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Generalized geometry of Norden manifolds
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ABSTRACT. Let (M, J, g, D) be a Norden manifold with the natural
canonical connection D and let J be the generalized complex struc-
ture on M defined by g and J. We prove that J is D—integrable
and we find conditions on the curvature of D under which the
+i—eigenbundles of J, E'}‘o, ESA‘I , are complex Lie algebroids. More-

over we proove that E}‘O and (E}'o) are canonically isomorphic

and this allow us to define the concept of generalized @ 7 — operator
of (M, J,g,D). Also we describe some generalized holomorphic sec-
tions. The class of Kahler-Norden manifolds glays an important role
in this paper because for these manifolds EL° and Eg:l are complex

7
Lie algebroids. ! 2 8

1 Introduction

Geueralized complex structures were introduced by N. Hitchin in (6], and further
investigated by M. Gualtieri in [8], in order to unify symplectic and complex ge-
ometry. In this paper we consider a more general concept of generalized complex
structure introduced in [15], [16] and also studied in [17], [18], [3]. Let (M, g)
be a smooth pseudo-Riemannian manifold, let T' (M) be the tangent bundle, let
T* (M) be the cotangent bundle and let E = T (M)@®T* (M) be the generalized
tangent bundle of M. In the previous papers [15], [16], we defined a generalized
complex structure of M as a complex structure on E and we studied some classes
of such structures, in particular calibrated complex structures with respect to
the canonical symplectic structure, (, ), of E. Using a linear connection, V,
on M we introduced a bracket, [, ]g, on sections of E, the corresponding
concept of V—integrability for generalized complex structures and we studied

integrability conditions. In [18] we concentrated on the canonical generalized
v > 3 ) O _y_l
complex structure defined by g, J9 = ( p 0 ) . We proved that in the

case JY is V—integrable the +i—eigenbundles of J9, E'_l,’,,o, Eg;l, are complex Lie
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algebroids and, by using the canonical isomorphism between Eggl and (E 7o

induced by the natural symplectic structure of T' (M)EB T (M), we defined the
generalized gjg—opemtor on M. We remark that this case is strictly related
to the field of statistical manifolds introduced in [1]. In this paper we observe
that Norden manifolds fit naturally in the context of our concept of general-
ized complex structures and we extend the results of [18] to the case of Norden
manifo}ds. Precisely we prove that on a Norden manifold, (M, J,g), with the
natural canonical connection D, the generalized complex structure defined by
J= ( gJ _3* ) is D—integrable. Then we describe the +i—eigenbundles of
J, , E}'O, Ecl'l, we find conditions under which they are complex Lie algebroids
and we prove that for Kiahler-Norden manifolds these conditions are automati-
cally satisfied, that is, for this class of manifolds, E}'O and Egzl are complex Lie
algebroids. Then we define the generalized 87— operator on M, from the Jacobi
identity on E}‘O it follows that (5 5)2 = 0 and, as 5; is the exterior derivative of
the Lie algebroid E}'D, we get that (C’°° (/\' (E}O)) ,A,Ej, [, ]D) is a differ-
ential Gerstenhaber algebra, where A denotes the Schouten bracket, [12], [24].
The paper is organized as in the following. In section 2 we introduce preliminary
material: first we describe the main geometrical properties of the generalized
tangent bundle and of generalized complex structures, then we recall the basic
definitions in the setting of Norden manifolds, Kahler-Norden manifolds and
complex Lie algebroids. Original results are concentrated in section 3: the geo-
metrical description of the generalized complex structure J associated naturally

to a Norden manifold, the definition of the generalized 5;— operator and the
description of some generalized holomorphic sections.

2 Preliminaries

3 .
2.1 'Generalized geometry
Let M be a smooth manifold of real dimension n and let E = T (M) @ T* (M)
be the generalized tangent bundle of M. Smooth sections of E are elements

X +€& € C™(E) where X € C°(T (M)) is a vector field and ¢ € C>(T* (M)

is a 1— form.

