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ranking results of different types of queries depending on users’ intent.
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1. Introduction1

Traditionally text retrieval was based on keywords. However, not all2

documents had been adequately tagged, neither could the keywords describe3

all aspects of a document. With faster computers, it became possible to4

perform full-text searches. Then we got the problem of too many hits, i.e.5

the supplied keywords were found in too many documents. One tried to6

cope with this by determining relevance as the number of occurrences of7

each search term in the document, in relation to document size. The first8

search engines on the Web used this approach.9

There were several disadvantages to this approach. Looking for informa-10

tion on a given car, using maker and model as keywords, the search engine11

did not direct you to any official site. Instead, one was overloaded with car12

for sale advertisements, as these had a good occurrence to size ratio of the13

keywords. It was also quite easy to fool the search engines, for example by14

adding long list of repeated keywords to a Web page, often using a small15

white font so that it did not clutter the page.16

Google’s PageRank algorithm saved the day. By letting relevance be17

determined by the number of links to a page, adding up the score if the links18

also came from pages that had many links to them, Google had captured a19

semantic understanding of the relevance concept. For example, many Web20

pages may say something about The White House, and there may be many21

white houses, but Google puts the official site on top, most probably the page22

that the user wants. And every time someone makes a link to this page, they23

increase its relevance.24

The disadvantage of this approach is that it is static. Pages found im-25

portant by the PageRank algorithm will probably get more important as26

they are found by the search engine. That is, important pages will get more27

important. New pages on similar topics will be hard to find, i.e. placed28

further down on the search engine result page, and will thus be considered29

less important. Over time, an algorithm used to determine relevance might30

be self-fulfilling.31

Ideally, we would need a search algorithm that were more dynamic, but32

still gave a good idea of relevance. Our idea is to use data from the actual33

searches - what we call dynamic trail information. While PageRank uses34

static information as link structure, we want to collect data from the actual35

searches performed by other users. For example, you may be interested in36

renting a boat to go deep-sea fishing outside the Lofoten Islands in Northern37
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Norway. Your keywords may be rent, boat, fishing, Lofoten. The search38

engine will then return a standard list of relevant pages; however, in addition39

you will find a list that says: “other users found these pages”. That is, the40

system have collected data on what other users with similar query terms41

did. They may have started with the same keywords as you, but may also42

tried other searches, ending up with a few interesting pages. That is, the43

effort that other users have put in finding relevant pages can be important44

information to you.45

The data needed to offer an “other users found these pages” list can be46

collected quite easily, but one will need access on the server level, i.e. to47

collect data from many users. One could strengthen the trail if the user48

performed some action at the end. This could either be implicit, such as49

noting that the users stayed on the site for some time, typed in data, printed50

from the page, bought or booked, etc. Alternatively, it could be explicit,51

where the users use a “like” button to tell that the page is interesting, e.g.52

the Google+1 service1.53

Such an approach falls into the implicit collaborative information-seeking54

area in which developing new collaborative search interfaces is still needed,55

as recently suggested by Hearst [1].56

According to Golovchinsky et al. [2], a collaborative information search57

system can be either implicit or explicit, meaning that users can explicitly58

collaborate on query formulations and review search results or can implicitly59

take advantage of other users’ search intents. Normally, implicit collaboration60

systems provide a recommendation and filter the results already explored by61

previous users, making them available to others with similar information62

needs.63

The majority of studies in the implicit area are based on collaborative64

querying techniques that upgrade information systems with data on past65

query preferences related to other users. As recently demonstrated [3], such66

studies primarily tested implicit collaborative information-seeking systems67

using simulated query formulation instead of employing user analysis involv-68

ing human participants. In our research, we employed a classic approach by69

using two existing datasets to simulate queries to evaluate our system in a70

real setting.71

Hence, we deal with the problem of improving search engines’ perfor-72

1https://developers.google.com/+/web/+1button/
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mance by exploiting the actions performed by users. In fact, search engines73

are tools designed to help people solve their own informational needs and sig-74

nificant room exists for improvements. Queries submitted to search engines75

can be clustered into three main categories on the basis of users’ aim [4]:76

Informational queries are issued by users willing to acquire information77

that they assume is present on one or more Web pages;78

Navigational queries are being used to get to a particular Web page be-79

longing to an organization or an individual; and,80

Transactional queries are issued to perform activities using the Web, such81

as booking a trip or downloading a file.82

Ranking results produced through navigational queries can be effectively83

addressed using existing Link Analysis Ranking (LAR) algorithms, such as84

PageRank, Hyperlink-Induced Topic Search (HITS), or Stochastic Approach85

for Link-Structure Analysis (SALSA): a higher number of hyperlinks point-86

ing toward one particular page results in a higher page relevance (in other87

words, algorithms assume that this page is the one that the user was look-88

ing for when she issued the query). Ranking results of informational and89

transactional queries is another matter: given the high frequency of Web90

pages’ updates and the ever-increasing need to obtain answers in real time,91

the World Wide Web hyperlinks’ configuration is no longer the only effective92

relevance measure that users assign to Web pages. Thus, devising new rele-93

vance indicators — to be placed alongside the existing ones (in other words,94

those based on Link Analysis Ranking) — with the goal of further improv-95

ing the ranking by considering other relevance measures valued by users is96

necessary [5].97

In this paper, we propose to employ the concepts of Swarm Intelligence98

(SI) in relation to the Ant Colony Optimization (ACO) meta-heuristic to99

improve search engine performance and to reduce the information overload2100

by exploiting collective users’ behavior in their usage of search engines.101

2The inability to make a decision because of the huge quantity of information obtained
by the users.
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2. Related Work102

