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SLICE-QUATERNIONIC HOPF SURFACES

DANIELE ANGELLA AND CINZIA BISI

Abstract. We investigate slice-quaternionic Hopf surfaces. In particular, we construct new struc-
tures of slice-quaternionic manifold on S1 × S7, we study their group of automorphisms and their
deformations.

Introduction

Holomorphic functions on open domains of Cn yield a category, whence the notion of complex
manifold. In fact, just a directed graph structure may suffice to get models for constructing struc-
tures on manifolds. In particular, we are interested in slice-regular functions over the quaternions
in the sense of [GP12], see Definition 1.3 adapted to the two variables. Such a notion has its source
in the work by Fueter, further developed by Ghiloni and Perotti. It represents a counterpart
in several variables of the notion of slice-regular function in one quaternionic variable studied in
[GS06, GS07], which appeared to share with holomorphic functions a rich theory from the analytic
point of view, [BS12],[BS17]; see also [CSS12]. We refer to [GSS13, GP12] for precise definitions
and for results.

The first examples of manifolds modelled over quaternions are constructed and studied in [Sal82,
Som75, BG15, GGS15a]: quaternionic tori [BG15], quaternionic projective spaces HP1 and HPn
[Sal82], (affine) Hopf quaternionic manifolds [Som75], blow-up of Hn at 0 and, more in general,
of a quaternionic manifold at a point [GGS15a], quaternionic Iwasawa manifolds [Som75], affine
quaternionic manifolds [GGS15a, GGS15b]. But for some exceptions [GGS15a], they are indeed
affine quaternionic structures.
In Physics also, large classes of examples of noncommutative finite-dimensional manifolds have been
exhibited in connection with the Yang-Baxter equation: for example, the so called θ−deformations
of C2 (identified with R4 and H), C2

θ, studied in [CD02] and in [CL01] with their natural quantum
groups of symmetries which are θ−deformations of the classical groups GL(4,R), SL(4,R) and
GL(2,C).

This note has the aim to extend the above class of examples. More precisely, we construct and
investigate slice-quaternionic primary Hopf surfaces, namely, manifolds whose universal cover is
H2\{(0, 0)} and the fundamental group equals the infinite cyclic group Z, endowed with a structure
of slice-quaternionic manifold. In a sense, these are the simplest examples other than tori. Notice
indeed, as in [Som75], that these constructions correspond to the two ways of constructing affine
complex manifolds in dimension 1, namely, C

/
(Z⊕

√
−1Z) and C∗ \ {0}/Z . (For the affine

complex case, see also [Vit72].) This is done in view to further understand a possible notion of
manifold in the slice-quaternionic class.
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Other than quaternionic affine structures [Som75], case (A) in Theorem 2.1, we get new slice-
quaternionic structures: take λ ∈ H \ {0}, p ∈ N \ {0, 1}, β ∈ H with 0 < |β| < 1, (in a moment,
we will restrict to β ∈ R) and define

f(z, w) := (z · βp + wp · λ, w · β) .

As for notation, recall that any (non-real) quaternion q ∈ H can be written (uniquely) as q = x+y·I
with I ∈ S2 = {q ∈ H : q2 = −1} and y ≥ 0. We denote Iq := I, and we set LIq := R⊕R · Iq ' C.
In case q ∈ R, we set LIq = H. Moreover, ext denotes the regular extension: it acts on a function

defined on H× LIβ giving a slice-regular extension on H2. Consider then

Γ :=
{

ext(fb◦kH×LIβ ) = f◦k : k ∈ Z
}
.

Note that, in order to Γ being a group of automorphisms in the sense of [GP12] in Aut(H2\{(0, 0)}),
we have to force β ∈ R. In fact, in this case, this allows us to avoid regular extension. Then we
consider

H2 \ {(0, 0)}
/

Γ ,

see case (B) in Theorem 2.1.
We prove the following result.

Theorem 2.1. Let f : H2 → H2 be the function

(0.1) f(z, w) := (z · α+ wp · λ, w · β) ,

where p ∈ N \ {0}, α, β, λ ∈ H are such that

0 < |α| ≤ |β| < 1 and (α− βp) · λ = 0 .

In the following cases, the quotient of H2 \{(0, 0)} by the subgroup generated by f yields a structure
of slice-quaternionic Hopf surface:

Case A.:
Case A.1.: when λ = 0, α = β ∈ H with 0 < |α| < 1;
Case A.2.: when λ = 0, α, β ∈ H with 0 < |α| ≤ |β| < 1 and α 6= β;
Case A.3.: when λ ∈ H with λ 6= 0, p = 1, α = β ∈ H with 0 < |α| < 1;

Case B.: when λ ∈ H with λ 6= 0, p ∈ N with p > 1, β ∈ R with 0 < |β| < 1, and α = βp.

Remark. We wonder whether other slice-quaternionic structures on S1 × S7 may be constructed;
see Remark 2.3.

The automorphism groups of the above slice-quaternionic structures are investigated in Theorem
3.1. Notice that, in general, a slice-quaternionic structure does not induce a holomorphic structure;
compare also Remark 2.2. (Note indeed that (X0 + X1 · J) · (Y0 + Y1 · J) = (X0 · Y0 −X1 · Ȳ1) +
(X0 · Y1 +X1 · Ȳ0) · J for X0, X1, Y0, Y1 ∈ R⊕ I · R, where I, J are orthogonal complex structures
on R4.) Therefore the slice-quaternionic Hopf surfaces in case (B) do not underlie a complex
Calabi-Eckmann structure.

We prove the following result.

Theorem 3.1. Let X = H2 \ {(0, 0)}
/
〈f〉 be a slice-quaternionic Hopf surface, where f is as in

equation (0.1). The dimension of the group of automorphisms of X is as follows:

Case A.1.: dimR Aut(X) ∈ {8, 16};
Case A.2.: dimR Aut(X) ∈ {4, 6, 8};
Case A.3.: dimR Aut(X) ∈ {4, 8};
Case B.: dimR Aut(X) = 5.