E is equipped with a natural symplectic structure defined by:
. 1,
(X+&6Y +n) = —2((Y) - n(X)) (1)
and a natural indefinite metric defined by:

SXHEY 40> = —L(EW) + (X)), 2



<, > is non degenerate and of signature (n, n).
A linear connection on M, V, defines, in a canonical way, a bracket on C*®(E),
[, ]v, as follows:

(X +&Y +nly = [X,Y]+ Vxn - Vye. (3)
The following holds:

Lemma 1 ((15]) For all X,Y € C™(T (M)), for all £&,n € C®(T*(M)) and
for all f € C=(M) we have:

L [X+51Y+’7]v = —[Y+"77X+€]V)
2. X+, Y +nlg = FIX+£Y +1lg - Y (/) (X +6),
3. Jacobi’s identity holds for [, |y if and only if V has zero curvature.

We cogsider the following concept of generalized complex structure, introduced
in [15], [16] and further investigated in [17], [18], [3] :

IA)eﬁnition 2 A generalized complex structure on M is an endomorphism J, ,
J: E = E such that J? = —1I.

A pseudo-Riemannian metric on M, g, defines, in a natural way, a complex
structure J9 on E by:

JUX +8) = —g7'(€) + 9(X) (4)

where g : T (M) — T (M) is identified to the bemolle musical isomorphism
defined by:
9(X)(Y) = 9(X,Y), (5)

(2 7)

Definition 3 A generalized compler structure J is called pseudo calibrated if
is (, ) —invariant and if the bilinear symmetric form on T (M) defined by ( ,J
) s non degenerate, moreover J is called calibrated if (,J ) is positive definite,

(13).

in block matrix form, is:

]

)

A direct computation shows that J9 is pseudo calibrated.

Let V be a lincar connection on M and let [, ] be the bracket on C*<(E)
defined by V, the following holds:
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Lemma 4 ([16]) Let J: E = E be a generalized complex structure on M and
let
NY(J): C®(E) x C*(E) = C*(E) (7)

defined by:
Nv(j)(a,r) = [:fa,:fv']v — j[ja,’r]v — j[a, J7ly — [o,7]¢ (8)

for all 0,7 € C®(E); Nv(f) is a skew symmelric tensor.

~

Definition 5 NV (J) is called the Nijenhuis tensor of J with respect to V.

Definition 6 Let J : E — E be a generalized complez structure on M, J is
called V—integrable if NV (J) = 0.

Proposition 7 ([16]) Let V be a torsion free connection on M and let

(%)

be the generalized complez structure on M defined by a pseudo-Riemannian
metric 9 J9 is V—integrable if and only if g is a Codazzi tensor, that is for all
X,Y € C=(T(M)) we have:

(Vxg)Y = (Vyg) X. (10)

Definition 8 ([1]), ([4]), ((19]) Let (M, g, V) be a pseudo-Riemannian manifold
with a torsion free linear connection, if Vg is symmetric then (M, g, V) is called
a statistical manifold.

Corollary 9 Let V be a torsion free connection on M and let J9 be the gener-
alized complezx structure on M defined by a pseudo-Riemannian metric g, J9 is
V —integrable if and only if (M,g,V) is a statistical manifold.

2.2 Norden manifolds

Norden manifolds were introduced by A. P. Norden in [20] and then studied also
under the names of almost complex manifolds with B-metric and anti-Kahlerian
manifolds, [2], [9]. They have applications in mathematics and in theoretical
physics.



Definition 10 Let (M, J) be an almost complex manifold of real dimension 2n
and let g be a pseudo-Riemannian metric on M, if J is a g-symmelric operator
then g is called Norden metric and (M, J, g) is called Norden manifold.

metric g On a on— dimensional

Remark 11 We can casily prove that a Norden
that is g is a neutral melric.

almost” complex manifold is of (n,n) —signature,

n manifold, that is a Norden manifold with J

Let (M, J, g) be a complex Norde
n M, precisely the

integrable, then there exists a natural canonical connection o
following holds:

Theorem 12 ([9]) On a complex manifold with Norden metric (M, J,g) there

erists a unique linear connection D with torsion T such that:
(Dxg)(Y,2) =0 (11)
T(JX,Y) = ~T(X,JY) (12)
o(T(X,Y), Z) +g(T(Y, Z),X) +9(T(2,X),Y) =0 (13)

for all vector fields X, Y, 7 on M. D is called the natural canonical connection
of the Norden manifold or B—connection and it is defined by:

1
DxY=VxY——2-J(VxJ)Y (14)
where V is the Levi-Civita connection of g.

We remark that (14) is equivalent to:

1
‘ Dsz—z-(VxY—JVxJY) (15)
then, by direct computation we get the following Proposition.

