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Manuscript 

Generalized geometry of Norden manifolds 

Antonella Nannicini 
Università di Firenze, Italy 

ABSTRACT. Let (M, J, g, D) be a Norden manifold with the natural 
canonical connection D and let J be the generalized complex struc- 
ture on M defined by g and J. We prove that J is D-integrable 
and we find conditions on the curvature of D under which the 

ti-eigenbundles of J, E, E, are complex Lie algebroids. More- 

over we proove that E and E"are canonically isomorphic 

and this allow us to define the concept of generalized O- operator 
of (M, J, 9, D). Also we describe some generalized holomorphic sec- 

tions. The class of Kähler-Norden manifolds plays an important role 

in this paper because for these manifolds E and E are conplex 
Lie algebroids. 1 2 3 

1 Introduction 

Geueralized complex structures were introduced by N. Hitchin in (6], and further
investigated by M. Gualtieri in [8, in order to unify symplectic and complex ge-
ometry. In this paper we consider a more general concept of generalized complex

structure introduced in [15), [16) and also studied in [17], [18], [3). Let (M, g) 
be a smooth pseudo-Riemannian manifold, let T (M) be the tangent bundle, let 
T (M) be the cotangent bundle and let E = T(M)®T" (M) be the generalized 
tangent bundle of M. In the previous papers |15, [16), we defined a generalized 
complex structure of M as a complex structure on E and we studied some classes 
of such structures, in particular calibrated complex structures with respect to 
the canonical symplectic structure, (, ), of E. Using a linear connection, V, 
on M we introduced a bracket, |, Jy, on sections of E, the corresponding 
concept of V-integrability for generalized complex structures and we studied

integrability conditions. In |18] we concentrated on the canonical generalized 

complex structure defined by 9, J9 = We proved that in the 

case J is V-integrable the ti-eigenbundles of J9, Ej, Ej, , are complex Lie 
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algebroids and, by using the canonical isomorphism between Ey and (F) 

induced by the natural symplectic structure of T (M) eT° (M), we defined the 
gencrakized 3y-operator on M. We remark that this case is strictly related 
to the field of statistical manifolds introduced in [1]. In this paper we observe 
that Norden manifolds fit naturally in the context of our concept of general- 
ized complex structures and we extend the results of [18) to the case of Norden 
manifolds. Precisely we prove that on a Norden manifold, (M, J, g), with the 

natural canonical connection D, the generalized complex structure defined by 

is D-integrable. Then we descrilbe the ti-eigenbundles of 
9 -J* 

J, E, E, we find conditions under wlhich they are complex Lie algebroids
and we prove that for Kähler-Norden manifolds these conditions are automati-
cally satisfied, that is, for this class of manifolds, E and E are complex Lie 

algebroids. Then we define the generalized O7-operator on M, from the Jacobi 

identity on Eit follows that ()=0 and, as 7 is the exterior derivative of 

the Lie algebroid E0, we get that (C(" (E°)),A,37.l. lp is adifer- 
ential Gerstenhaber algebra, where A denotes the Schouten bracket, [12], [24]. 
The paper is organized as in the following. In section 2 we introduce preliminary 
material: first we describe the main geometrical properties of the generalized 

tangent bundle and of generalized complex structures, then we recall the basic 

definitions in the setting of Norden manifolds, Kähler-Norden manifolds and 
complex Lie algebroids. Original results are concentrated in section 3: the geo- 
metrical description of the generalized complex structure J associated naturally
to a Norden manifold, the definition of the generalized -operator and the 
description of some generalized holomorphic sections. 

2 Preliminaries 

2.1 Generalized geometry 

Let M be a smooth manifold of real dimension n and let E = T (M) DT* (MM) 
be the generalized tangent bundle of M. Smooth sections of E are elements 

X+E E C (E) where X E C*(T (M)) is a vector field and e C°(T* (M)) is a 1- forin. 