Finally, we provide families of slice-quaternionic Hopf surfaces, connecting cases (A.1) and (A.3),
respectively cases (A.2.1) and (B), see Section §4.
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Remark 0.1. As suggested by the anonymous Referee, we observe that analogous constructions
can be performed to obtain slice-quaternionic Hopf manifolds of higher dimension, and that simi-
lar techniques might be possibly developed for the study of other slice-quaternionic manifolds, for
example manifolds of Calabi-Eckmann type and Inoue surfaces type. This will be investigated in a
forthcoming paper.

The plan of this note is as follows. In Section 1, we recall the notions of slice-quaternionic
manifold and slice-quaternionic map. In Section 2, we study slice-quaternionic Hopf surfaces,
proving Theorem 2.1. In Section 3, we describe the group of automorphisms of these manifolds,
Theorem 3.1. Finally, in Section 4, we construct families of slice-quaternionic Hopf surfaces.

Acknowledgments. The authors would like to warmly thank Graziano Gentili, Anna Gori, Alessan-
dro Perotti, Giulia Sarfatti, Caterina Stoppato for interesting and useful conversations. Thanks
also to the anonymous Referee for useful comments and suggestions.

1. Regular slice-quaternionic structures on manifolds

Slice-quaternionic manifolds are introduced and studied in [BG15, GGS15a]. For sake of com-
pleteness and for reader’s convenience we rephase here the definition of slice regular function of
several quaternionic variables, as introduced by [GP12] and [GGS15a, §2], adapted to the two
variables. Let D be an open subset of C2, invariant with respect to complex conjugation in each
variable z1, z2. Let R2 be the real Clifford algebra (isomorphic to H) with basic units e1, e2 and let
e12 = e1e2.

Definition 1.1. A continuous function F : D → H⊗R2, with F = F0 + e1F1 + e2F2 + e12F12 and
FK : D → H is called a stem function if it is Clifford-intrinsic, i.e. for each K ∈ P(2), h ∈ {1, 2}
and z = (z1, z2) ∈ D, the components F0, F1, F2, F12 are, respectively, even-even, odd-even, even-
odd, odd-odd with respect to (β1, β2) where β1 = =m(z1) and β2 = =m(z2), e.g. F1(z1, z2) =
−F1(z1, z2) and so on.

Let ΩD be the circular subset of H2 associated to D ⊂ C2 :

ΩD = {x = (x1, x2) ∈ H2 | xh = αh + βhJh ∈ CJh , Jh ∈ SH, (α1 + iβ1, α2 + iβ2) ∈ D}.

Definition 1.2. Given a stem function F : D → H ⊗ R2, we define the left slice function
I(F ) : ΩD → H induced by F by setting, for each x = (x1, x2) = (α1 + J1β1, α2 + J2β2)

I(F )(x) := F0(z1, z2) + J1F1(z1, z2) + J2F1(z1, z2) + J1J2F12(z1, z2)

where (z1, z2) = (α1 + iβ1, α2 + iβ2) ∈ D.

Definition 1.3. Let F : D → H⊗R2 be a stem function of class C1 and let f = I(F ) : ΩD → H the
induced slice function. Then F is called holomorphic stem function if ∂hF = 0 on D for h = 1, 2,
where

∂1F =
1

2

(
∂F

∂α1
+ e1

(
∂F

∂β1

))
and ∂2F =

1

2

(
∂F

∂α2
+

(
∂F

∂β2

)
e2

)
.

If F is holomorphic, then we say that f = I(F ) is a (left) slice regular function on ΩD.

We consider now the geometric notion of manifold associated with slice regular functions.

Definition 1.4 ([GGS15a, Definitions 3.1–3.2]). Let X be a differentiable manifold. Then X is
said to be a slice(-regular)-quaternionic manifold when endowed with a slice(-regular)-quaternionic
structure, that is, a differentiable structure with changes of charts being slice regular in the sense
of [GP12, Definition 7] (for surfaces you can also see Definition 1.3). (Note, in particular, that the
domains of definition of transition functions must be circular [GP12, page 736].) Slice(-regular)-
quaternionic maps between slice-quaternionic manifolds are maps being slice regular in the sense
of [GP12, Definition 7] in local coordinates.
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Note that, since the composition of slice regular functions is not slice regular in general, then
the conditions have to be checked on any charts. (This motivates the possible preferred choice of
special sub-classes of slice regular functions, e.g., affine functions.)

By automorphism, we mean a slice-quaternionic map from X to itself whose inverse is still
slice-quaternionic.

In particular, slice regular functions f : D → H in the sense of [GP12, Definition 7] in one variable
on a circular domain D ⊆ H such that D∩R 6= ∅ are slice regular in the sense of [GS06, GS07]. In
[BG15], slice-quaternionic structures on a 4-real-dimensional torus are constructed and classified.
More in general, since ordered polynomial functions p(x) =

∑
` x

`a` with right coefficients in H
are slice regular, [GP12, Examples 3.1], then any affine structure is slice-quaternionic.

The following result allows to single out a first class of manifolds admitting quaternionic struc-
tures, see also [GGS15a, §3.3]. For its holomorphic analogue, see, e.g., [KH83, 2.1.5, 2.1.7]. (Note
indeed that we can choose circular domains as charts.)

Lemma 1.5. Let M be a differentiable manifold of dimension 4n. Then M admits an affine
(whence slice-quaternionic) structure [GGS15a, Definition 3.8] if and only if there is an immersion

ψ : M̃ → Hn of the universal covering M̃ of M such that, for every covering transformation γ we
have ψ ◦ γ = Xγ ◦ ψ for some affine transformation Xγ of Hn.

Another class of slice-quaternionic manifolds is constructed as follows. Let G be a group of
automorphisms acting on a slice-quaternionic manifold X. We recall the following notions.

• G is called properly-discontinuous if, for any compact sets K1 and K2 in X, there are only
a finite number of elements g ∈ G such that g(K1) ∩K2 6= ∅.
• A point x ∈ X is called a fixed-point of g ∈ G if g(p) = p. The group G is called fixed-point

free if, for any g ∈ G \ {id}, there is no fixed-point of g.