2.1. Search Engines103

Different studies pointed out users’ low degree of satisfaction with search104

engines. Fox et al. [6] devised a machine learning approach that employs105

users’ actions (for example the time spent on a page, scrolling usage, and106

page visits) and concluded that users consider 28% of search sessions unsat-107

isfactory and 30% only partially satisfactory. Xu and Mease [7] measured108

the average duration of a search session and found that users typically quit109

a session — even without having satisfied their informational need — after110

three minutes.111

The main purpose of search engines is to satisfy users’ informational112

needs, thus they are being used as a starting point of users’ Web browsing113

[8, 4, 9]; nevertheless, the search experience is far from perfect. In fact, a sub-114

stantial number of searches end up unsatisfied. Many researchers attempted115

to improve search engines results’ relevance by exploiting query-click logs (in116

other words, logs of all the interactions users carry out with the search en-117

gine), usually in the form of click-through data. Joachims [10] was the first118

to exploit these logs as implicit relevance judgments about search engine re-119

sults and trained a meta-search engine to outperform many other famous120

ones. After the work of Joachims, using query-click logs to improve search121

engine performance became a widely popular technique [11].122

2.2. Information Foraging on the Web123

Many theories attempted to explain users’ behavior when searching for124

information in complex systems (for example, the Web). For the scope of this125

paper, we refer to two approaches related to the proposed algorithms: the126

ScentTrails system [12], which continuously allows users to supply keywords127

and enriches hyperlinks to provide a path that achieves the goal described by128

them, and the method by Wu and Aberer [13], which operates within a single129

Website to enrich the information provided by hyperlinks with a technique130

inspired by ant-foraging behavior (in other words, heavily clicked links are131

recommended in favor of less visited links).132

2.3. Learning to Rank133

Learning to Rank aims at automatically learning the right ranking func-134

tion from a training set, typically a click-through dataset. Joachims [10]135
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outlined three major key points: (1) explicit feedback provided by users can-136

not be taken for granted and, as a matter of fact, is unnecessary because137

the information given by the query-click logs are enough; (2) in fact, they138

can be used as a measure of relevance (with a relative scale); and (3) a ma-139

chine learning method — Joachims used a Support Vector Machine (SVM)140

— can be used to obtain a new ranking function that improves search engine141

performance.142

In addition to SVMs, other machine learning algorithms may be used,143

such as RankBoost [14], RankNet [15], QBRank [16], GBRank [17], AdaRank144

[18], and MCRank [19].145

However, Learning to Rank approaches exhibit two drawbacks: (1) the146

training phase is computationally expensive and faster methods are being147

sought [20]; (2) because most of the outlined machine learning methods are148

offline, the system must be trained again each time new data become avail-149

able, which occurs quite frequently because we are dealing with click-through150

data; thus, online methods are also being investigated [21, 22, 23].151

In conclusion, it is important to point out that Learning to Rank tech-152

niques are not the only ones employed in training ranking functions: other153

studies described alternative soft computing methods, such as genetic pro-154

gramming [24] and Swarm Intelligence (SI) [25].155

3. Ant Colony Ranking156

In the introduction, we described how information overload is a major157

problem affecting Internet users and outlined some useful approaches to ad-158

dress this issue: software agents, implicit feedback, collaborative filtering,159

and assisted browsing/searching [26].160

Given the current wide usage of Web search engines, we focused on all the161

unsatisfactory searches with the goal of addressing the information overload162

problem. Some techniques aiming at improving their performance have been163

summarized (for example, Learning to Rank) to highlight a few key concepts:164

(1) the relationship between users seeking information and the optimal forag-165

ing theory; (2) the need for a search engine to adapt itself to users’ behavior;166

and (3) the need to perform such adaptation in real time.167

Almost none of the aforementioned approaches take into account all three168

of these aspects, as stated by Wu and Aberer [13] and Olston and Chi [12].169

Beyond a doubt, a Swarm-based approach can take into account all three key170
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factors and is, nonetheless, a much more elegant and simple method than all171

of the other “ad-hoc” alternatives.172

For these reasons, in the next section we introduce a model able to de-173

scribe ranking algorithms inspired by Swarm Intelligence (SI) that can im-174

prove the performance of a search engine by adapting themselves to users’175

behavior.176

4. A Model for Ant Colony Ranking Algorithms177

Each day ants leave the colony in search of food and building materials;178

they will exploit the surroundings in all directions in a somewhat random179

fashion. If an ant finds anything of interest, it will return to the colony180

depositing pheromone, a chemical substance that the other ants are able181

to detect. Thus they create trails to signal the path between the colony182

and the food. The quantity of pheromone deposited, which may depend183

on the quantity and quality of the food, will guide other ants to the food184

source. That is, the other ants in the colony may now use the pheromone185

as a trail marker to reach the food. This marker evaporates over time, so186

that uninteresting trails disappear. Shorter trails will get a higher level187

of pheromone, thus shorter trails will endure longer, providing a notion of188

optimization.189

Normally, ants from different colonies exhibit aggression toward each190

other. However, some ants exhibit the phenomenon called unicoloniality.191

Here worker ants freely mix between different colonies. These species of ants192

live in populations known as supercolonies that may be used to characterize193

social behavior on the Web.194

Let us assume that a set of users all start with the same query, for example195

“compact camera GPS”. That is, they are all interested in finding Web sites196

that can offer a good bargain for such a camera (“food”). Our group may197

start with a Google query, and click on links to explore the results. These198

click streams will define our “pheromone” or virtual trail. They may for199

example be implemented by adding score values to each link, or visualized200

by representing the links by large fonts, stronger color, etc.201

However, on the Web we can optimize, leaving the trail metaphor and202

lead subsequent users directly to interesting pages. That is, we let our ants203

(users) explore the Web, but we let them deposit the pheromone on the204

most interesting pages. The rest of the colony (i.e. other users with similar205

interest) can then go directly to these sites.206
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Swarm Intelligence (SI) refers to the emergence of “intelligent” behavior207

from a group of simple and/or loosely organized agents. Ants are a typi-208

cal example of SI and their use of stigmergic processes3 inspired the famous209

family of Ant Colony Optimization (ACO) algorithms [27, 28] and many210

variants, including Max-Min Ant System (MMAS) [29], Continuous Orghog-211

onal Ant Colony (COAC) [30], and Rank-based Ant System (ASrank) [31].212

These classes of algorithms are bio-inspired (Ant Colony) probabilistic meta-213

heuristics for solving computational problems related to searching for an214

optimal path in a graph; the probabilistic nature of such techniques — along215

with some basic rules driving agents towards appropriate solutions — allows216

for their convergence to an optimal solution, avoiding local optimums.217

As we have previously stated, we will adapt the strategies employed in218

food searching by ant colonies in the building of ranking algorithms em-219

ploying users’ behavior; without a doubt, humans are more intelligent and220

organized than ants. However, some complex phenomena stems from Web221

surfing, since collective activities like Wikipedia, del.icio.us, or even the entire222