E is equipped with a natural symplectic structure defined by: 

(X +6,Y + 7) =-;(¬(Y) -7(X)) (1) 

and a natural indefinite metric defined by: 

<X+6,Y +9> = - E(Y) + 7(X). (2) 

2 



<,> is non degenerate and of signature (n, n). 
A linear connection on M, V, defines, in a canonical way, a brackct on C(E) 

l as follows: 

X +6,Y 4+ nlv = [X, Y] +Vxn-Vy{ (3) 
The following holds: 

Lemma 1 ([15]) For all X,YE C°®(T (M)), for all ,n E C°o (T"(M)) and 
for all f E C°(M) we have: 

1. X +6, Y + 7]v =-Y +7, X +¬lv 
2. [f(X +),Y + 7lv = f{X +6,Y + 7lv - Y (N (X +8), 
3. Jacobi's identity holds for[, ly if and only if V has zero curvature. 

We consider the following concept of generalized complex structure, introduced 
in [15), [16] and further investigated in [17], [18), 3: 

Definition 2 A generalized complex structure on M is an endomorphism J, 
J: E> E such that J = -I. 

A pseudo-Riemannian metric on M, 9, defines, in a natural way, a complex 
structure J9 on E by: 

J(X +6) =-g(¬) +9(X) 4) 
where g: T (M) T" M) is identified to the bemolle musical isomorphisn
defined by 

g(X)(Y) = 9(X, Y), (5) 
in block matrix form, is: 

-( ) (6) 

Definition 3 A generalized compler structure J is called pseudo calibrated i 
is (,)-invariant and if the bilinear syrnmetrie form on T (M) defined by (, J 

) is non degenerate, moreover J is called calibrated if (,J) is positive definite, 

[15 

A direct computation shows that J9 is pseudo calibrated. 

Let V be a lincar connection on M and let [,Jy be the bracket on C(E) 
defined by V, the following holds: 



Lemma 4 ([16) Let J E E be a generalized compler structure on M and 

let 
N():C(E) x C°(E)+C°(B) (7) 

defined by: 

we.)-o, -a, r, -Jp.Jrle-lo.l (8) 

for all o, TEC°®(E); NV(J) is a skew symmetric tensor. 

Definition 5 N(J) is called the Nijenhuis tensor of J with respect to V. 

Definition 6 Let J E E be a generalized compler structure on M, J is 

called V-integrable if N"(J) =F0. 

Proposition 7 ([16) Let V be a torsion free connection on M and let 

(9) 

be the generalized compler structure on M defined by a pseudo-Riemannian 
metric g, J9 is V-integrable if and only if g is a Codazzi tensor, that is for all 

X,Y eC* (T(M)) we have: 

(Vxg)Y = (Vvg) X. (10) 

Definition 8 ([1]), (4). ([19)) Let (M, g, V) be a pseudo-Riemannian manifold 
with a torsion free linear connection, if Vg is symanetric then (M, g, V) is called 

a statistical manifold. 

Corollary 9 Let V be a torsion free connection on M and let J9 be the gener 
alized compler structure on M defined by a pseudo-Riemannian metric g, J9 is 
V-integrable if and only if (M, 9, V) is a stutistical manifold. 

2.2 Norden manifolds 

Norden manifolds were introduced by A. P. Norden in 20] and then studied also 
under the names of almost complex mauifolds with B-metric and anti-Kählerian
manifolds, [2], 19]. They have applications in mathematics and in theoretical 
physics. 



Definition 10 Let (M, J) be an almost compler manifold of real dimension 2n 

and let g be a pseudo-Riemannian metric on M, ifJ is a g-symmetric operator 

then g is called Norden metric and (M, J, g) is called Norden manifold. 

Remark 11 We can easily prove that a Norden metric g on a 2n-dimen.siona 

almost compler manifold is of (n, n) -signature, that is g is a neutral metric. 

Let (M, J, g) be a complex Norden manifold, that is a Norden manifold with J 

integrable, then there exists a natural canonical connection on M, precisely the 

following holds: 

Theorem 12 ([9) On a compler manifold with Norden metric (M, J, g) there 

erists a unique lin ear connection D with torsion T such that: 

(11) (Dx9) (Y,Z) =0 

(12) T(JX,Y) = -T(X, JY)

(13) o(T(X, Y), Z) + 9(T(Y, 2), X) + 9(T(2, X), Y) =0 

for all vector fields X, Y, Z on M. D is called the natural canonical connection 

of the Norden manifold or B-connection and it is defined by: 

(14) DxY = VxY-5J(VxJ)Y 

where V is the Levi-Civita connection of g. 