Analougously as in the holomorphic case, (see, e.g., [Kod81, Theorem 2.2],) we have the following
results.

Proposition 1.6. Let X be a slice-quaternionic manifold. Let G be a group of automorphisms
of X such that: G is properly-discontinuous; G is fixed-point free. Then the quotient space X/G
has a structure of slice-quaternionic manifold, such that the projection map π : X → X/G is a
slice-quaternionic map.

Proposition 1.7. Let X1 and X2 be slice-quaternionic manifolds. Let G1 and G2 be groups
of automorphisms of X1, respectively X2, being properly-discontinuous and fixed-point free. Let
f : X1/G1 → X2/G2 be a slice-quaternionic map. Then there exists a slice-quaternionic map
F : X1 → X2 such that the diagram

X1

π1
��

F // X2

π2
��

X1/G1
f
// X2/G2

is commutative, where π1 and π2 denote the natural projections.

2. Slice-quaternionic Hopf surfaces

A slice-quaternionic (primary) Hopf surface is a slice-quaternionic manifold whose universal
covering is H2 \ {(0, 0)} and the fundamental group equals the infinite cyclic group Z.

As a differentiable manifold, a slice-quaternionic Hopf surface X is the same as the smooth
manifold underlying a complex Hopf manifold C4 \ {0}/Z, that is, it is diffeomorphic to S1 × S7.
Its cohomology is then H•(X;Z) = Z[0]⊕Z[−1]⊕Z[−7]⊕Z[−8]. Note also that the differentiable
manifold underlying X admits a hypercomplex structure.
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We state now the main result, where we construct slice-quaternionic Hopf surfaces. (The choice
for the normal forms is assumed up to regular ∗-inverse and in accordance to the classical complex
case, see [Ste57], to which we are reduced at least in the case of the generator f of Γ preserving
one or all slices.)

Theorem 2.1. Let f : H2 → H2 be the function

f(z, w) := fp,α,β,λ(z, w) := (z · α+ wp · λ, w · β) ,

where p ∈ N \ {0}, α, β, λ ∈ H are such that

0 < |α| ≤ |β| < 1 and (α− βp) · λ = 0 .

We consider the following cases.

Case A.: Consider the following sub-cases.
Case A.1.: When λ = 0, α = β ∈ H with 0 < |α| < 1.
Case A.2.: When λ = 0, α, β ∈ H with 0 < |α| ≤ |β| < 1 and α 6= β.
Case A.3.: When λ ∈ H with λ 6= 0, p = 1, α = β ∈ H with 0 < |α| < 1.

Case B.: When λ ∈ H with λ 6= 0, p ∈ N with p > 1, α = βp ∈ H with 0 < |β| < 1. Assume
moreover that β ∈ R.

Set
Γ :=

{
f◦k : k ∈ Z

}
⊆ Aut(H2 \ {(0, 0)}) .

Then
X := Xp,α,β,λ := H2 \ {(0, 0)}

/
Γ

is a slice-quaternionic Hopf surface. More precisely, it admits affine structures if and only if it
belongs to case (A).

Proof. Case (A) is a consequence of Lemma 1.5. Now we are reduced to prove case (B) by applying
Proposition 1.6. First, take β ∈ H, possibly non-real. By computing fb◦kH×LIβ (z, w), we get

ext
(
fb◦kH×LIβ

)
(z, w) =

z · βkp + wp ·


∑

`+m=k−1
`,m≥0 if k≥0
`,m<0 if k<0

β`·p · λ · βm·p

 , w · βk

 .

In fact, because of the specific form of the function, this is just a regular extension of the second

variable. Note that, when β 6∈ R, then
{

ext
(
fb◦kH×LIβ

)
: k ∈ Z

}
is not a group: indeed, since f is

not linear, the extension of the composition is different from the (non-slice regular) composition of

extensions. This motivates the choice for β ∈ R. For any k ∈ Z \ {0}, the map ext
(
fb◦kH×LIβ

)
has

no fixed point: otherwise, we would have w = w · βk whence, by taking norms, |w| = 0; therefore,
we would have z ·βkp = z whence, by taking norms, |z| = 0. Moreover, Γ is properly-discontinuous.
Indeed, take K1 and K2 compact sets in H2 \ {(0, 0)}. We may assume that

K1 ⊂
{

(z, w) ∈ H2 : r1 < |w| < R1

}
and K2 ⊂

{
(z, w) ∈ H2 : r2 < |w| < R2

}
where 0 < r1 < R1 and 0 < r2 < R2 are real numbers. Then, for any k > lg r2

r1
/ lg |β|, it holds

ext
(
fb◦kH×LIβ

)
(K1) ∩K2 = ∅. �

Remark 2.2. We point out that the quaternionic structure given to the Hopf surfaces in cases
(A), being linear quaternionic, coincides with a complex structure on C2. Indeed, let q = z+w ·j ∈
H, a = α+ β · j ∈ H, and z, w, α, β ∈ C, then:

q · a = (z + w · j) · (α+ β · j) = (z · α− w · β) + (z · β + w · α) · j ,
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i.e., the right quaternionic multiplication by α+ β · j coincides with the map:

C2 3 (z, w) 7→ (z · α− w · β, z · β + w · α) ∈ C2 ,

which in matrix form reads as:

(z, w) ·
(
α β

−β α

)
= (z · α− w · β, z · β + w · α) .

If α 6= 0, the complex matrix A =

(
α β

−β α

)
has two different (complex conjugated) eigenvalues,

hence A is conjugated to a diagonal matrix. Therefore the quaternionic actions described on the
Hopf surfaces in cases (A.1) and (A.2) are particular diagonal complex actions on C4. Similarly
for the case (A.3). On the other hand, the quaternionic structure on Hopf surfaces of case (B) are
new, at our knowledge.

Remark 2.3. We wonder whether other slice-quaternionic structures on S1 × S7 may be con-
structed.