Proposition 13 If D is the natural canonical connection of the complex Norden

manifold (M, J, g) then
DJ = 0. (16)

Definition 14 Let (M, J,g) be a Norden mantfold and let
g(X,Y)=g9(JX,Y). (17)
for all X and Y vector fields on M. 7 is a pseudo-Riemannian metric on M with

(n,n) —signature and (M, J,g) is a Norden manifold. § is called the associated
metric to g. § is also called the twin or the dual metric of g.



2.3 Kahler-Norden manifolds

Kahler-Norden manifolds are strictly related with complex analysis and they
will be the main object of our theory. We recall here the definition and the
main properties of Kéhler-Norden manifolds, for details see [2],[11], [23]-

Definition 15 Let (M, J,g) be a Norden manifold and let V be the Levi-Civita
connection of g, if VJ =0 then (M, J, g) is called Kahler-Norden manifold.

We remark that for a Kihler-Norden manifold (M, J, g) the structure J is inte-
grable and the natural canonical connection is the Levi-Civita connection.

Moreo;rer the following holds:
Theorem 16 ([22]) Let (M, J,g) be a Kihler-Norden manifold, the Levi-Civita

connection of g coincides with the Levi-Civita connection of the associated metric
39, in particular the Riemann curvature tensors of g and g coincide.

A large class of Kahler-Norden manifolds is given by complex parallelisable
manifolds, ([2]).
An interesting property of Kéahler-Norden manifolds is the following:

Proposition 17 ([2)) Let (M, J, g) be a Kihler-Norden manifold then, ertend-

ing g by C—linearity to the complezified tangent bundle T(M) ® C, the compo-
nents of the complez extended metric, g, are holomorphic functions.

We recall that on a complex manifold (M, J) an element X € C*°(T'M) is an
infinitesimal automorphism of the complex structure J on M if and only if X
satisfies the following condition:

[X,JY]=J[X,Y] (18)
for all Y € C=(TM).

On Kihler-Norden manifolds, from the condition VJ = 0, (18) can be written
as:

VJyX=VyJX. (19)
The Riemannian curvature tensor of a Kéhler-Norden manifold has interesting
proper&ies, precisely we have the following:

Theorem 18 ([11]), ([22]) In a Kahler-Norden manifold the Riemannian cur-

vature tensor, RV, of the Norden metric g is pure in all arguments, that is, for
dl X,Y,Z,W € C=(T(M)):

g(RY(JX,Y)Z,W) = g(RY(X,JY)Z,W)
=g(RY(X,Y)JZ,W)

(20)
=g(RY(X,Y)Z,JW).



2.4 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [21]; we recall here the definition
and the main properties. ‘

Definition 19 A complex Lie algebroid s a complex vector bundle L over a
smooth real manifold M such that: a Lie bracket [, ] is defined on Cc>=(L),
a smooth bundle map p : L — T(M), called anchor, is defined and, for all
o, 7 € C®(L), for all f € C®(M) the following conditions hold:

1. p([o,7]) = [p(0),p(T)]
2. [fo,7] = f(lo,7]) = (p(7) (f)) o

Let L and its dual vector bundle L* be Lie algebroids; on sections of AL, re-
spectively AL*, the Schouten bracket is defined by:

[, ] : C*® (APL) x C* (A1L) — C* (AP+171L) (21)
XiAAXp I A LAY =
14 q (22)
ZZ 1)+ (X, Vi, A Xi A A X, AYI AT A Y,
and, for f € C*™ ( 1), X € C= (L)
(X, fl, = = If, X1, = p(X)(f); (23)
respectively, by:
[, 1. : C® (APL*) x C= (AIL*) — C= (APT171L7) (24)
[XTAAXLYT N AYS] =
P 49 - - (25)
=3 N (-1 (XY L AXT AL AXGAYT AT LAY
i=1 j=1
and, for f € C*® (M), X € C*(L*)
(X, flp. = = [fs X]p- = p(X)(f). (26)

Moreover the ezterior derivatives d and d. associated with the Lie algebroid
structure of L and L* are defined respectively by:

d:C™ (APL*) — C™® (AP*1L*) (27)
(da) (00, ...,Up) =

= Z‘fzo(—l)ip(ai) a (ao, ..7,.,0,,) + g(—l)”ja ([Uiyo'j]L G0, --?--;..,ap)

(28)




for a € C™ (APL*), 09,...,0p € C* (L),
and:
i d, : C= (APL) — C™ (A*1L) (29)

(d.(\‘) (0’0, ...,Up) =

= Z:;O(—l)"p(a,)a (Un, ..;..,ap) + Z(—l)”la ([U;,UJ]L. , 00, ..’..J..,cr,,)
i<
’ (30)
for a € C® (APL), 09, ...,0p € C (L*).