We remark that (14) is equivalent to: 

DxY (xY - JVxJY) (15) 

then, by direct computation we get the following Proposition. 

Proposition 13 IfD is the natural canonical connection of the compler Norden 

manifold (M, J, g) then 
DJ = 0. (16) 

Definition 14 Let (M, J, 9) be a Norden manifold and let

IX,Y) = g(JX, Y). (17) 

for all X and Y vector fields on M. g is a pseudo-Riemannian metric on M with 

(n, n) -signature and (M,J, g) is a Norden manifold. g is called the associated 

metric to g. g is also called the twin or the dual metric of g. 



2.3 Kähler-Norden manifolds 

Käbler-Norden manifolds are strictly related with complex analysis and they 

will be the main object of our theory. We recall here the definition and the 

main properties of Kähler-Norden manifolds, for details see [2,|11), [23. 

Definition 15 Let (M, J, g) be a Norden manifold and let V be the Levi-Civita 

connection of g, if VJ = 0 then (M, J, g) is called Kähler-Norden manifold. 

We remark that for a Kähler-Norden manifold (M, J,g) the structure J is inte- 

grable and the natural canonical connection is the Levi-Civita connection. 

Moreover the following holds: 

Theorem 16 ([22) Let (M, J, g) be a Kähler-Norden manifold, the Levi-Civita 

cOTnection of g coincides with the Levi-Civita connection of the associated metric 

9, in particular the Riemann curvature tensors of g and g coincide. 

A large class of Kähler-Norden manifolds is given by complex parallelisable 

manifolds, (2]). 
An interesting property of Kähler-Norden manifolds is the following: 

Proposition 17 (2) Let (M, J, g) be a Kähler-Norden manifold then, eztend- 

ing g by C-linearity to the complezified tangent bundle T(M) ® C, the compo- 

nents of the compler eztended metric, 9, are holomorphic functions. 

We recall that on a complex manifold (M, J) an element X E C°°(TM) is an 

infinitesimal automorphism of the complex structure J on M if and only if X 

satisfies the following condition: 

X, JY = J[X,Y] (18) 

for all Y e C°(TM). 

On Kähler-Norden manifolds, from the condition VJ = 0, (18) can be written 

as 
VYX = Vy JX. (19) 

The Riemannian curvature tensor of a Kähler-Norden manifold has interesting 

properties, precisely we have the following: 

Theorem 18 ([11), (22|) In a Kühler-Norden munifold the Riemannian cur 
vature tensor, R, of the Norden metric g is pure in all arguments, that is, for 

all X, Y, Z, W E C°(T(M): 

oR"(JX, Y)Z, W) = 9{R(X, JY)Z, W 
= g(R"(X, Y)JZ, W) (20) 

= 9(R"(X, Y)2, JW). 
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2.4 Complex Lie algebroids 

Lie algebroids were introduced by J. Pradines in [21; we recall here the definition 

and the main properties. 

Definition 19 A complex Lie algebroid is a compler vector bundle 

Smooth real manifold M such that: a Lie bracket [, ] is defined on C°(L), 

a smooth bundle map p : L T(M), called anchor, is defined and, for all 

a,TEC(L), for all f e C* (M) the following conditions hold: 

over a 

1. p(l,7]) = [plo),p(r) 

2. fo, 7]= f(lo,7]) - (p(7) (f))o. 

Let L and its dual vector bundle L* be Lie algebroids; on sections of AL, re- 

spectively AL', the Schouten bracket is defined by: 

(21) L:C (PL) x C** (N"L) ^C (NPt-L) 

XA.. A Xp, Y A... A Yd 
(22) 

-1)* [X, Ylz A X1 A.'. AXp AYiA..AY 
j=1 

and, for f E C (M), X eC (L) 

X, S =-f. X]L = p(X)(f); (23) 

respectively, by: 

L:C (NPL°) x Co (nL") C°° (NP+9-1L") (24) 

(25) 

and, for f e C° (M), X ¬ C*o (L*) 

X,flL=-f, XL. = PlX)S). (26) 
Moreover the ezterior derivatives d and d. associated with the Lie algcbroid 

structure of L and ' are defined respectively by: 

d: C (PL")C°* (NPtL") (27) 