A first tentative could be by using the following extension result, that we recall.
Let f : H2 → H2 be a smooth function. Let L1, L2 be slices of H such that fbL1×L2 : C2 '

L1 × L2 → H2 is holomorphic. Then, any component f (j)bL1×L2 : L1 × L2 → H is analytic, let us
say

f (j)bL1×L2(z1, z2) =:
∑

k1,k2∈N
zk11 · z

k2
2 · a

(j)
k1,k2

,

where a
(j)
k1,k2

∈ H. We set

f∗ := ext(fbL1×L2) :=
(
f̃ (1), f̃ (2)

)
: H2 → H2 ,

where
f̃ (j)(z, w) :=

∑
z,w∈N

zk1 · wk2 · a(j)k1,k2 .

Then ext(fbL1×L2) is a slice regular function in the sense of [GP12] such that

ext(fbL1×L2)bL1×L2 = fbL1×L2 .

As we learnt from Alessandro Perotti, we have the following representation formula.
Define f∗ : H2 → H2 as follows. For any

x := (x1, x2) = (α1 + J1β1, α2 + J2β2) ∈ H2 ,

consider
(y1, y2) := (α1 + I1β1, α2 + I2β2) ∈ LI1 × LI2 ⊂ H2 .

Denote, e.g., by yc1 = (α1 + I1β1)
c := α1− I1β1 the complex conjugate of y1 ∈ LI1 ' C with respect

to the complex structure I1. Define

4 · f∗(x) := f(y1, y2) + f(yc1, y2) + f(y1, y
c
2) + f(yc1, y

c
2)

−J1I1f(y1, y2) + J1I1f(yc1, y2)− J1I1f(y1, y
c
2) + J1I1f(yc1, y

c
2)

−J2I2f(y1, y2)− J2I2f(yc1, y2) + J2I2f(y1, y
c
2) + J2I2f(yc1, y

c
2)

+J1J2I2I1f(y1, y2)− J1J2I2I1f(yc1, y2)− J1J2I2I1f(y1, y
c
2) + J1J2I2I1f(yc1, y

c
2) ,

where H2 is endowed with a structure of left-H-module by a · (b, c) = (a · b, a · c). Then f∗ is the
extension as before.
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Remark 2.4. We recall that the Hopf surfaces are related to Hopf fibrations, which are important
in twistor theory, see, e.g., [GSS14]. More precisely, consider the fibration:

S3 �
� // S7

p
��

HP1 ,

whence S3 × S1 �
� // S7 × S1

p
��

HP1 .

Take local charts for U1 := {[z1 : z2] ∈ HP1 : z1 6= 0} ⊆ HP1 and U2 := {[z1 : z2] ∈ HP1 : z2 6=
0} ⊆ HP1. The maps

ψ1([1 : ζ21 ], a) =

(
a(

1 + |ζ21 |2
)1/2 , ζ21 · a(

1 + |ζ21 |2
)1/2

)
and

ψ2([ζ
1
2 : 1], a) =

(
ζ12 · a(

1 + |ζ12 |2
)1/2 , a(

1 + |ζ12 |2
)1/2

)
yield diffeomorphisms

ψ1 : U1 × S3 '→ p−1(U1) and ψ2 : U2 × S3 '→ p−1(U2) .

3. Automorphisms of slice-quaternionic Hopf surfaces

In this section, we compute the group of automorphisms of the slice-quaternionic Hopf surfaces
in Theorem 2.1. (For results in the holomorphic context, see [Nam74, Weh81].)

Theorem 3.1. Let X = H2 \ {(0, 0)}
/
〈f〉 be a slice-quaternionic Hopf surface. The group of

automorphisms of X is as follows.

Case A.1.: In case f(z, w) = (z · α,w · α) for 0 < |α| < 1:

Aut(X) = {ϕ(z, w) = (z · a1,0 + w · a0,1, z · b1,0 + w · b0,1)

: a1,0, a0,1, b1,0, b0,1 ∈ LIα such that b0,1 · a1,0 − b1,0 · a0,1 6= 0}/〈f〉 ;

in particular, dimR Aut(X) ∈ {8, 16}.
Case A.2.1.: In case f(z, w) = (z · α,w · β) for 0 < |α| < |β| < 1:

Aut(X) = {ϕ(z, w) = (z · a1,0, w · b0,1)

: a1,0 ∈ LIα , b0,1 ∈ LIβ such that b0,1 · a1,0 6= 0
}/
〈f〉 ;

in particular, dimR Aut(X) ∈ {4, 6, 8}.
Case A.2.2.: In case f(z, w) = (z · α,w · β) for 0 < |α| = |β| < 1 and α 6= β :

Aut(X) = {ϕ(z, w) = (z · a1,0 + w · a0,1, z · b1,0 + w · b0,1)

: a1,0 ∈ LIα , b0,1 ∈ LIβ , β · a0,1 = a0,1 · α, α · b1,0 = b1,0 · β

such that b1,0 · (a0,1 − b0,1 · b−11,0 · a1,0) 6= 0
}/
〈f〉 ;

in particular, dimR Aut(X) ∈ {4, 6, 8}.
Case A.3.: In case f(z, w) = (z · α+ w · λ,w · α) for λ ∈ H \ {0} and 0 < |α| < 1:

Aut(X) = {ϕ(z, w) = (z · a1,0 + w · a0,1, z · b1,0 + w · b0,1)

: equations (3.4) hold }/〈f〉 ;

in particular, dimR Aut(X) ∈ {4, 8}.
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Case B.: In case f(z, w) = (z · βp + wp · λ,w · β) for p ∈ N \ {0, 1}, λ ∈ H \ {0} and 0 <
|β| < 1, β ∈ R :

Aut(X) =
{
ϕ(z, w) =

(
z · bp0,1 + wp · a0,p, w · b0,1

)
: b0,1 ∈ R, a0,p ∈ H such that b0,1 6= 0}/〈f〉 ;

in particular, dimR Aut(X) = 5.

