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COMBINATION AND MEAN WIDTH REARRANGEMENTS OF

SOLUTIONS OF ELLIPTIC EQUATIONS IN CONVEX SETS

PAOLO SALANI

Abstract. We introduce a method to compare solutions of different equations in different
domains. As a consequence, we define a new kind of rearrangement which applies to solution
of fully nonlinear equations F (x, u,Du,D2u) = 0, not necessarily in divergence form, in convex
domains and we obtain Talenti’s type results for this kind of rearrangement.

1. Introduction

Rearrangements are among the most powerful tools in analysis. Roughly speaking they ma-

nipulate the shape of an object while preserving someone of its relevant geometric properties.

Typically, a rearrangement of a function is performed by acting separately on each of its level

sets. Probably the most famous one is the radially symmetric decreasing rearrangement, or

Schwarz symmetrization: the Schwarz symmetrand of a continuous function w ≥ 0 is the func-

tion w⋆ whose superlevel sets are concentric balls (usually centered at the origin) with the same

measure of the corresponding superlevel sets of w. Notice that w⋆, by definition, is equidis-

tributed with w. When applied to the study of solutions of partial differential equations with

a divergence structure, this usually leads to a comparison between the solution in a generic

domain and the solution of (a possibly ”rearranged” version of) the same equation in a ball with

the same measure of the original domain. An archetypal result of this type is the following (see

[39]): let u⋆ be the Schwarz symmetrand of the solution u of






∆u+ f(x) = 0 in Ω

u = 0 on ∂Ω
(1.1)

and let v be the solution of






∆v + f⋆(x) = 0 in Ω⋆ ,

v = 0 on ∂Ω⋆ ,

where Ω⋆ is the ball (centered at the origin) with the same measure of Ω, f is a non-negative

function and f⋆ is the Schwarz symmetrand of f . Then, under suitable summability assumptions

on f , it holds

u⋆ ≤ v in Ω⋆ . (1.2)

whence

‖u‖Lp(Ω) ≤ ‖v‖Lp(Ω⋆) (1.3)

for every p > 0, including p = +∞.

Actually the above Talenti’s comparison principle (1.2)-(1.3) applies to more general situations

and the Laplace operator in (1.1) can be substituted by operators like

div(aij(x)uj) + c(x)u
1
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or even more general ones (see for instance [3, 4, 39, 40, 41]), but always in divergence form.

Here we introduce a new kind of rearrangement, which permits to obtain comparison results

similar to (1.2)-(1.3) for very general equations, not necessarily in divergence form, between a

classical solution in a convex domain Ω and the solution in the ball Ω♯ with the same mean

width of Ω. Recall that the mean width w(Ω) of Ω is defined as follows:

w(Ω) =
1

nωn

∫

Sn−1

(

h(Ω, ξ) + h(Ω,−ξ)
)

dξ =
2

nωn

∫

Sn−1

h(Ω, ξ) dξ ,

where h(Ω, ·) is the support function of Ω (then w(Ω, ξ) = w(Ω,−ξ) = h(Ω, ξ) + h(Ω,−ξ) is the

width of Ω in direction ξ or −ξ) and ωn is the measure of the unit ball in R
n. When Ω is a ball,

w(Ω) simply coincides with its diameter; in the plane w(Ω) coincides with the perimeter of Ω,

up to a factor π−1. See Section 2 for more details, notation and definitions.

Precisely, we will deal with problems of the following type






F (x, u,Du,D2u) = 0 in Ω ,
u = 0 on ∂Ω ,
u > 0 in Ω ,

(1.4)

where F (x, t, ξ, A) is a continuous proper elliptic operator acting on R
n × R × R

n × Sn and Ω

is an open bounded convex subset of Rn. Here Du and D2u are the gradient and the Hessian

matrix of the function u respectively, Sn is the set of the n× n real symmetric matrices.

We will see how, given a solution u of problem (1.4) and a parameter p > 0, it is possible to

associate to u a symmetrand u♯p which is defined in a ball Ω♯ having the same mean width of

Ω and, under suitable assumptions on the operator F (see Theorem 6.6), we obtain a pointwise

comparison analogous to (1.2) between u♯p and the solution v in Ω♯, that is

u♯p ≤ v in Ω♯ , (1.5)

where v is the solution of






F (x, v,Dv,D2v) = 0 in Ω♯ ,
v = 0 on ∂Ω♯ ,
v > 0 in Ω♯ ,

(1.6)

Then from (1.5) we get

‖u‖Lq(Ω) ≤ ‖v‖Lq(Ω♯) for every q ∈ (0,+∞] . (1.7)

The precise definition of u♯p is actually quite involved and it will be given in Section 5. Here we

just say that u♯p is not equidistributed with u, in contrast with Schwarz symmetrization; indeed

the measure of the super level sets of u♯p is greater than the measure of the corresponding super

level sets of u.