(da) (do,.., Op)= 

-1'oo)a p+2-1)*a l,lLo,.,Op 
(28) 



for a e C (N"L"), o0,.., Op E C* (L), 

and: 
(29) d.:C (NPL) C* (NPt'L) 

(d.a) (o01.., Op) 

2-1p (a,) a (a,...",)+-1a (lo,o,l.0o,. 
(30) 

for a e Co ("L), d0,,Op E C (L") 

3 Generalized geometry of Norden manifolds 

3.1 Generalized complex structures 

Let (M, J, 9) be a Norden manifold, the almost complex structure J and the 

pseudo Riemannian metric g define, in a natural way, a complex structure J on 

E by: 
(31) JX + )= J(X) + 9(X)-J¬) 

where J T (M) > T* (M) is the dual operator of J defined by: 

JENX) ={(J(X). (32) 

In block matrix form, is: 

i-() (33) 

Remark 20 From the g-syunetry of J it folous imamediately that J is a 

pseudo calibrated generalized compler structure on M, see also [16). 

A direct computation gives the following: 

Proposition 21 Let (M, J, g) be a Norden manifold and let V be a linear con- 

nection on M with torsion T, letJ be the generalized compler structure defned 

by and g, we have: 

N(X, Y) = (VJx J)Y - J(Vx J)Y- (Vy J)X + J(VyJ)X+ 

-T(JX, JY)+ JT(X, JY) + JT(JX, Y) +T(X, Y)+ 
(34) +9((WyJ)X - (VxJ)Y) + 9(T(X, JY) +T(JX, Y)+ 

+( Jx9) Y - (VJyg) X + (Vx9) JY - (Vrg) JX 

N()X.6) = -J(VxJ")E - (VJxJ")E (35) 
N(J)6,7) = 0 (36) 

for ull X, Ye C~(T(M)) and for all 6,n e Co(T°(M). 



Corollary 22 J is - integrable if and only if the following conditions hold: 

(37) ou (VixJ) = J(VxJ) 
(38) T(JX, JY) - JT(X, JY) - JT(JX, Y) - T(X, Y) = 0 

o((VJ)X- (VxJ)Y) +9(T(X, JY) +T(JX, Y)+ 
+(Jx9)Y - (VY9) X + (Vxg) JY - (Vy9) JX = O 

(39) 

for all X, YEC°(T (M). 

Corollary 23 If J is V-integrable then J is integrable. 

Proof. Let N(J) be the Nijenhuis tensor of the almost complex structure 

J, we have: 

N(J)(X, Y) = (VJxJ)Y - J(VxJ)Y - (VJY J)X +J(Vy J)X+ 
(40) 

-T(JX, JY) + JT(X, JY) + JT(JX, Y) + T(X, Y) 

for all X, Y e C°° (T (M), then the statement follows from Corollary 22. 

As we are interested in integrable generalized complex structures in the following 

we will assume that (M,J, g) is a complex Norden manifold. In particular we 

get: 

Proposition 24 Let (M, J, g) be a compler Norden manifold and let D be the 

natural canonical connection on M, let J be the gen.eralized comples structure 

defined by J and 9, then J is D-integrable. 

Proof. It follows from the properties of D described in Theorem 12 and in 

Proposition 13. 
Analogous statement can be given for the associated metric, precisely the fol- 

lowing holds: 

Proposition 25 Let (M,.J, g) be a compler Norden manifold and let � be the 
natural canonical conneclion of the associated metric �, let J be the generalized 
complez structure defined by J and g, then J is D-integrable. 

3.2 Generalized 0-operator 

Let (M, J, g) be a complex Norden manifold and let J be the generalized complex 

structure on M defined by J and g, let 

E = (T (M) »T* (M)) oc (41) 
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be the complexified generalized tangent bundle. The splitting in ti eigenspaces 

of J is denoted by: (42) 

with (43) 

A direct computation gives: 

(44) E= {Z- iJZ + g(W + iJW - iZ) | 2, W e T(M)®C}, 

equivalently E is generated by elements of the following type: 

(45) X - iJX -ig(X) with X ¬ C°(TM), 

(46) 9(Y +iJY) with Y e C°(TM). 