Proof. Let X = H2 \ {(0, 0)}
/
〈f〉 . Let ϕ : X → X be an automorphism of X. By Proposition

1.7, it is induced by an automorphism Φ: H2 \ {(0, 0)} → H2 \ {(0, 0)} of the universal covering
of X. By the Hartogs extension phenomenon for slice regular functions, [GP12, Theorem 2], see
also [CSS12, Corollary 4.9], removability of singularity yields an automorphism Φ: H2 → H2. By
[GP12, Corollary 2], the set of slice regular functions on H2 coincides with the one of convergent
ordered power series (with right coefficients). Whence we get that

Φ(z, w) =

∑
h,k≥0

zh · wk · ah,k,
∑
h,k≥0

zh · wk · bh,k

 , with a0,0 = b0,0 = 0 ,

which satisfies

(3.1) Φ ◦ f = f ◦ Φ .

We consider separately each case.

Case A.1.: Consider the case f(z, w) = (z · α,w · α) for 0 < |α| < 1.
By imposing (3.1), we get∑

h,k≥0
(z · α)h · (w · α)k · ah,k =

∑
h,k≥0

zh · wk · ah,k · α ,

∑
h,k≥0

(z · α)h · (w · α)k · bh,k =
∑
h,k≥0

zh · wk · bh,k · α .

Suppose α 6∈ R. Since the right-hand sides are slice regular series, the left-hand sides
have to be slice regular, too: that is, the non-real coefficients have to be on the right. In
particular, it follows that

ah,k = bh,k = 0 for any h+ k 6= 1 .

Suppose now α ∈ R. Then we get∑
h,k≥0

zh · wk · αh+k · bh,k =
∑
h,k≥0

zh · wk · bh,k · α ,

whence, for any h, k ∈ N,

αh+k · ah,k = ah,k · α and αh+k · bh,k = bh,k · α .
Since α is real and by equalling the norms, we get that, for any h, k ∈ N,

|α|h+k−1 · |ah,k| = |ah,k| and |α|h+k−1 · |bh,k| = |bh,k| .
Since |α| < 1, therefore we get again

ah,k = bh,k = 0 for any h+ k 6= 1 .

Moreover, in both cases,

a1,0 · α = α · a1,0 , a0,1 · α = α · a0,1 ,
b1,0 · α = α · b1,0 , b0,1 · α = α · b0,1 ,

that is,
a1,0, a0,1, b1,0, b0,1 ∈ LIα .
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We recall, by [BG09, Proposition 2.1], [BG11] and [BS13], that Φ is (right-)invertible if
and only if

(3.2) b0,1 ·
(
a1,0 − b1,0 · b−10,1 · a0,1

)
6= 0 or a0,1 ·

(
b1,0 − a1,0 · a−10,1 · b0,1

)
6= 0 .

Finally we get that Φ is an automorphism if and only if

b0,1 · a1,0 − b1,0 · a0,1 6= 0 .

Therefore dimR Aut(X) ∈ {8, 16}, according to α ∈ H \ R, respectively α ∈ R.

Case A.2.: Consider the case f(z, w) = (z · α,w · β) for 0 < |α| ≤ |β| < 1 and α 6= β.
By imposing (3.1), we get∑

h,k≥0
(z · α)h · (w · β)k · ah,k =

∑
h,k≥0

zh · wk · ah,k · α ,(3.3)

∑
h,k≥0

(z · α)h · (w · β)k · bh,k =
∑
h,k≥0

zh · wk · bh,k · β .

Suppose first that both α and β are non-real. Since the right-hand side is a slice regular
series, the left-hand side has to be slice regular, too. This yields the following conditions
on ah,k and bh,k :

ah,k = 0 for any (h, k) 6= {(1, 0), (0, 1)},
bh,k = 0 for any (h, k) 6= {(1, 0), (0, 1)}.

In the other cases, when either α or β or both are real, with similar arguments as before,
we recover the same conditions.

Now, we distinguish two cases.
Case A.2.1.: In case |α| 6= |β|, by equalling the norms, we get that

a0,1 = 0,

b1,0 = 0.

Moreover,
a1,0 · α = α · a1,0 , b0,1 · β = β · b0,1 .

that is,
a1,0 ∈ LIα , b0,1 ∈ LIβ .

Finally, we get that Φ is an automorphism if and only if

b0,1 · a1,0 6= 0 .

In the general case that both α and β are non-real, then dimR Aut(X) = 4. If only
one among α and β is real, then dimR Aut(X) = 6 and if both α and β, are real then
dimR Aut(X) = 8.

Case A.2.2.: In case |α| = |β|, by equalling the norms, we always get that

ah,k = 0 for any h+ k 6= 1 ,

bh,k = 0 for any h+ k 6= 1 .

Moreover,
a1,0 · α = α · a1,0 , b0,1 · β = β · b0,1 ,

that is,
a1,0 ∈ LIα , b0,1 ∈ LIβ ;

but also
a0,1 · α = β · a0,1 , b1,0 · β = α · b1,0 .

Note that the map, e.g., a0,1 7→ β · a0,1 · α−1 is given by the composition of two rotations
along two orthogonal planes, with angles given by the sum, respectively the difference, of
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the arguments of α and β. Then its fixed-locus is either a point or a plane: it is a plane iff
β = α, and it is a point in all remaining cases.

Hence if α, β ∈ H \R and α = β then dimR Aut(X) = 8; if α, β ∈ H \R and α 6= β then
dimR Aut(X) = 4; if α, or β, or both, are real, a0,1 = b1,0 = 0 and dimR Aut(X) is equal
to 6, respectively 8.

Finally, we get that Φ is an automorphism if and only if

b1,0 · (a0,1 − b0,1 · b−11,0 · a1,0) 6= 0 .