Web, are indeed stigmergic processes [32, 33].223

Summarizing, users surfing the Web issue relevance judgments every time224

they submit a query and select a result among the ones provided by a search225

engine. Ultimately, a SI-based approach seems a valid idea to make such226

systems able to exploit users’ seeking behavior.227

It’s pretty intuitive to find a parallelism between the way ants forage for228

food and the way users employ search engines to satisfy their informational229

needs; yet the latter, unlike ants, don’t leave any trace at all, so they can’t230

provide any clues to the next users with their same informational needs, and231

— since about 30–40% of queries issued to a search engine are already been232

submitted [34] — that’s a pretty common scenario.233

So, by using a virtual form of pheromone — controlled in the same way as234

the one used by ants — it’s possible to define a ranking algorithm that ranks235

relevant results based on the pheromone left on each document: the more236

we’ll find on a document the higher its ranking will be, since that document237

was considered relevant by a large amount of users.238

3Pierre-Paul Grasse introduced the term in 1950s during his research on termites. It is
defined as a method of communication based on individuals modifying their surrounding
environment.
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4.1. Formalization239

Here we introduce a brief formalization of the model we just proposed.240

We will assume that interactions between users and the search engine are241

available in the form of query-sessions — briefly “sessions”: by the definition242

of Wen and Zhang [35], a session is formed by the query a user submitted243

to the search engine — i.e. the text describing what he/she is looking for244

— together with the visited Web pages consequently to his/her request; an245

example of a query session can be found in table A.2 in the Appendix.246

Borrowing the notation of [35], let D(q) be the set of Web pages the247

search engine presents to the user as results for the query q, selected by248

filtering only the relevant ones for q through any available retrieval strategy249

[36]. The page set a user clicked on for a query q may be seen as250

DC(q) = {dq1, dq2, . . . , dqi} ⊆ D(q),

where dqi represents the i-th document the user clicked among the results251

of the query q (i.e. dq1 being the first selected result — if any — dq2 the252

second — if any — and so on); on the other end, we denote diq the document253

currently ranked in position i among the results of the query q by the ranking254

algorithm in use.255

The pheromone associated to a document d with respect to a query q is256

denoted by ϕdq and is updated every time a user selects the document among257

D(q) or — carrying on the similarity with ACO — he/she covers the path258

q → d; the amount of pheromone deposited each time depends on the specific259

user session DC(q) and will be detailed in the next section.260

Considering each document d and any known query q, pheromone evapo-261

ration follows an exponential decay based both on the current value ϕdq and262

the elapsed time since its last update — denoted with τdq. In mathematical263

terms, denoting the new pheromone value by ϕ′
dq, the evaporation rule can264

be expressed by the equation265

ϕ′
dq = ϕdqe

λτdq ,

where λ is the exponential decay constant; this rule can be transformed in a266

much simpler version by defining a new constant267

δ =
ln(2)

λ
,
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which represents the amount of time needed for the pheromone deposited on268

each document to half its value since its last update for any given query.269

The evaporation rule becomes then270

ϕ′
dq = ϕdq2

−
τdq
δ .

Pheromone evaporation is performed periodically and its frequency de-271

pends on how the relevance of documents changes over time: since evapora-272

tion is a mechanism that enables the system to forget registered behaviors,273

the more frequent it gets triggered the more newly registered behaviors will274

be considered important. To the best of our knowledge, the only similar275

approach is the one by Koychev and Schwab [37].276

Finally, the set of documents D(q) — i.e. the results for any query q —277

are ranked by exploiting the amount of pheronome ϕdq, for each d ∈ D(q).278

The Ant Colony Ranking strategy can be viewed as an interplay of the279

three procedures just described, as summarized by Algorithm 1 [38]: the280

ranking computed using the pheromone deposited over each document d ∈281

D(q) is prompted to the user issuing the query q (ShowAntColonyRanking()),282

user’s clicks get processed and partake in the existing pheromone’s configu-283

ration (ManageUserActivity()), and finally the pheronome evaporation is284

triggered (EvaporatePheromone()).

Algorithm 1 The Ant Colony Ranking strategy in pseudo-code.

procedure AntColonyRanking
scheduledactivities

ShowAntColonyRanking()
ManageUserActivity()
EvaporatePheromone()

end scheduledactivities
end procedure

285

To summarize, we can now define different Ant Colony Ranking algo-286

rithms by specifying (1) how the amount of pheromone ϕdq is updated every287

time a user selects the document d ∈ D(q) for any query q (i.e. ManageUserActivity()),288

(2) an evaporation strategy (i.e. EvaporatePheromone()), and (3) how it289
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exploits the amount of pheromone ϕdq to retain the position of a document290

d ∈ D(q) in the final ranking presented to the user (i.e. ShowAntColonyRanking()).291

5. Three Ant Colony Ranking Algorithms292

We focus on unsatisfactory search sessions (approximately 50% of all293

search sessions, according to [39]) and attempt to improve the entire search294

users’ experience. To do that, we proposed a framework for the definition295

of ranking algorithms that exploit users’ interactions with search engines on296

the basis of the Ant Colony Optimization (ACO) meta-heuristic by defin-297

ing a pheromone’s update rule, how it evaporates over time and the ranking298

strategy for the set of pages D(q) presented as results for each query q.299

In this section, we present three algorithms. The first algorithm is a300

simple application of the ACO principles to Web pages’ ranking, the second301

algorithm attempts to reinstate the probabilistic nature typical of the ACO302

meta-heuristic, and the third algorithm is our attempt to leverage on the303

complete users’ search sessions and not just on their single interactions with304

the search engine.305

NäıveRank. The first algorithm is the simplest and most direct implemen-306

tation of the principles described so far, and is inspired by the stochastic307

ranking algorithm by Gayo-Avello and Brenes [40]. We employ the simplest308

incrementing function, namely the successor; thus, given any user search ses-309

sion DC(q) = {dq1, dq2, . . . , dqi, the pheromone deposited on each document310

dqi ∈ DC(q) will be updated with the rule311

ϕ′
dqi = ϕdqi + 1,

where ϕ′
dqi

indicated the new value after the update. D(q) is ranked decre-312

mentally based on the amount of pheromone deposited on each document313

d ∈ D(q), thus for any given query q and two documents diq, d
j
q ∈ D(q) with314

i < j (recall that diq stands for the document ranked in position i among the315

results of the query q) we have316

ϕdiq ! ϕdjq
.

