing G, Hermisson J. MSMS: a coalescent simulation program including recombination, 
demographic structure and selection at a single locus. Bioinformatics (Oxford, England). 2010; 
26:2064–2065. DOI: 10.1093/bioinformatics/btq322

19. Vernot B, et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian 
individuals. Science (New York, NY). 2016; 352:235–239. DOI: 10.1126/science.aad9416

20. Lappalainen T, et al. Transcriptome and genome sequencing uncovers functional variation in 
humans. Nature. 2013; 501:506–511. DOI: 10.1038/nature12531 [PubMed: 24037378] 

Nuttle et al. Page 24

Nature. Author manuscript; available in PMC 2017 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Marchetto MC, et al. Differential L1 regulation in pluripotent stem cells of humans and apes. 
Nature. 2013; 503:525–529. DOI: 10.1038/nature12686 [PubMed: 24153179] 

22. Brawand D, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011; 
478:343–348. DOI: 10.1038/nature10532 [PubMed: 22012392] 

23. Simons Variation in Individuals Project (Simons VIP): a genetics-first approach to studying autism 
spectrum and related neurodevelopmental disorders. Neuron. 2012; 73:1063–1067. DOI: 10.1016/
j.neuron.2012.02.014 [PubMed: 22445335] 

24. Nuttle X, et al. Rapid and accurate large-scale genotyping of duplicated genes and discovery of 
interlocus gene conversions. Nature methods. 2013; 10:903–909. DOI: 10.1038/nmeth.2572 
[PubMed: 23892896] 

25. Bersaglieri T, et al. Genetic signatures of strong recent positive selection at the lactase gene. 
American journal of human genetics. 2004; 74:1111–1120. DOI: 10.1086/421051 [PubMed: 
15114531] 

26. Li H, Mapolelo DT, Randeniya S, Johnson MK, Outten CE. Human glutaredoxin 3 forms 
[2Fe-2S]-bridged complexes with human BolA2. Biochemistry. 2012; 51:1687–1696. DOI: 
10.1021/bi2019089 [PubMed: 22309771] 

27. Li H, Outten CE. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding 
partners in iron homeostasis. Biochemistry. 2012; 51:4377–4389. DOI: 10.1021/bi300393z 
[PubMed: 22583368] 

28. Kumanovics A, et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast 
iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. The Journal of 
biological chemistry. 2008; 283:10276–10286. DOI: 10.1074/jbc.M801160200 [PubMed: 
18281282] 

29. Haunhorst P, et al. Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and 
hemoglobin maturation. Molecular biology of the cell. 2013; 24:1895–1903. DOI: 10.1091/
mbc.E12-09-0648 [PubMed: 23615448] 

30. Banci L, Camponeschi F, Ciofi-Baffoni S, Muzzioli R. Elucidating the Molecular Function of 
Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway. Journal of the American 
Chemical Society. 2015; 137:16133–16143. DOI: 10.1021/jacs.5b10592 [PubMed: 26613676] 

31. Chin CS, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT 
sequencing data. Nature methods. 2013; 10:563–569. DOI: 10.1038/nmeth.2474 [PubMed: 
23644548] 

32. Abecasis GR, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 
2012; 491:56–65. DOI: 10.1038/nature11632 [PubMed: 23128226] 

33. Sudmant PH, et al. Global diversity, population stratification, and selection of human copy-number 
variation. Science (New York, NY). 2015; 349:aab3761.

34. Prado-Martinez J, et al. Great ape genetic diversity and population history. Nature. 2013; 499:471–
475. DOI: 10.1038/nature12228 [PubMed: 23823723] 

35. Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion 
probes for targeted, high-accuracy detection of low-frequency variation. Genome research. 2013; 
23:843–854. DOI: 10.1101/gr.147686.112 [PubMed: 23382536] 

36. Bray N, Pimentel H, Melsted P, Pachter L. Near-optimal RNA-Seq quantification. 2015 arXiv, 
1505.02710. 

37. Nuttle X, Itsara A, Shendure J, Eichler EE. Resolving genomic disorder-associated breakpoints 
within segmental DNA duplications using massively parallel sequencing. Nature protocols. 2014; 
9:1496–1513. DOI: 10.1038/nprot.2014.096 [PubMed: 24874815] 

38. Antonacci F, et al. Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 
microdeletion and evolutionary instability. Nature genetics. 2014; 46:1293–1302. DOI: 
10.1038/ng.3120 [PubMed: 25326701] 

39. Fischbach GD, Lord C. The Simons Simplex Collection: a resource for identification of autism 
genetic risk factors. Neuron. 2010; 68:192–195. DOI: 10.1016/j.neuron.2010.10.006 [PubMed: 
20955926] 

Nuttle et al. Page 25

Nature. Author manuscript; available in PMC 2017 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Comparative sequence analysis of chromosome 16p11.2 among apes and the evolution 
of BOLA2 duplications in humans
a) Schematic depicts the genomic organization of chromosome 16p11.2 for one orangutan 

and one chimpanzee haplotype along with the human reference haplotype (GRCh37 

chr16:28195661–30573128). Blocks of segmental duplications within this locus mediate 

recurrent rearrangements in humans and have thus been defined as breakpoint regions BP1–

BP5 (ref. 8). Colored boxes and thick arrows indicate the extent and orientation of segmental 

duplications (different colors denote duplicons from different ancestral genomic loci, and 

hashed boxes indicate sequence duplicated in humans but not in the species represented). 