Analogously we have: 

(47) E={Z+ iJZ + g(W - iJW +iZ) | Z, W e T(M) ®C} 

and E is generated by elements of the following type: 

X+iJX + ig(X) with X E C° (TM), (48) 

9(Y iJY) with Y ¬ co (TM). (49) 

Moreover, for any linear connection V, the following holds: 

Lemma 26 E and E* are [, lv -involutive if and only if NV(J) = 0. 

Proof. Let P+ : E E and P-: E E" be the projection 

operators: 

P=0Fij. (50) 

for all o, TEC°(E) we have: 

PrPa (), Pe(), = P;|}(FiJo), i (77iJr) 
(51) 

-{(N() (a, 7) + iJN" () (o, 7) = -}P(N()(,7) 

From yow on we suppose that (M, J, , D) is a complex Norden manifold with 

the natural canouical connection. A direct computation of the bracket associ 

ated to D on E and E*gives the following 

10 



= X - iJX - ig(X) 

(66) T=Y -iJY - ig(Y) 
Z - iJ - ig(2). 

Let us compute 

(67) Jac lo(X +iJX), Y - iJY - ig(Y)]p,Z - iJZ - ig(Z)p 

We have 

lo(X +iJX), Y -iJY - ig(Y)]p ,Z - iJZ - ig(Z)]p = g(K +iJK) (68) 

IY iJY- ig(Y), Z - iJZ - ig(Z)lp,9(X + iJX))p = 9(L+ iJL) (69) 

9[[Z-iJZ - ig(Z), g(X + iJX)],Y - iJY - ig(Y)]p = 9(H + iJH) (70) 

where 

K = DzDyX + DzJDIvX + JD,zDyX + JD)z JDYX (71) 

L = Dy.aX+ JDJv.aX - DuyJzX-JDUY.1zX (72) 

H= -DyDzX - JDyDizX - JDiyDz X + Dy D1zX. (73) 
Then we get 

Jac lo, T)p =O (74) 
if and only if 

K+L+ H = 0 (75) 
or, by direct computation, if and only if: 

RD(JY, JZ)-JRD(JY, Z)-JR°(Y, JZ)-R°(Y, Z)-JDINUNY.2) =O (76) 

where N(J) is the Nijenhuis tensor of J. By using the integrability of J, we have 
the first condition.
Let us compute 

Jac [X iJX - ig(X), Y- iJY - ig(Y)D.Z- iJZ -ig(Z)]p - (77) 
We have: 

X iJX-ig(X),Y - iJY - ig(Y))p.Z - iJZ - ig(Z)]p = 

(78) 
= A - iJA - iy(A) +g(B + iJB) 

12 



where (79) 
A = [(X, Y]-[JX, JY],2] - |J [X, Y1-J[JX, JY), JZ] 

and
B DIz X, Y] + DJzTD(JX, JY) - Djx,r|Z+ (80) 

+DyuxyZ- 
DzDiyX + DzDixY 

where T denotes the torsion tensor of the connection D. 

Fom the Jacobi identity of [, ] we have that Jac(A) = 0, then it is enough to 

compute Jac(B). 
From the properties of the torsion tensor T we get: 

Jac(B) = (RD(JX, Y) + RD(X, JY) Z+ 
(81) 

+(RD(JZ, Xx) + RP(Z, Jx) Y + (R®(Y, JZ) + RD(JY, Z)) X. 

Analogpus computations for Egives exactly the saime conditions, then the 

Proof is complete. 

Remark 29 We observe that (61) is equivalent to: 

(RD02=o (82) 

where (R denotes the (0, 2)-part of the curvalure with respect to the 

compler structure J on M. Moreover, if the torsion is zero, from the frst 

Bianchi identity with zero torsion, we get that (62) is automnatically satisfied; 

instead, from the first Bianchi identity with torsion: 

RD(X, Y)Z + RD(Y, 2)X + R°(Z, X)Y+ 

-TD(X, Y, Z) - T®(Y, |2, x) - TD(Z, [x, Y)+ (83) 
-DxT(Y, 2)- DyT(Z, X) - D;T(X, Y) = O, 

we obtain that (62) is cquivalent to the follouing: 

(RD(JX, JY) - R°(X, Y) Z + (R°(JZ, JX) - RP(Z, x)) Y+ 

+ (RP(JY, J2) - R°(Y, Z)) X = O. (84) 

From Proposition 26 we get in particular the following: 

Proposition 30 If RD =0 then E and E are complea Lie algebroids. 