3 Generalized geometry of Norden manifolds

3.1 Generalized complex structures

Let (M, J,g) be a Norden manifold, the almost complex structure J andAthe
pseudo Riemannian metric g define, in a natural way, a complex structure J on
E by:

J(X +€) = J(X) +9(X) - J*(€) (31)
where J* : T* (M) = T* (M) is the dual operator of J defined by:
J*(€)(X) = £(J (X)) (32)

In block matrix form, is:
= J O
J= ( g —J ) ; (33)

Remagk 20 From the g—symmetry of J it follows imnediately that Jis a
pseudo calibrated generalized complez structure on M, see also [16].

A direct computation gives the following:

Proposition 21 Let (M, J,g) be a Norden manifold and let V be a linear con-
nection on M with torsion T, let J be the generalized complex structure defined
by J and g, we have:

NY(I)(X,Y) = (VyxJ)Y = J(VxJ)Y — (Voyy )X + J(VyJ) X +
~TJX,JY)+JT(X,JY)+JT(JX,Y)+T(X,Y)+

+9((Vy )X — (VxJ)Y) +9(T(X,JY)+ T(JX,Y))+ (34

+(Vixg)Y — (Voyg) X + (Vxg)JY = (Vyg)JX
NY(J)(X.€) = —J*(VxJ*)E - (VuxJ*)E (35)
NY(J)(&mn) =0 (36)

Jor all XY € C>=(T'(M)) and for all §,7 € C(T"(M)).



Corollary 22 J is V—integrable if and only if the following conditions hold:
= (VuxJ) = J(VxJ) (37)
T(JX,JY) - JT(X,JY) - JT(JX,Y)-T(X,Y) =0 (38)
9(Vy D)X — (VxJ)Y) 4+ g(T(X,JY) + T(JX,Y))+
+(Vuxg)Y — (Voyg) X + (Vxg) JY — (Vyg) JX =0
for all X|Y € C®(T (M)).
'
Corollary 23 If J is V—integrable then J 1is integrable.

(39)

Proof. Let N(J) be the Nijenhuis tensor of the almost complex structure
J, we have:

NWI)(X,Y) = (Vux )Y = J(VxI)Y = (Voy /)X + J(Vy J) X+

40
—T(JX,JY)+ JT(X,JY) + JT(JX,Y) + T(X,Y) (40)

for all X,Y € C>(T (M)), then the statement follows from Corollary 22. m

As we are interested in integrable generalized complex structures in the following

we will assume that (M, J,g) is a complex Norden manifold. In particular we
get:

Proposition 24 Let (M, J,g) be a complez Norden manifold and let D be the

natural canonical connection on M, let J be the generalized complex structure
defined by J and g, then J is D—integrable.

Proof. It follows from the properties of D described in Theorem 12 and in
Proposition 13. ®

Analogous statement can be given for the associated metric, precisely the fol-
lowing holds:

Propd‘sition 25 Let (M, J,g) be a complez Norden manifold and let D be the

natural canonical connection of the associated metric g, let J be the generalized
complez structure defined by J and g, then J is D—integrable.

3.2 Generalized Eroperator

Let (M, J, g) be a complex Norden manifold and let J be the generalized complex
structure on M defined by J and g, let

EC=(T(M)®T*(M))®C (41)



be the complexified generalized tangent bundle. The splitting in %2 eigenspaces
of J is denoted by:
EC = EX @ BY! (42)
T

with

EY' = 2 (43)
A direct computation gives:
E}°={Z—iJZ+g(W+iJW—iZ)|Z,WET(M)®<C}, (44)
equivalently E}‘O is generated by elements of the following type:
X —iJX —ig(X) with X € C®(TM), (45)

g(Y +iJY) with Y € C*(TM). (46)
Analogously we have:

4 BY = {Z+iJZ+g(W —iIW +iZ) | ZW €T (M) @C} (47)
and E%’l is generated by elements of the following type:
X +iJX +ig(X) with X € C*(TM), (48)
g(Y —iJY) with Y € C*(TM). (49)
Moreover, for any linear connection V, the following holds:

Lemma 26 E.IT'0 and E%’l are [, |y —tnwolutive if and only if NY(J)=0.