Case A.3.: Consider the case f(z, w) = (z · α+ w · λ,w · α) for λ ∈ H\{0} and 0 < |α| < 1.
By imposing (3.1), we get∑

h,k≥0
(z · α+ w · λ)h · (w · α)k · ah,k =

∑
h,k≥0

zh · wk · (ah,k · α+ bh,k · λ) ,

∑
h,k≥0

(z · α+ w · λ)h · (w · α)k · bh,k =
∑
h,k≥0

zh · wk · bh,k · α .

We restrict it to the quaternionic line rµ := {(z, z ·µ) : z ∈ H} where µ ∈ R is any fixed
real number:∑
h,k≥0

(z · (α+ µ · λ))h · (z · µ · α)k · ah,k =
∑
h,k≥0

zh · (z · µ)k · (ah,k · α+ bh,k · λ) ,

∑
h,k≥0

(z · (α+ µ · λ))h · (z · µ · α)k · bh,k =
∑
h,k≥0

zh · (z · µ)k · bh,k · α .

Suppose first that α is non-real. For µ in a dense subset of R, it holds that also α+µ ·λ 6∈
R. We notice that the right-hand sides are slice regular. Notwithstanding, the left-hand
sides are slice regular if and only if

ah,k = 0 for any h+ k 6= 1 ,

bh,k = 0 for any h+ k 6= 1 .

So we are reduced to:

(α+ µ · λ) · a1,0 + µ · α · a0,1 = (a1,0 · α+ b1,0 · λ) + µ · (a0,1 · α+ b0,1 · λ) ,

(α+ µ · λ) · b1,0 + µ · α · b0,1 = b1,0 · α+ µ · b0,1 · α .
By equalling the coefficients in the polynomial in µ, we get:

λ · a1,0 + α · a0,1 = a0,1 · α+ b0,1 · λ ,(3.4)

α · a1,0 = a1,0 · α+ b1,0 · λ ,

λ · b1,0 + α · b0,1 = b0,1 · α ,

α · b1,0 = b1,0 · α .
The last condition gives:
• b1,0 ∈ LIα ' C.

The other conditions give:
• b0,1 as fixed point of X 7→ α ·X · α−1 + λ · b1,0 · α−1,
• a1,0 as fixed point of X 7→ α ·X · α−1 − b1,0 · λ · α−1,
• a0,1 as fixed point of X 7→ α ·X · α−1 + λ · a1,0 · α−1 − b0,1 · λ · α−1.

We add further the condition of invertibility (3.2).
The dimension of the group of automorphisms in this case can be computed reasoning

in the following way.
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• If λ·b1,0 ·α−1 ∈ LIα , equivalently, λ ∈ LIα in case b1,0 6= 0, (for example, if λ ∈ R,) then

b0,1 cannot be in L⊥Iα because it is a 2-plane invariant by the rotation X → α ·X ·α−1
therefore no point on it can be fixed by such a rotation followed by a translation of
an element in LIα . For the same reason, the component of b0,1 along L⊥Iα has to be
zero. On the other hand, b0,1 can be in LIα if and only if b1,0 = 0 because the rotation
X → α ·X ·α−1 fixes point by point the elements of LIα ; in this case b0,1 can be chosen
arbitrarily in LIα . In this case also a1,0 can be chosen arbitrarily in LIα because b1,0
is zero also in the second map, and from the third map it follows that a1,0 = b0,1 and
a0,1 is arbitrarily chosen in LIα . Hence dimR Aut(X) = 4.

• If λ is such that λ · b1,0 · α−1 ∈ L⊥Iα , (equivalently, λ ∈ L⊥Iα in case b1,0 6= 0,) then

the map X 7→ α ·X · α−1 + λ · b1,0 · α−1 is a roto-translation of the invariant 2-plane

L⊥Iα which has a unique fixed point on that 2-plane and in this case the component

of b0,1 along L⊥Iα has to be this fixed point which depends on b1,0. Notice that also

b1,0 · λ · α−1 is in L⊥Iα , so, for the same reason, also the component of a1,0 along L⊥Iα
has to be the unique fixed point of a roto-translation of the invariant 2-plane L⊥Iα
depending on b1,0. Finally, the last equation yields the condition that the component

along LIα of λ · a1,0 − b0,1 · λ is zero. Since λ ∈ L⊥Iα , this last condition is translated

in λ · a⊥,α1,0 − b
⊥,α
0,1 · λ = 0 where a⊥,α1,0 b⊥,α0,1 are respectively the components of a1,0 and

b0,1 along L⊥Iα . If the equation is not satisfied, then necessarily b1,0 = 0, then we are
again in the previous case. Otherwise, we have dimR Aut(X) = 2 + 2 + 2 + 2 = 8.
• Finally, in the general case, split X = X1 + X2 with X1 ∈ LIα and X2 ∈ L⊥Iα . If the

component of λ · b1,0 · α−1 along LIα is zero, then λ · b1,0 · α−1 ∈ L⊥Iα , so we are back

to the previous case. If the component of λ · b1,0 ·α−1 along LIα is non-zero, then this
implies, as before, that λ · b1,0 · α−1 = 0. Note that this happens exactly when the

component of λ along L⊥Iα is non-zero. Then we argue as in the previous case, getting
dimR Aut(X) ∈ {4, 8}.

Suppose now α ∈ R, and that λ 6∈ R. By imposing the slice regularity of the left-hand
side, we get that: ah,k = 0 and bh,k = 0 for (h, k) 6∈ {(1, 0), (0, k) : k ≥ 1}. Therefore we
are reduced to:

z · (α+ µ · λ) · a1,0 +
∑
k≥1

zk · µk · αk · a0,k

= z · (a1,0 · α+ b1,0 · λ) +
∑
k≥1

zk · µk · (a0,k · α+ b0,k · λ) ,

z · (α+ µ · λ) · b1,0 +
∑
k≥1

zk · µk · αk · b0,k

= z · b1,0 · α+
∑
k≥1

zk · µk · b0,k · α .