Despite the resemblance to the algorithm described in [41], NäıveRank runs317

in real time and, more importantly, naturally takes into account the shifts in318

users’ interests by using the evaporation process.319
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RandomRank. The second algorithm uses an alternative approach taken from320

the basic principles of ACO [28], through which we considered search engines’321

users as agents of a Swarm Intelligence (SI) system. Given our previous322

algorithm, the probabilistic nature of the original model — which represents323

one of the ACO strengths — fades out: this phenomenon causes neglecting324

new paths’ discovery once the system reaches convergence. Going back to325

Web searching, a gradual empowering of the most popular pages’ pheromone326

occurs at the expense of the less popular ones. This effect, known as self-327

reinforcement, is typical in many techniques of Web ranking [42].328

Therefore, we want to encourage the discovery of new pages — in other329

words, new paths to be explored — by reinstating the probabilistic nature of330

ACO algorithms into the ranking mechanism, and keeping the update rule331

the same employed by NäıveRank. Thus, we randomly rank each result in332

D(q) for any query q with the probabilistic procedure described in Algorithm333

2, using a probability distribution based on the quantity of pheromone of each334

one of them. This way, highly visited pages yield a higher ranking — through335

a higher probability of selecting one of them in one of the first positions —336

but less relevant documents still have the opportunity of becoming popular337

(thanks to the probabilistic nature of the algorithm).338

Each cycle in the loop is responsible for the ranking of a document in the339

set of results: it builds the set D̄(q) of pages that still need to be ranked340

and randomly picks a document based on its pheromone configuration. This341

random selection is performed every time a user issues a query q, yielding in342

a renewed opportunity of discovering new and relevant documents in D(q)343

and let them gain positions in the ranking.344

SessionRank. The last algorithm employs yet another mechanism of the ACO345

approach. Indeed, hitherto the increment function has always used a fixed346

amount of pheromones regardless of the click’s position among the user’s347

search session. Within the ACO meta-heuristic, in order to achieve conver-348

gence quicker, the pheromone’s quantity is set to decline on the basis of the349

quality of the solution found.350

On the Web though, users cannot provide a solution to the ranking prob-351

lem but can assist by providing their own view of relevance. In fact, the first352

document that a user selects among the results in a given search session is353

the one that, based on the available clues, is perceived as the most relevant354

to the user [44]. The most relevant document according to a user is the355

one that should be in a highly relevant position in the optimal solution to356
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Algorithm 2 Procedure ranking D(q) used by RandomRank based on [43].

procedure ShowAntColonyRanking
for i← 1,#D(q) do % Rank one result at a time

D̄(q) ≡ {d : d ∈ D(q) ∧ d '= djq, 1 " j < i} % Not yet ranked

Select d ∈ D̄q with probability
ϕdq∑

d̄∈D̄(q) ϕd̄q

and rank it in position

i
end for

end procedure

the ranking problem for that given query. The next document, selected in357

the same session, is considered less relevant since it was selected after the358

previous document.359

The SessionRank algorithm employs the relative order of clicks performed360

by each user during a session and increments the pheromone’s quantity ac-361

cordingly. Therefore, choosing an exponential decay, the update rule be-362

comes:363

ϕ′
dq = ϕdq + 2i,

where d ≡ dqi and dqi ∈ DC(q) for any user search session DC(q) yielding364

D(q).365

To summarize, the model proposed in the previous section to define rank-366

ing algorithms on the basis of ACO employs pheromone traces on each doc-367

ument in relation to any query issued to the search engine; the pheromone368

increases each time a user selects a page among the results of a query and369

vaporizes over time taking into account users’ gradual loss of interest. There-370

fore, once a user performs a query already performed by others, the search371

engine is able to present a new ranking based on the behavior shown by users372

with the same informational need, de-facto exploiting pheromone traces.373

We described three different algorithms that, by exploiting the afore-374

mentioned model, use different ACO-inspired mechanisms to improve the375

proposed ranking. Thus, since establishing whether improving search engine376

performance is truly possible by employing this new approach is important,377

we devised an evaluation of the different algorithms using real query-click378
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logs. In the following section, we present details on measures, setups, and379

results.380

6. Evaluation381

6.1. Search Engine Evaluation382

In an ideal situation, an Information Retrieval (IR) system (for example,383

a search engine) should only provide relevant results for the issued queries.384

The tendency is to accept that such systems provide the widest set of relevant385

documents, along with some less relevant results. Normally, evaluating an386

IR system requires experimental sets containing queries, documents, and387

relevance judgments; however, building such collections requires a significant388

amount of work (in other words, data on queries and judgments). Thus, in389

many recent studies [45, 46, 40, 47, 5], click-through data were employed to390

evaluate search engines’ performance. The concept is simple: employ clicks391

as relevance judgments, assuming that a user evaluates a result as relevant392

if it is chosen among the search results related to a query.393

Consequently, in the following experiments, we employed query-click log394

datasets provided by two famous search engines — AOL [48] and Yahoo! —395

to carry out experiments on the proposed algorithms (further details on these396

datasets can be found in the Appendix); we have validated the new ranking397

produced by each algorithm using the very same datasets clustered by each398

user’s search session, applying a simple temporal threshold (30 minutes, as399

suggested by several previous studies [6, 49]) to decide whether two actions400

performed by a single user belong to the same search session.401

Hence, we considered two interactions as belonging to the same search402

session when they were both (1) issued by the same user, (2) contained the403

same query, and (3) performed within 30 minutes.404

After selecting the two datasets, we needed a performance measure to405

evaluate all the different algorithms we propose.406

Sakai [50] compared different performance measures that take into ac-407

count the documents’ positions and recommended the so-called Normalized408

Discounted Cumulative Gain (NDCG) for its simplicity and robustness [51].409

The NDCG consists of a parameter and two functions: 1. k ∈ N0 is a410

cut-off parameter defining the number of elements in the results list to be411

considered; 2. the gain function measures the benefit earned by the user (if412

a document is only relevant or irrelevant, then the gain is binary), whereas413
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3. the discount function weighs the documents’ relevance on the basis of the414

position in the results list.415

Moreover, to obtain an absolute measure — in the real interval [0,1] —416

we normalized it with respect to the maximum obtainable gain.417

More formally, let &y ∈ Rn be an array containing relevance values belong-418

ing to a sequence of n elements (for example, the results of a query) and let419

&π ∈ Rn be a permutation of the same sequence (for example, the ranking420

produced by an algorithm). Let &π(q) be the index of the q-th element in421

&π and let &y#π(q) be the value of its relevance. The Discounted Cumulative422

Gain (DCG) of the permutation &π is defined as:423

DCG@k(&y,&π) =
k∑

q=1

2#y#π(q) − 1

log2(2 + q)
.

In this case, the gain function is a power of 2, whereas the discount function424

has logarithmic decay over the permutation length. Thus, the NDCG is425

defined as:426

NDCG@k(&y,&π) =
DCG@k(&y,&π)

DCG@k(&y,&π∗
#y)
,

where &π∗
#y is the permutation corresponding to a perfect ranking w.r.t. the427

relevance judgments in &y or, in other words:428

&π∗
#y = argmax

#π
DCG@k(&y,&π).