Proof. Let P, : EC — E}'O and P_ : E® - E%l be the projection
operators:

-~

Py = ~(IFiJ), (50)

DN =

for all o, 7 € C®(E®) we have:

Pz [Ps(0), Ps())g = Pr [% (a ¥ ifa) o (T F iif)]v

. ~ = N (51)
= —Y(NY(J)(o,7) £iINY(J)(0,7)) = —3P5 (NV(J) (U’T)) _
o

From gow on we suppose that (M, J, g, D) is a complex Norden manifold with
the natural canonical connection. A direct computation of the bracket associ-
ated to D on E;’U and E%‘lgives the following:

10



or

o=X—iJX —ig(X)
r=Y —iJY —ig(¥) (66)
v=2-ilZ —ig(Z).
Let us compute
S Jac[lg(X +iJX),Y —iJY —ig(Y)|p, Z —iJZ —ig(Z)lp-  (67)
We have:
(9(X +iJX),Y —iJY —ig(Y)lp, Z — iJZ — ig(Z)]p, = 9(K +iJK) (68)

(Y = iJY —ig(Y),Z — iJZ —ig(Z))p,9(X +iJX)|p = g(L +iJL)  (69)

9[IZ —iJZ —ig(Z), g(X +iJX)]p Y —iJY —ig(Y)]p, = g(H +iJH) (70)

where
K=DzDyX +DzJD;v X + JD;zDy X +JDjzJD vy X (71)
L= Dy,z1X + JDiy,21X — Dyy,uz1X — JDypyy,s21X (72)
H=-DyDzX —JDyD;zX —JDyyDzX +DyyD;zX. (73)
Then we get
Jac[lo,7]p,v]p =0 (74)

if and only if
s K+L+H=0 (75)

or, by direct computation, if and only if:
RP(JY,JZ)-JRP(JY,Z)-JRP(Y,JZ)-RP(Y,Z)-JDn3yv.2) = O (76)

where N(J) is the Nijenhuis tensor of J. By using the integrability of J, we have
the first condition.
Let us compute

Jac[[X —iJX —ig(X),Y —iJY — ig(Y)]D L —iJZ — ig(Z)]D. (77)
We have:
[X —iJX —ig(X),Y —iJY — ig(Y)]D 2 —1JZ — ig(Z)]D =

=A-iJA—ig(A)+ g(B +iJB) (78)

12
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where

A=[Xx,Y]- X, JY),2]-J X, Y] -J[JX, JY],JZ) (79)

and
B =Dyz|X,Y]+ DszTP(JX,JY) = DjxnZ+

+Dyux,v)4 = DzDyyX + DzDaxY

(80)

where TP denotes the torsion tensor of the connection D. o
Fom the Jacobi identity of [, ] we have that J ac(A) = O, then it 15 enough to
compute Jac(B).

From the properties of the torsion tensor TP we get:
Jac(B) = (RD(JX,Y) + RP(X, JY)) Z+ (81)
+(RP(JZ,X) + RP(Z, JX))Y + (RP(Y,JZ) + RP(JY,Z)) X.

Analogpus computations for E%l gives exactly the same conditions, then the
Proof is complete. B

Remark 29 We observe that (61) is equivalent to:
(r?)*? =0 (82)

where (RD)(M) denotes the (0,2)—part of the curvalure with respect to the
complez structure J on M. Moreover, if the torsion is zero, [rom the first
Bianchi identity with zero torsion, we get that (62) is automatically satisfied;
instead, from the first Bianchi identity with torsion:

RP(X,Y)Z+RP(Y,2)X + RP(Z, X)Y+
~TP(X,[Y,Z)) - TP(Y,[2,X]) - TP(2,[X,Y])+ (83)
—DxT(Y,Z) - DyT(Z,X) - DzT(X,Y) =0,
we obtain that (62) is equivalent to the following:
(RP(JX,JY) - RP(X,Y)) Z + (RP(JZ,JX) - RP(Z,X)) Y+
+(RD(JY,JZ)—RD(Y,Z))X=O. (84)

From Proposition 26 we get in particular the following:

Propo‘sition 30 If RP = O then E}‘O and E[Jl’l are complex Lie algebroids.