We equal: firstly, the coefficients in z; secondly, the coefficients in µ. We are reduced to:

α · a1,0 = a1,0 · α+ b1,0 · λ ,

λ · a1,0 + α · a0,1 = a0,1 · α+ b0,1 · λ ,

αk · a0,k = a0,k · α+ b0,k · λ , for k > 1 ,

α · b1,0 = b1,0 · α ,

λ · b1,0 + α · b0,1 = b0,1 · α ,
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αk · b0,k = b0,k · α , for k > 1 .

From the first equation, α being real, we get that

b1,0 = 0 .

From the last equation, since |α| < 1, we get that b0,k = 0 for k > 1. Whence, from the
third equation, the same argument gives a0,k = 0 for k > 1. Therefore we are reduced to:

a1,0 ∈ H , a0,1 ∈ H , b0,1 = λ · a1,0 · λ−1 ,
the other coefficients are zero, with the condition of invertibility (3.2). Hence dimR Aut(X) =
8.

The last case is when α ∈ R and λ ∈ R. We get the equations:∑
h,k≥0

zh+k · (α+ µ · λ)h · µk · αk · ah,k =
∑
h,k≥0

zh+k · µk · (ah,k · α+ bh,k · λ) ,

∑
h,k≥0

zh+k · (α+ µ · λ)h · µk · αk · bh,k =
∑
h,k≥0

zh+k · µk · bh,k · α .

In the second equation, we compare the coefficients in zt for t = h+ k > 1 and then in
µ0, getting αt · bt,0 = bt,0 · α, whence:

bh,0 = 0 for h > 1 .

Then, in the second equation, we compare the coefficients in zt for t = h+ k > 1 and then
in µ, getting αt−1 · α · bt−1,1 + t · α · λ · bt,0 = bt−1,1 · α, whence:

bh−1,1 = 0 for h > 1 .

By induction on ` ≥ 0, by comparing the coefficients in zt for t > 1 and then in µ`, we get
that:

bh−`,` = 0 for h > 1, ` ≥ 0 .

Now, in the first equation, we compare the coefficients in zt for t > 1 and then in µ0, we
get that ah,0 = 0 for h > 1; proceeding by induction as before, we finally get:

ah−`,` = 0 for h > 1, ` ≥ 0 .

Finally, by looking at the degree h+ k = 1, we have that:

a1,0 ∈ H , a0,1 ∈ H , b1,0 = 0 , b0,1 = a1,0 ,

the other coefficients are zero, and we assume the invertibility condition (3.2). Hence
dimR Aut(X) = 8.

Case B.: Consider the case f(z, w) = (z · βp + wp · λ,w · β) for p ∈ N \ {0, 1}, λ ∈ H \ {0}
and 0 < |β| < 1, β ∈ R.

Consider first the case λ ∈ R. By imposing (3.1) on the quaternionic curve γµ := {(zp, µ ·
z) : z ∈ H} for a fixed µ ∈ R, we get:

∑
h,k

(
zph+k · µk · ah,k

)
· βp +

∑
h,k

zph+k · µk · bh,k

p

· λ

=
∑
h,k

zph+k · (βp + µp · λ)h · µk · βk · ah,k ,

∑
h,k

zph+k · µk · bh,k · β
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=
∑
h,k

zph+k · (βp + µp · λ)h · µk · βk · bh,k .

We argue now as in case (A.3), the only difference being that we consider h with weight p.
Namely, from the second equation, we compare the coefficients in zt for t = p · h + k > 1
and we get that

bh,k = 0 for (h, k) 6∈ {(1, 0), (0, 1), . . . , (0, p)} .
Notice also that, in order to the left-hand side of the first equation being slice-regular, we
need

b1,0 ∈ R , b0,1 ∈ R , . . . , b0,p ∈ R .

The same argument again, applied to the first equation, gives:

ah,k = 0 for (h, k) 6∈ {(1, 0), (0, 1), . . . , (0, p)} .
Moreover, we get the conditions:

a0,k = 0 for k ∈ {1, . . . , p− 1} ,

bp0,1 = a1,0 ,

b0,k = 0 for k ∈ {2, . . . , p− 1} ,

bp1,0 = 0 ,

b0,p = 0 .

Finally, we have

Φ(z, w) =
(
z · bp0,1 + wp · a0,p, w · b0,1

)
where

b0,1 ∈ R and a0,p ∈ H .

The invertibility of Φ is guaranteed if b0,1 ∈ R \ {0}.
Consider now the case that λ 6∈ R. As before, we impose (3.1) on the quaternionic curve

γµ := {(zp, µ · z) : z ∈ H}, and look at the second component. We have:∑
h,k

zph+k · µk · bh,k · β =
∑
h,k

(zp · (βp + µp · λ))h · zk · µk · βk · bh,k .

The slice regularity of the left-hand side forces

bh,k = 0 for (h, k) 6∈ {(0, k), (1, 0)} .
Arguing as we did before in the case λ ∈ R, we get:

bh,k = 0 for (h, k) 6= (0, 1) .

Look now at the first component of (3.1) on the quaternionic curve γµ:∑
h,k

zph+k · µk · ah,k · βp + (z · µ · b0,1)p · λ =
∑
h,k

(zp · (βp + µp · λ))h · zk · βk · ah,k .

The slice regularity of the first series forces

b0,1 ∈ R and ah,k = 0 for (h, k) 6∈ {(0, k), (1, 0)} .
In order to have an automorphism, b0,1 ∈ R \ {0}. We argue as before to conclude that the
conditions for automorphisms are the same.

This concludes the proof. �



14 DANIELE ANGELLA AND CINZIA BISI

4. Families of slice-quaternionic structures and deformations

In this section, we construct families of slice-quaternionic Hopf surfaces, connecting cases (A.1)
and (A.3), respectively cases (A.2.1) and (B), in the notation of Theorem 2.1. These are examples
of deformations in the slice-quaternionic setting. (For the holomorphic analogue, see [Kod81,
Example 2.15].)

We start constructing a smooth family of slice-quaternionic Hopf surfaces, connecting cases (A.1)
and (A.3), in Theorem 2.1.

Consider
H2 \ {(0, 0)} ×H .