Few publicly available datasets already provide explicit relevance judgements429

for each document they refer: the Yahoo! dataset is one of them, but the430

AOL one does not; as we state before though, user clicks can be used as a431

relative measure of the perceived relevance by each user. In this case, we432

then build the array &y by assigning 1 to each document selected by the user433

in the search session we are currently trying to compute the NDCG for, 0 for434

the ones that were not selected.435

To summarise, computing NDCG scores for each search session contained436

in the datasets is possible using the available relevance judgments for Yahoo!437

and by assuming that the visited results are the relevant ones for AOL.438

Effectively, by doing so we are actually evaluating the current performance439

of the two search engines, which will be the baseline we are comparing our440

algorithms against.441
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6.2. Evaluation of Ant Colony Ranking Algorithms442

We described hitherto how search engine performance are evaluated by443

employing the query-click log containing users’ interactions. As we previously444

stated, the proposed algorithms require queries, clicks, and search sessions to445

adjust the pheromone deposited on each document in relation to any query446

submitted to the search engine. The chosen query-click logs contain all this447

information and, thus, can be employed to simulate our algorithms in a real448

world scenario.449

The validation strategy is dictated by the constraints over our context:450

since we are using these datasets to simulate real users’ interactions, we have451

to obey to time constraints; our test set will then always be consequent to452

the training set, since the system can only be trained using past interactions,453

forbidding any kind of cross-validation. According to the most common454

strategy, we chose then to split our data and use the first two thirds for455

training and the remaining for testing: moreover, using one third of the456

available interactions provides a significant amount of data to thoroughly457

test our algorithms.458

Therefore, we prepared two partitions for each available query-click log:459

the AOL partition includes the set of the almost 20 million clicks performed460

from March to April 2006 and was used for training, whereas the remaining461

set of approximately 10 million clicks performed in May 2006 was used for462

the evaluation. The Yahoo! training set contained almost 40 million clicks463

performed during the first 20 days of July 2010 (excluded), whereas the464

evaluation set contained the remaining 26 million clicks issued until the end465

of the same month.466

After the training phase, we compared the search sessions contained in467

the test sets with the ranking given by each algorithm and devised a se-468

quence of potential clicks; this procedure is ruled by a simple and reasonable469

assumption [40]: during a search session, if a user chooses a result for a given470

query, we safely assume that the same user in the same search session would471

have chosen that same result even if it was found in a higher position in the472

results’ list. Finally, we computed the mean of NDCG for each session.473

Furthermore, because we sought to evaluate how the algorithms param-474

eters affect performance, we tested three different values of δ and of the475

evaporation time (one hour, one day, and one week), and three session dura-476

tion values for the SessionRank training (one, five, and 25 minutes, namely477

very brief, average — according to [7] — and long-duration search sessions);478

besides, since RandomRank is a probabilistic algorithm, each experiment479
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were repeated 5 times using different seeds of the random number gener-480

ator.. Thus, the evaluation involved 162 different experiments. We carried481

them out using a t2.small Amazon EC2 instance running Amazon Linux AMI482

and the DEX library to manipulate both datasets [52]; each run took about483

3 hours to complete.484

To summarize, our evaluation’s aim was to measure and compare the485

proposed ranking algorithms’ performance using data provided by two fa-486

mous search engines. Because our methods are based on users’ interactions487

to discover the most promising results, the datasets were partitioned into488

a training set and a test set. In the next sections, we provide the results489

obtained from using this evaluation method.490

6.3. Results491

As previously stated, we defined a framework for the evaluation of the492

three proposed algorithms performance using the interactions from the two493

different query-click logs. We described (1) the way we selected the training494

and test sets, (2) how we used the former to simulate real users’ behavior, and495

(3) from the latter we yielded the potential clicks combining new rankings496

with the original click-through data.497

In the following, we analyze the results of the performed experiments,498

reporting NDCG scores for three different cutoff values: 1, 3 and 10 results499

(NDCG@1, NDCG@3, NDCG@10). We recall that NDCG is a measure in500

the interval [0,1] where 1 is the ideal ranking. We chose to test our algorithms501

on three different cutoff values meaning respectively: the result ranked first502

with NDCG measure representing the ratio between our algorithm result and503

the first best ranked from the training set; the three highest ranked results504

and the ten highest results. We can imagine comparing the results within a505

search engine result page in which only first result is returned, or the first506

three or the first ten. We evaluated those results for all three proposed al-507

gorithms. Graphs showed in the following figures are organized as follows:508

on the x-axis the (δ) factor is shown representing the timeframe set for halv-509

ing the pheromone (representing evaporation); the wider the timeframe the510

longer will take to half the pheromone and thus results appearing in the511

ranking will be more persistent: it, basically, represents the magnitude of512

the evaporation set to 0.5 (delta factor in section 4.1). On the y-axis on the513

left we show the NDCG values [0,1] related to the corresponding pheromone514

upgrading timeframe (upgrades are run hourly, daily and weekly) showed on515
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the right (y-axis), while on the top (x-axis on top) the different NDCG cut-516

offs are shown. Finally, the black segments represent our benchmark, that is517

the NDCG values computed respectively on the Yahoo! and AOL datasets518

by maintaining the default search engine’s ranking.519
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Figure 1: NäıveRank results related to the AOL Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-
axis the different NDCG cutoffs are shown. The black segment indicates the benchmark,
namely the result given by the default AOL’s ranking.

Figures 1 and 2 show respectively the performance given by the NäıveRank520

algorithm by using AOL and Yahoo! dataset. As expected, our algorithm521

performs better on the larger dataset (i.e. Yahoo! in figure 2); this seems rea-522

sonable, since it follows from the Ant Colony Optimization (ACO) approach:523

the more data is recorded about users’ behavior the better the algorithm524

will perform. More surprising are the differences obtained using different525
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Figure 2: NäıveRank results related to the Yahoo! Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-
axis the different NDCG cutoffs are shown. The black segment indicates the benchmark,
namely the result given by the default Yahoo!’s ranking.