In this sense the following result provides a class of examples, (|10]), ([13]).

Theorem 31 ([10]), ([15]) Each hyper- ] )
, : , yper-Kacehler NH-manifold  pseudo-
Riemannian manifold of signature (2n,2n). S

13




More generally we have the following:

Theorem 32 Let (M, J,g) be a Kihler-Norden manifold then E,If” and E‘;l

are complex Lie algebroids.

Proof. In this case the natural canonical connection D is the Levi-Civita
connection V and, as its torsion is zero, (62) is automatically satisfied. Moreover
from (20) we get that (61) is equivalent to:

RY(Y,Z)+ RY(JY,Z)J =0 (85)
and. by using again the fact that RV is a pure tensor, we have that, for all
Y, Z,W € C(T(M)), (85) becomes:

RY(Y,Z)W + RY (Y, Z)JJW = O (86)
which is automatically satisfied. Thus the proof is complete. ®

Remark 33 Analogous statement can be given for E;-'O and Eg—‘l. In the fol-

lowing we will consider only J.

The following holds:
3
Proposition 34 The natural symplectic structure on E defines a canonical 1s0-

morphism between Egil and the dual bundle of E}'o, (E}‘O) .
Proof. We define .
. 0,1 1,0
p: E% — (EY°) (87)
by:

(0(Z +iJZ + g(W —iJW +i2))) (X = iJX +g(Y +1JY —iX)) =

. (88
=(Z+1JZ+ g(W —iJW +iZ), X — iJX +g(Y +iJY —iX)) )
forall X.Y,Z,W eT(M)®&C.
We get:
(p(Z +iJZ +g(W —iJW + iZ))) (X —iJX +g(Y +idJY - iX)) = (59)

= g(Y,Z) — g(W, X) +i(g(W,JX) +9(Y,JZ) - g(X, Z))
and we extend by linearity. We have immediately that ¢ is injective and fur-
thermore  is an isomorphism. =

The canonical isomorphisi ¢ between E%l and the dual bundle (E}‘(J) allows

us to define the d5 — operator associated to the complex structure J as in the
following:

]



let f € C°°(M) and let df € C(T* (M)) = C>(T (M) & T* (M)), we pose

d5f =2(df)™" = df +iJdf (90)
or:
. B3/ =df —iJ* (d) -
=df —i(df) J;
moreover we define:
97: 0 (8%") » 0= (n2 (£YY)) (92)
via the natural isomorphism
E%1 & (E;O) (93)
:0% ((857)) o= (o (£5°)) o
(@50) (0,7) = p(0) a(r) = p(r) a (o) — a([o,7] ) (95)
for a € C*® ((E}]-’O)*), o, 7T €C™® (Elao)
In general: ) .
37:0= (" (B5°)) » o= (a4 (B4°)") (96)
is defined by:

(052) (00, ..., 0p) =
= 3% V@) (00,7 0) + 2D Wa (o0 000, 7.0,

(97)
Definition 35 5; is called generalized 9 — operator of (M, J,g,D) or gener-
alized 55 — operator.
We get the following:

Proposition 36 If (61) and (62) hold then (5J.)2 =0 and (0 )2 =0.

il



.. 3 1,0
Proof. It follows from the fact that Jacobi identity holds on E'J_ and

(57) -

From now on we suppos
6 is the exterior derivative, dy,, of the Lie al

(L‘1 O) is given by the operator 95 defined by:

¢ that (61) and (62) hold. We have immediately that
gebroid L = E AO Moreover the

exterior derivative dp+ of L* =

05, : 0= (n (B)) » € (v (£5°)) (98)

(870) (o, v 2p) =
—Z 1)ip () (a5,..7..,a;) +Z(—1)"+J'a([a;,a;]D,aﬁwl--J"’a;)

< (99)

for 0 € C*™ (/\7’ (E}'O))v ag, - ap € C% ((E‘El"())‘) ’

3.3 Generalized holomorphic sections

Definition 37 Let a € C*° (AP (E}'O) .), « is called generalized holomorphic

section if _
950 =0. (100)

We remark that for all f € C°°(M) we have gff = 0if and only if df = 0, so the
generalized holomorphic condition for functions gives only constant functions on
connected components of M.