Thin numbered arrows show orientations of gene-rich regions of unique sequence. Red 

triangles indicate locations and orientations of NPIP cores. Numbers (left) indicate the size 

of each haplotype, with the number of segmentally duplicated base pairs shown in 

parentheses. For chimpanzee, the size is a lower bound due to gaps (dotted line sections) and 

the contig not reaching unique region 1. Regions of human copy number variation (yellow 

highlight) occur on both sides of the critical region and involve the same 102 kbp unit: a 30 

kbp block (green arrow) containing BOLA2, SLX1, and SULT1A3 and a 72 kbp block 

(orange arrow) harboring SMG1P. Expansion and contraction of this cassette underlie 

hundreds of kbp of structural diversity between human haplotypes. b) A model for the 

emergence of BOLA2 duplications during Homo sapiens evolution. Schematic depicts 

structural changes over time leading to the present-day human architecture. A full 

evolutionary model detailing the dynamic evolution of chromosome 16p11.2 in great apes is 

provided in the Supplementary Information and Extended Data Figs. 3, 4.
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Figure 2. Homo sapiens-specific BOLA2 duplication and copy number diversity
a) A phylogenetic tree representing the last interspersed segmental duplication from BP5 to 

BP4 in humans. The unrooted neighbor-joining tree was constructed from a 21,102 bp 

multiple sequence alignment including allelic, paralogous, and orthologous copies of the 

BOLA2-containing segmental duplications. Human taxon labels denote haplotypes and 

locations of different copies (telomeric, T, blue; centromeric, C, red, with C1 closer to the 

critical region than C2). The number of substitutions (above each branch) and bootstrap 

support (at nodes) are indicated. Timing estimates assume human-chimpanzee divergence 6 

mya10. b) Diploid copy number estimates (points) for BOLA2 based on sequence read 

depth12 are shown for 2,359 humans, three archaic humans13,14, a Neanderthal2, a 

Denisovan3, and 86 nonhuman primates, with violin plots overlaid. c) Paralog-specific 

BOLA2 copy number genotypes (points, jittered around their integer values) were inferred 

from WGS read depth over informative markers for 222 individuals sequenced to high 

coverage. Colors correspond to different populations as in panel b.
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Figure 3. BOLA2 expression analyses
a) Normalized BOLA2 mRNA expression quantifications20 in 366 LCLs from individuals 

genotyped for BOLA2 paralog-specific copy number. Points indicate expression levels and 

copy number (jittered) for each cell line, and horizontal lines show the mean expression 

level for each copy number. Line shows least squares regression. Point colors indicate 

BOLA2B copy number (pink = 1 copy, black = 2 copies, cyan = 3 copies). Groups with the 

same aggregate BOLA2 copy number but different combinations of paralog-specific copy 

number do not exhibit differential expression, consistent with both BOLA2A and BOLA2B 
producing mRNA. b) Plot layout is the same as in panel a, but data show BOLA2 protein 

expression quantified by Western blot densitometry on protein lysates from 34 LCLs. 

Though the sample size is small, no evidence indicates differential protein expression of 

distinct BOLA2 paralogs. c) BOLA2 gene models, predicted protein products, and support 

from RNA-seq data from human iPSCs. RT-PCR, cloning, and capillary sequencing 

experiments identified three BOLA2 isoforms: the canonical isoform (BOLA2, black) 

encoding an 86 residue protein and two fusion isoforms consisting of the first two exons 

from canonical BOLA2 fused with three exons from SMG1P. One of the fusion isoforms 

(BOLA2F, blue) maintains the BOLA2 ORF well beyond the fusion junction and is 

predicted to encode a 217 residue protein deriving primarily from SMG1P, whereas a third 

isoform (BOLA2T, red) contains a premature stop codon within the first SMG1P-derived 

exon. Numbers next to curved lines indicate mean counts of RNA-seq reads from two 

human iPSCs (two independent clones each) supporting each exon-exon junction, with 

standard errors in parentheses. d) RNA-seq quantification of BOLA2 mRNA expression 

through in vitro differentiation of primate iPSCs into neurons. Data from two human and 

two chimpanzee cell lines (two independent clones each, except for neurons) reveal 

significantly higher levels of BOLA2 transcripts in human iPSCs than in chimpanzee iPSCs 
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and that BOLA2 RNA levels decrease through neuronal differentiation. Bar heights indicate 

mean expression levels for each species and differentiation stage in transcripts per million 

(TPM), with error bars showing standard errors. Bar colors correspond to different BOLA2 
isoforms as in panel c. BOLA2 expression in human ESCs (two cell lines) is consistent with 

data from human iPSCs, suggesting the iPSC data accurately reflect BOLA2 expression at 

early stages in development.
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Figure 4. Refinement of chromosome 16p11.2 rearrangement breakpoints
a) Results of whole-genome sequencing of a family with a de novo chromosome 16p11.2 

microdeletion in a child with autism. Normalized read depth at unique 30-mer positions in 

the human reference genome GRCh37 is depicted for the proband, her mother, and her 

father. Read-depth signatures reveal a deletion in the proband extending between but not 

beyond the Homo sapiens-specific duplicated sequences (highlighted in pink). b) Summary 

of results across 105 independent microdeletion and microduplication events from 152 

individuals. ~96% of breakpoints map to the Homo sapiens-specific segmental duplication.
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