pheromone evaporation intervals and by halving (δ) times. Normally, one526

would expect that depending on the halving delta factor timeframe the al-527

gorithm would perform better in adapting to users’ behavioral changes: in528

fact, no matter which dataset we used, we obtained the best performance by529

setting δ = 7d (a week timeframe); this confirms what implied by Liu et al.530

[53] about the weekly cycle of the majority of queries which states that users531

will perceive search engine results as relevant and up to date generally only532

during one week after which they would expect the results to be updated.533

Regarding the evaporation time, we noted an interesting effect: although534

using non-optimal δs (as stated above, we found out that seven days was535
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the optimum) doesn’t affect the performance, choosing an optimal δ makes536

slightly no difference at all.537

Thus, when implementing the NäıveRank we can safely act on δ to reduce538

the evaporation frequency, in order to reduce the amount of computations539

needed. This implies that the algorithm will be more computationally effi-540

cient in real time. Effectively, increasing the evaporation frequency will affect541

the computational cost of the algorithm since the upgrade denoted by the542

evaporation rule in section 4 has to be computed less frequently.543

Consequently, just by observing the first results we can argue that the544

data size required to get good performances from the algorithm is substantial.545

While the evaporation time is important to achieve good performance, using546

a δ set to the weekly cycle of queries allowed us to arbitrarily choose the547

evaporation time, significantly reducing the computational costs.548

Considering figures 3 and 4 which report on the RandomRank perfor-549

mance, it is interesting to notice how it differentiates from NäıveRank: the550

variations take place mostly for NDCG@1 (i.e. the score related only to the551

first displayed result), while for NDCG@3 and NDCG@10 results are almost552

identical to NäıveRank. This is due to the probabilistic nature of the random553

ranking; indeed, probability has on average an higher effect when smaller set554

of documents are considered due to probability of selecting more than one555

element of the set for NDCG@3 and NDCG@10.556

A slightly more interesting result comes from analyzing how such vari-557

ations actually occur: when tested against the AOL dataset — the smaller558

one — RandomRank underperforms NäıveRank by about 10%. For Yahoo!559

Dataset, performances are almost the same for both the algorithms. The560

exception is the configuration; with δ = 1h (i.e. the halving factor) and a561

weekly evaporation cycle. Then RandomRank doubles the score obtained562

with the same configuration by NäıveRank. This could confirm once more563

what we stated previously when discussing NäıveRank’s results about the564

weekly cycle of search queries, as introduced by Liu et al. [53]: the introduc-565

tion of probability helps users discovering new interesting documents among566

results. In this particular case the pheromone updates on weekly basis ac-567

cording to users’ perception of documents relevance.568

Finally, figures 5 and 6 show the results related of the SessionRank al-569

gorithm; these graphs — apart from the evaporation frequency on the right570

y-axis, the halving factor in the x-axis and the segments representing the571

benchmarks as for the previous graphs — show the different timeframes used572

by the algorithm to identify a user’s search session in its training phase. We573
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Figure 3: RandomRank results related to the AOL Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-
axis the different NDCG cutoffs are shown. The black segment indicates the benchmark,
namely the result given by the default AOL’s ranking.

recall that based on the session’s duration, the algorithm distributes differ-574

ently the quantity of pheromone to be deposited on a document once; by575

performing multiple experiments, each time with a different session’s dura-576

tion, the algorithm will consider a sequence of interactions performed by577

the same user as a single session if they were all done within the allowed578

timeframe, otherwise it will split them into multiple sessions. We chose to579

test three configurations for the sessions duration used by the algorithm (as580

reported in different colors in the figures) namely 1 minute, 5 minutes and581

25 minutes. We selected these three configurations in order to evaluate the582

different performance of our algorithms with very brief search sessions, i.e.583
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Figure 4: RandomRank results related to the Yahoo! Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-
axis the different NDCG cutoffs are shown. The black segment indicates the benchmark,
namely the result given by the default Yahoo!’s ranking.

1 minute which is shorter than the average search session — 3 minutes ac-584

cording to [7]; we also tested our algorithms with 5 minutes sessions that can585

be considered as of average duration and finally we chose to also include 25586

minutes sessions to sample longer durations.587

One can notice straightaway that the training sessions duration is mostly588

irrelevant; this may be caused by the average short length of search sessions,589

as demonstrated in [54], since users tend to perform brief sessions, performing590

different queries; thus search sessions will have only few clicks performed in591

a short time span and the amount of pheromone to be deposited by the592

algorithm will be rather fixed, causing no effect.593
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Figure 5: SessionRank results related to the AOL Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-axis
the different NDCG cutoffs are shown; the different colors represent the timeframes used
to identify a user’s search session in the training phase. The black segment indicates the
benchmark, namely the result given by the default AOL’s ranking.

Also, the algorithm performs worse than NäıveRank using the first dataset,594

while outperforming it with the second one; this is still due to the variation in595

training set size: a greater number of search sessions used in training causes596

an improvement due to the greater quantity of pheromone available to be597

deposited by each user; thus, the pheromone’s modulation — inspired by the598

ACO metaheuristic — improves the algorithm performance proportionally599

to the number of interactions recorded during the training phase.600

Figure 7 recaps our results: the two plots represent only the best perfor-601

mance obtained by the different configurations of our algorithms — showed602

on the x-axis — with the two datasets used; on the y-axis we show the dif-603
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Figure 6: SessionRank results related to the Yahoo! Dataset. The x-axis represents the
timeframe set for halving the pheromone, the left y-axis the NDCG values related to the
corresponding pheromone upgrading timeframe on the right y-axis, while on the top x-axis
the different NDCG cutoffs are shown; the different colors represent the timeframes used
to identify a user’s search session in the training phase. The black segment indicates the
benchmark, namely the result given by the default Yahoo!’s ranking.

ferent cutoff points used to compute the related NDCG measure, and the604

size of the points show the actual NDCG value we obtained, bigger for large605

values. Finally, the green color is used to show a NDCG measure which im-606

proves over the baseline ranking algorithm applied by the search engine, red607

if otherwise.608

Summarizing these findings, we argue that our first two proposed algo-609

rithms could be employed in improving results ranking produced by two610

particular sets of queries: being a simple application of the ACO technique611

to Web pages ranking, NäıveRank works well for embedding a plain concept612

of popularity into the ranking measure. Thus it could be very effective in613
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Figure 7: Summary of the three algorithms’ best performance: the x-axis shows the
algorithm performance related to each dataset we used (on the top x-axis), while the y-
axis shows the cutoff point for the corresponding NDCG measure; the size of the points
represents the related NDCG’s goodness, while the colors indicates whether we achieved
an improvements over the default ranking operated by the search engines.

ranking results related to transactional or informative queries whose results614

do not become obsolete frequently (i.e. it is rare to see a new document con-615

taining updated information suddenly appear, making the already popular616

ones out-of-date, e.g. encyclopedia definitions or catalog’s products).617

By reinstating the probabilistic nature typical of the ACO metaheuristic,618

RandomRank allows new and bleeding-edge documents to be discovered by619

users, thus it could be very effective in ranking results related to breaking620
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news and current events.621