In this sense the following result provides a class of exanmples, (|110|), ((13). 

Theorem 31 ([10|), ([19)) Each hyper-Kachler NH-manifold is a flat pseudo- 
Riemannian manifold of signature (2n, 2n). 

3 



More generally we have the following: 

Theorem 32 Let (M, J, g) be a Kähler-Norden manifold then E and E;" 

are compler Lie algebroids. 

Proof. In this case the natural canonical connection D is the Levi-Civita 

connection V and, as its torsion is zero, (62) is automatically satisfied. Moreover 

from (20) we get that (61) is equivalent to 

(85) R(Y, Z) + R"(JY, Z)J =0 

and, by using again the fact that R is a pure tensor, we have that, for all 

Y, Z, W E C(T(M), (85) becomes: 

(86) R (Y,Z)W+R"(Y, Z)JJW = O 

which is automatically satisfied. Thus the proof is complete.

Remark 33 Analogous statement can be given for E and E. In the fol- 

louwing we will consider only J. 

The following holds: 

Proposition 34 The natural symplectic structure on E defines a canonical iso- 

morphism between E and the dual bundle of E", (F 

Proof. We define 
(87) : ) 

by: 

(p(2+iJZ + g(W - iJW + iZ)) (X - iJX +9(Y + iJY - iX)) = 

= (Z+ iJZ + 9(W - iJW + iZ), X - iJX + g(Y + iJY -ix) 
(88) 

for all X, Y, 2, W e T(M) ®C. 

We get: 

(p(Z+iJZ + y(W - iJW + iZ) (X - iJX +9(Y + iJY - iX)) = 

(89) 
= 9(Y, Z) - 9(W, X) + i (g(W, JX) +9(Y, JZ) -9(X, Z)) 

and we extend by lincarity. We have immediately that is injective and fur-

thermore p is an isomorphism. 

The canonical isomorplhis1n p between E and the dual bundle (E allows 

us to define the d - operator associated to the complex structure J as in the 

following: 

14 



let f e Coo (M) and let df e Co (T* (M)) C (T (M) T* (M), we pose 

(90) f-2 (dr = df +iJdf 

Or 

3-df-iJ (4) (91) 
= df- i (df) J; 

moreover we define: 

(92) 37C(-(()) 
via the natural isomorphismn 

(93) 
as 

(94) 37: (())-o (* (Ez)) 
(95) (87a (o,7) = p(o) a (7) - P(T) a (o)-a ((o, 7]p) 

for a E C (()). ore o (E") 
In genera: 

(96) 8:( (0))-(e(9)) 
is defined by: 

oa) (o, Gp) = 

- -1elo,) a (oo, , +-1)a (lolp.o,., 
(97) 

c ( (). coEC () 
Definition 35 07 is called generalized 8-operator of (M, J, g, D) or gener- 
alized 87 - operator. 

We get the following: 

Proposition 36 If (61) und (62) hold then (0,) =0 and (8,)* = 0. 

15 



Proof. It follows from the fact that Jacobi identity holds on E and 

(F) 
Tom now on we suppose that (61) and (62) hold. We have immediately that 

O Is the exterior derivative, dL, of the Lie algebroid L = E;". Moreover the 

exterior derivative dz. of L' = (Eis given by the operator ô dcfined by: 

(98) 8,:C((B")) c (* (E") 
(85o) (oo;) = 

- 1'p (a;) a (a,,o+-1+io (lo,as.og ) 
(99) 

i<j 

for a E C((). aj, e c ((°). 

3.3 Generalized holomorphic sections 

Definition 37 Let a eC" (w (F°)), ,ais called generalized holomorphic 

section if 

ya=0. (100) 

We remark that for all f E C° (M) we have 87f = 0 if and only if df = 0, so the 

generalized holomorphic condition for functions gives only constant functions on 

connected components of M. 