Fix α ∈ H such that 0 < |α| < 1. Consider the slice-regular function

F : H2 \ {(0, 0)} ×H→ H2 \ {(0, 0)} ×H ,

F (z, w, λ) := F1,α,α(z, w, λ) := (z · α+ w · λ, w · α, λ) ,

where α ∈ H is such that 0 < |α| < 1. Define

M := H2 \ {(0, 0)} ×H
/

Γ where Γ :=
{
F ◦k : k ∈ Z

}
.

Since the action of Γ is fixed-point free and properly discontinuous, thenM is a smooth manifold.
(Note that, for α ∈ R, then any F ◦k is slice-regular, then we get a slice-quaternionic family.)

The slice-quaternionic projection

π : H2 \ {(0, 0)} ×H→ H
makes the following diagram commutative:

H2 \ {(0, 0)} ×H

π
&&

F1,α,α // H2 \ {(0, 0)} ×H

π
xxH

whence it induces a map
π : M→ H ,

whose fibres are the slice-regular manifolds

π−1(λ) = X1,α,α,λ .

Note how the group of automorphisms changes:

dimR Aut(π−1(0)) ∈ {8, 16} and dimR Aut(π−1(λ)) ∈ {4, 8} .
In particular, assume α ∈ R as a special example:

dimR Aut(π−1(0)) = 16 and dimR Aut(π−1(λ)) = 8 .

We construct now a slice-quaternionic family of slice-quaternionic Hopf surfaces, connecting
cases (A.2.1) and (B), respectively in Theorem 2.1.

Consider
H2 \ {(0, 0)} ×H .

Fix p ∈ N with p > 1, and β ∈ R such that 0 < |β| < 1, and take α = βp. Consider the slice-regular
function

F : H2 \ {(0, 0)} ×H→ H2 \ {(0, 0)} ×H ,

F (z, w, λ) := (z · βp + wp · λ, w · β, λ) .

Define
M := H2 \ {(0, 0)} ×H

/
Γ where Γ :=

{
F ◦k : k ∈ Z

}
.
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Since the action of Γ is fixed-point free and properly discontinuous, thenM is a slice-quaternionic
manifold by Proposition 1.6.

The slice-quaternionic projection

π : H2 \ {(0, 0)} ×H→ H
makes the following diagram commutative:

H2 \ {(0, 0)} ×H

π
&&

F // H2 \ {(0, 0)} ×H

π
xxH

whence it induces a slice-quaternionic map

π : M→ H ,

whose fibres are
π−1(λ) = Xp,βp,β,λ .

They are in case (B) for λ 6= 0. In particular, for λ = 0, we have:

π−1(0) = Xp,βp,β,0 = X1,βp,β,0 ,

which is in case (A.2.1) with β ∈ R, α = βp ∈ R, α 6= β, and which is different from π−1(λ), for
λ 6= 0, because of Theorem 3.1.

Note how the group of automorphisms changes:

Aut(π−1(0)) = {ϕ(z, w) = (z · a1,0, w · b0,1)

: a1,0, b0,1 ∈ H such that b0,1 · a1,0 6= 0}/〈f〉 ,
and, for λ 6= 0,

Aut(π−1(λ)) =
{
ϕ(z, w) =

(
z · bp0,1 + wp · a0,p, w · b0,1

)
: b0,1 ∈ R, a0,p ∈ H such that b0,1 6= 0}/〈f〉 .

In particular,

dimR Aut(π−1(0)) = 8 and dimR Aut(π−1(λ)) = 5 .
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[BS13] C. Bisi, C. Stoppato, Regular vs. classical möbius transformations of the quaternionic unit ball, Advances in
hypercomplex analysis, Springer INdAM Series vol. 1, (2013), 1–13. (Cited on p. 9.)

[BS17] C. Bisi, C. Stoppato, Landau’s theorem for slice regular functions on the quaternionic unit ball, International
Journal of Mathematics 28,(3), (2017), 1750017, pp. 21. (Cited on p. 1.)

[CSS12] F. Colombo, I. Sabadini, D. C. Struppa, Algebraic properties of the module of slice regular functions in
several quaternionic variables, Indiana Univ. Math. J. 61 (2012), no. 4, 1581–1602. (Cited on p. 1, 8.)

[CD02] A. Connes, M. Dubois-Violette, Noncommutative finite-dimensional manifolds. I. Spherical manifolds and
related examples, Comm. Math. Phys. 230 (2002), no. 3, 539–579. (Cited on p. 1.)

[CL01] A. Connes, G. Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm.
Math. Phys. 221 (2001), no. 1, 141–159. (Cited on p. 1.)

[GGS15a] G. Gentili, A. Gori, G. Sarfatti, A direct approach to quaternionic manifolds, Math. Nachr. 290 (2017),
no. 2-3, 321–331. (Cited on p. 1, 3, 4.)



16 DANIELE ANGELLA AND CINZIA BISI

[GGS15b] G. Gentili, A. Gori, G. Sarfatti, Quaternionic toric manifolds, to appear in J. Symplectic Geom.. (Cited
on p. 1.)

[GSS14] G. Gentili, S. Salamon, C. Stoppato, Twistor transforms of quaternionic functions and orthogonal complex
structures, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 11, 2323–2353. (Cited on p. 7.)

[GSS13] G. Gentili, C. Stoppato, D. C. Struppa, Regular functions of a quaternionic variable, Springer Monographs
in Mathematics, Springer, Heidelberg, 2013. (Cited on p. 1.)

[GS06] G. Gentili, D. C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R.
Math. Acad. Sci. Paris 342 (2006), no. 10, 741–744. (Cited on p. 1, 4.)

[GS07] G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216
(2007), no. 1, 279–301. (Cited on p. 1, 4.)

[GP12] R. Ghiloni, A. Perotti, Slice regular functions of several Clifford variables, AIP Conference Proceedings 1493
(2012), 734. (Cited on p. 1, 2, 3, 4, 6, 8.)

[KH83] S. Kobayashi, C. Horst, Topics in complex differential geometry, Complex differential geometry, 4–66, DMV
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