Finally, SessionRank shifts on a whole new dimension in terms of the622

kind of information it exploits and — thus — the search settings that could623

benefit from its introduction in the ranking mechanism. Albeit the majority624

of search sessions are brief, composed by just one query and focused only625

on the first results page, there are some particular sessions that might be626

longer and could be very frustrating for users. We noticed three types of627

such problematic sessions in our datasets:628

atypical Web search sessions [55] are being produced by users with atyp-629

ical information needs, i.e. those outside their regular areas of expertise630

(often triggered by external events, such as pending medical treatments,631

financial deadlines or upcoming vacations);632

exploring sessions [56] are those where users are engaged in an open-ended633

and multi-faceted information-seeking task to foster learning and dis-634

covery;635

struggling sessions [56] are those where users are experiencing difficulty636

locating the required information.637

Examples of both exploring and struggling sessions can be found in figure638

8.639

Given that SessionRank exploits not just single interactions with the640

search engine but whole search sessions, it seems reasonable to argue that641

the ranking of results related to the aforementioned search sessions could642

benefit from the introduction of our last ACO-inspired algorithm. Thus it643

could be useful to test our algorithm against a different dataset containing644

long-lasting search sessions of this type. Alternatively, one could use some645

query-similarity measure with the same datasets we employed, in order to646

cluster similar queries belonging to the same session.647

Our findings are summarized in figure 9: it shows both dimensions that648

our algorithms operate on: search sessions’ length on the x-axis and docu-649

ments update frequency on the y-axis. The horizontal stripes represent the650

aforementioned examples of documents sets to be ranked, such as break-651

ing news, encyclopedia definitions and catalog’s products, while the vertical652

ones are the three kinds of search sessions outlined in the previous paragraph653

[55, 56]. The dashed blocks indicate which algorithm we think could be the654

most effective in ranking results generated for each case. For example — as655
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Query can you use h & r block software for more than one year
Query how do I file 2012 taxes on hr block
Click http://www.hrblock.com
Query can you only use h & r block one year

Click http://www.www.consumeaffairs.com/finance/hr_block_free.html

Click http://financialsoft.about.com/od/taxcut/gr/HR-Block-At-Home-...
Query do I have to buy new tax software every year

Click http://financialsoft.about.com/od/simpletips/f/upgrade_yearly.htm...

Click http://askville.amazon.com/buy-version-Tax-Software-year/Answer...

END OF SESSION

(a) A struggling session.
Query career development advice

Click http://www.sooperarticles.com/business-articles/career-devel...

Query employment issues articles
Click http://jobseekeradvice.com/category/employment-issues/...

Query professional career advice
Click http://ezinearticles.com/?Career-Advice-and-Professional-Ment...

Click http://askville.amazon.com/buy-version-Tax-Software-year/Answer...

Query what is a resume
Click http://en.wikipedia.org/wiki/R%C3%A9sum%C3%A9...

END OF SESSION

(b) An exploring session.

Figure 8: Examples of struggling and exploring sessions taken from [56].

we stated previously — RandomRank could be beneficial in ranking results656

among frequently updated documents and does not really take into account657

any information about the whole search sessions (focusing only on single in-658

teractions), thus it won’t work for longer sessions, such as atypical, struggling659

or exploring ones for which SessionRank could be more suitable. Ranking660

more static collections of documents, such as products inside a catalog for661

example (e.g. Amazon or Google Shopping) or encyclopedia entries doesn’t662

require a very refined collaborative filtering mechanism — due to the low663

frequency of updates — thus NäıveRank could fit well with these situations.664

Indeed, catalogs can be dynamic but vary less frequently than news.665

7. Conclusion and Future Work666

We presented an approach to developing real time implicit collaborative667

information-seeking algorithms. Providing implicit collaboration is becom-668

ing increasingly relevant in search engine research and application areas. Re-669

cently, Google introduced their Social Search service, declaring that, “with670

these changes, we want to help you find the most relevant information from671

27



Less frequently
updated documents

Frequently updated
documents

Brief
search sessions

Long
search sessions

Encyclopaedia definitions

Catalog’s products

Breaking news

S
tru

g
g
lin

g
a
n
d

ex
p
lo
rin

g
sessio

n
s

A
ty
p
ica

l
sessio

n
s

SessionRankRandomRank
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Figure 9: A plot of our findings: on the x-axis we have the search sessions’ length, while on
y-axis the documents update frequency; vertical and horizontal stripes represent examples
of both those settings, while colored blocks indicate the most suitable algorithm to rank
results generated by the revealed search setting.

the people who matter to you”. In a way, that statement represents our672

definition of a colony. The mechanism is the Google+1 button, which al-673

lows users to share interesting pages with their contacts — a way to release674

pheromones. Bing, Microsoft’s new search engine, employs Facebook’s social675

graph for each user to rank search results and to present search history. That676

is, they define the colony as our own Facebook contacts. Again, we deposit677

pheromones through a click on the “like” button. This method is viewed as678

a way to implement pheromone evaporation. However, these stylish inter-679

actions can be modelled by ants. As ants, we leave “pheromones” to allow680

others to follow our trails. Additionally, as ants, we use this information to681
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enhance searching.682

We designed three different algorithms employing an Ant Colony Opti-683

mization (ACO) strategy to provide implicit collaborative-seeking features684

in real time to search engines. The three different algorithms — NäıveRank,685

RandomRank, and SessionRank — all proved to be effective in real time686

depending on the nature of the queries submitted by users. Real time per-687

formance is crucial for search engines, particularly when using ACO-inspired688

algorithms for which a large graph of queries and documents might be cre-689

ated.690

The NäıveRank seems particularly interesting for informational queries691

that seek to retrieve results on relatively static information on the Web,692

such as looking for products in a catalog or encyclopedia entries. Random-693

Rank proved effective for the inverse situation, such as breaking news or694

a sports event. The SessionRank algorithm was suited for struggling and695

explorative sessions (in other words, open-ended information-seeking tasks696

fostering users’ learning) or atypical query sessions (generated by external697

events such as specific treatments, deadlines, or upcoming holidays).698

We evaluated the three algorithms by designing an evaluation, where we699

compared the performance of the three proposed ranking algorithms with700

the data provided by two famous search engines: Yahoo! and AOL. Because701

our methods are based on users’ interactions to discover the most promising702

results, the datasets were partitioned into a training set and a test set.703

We plan to run an online experiment with a wide sample of participants704

and test the three algorithms in a real time scenario with users in the future.705