Proposition 38 Let W e C°o(T(M)) and let o = g(W - iJW) E E then 

87o=0 if and only if for all X, Ye C°°(T(M)) holds: 

9(Dx W- DJxJW,Y) = 9(Dy W- Dy JW, X). (101) 

Proof. Let X, Y E C (T(M), from (95), direct computations give: 

o) (g(X + iJX), 9(Y + iJY)) = 0 (102) 

o) (o(X + iJX), Y - iJY - ig(Y) = 0 (103) 
po) (X - iJX - ig(X), Y - iJY - ig(Y)) = 

o(-Dx W+ Dix JW + i(Dix W + iJDx W, Y)+ 

+9(Dy W Dyy JW - i(Dy W+ JDyW), X). 

(104) 
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In particular we have (o) = 0 if and only if: 

9-DxW + DIx JW + i(DJx W + iJDx W, Y)+ 
(105) 

+9(DyW - Diy JW -i(DJy W + JDy W), X) = 0 

and then, by separating real and imaginary parts, we get the statement. 

Equivalently we can state Proposition 36 as follows: 

Proposition 39 Let W ¬ C°(T(M)) and let a = g(W - iJW) E E;* then

Ipa=0 if and only if for all X, Y E Co (T(M)) kolds 

(d (o(W))) (X, Y) = (d(9(W))) (JX, JY). (106) 

Proof. We have: 

(d (g(W)) (x, Y) = Xg(W, Y) - Yg(W, X) -9(W,[X, Y)) 
(107) 

= g(DxW, Y) - g(Dy W, X) - 9(W, T® (X, Y). 

On the other hand: 

(atg(w)) (Jx, JY) = JXg(W, JY) - JY9W, JX) - g(W,JX, JY]) 

= o(Dix W, JY) - g(DJy W, JX) - g(W, TD (JX, JY)) 

= g(Dix JW,Y) - g(Dpy Jw, x) - g(W, TD(JX, JY). 

(108) 
From the property (12) of the torsion T of the natural canonical connection 

we get the conclusion. 

Moreover 
Proposition 40 Let Ze Co(T(M)) and let d = Z+iJZ+ig(Z) E E then 

Ong=0 if and only if for all X, Y e Co(T(M) the following conditions hold: 

Dy JZ = -DyZ (109) 
9(Dx2,Y) = «(DyZ, X) (110) 

Proof. Let X,Y E C°(T(M), direct computations give: 

o) (X + iJX), g(Y + iJY) = 0 (111) 

(Bo) (o(X +iJX), Y - iJY - ig(Y)) = 

-g(Dy Z+ Dy JZ, X) + iy(Diy Z - Dy JZ, X) 

o) (X iJX - ig(X), Y - iJY - ig(Y)) = 

(112) 

=-s(iDxZ + Dux 2, Y) + 9(iDy Z + Dv 2, X) 
= g(DJyZ, X) -y{DixZ, Y) + i (g(DyZ, X) - u{DxZ, Y) . 

(113) 
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and. ty separating rral and imaginary parts, we get the following conditions 
Dy JZ+ Dy Z - o (114) 

gDy Z. X) - o(Dix Z. Y) = O: (115) 

From (114) we get 
DIy Z = JDy Z (116) 

and. substituting in (115), we have 

glDy Z, JX) - o(DJx Z. Y) = O (117) 

for all X,Y E C* (T(M), then we get the statement. 

Corollary 41 Given ZeC~ (T(M). infinitesimal automorphism of J, Z de- 
funes the follouing gernerulhzed holomorphic sections of E 

a = g(Z - iJZ) (118) 

T= Z + iJZ + ig(Z) (119) 

and only f for all X,Y e C(T(AM)) the following condition hold: 

9Dx 2.Y) = 9(Dy 2, X). (120) 

In particular for Kähler-Norden manifolds, as D is the Levi-Civita connection 
and tin torsion free, condition (120) is equivalent to the d-closure of g(Z), 
and, by using a classical result in symplectic geometry, [14], we have: 

Proposition 42 Let M be a Kähler-Norden manifold and let Z e C~(T(M) 
Ie an mfinilesimal automorphism of J then 9{Z - iJZ) und Z + iJZ + ig(Z) 
arr generaluzed holomorphuc sectons of Ej' f und only tf y(Z) is u Lagrangian 
submanufold of T* (M) uuth respect to the standard symplectic structure. 
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