Proposition 38 Let W € C®(T(M)) and let o = g(W —iJW) € E%l then
070 =0 if and only if for all X,Y € C>®(T(M)) holds: '
g(DxW — D xJW,Y) = g(DyW — Dy JW, X). (101)

Proof. Let X,Y € C®°(T(M)), from (95), direct computations give:

] (@50) (9(X +1JX),g(Y +iJY)) =0 (102)
(070) (9(X +iJX),Y —iJY —ig(Y)) =0 (103)

_70) (X —iJX —ig(X),Y —iJY —ig(Y)) =
=g(=DxW + DjxJW +1(DjxW +iJDxW,Y)+ (104)

+9(DyW — Dyy JW —i(Dyy W + JDy W), X).
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In particular we have (350) = 0 if and only if:

g(~D<\-W + Djx JW + i(DJ/Y"{/Y +iJDx W, Y)+
+9(DyW — Dy JW — i(DyyW + JDyW),X) =0

(105)

and then, by separating real and imaginary parts, we get the statement. ®

Equivalently we can state Proposition 36 as follows:
Proposition 39 Let W € C®(T(M)) and let o = g(W —iJW) € E%' then
970 =0 if and only if for all XY € C®(T(M)) holds:
(d(g(W))) (X,Y) = (d(g(W))) (JX, JY). (106)
Proof. We have:
(d(g(W)) (X.Y) = Xg(W,Y) - Yg(W, X) — g(W, [X,Y])
= g(DxW,Y) — g(DyW, X) — g(W, TP (X,Y)).
On the other hand:
@leW)) (UX, JY) = IXg(W, JY) - TY (W, JX) - g(W,[JX, TY])
= g(DyxW,JY) — g(DjyW,JX) — (W, TP(JX, JY))
= g(DyxJW,Y) — g(Dsy JW, X) — g(W, TP (J X, JY)).

(107)

(108)
From the property (12) of the torsion T' D of the natural canonical connection
we get the conclusion. W

Moreover:

Proposition 40 Let Z € C*(T(M)) and let 0 = Z+1JZ +1i9(Z) € E(}'l then
Eja =0 if and only if for all X, Y € C=(T(M)) the following conditions hold:

DyyJZ=-DyZ (109)
9(DxZ,Y) =g(DyZ,X). (110)
Proof. Let X,Y € C*(T(M)), direct computations give:

(050) (9(X +iJX),g(Y +iJY)) =0 (111)

970) (9(X +iJX),Y —iJY —ig(Y)) =
=—g(DyZ+DyyJZ,X)+iy(DyyZ — DyJZ, X)

(050) (X —iJX —ig(X),Y —iJY —ig(Y)) =
i =-9uDxZ+Dyx2,Y)+g(iDvZ + Dyy Z,X) (113)

=9(DyyZ,X) - g(DyxZ,Y) +i(y(Dy Z,X) - y(Dx Z,Y)).

(112)
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and. by separating real and imaginary parts, we get the following conditions:
P DywlJZ+~DyZ =0 (1
g DZ XY~ q(DyxZY)=0: (115)
“Tom (114) we pent

DyyZ =JDyvZ (116)

and. substituting in (115), we have

9(DyZ,JX)-g(D;x2.Y)=0 (L1T)

for all X} € C™(T(M)), then we get the statcment. @

Corollary 41 Gwen Z € C™(T(M)). infinitesimal a-utovr:nrphlsm of J. Z de-
Jines the follounng generalized holomorphic sections of E‘} :

o=g(Z-1JZ) (118)

T=7Z4+1JZ +19(Z) (119)
f and only of for all X,Y ¢ C™(T(M)) the follounng condition hold:

d(DxZ.Y) = g(Dy 2. X). (120)

In particular for Kahler-Norden manifolds, as D is the Levi-Civita connection
and tidn torsion free, condition (120) is equivalent to the d—closure of 9(Z),
and. by using a classical result in symplectic geometry, (14], we have:

Proposition 42 Let M be a Kahler-Norden manufold and let Z € C'(T (M)
be an mfintesimal automorphism of J then g(Z —JZ) and Z + 107 + 19(2)
are generaized holomorphic sectwns of Ej—'l f and only of 4(Z) 15 a Lagrangian
submansfold of T (M) with respect to the standard symplectic structure.
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