We hope to prove that in an online environment, real time relevant results706

can also be obtained by users employing an implicit collaborative approach707

for information seeking and by selecting the right algorithm depending on708

the types of queries. We also plan on further investigate how blend some709

concepts explored by existing ACO extensions in our model, such as limiting710

the amount of deposited pheromone to avoid deposited as in Max-Min Ant711

System (MMAS) [29].712
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Appendix A. AOL query-click log721

This archive, released in August 2006, contains more than 30 million722

clicks issued by 650000 users, recorded in a timespan going from March to723

May 2006; each record (table A.1, from left to right) is made up by the user724

ID, the query, the timestamp, the document’s position among the results,725

and the URL. The position 0 illustrates that the user issued the query but726

didn’t click on any result at all.727

We didn’t employ the whole log in our evaluation, instead we only consid-728

ered the subset of queries issued on average once a day during the observed729

period (i.e. March to May 2006): this process allowed us to only employ730

“significant” interactions with the search engine, ignoring the ones issued731

less frequently without biasing our later evaluation. By doing so, we ob-732

tained about 5 million different clicks related to 22000 different queries.733

285103 ants 2006-04-01 19:45:23 1 http://www.dna.affrc.go.jp
285103 ants 2006-04-01 19:45:23 3 http://www.uky.edu
285103 ants 2006-04-01 19:50:59 13 http://ohioline.osu.edu
285103 ants 2006-04-01 19:50:59 14 http://ohioline.osu.edu
285103 ants 2006-04-11 21:44:45 7 http://ohioline.osu.edu

889138 ants 2006-03-05 13:22:31 4 http://www.ants.com
889138 ants 2006-03-05 13:22:31 8 http://ohioline.osu.edu
889138 ants 2006-03-05 13:26:14 11 http://www.infowest.com
889138 ants 2006-03-05 13:26:14 19 http://www.greensmiths.com

3519280 ants 2006-03-30 17:14:14 0
3519280 ants 2006-03-30 17:15:53 1 http://ant.edb.miyakyo-u.ac.jp
3519280 ants 2006-03-30 17:15:53 3 http://www.uky.edu
3519280 ants 2006-03-30 17:15:53 10 http://en.wikipedia.org
3519280 ants 2006-03-30 17:27:46 0
3519280 ants 2006-04-01 13:55:03 2 http://www.lingolex.com
3519280 ants 2006-04-01 13:55:03 3 http://www.uky.edu
3519280 ants 2006-04-01 14:20:53 0

Table A.1: AOL Query-click log fragment for the query ’ants’. Horizontal lines separate
users by “user ID”.

After selecting the database to be used in our experiments, we detected734

the actions’ sequence (i.e. clicks) performed by each user during each search735
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session. Therefore, we applied a simple temporal threshold: if two actions736

were performed within a 30 minutes’ timespan then they would belong to737

the same session.738

In tables A.1 and A.2 we can observe the sessions’ detection process in739

the original query-click log.740

After a controversial discussion about the users’ privacy following the741

initial public release, AOL chose to remove the log from its servers and doesn’t742

offer the download anymore, although it’s still available to researchers.743

285103 ants 2006-04-01 19:45:23 1 http://www.dna.affrc.go.jp
285103 ants 2006-04-01 19:45:23 3 http://www.uky.edu
285103 ants 2006-04-01 19:50:59 13 http://ohioline.osu.edu
285103 ants 2006-04-01 19:50:59 14 http://ohioline.osu.edu
285103 ants 2006-04-11 21:44:45 7 http://ohioline.osu.edu

889138 ants 2006-03-05 13:22:31 4 http://www.ants.com
889138 ants 2006-03-05 13:22:31 8 http://ohioline.osu.edu
889138 ants 2006-03-05 13:26:14 11 http://www.infowest.com
889138 ants 2006-03-05 13:26:14 19 http://www.greensmiths.com

3519280 ants 2006-03-30 17:14:14 0
3519280 ants 2006-03-30 17:15:53 1 http://ant.edb.miyakyo-u.ac.jp
3519280 ants 2006-03-30 17:15:53 3 http://www.uky.edu
3519280 ants 2006-03-30 17:15:53 10 http://en.wikipedia.org
3519280 ants 2006-03-30 17:27:46 0
3519280 ants 2006-04-01 13:55:03 2 http://www.lingolex.com
3519280 ants 2006-04-01 13:55:03 3 http://www.uky.edu
3519280 ants 2006-04-01 14:20:53 0

Table A.2: The interactions depicted in table A.1 grouped in 30-minutes long sessions.

Appendix B. Yahoo! query-click log744

Yahoo!’s dataset contains only anonymous information due to the same745

privacy issues experienced by AOL. It includes 66 million clicks recorded in746

July 2010 and relevance judgments of 650 thousand Web pages issued by747

experts between 2009 and 2010 related to some of the logged queries are748

also available. Each record, contains the interactions related to a single page749

results of each user, and is made up by query cookie timestamp url 1750

...url 10 nc et 1 pos 1 ...et nc pos nc, where751

query is the anonymized version of the query,752
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cookie is the anonymized version of the user’s cookie,753

timestamp is Unix time (the amount of seconds passed since 1 January 1970)754

of the issued query,755

url is the anonymized version of the URL,756

nc is the number of clicks performed during the entire session,757

et is the time passed between each click and the beginning of the session,758

pos is the position of each click, which could be:759

1 ...10 one of the 10 results,760

0 above the first result (spelling corrections, header advert, etc.),761

11 below the last result (next page, footer advert, etc.),762

s new query,763

o other clicks.764

As for the previous dataset, we employed in our experiments the subset765

of records related to the queries performed on average once a day during766

the reference timespan and for which we have the relevance judgments. This767

way, we obtained about 65 million different clicks related to almost 44500768

queries, then grouped in 30 minutes long sessions, as the AOL query log; in769

table B.3 there is a fragment of the log.770

00002efd 1deac14e 1279486689 2722a07f 24f6d649 1b2b5a1c 9ca4edf1
23045132 84c0d8b5 de33d1de 9f5855b2 477aabf6 e1468bbf 3 10 1 175
o 215 0

00002efd 3fef0ac3 12799559361 2722a07f 8f59fce1 de33d1de a2c8d464
57a7dd83 a11dbd14 08b5c87e 44a77e61 c21b6dbe 6b0a7915 1 2 0

Table B.3: Yahoo! query-click log.
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