The results of this paper are based on the refinement of a technique developed in [8, 14, 20]

(and inspired by [1]) to study concavity properties of solution of elliptic and parabolic equations

in convex rings and in convex domains. It is shown here that this refinement permits to compare

solutions of different equations in different domains and this is in fact the main result of the

paper, see Theorem 4.1. More explicitly, consider two convex sets Ω0 and Ω1 and a real number

µ ∈ (0, 1), and denote by Ωµ the Minkowski convex combination (with coefficient µ) of Ω0 and

Ω1, that is

Ωµ = (1− µ)Ω0 + µΩ1 = {(1 − µ)x0 + µx1 : x0 ∈ Ω0, x1 ∈ Ω1} .
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Correspondingly, let u0, u1 and uµ be the solutions of

(Pi)







Fi(x, ui,Dui,D
2ui) = 0 in Ωi ,

ui = 0 on ∂Ωi , i = 0, 1, µ
ui > 0 in Ωi .

Roughly speaking (the precise statement will be given in Section 4) Theorem 4.1 states that,

under suitable assumptions on the operators F0, F1 and Fµ, it is possible to compare uµ with a

suitable convolution of u0 and u1. Such a result has obviously its own interest and it has several

interesting consequences, among which there is the rearrangements technique sketched above.

The paper is organized as follows. In Section 2 we introduce notation and recall some useful

notions and known results. Section 3 is dedicated to the so-called (p, µ)-convolution of non-

negative functions. In Section 4 it is stated Theorem 4.1, the main theorem of the paper, which

is proved in Section 5. Section 6 is devoted to rearrangements: it contains the definition of u♯p
and Theorem 6.6. In Section 7 some examples and applications are presented.

2. Notation and preliminaries

For A ⊆ R
n, we denote byA, ∂A and |A| its closure, its boundary and its measure, respectively.

Let n ≥ 2, x ∈ R
n and r > 0: B(x, r) is the euclidean ball of radius r centered at x, i.e.

B(x, r) = {z ∈ R
n : |z − x| < r} .

In particular we set B = B(0, 1), Sn−1 = ∂B and ωn = |B|.

We denote by Sn the space of n×n real symmetric matrices and by S+
n and S++

n the cones of

nonnegative and positive definite symmetric matrices, respectively. If A,B ∈ Sn, by A ≥ 0 (> 0)

we mean that A ∈ S+
n (S++

n ) and A ≥ B means A−B ≥ 0.

SO(n) is the special orthogonal group of Rn, that is the space of rotations in R
n, i.e. n × n

orthogonal matrices with determinant 1.

With the symbol ⊗ we denote the direct product between vectors in R
n, that is, for x =

(x1, . . . , xn) and y = (y1, . . . , yn), x⊗ y is the n× n matrix with entries (xiyj) for i, j = 1, ..., n.

2.1. Viscosity solutions. We will make use of basic viscosity techniques; here we recall only

few notions and we refer to the User’s Guide [13] and to the books [9, 25] for more details.

The continuous operator F : Rn × R× R
n × Sn → R is said proper if

F (x, r, ξ,A) ≤ F (x, s, ξ,A) whenever r ≥ s.

Let Γ be a convex cone in Sn, with vertex at the origin and containing the cone of nonnegative

definite symmetric matrices S+
n . We say that F is degenerate elliptic in Γ if

F (x, u, ξ,A) ≤ F (x, u, ξ,B) whenever A ≤ B, A,B ∈ Γ .

We set ΓF =
⋃

Γ, where the union is extended to every cone Γ such that F is degenerate

elliptic in Γ. When we say that F is degenerate elliptic, we mean that F is degenerate elliptic

in ΓF 6= ∅. A function u ∈ C2(Ω) is said admissible for F in Ω if D2u(x) ∈ ΓF for every x ∈ Ω.

In general, if not otherwise specified, we will consider for simplicity only operators such that

ΓF = Sn throughout (then every regular function is admissible).

Given two functions u and φ defined in an open set Ω, we say that φ touches u by above at

x0 ∈ Ω if

φ(x0) = u(x0) and φ(x) ≥ u(x) in a neighbourhood of x0.
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Analogously, we say that φ touches u by below at x0 ∈ Ω if

φ(x0) = u(x0) and φ(x) ≤ u(x) in a neighbourhood of x0.

An upper semicontinuous function u is a viscosity subsolution of the equation F = 0 in Ω if, for

every C2 function φ touching u by above at any point x ∈ Ω, it holds

F (x, u(x),Dφ(x),D2φ(x)) ≥ 0. (2.1)

A lower semicontinuous function u is a viscosity supersolution of F = 0 in Ω if, for every

admissible C2 function φ touching u by below at any point x ∈ Ω, it holds

F (x, u(x),Dφ(x),D2φ(x)) ≤ 0.

A viscosity solution is a continuous function which is a viscosity subsolution and supersolution

of F = 0 at the same time.

The technique proposed in this paper requires the use of the comparison principle for viscosity

solutions. Since we will have only to compare a viscosity subsolution with a classical solution,

we will need only a weak version of the comparison principle; precisely, we say that the operator

F satisfies the Comparison Principle if the following statement holds:

(CP) Let u ∈ C(Ω)∩C2(Ω) and v ∈ C(Ω) be respectively a classical supersolution and a viscosity

subsolution of F = 0 such that u ≥ v on ∂Ω. Then u ≥ v in Ω.

Comparison Principles for viscosity solutions are an actual and deep field of investigation and

it is out of our aims to give here an updated picture of the state of the art, then we just refer to

[9, 13, 25]. However, when one of the involved function is regular, the situation is much easier

and (CP) is for instance satisfied if F is strictly proper, in other words if it is strictly monotone

with respect to u.

2.2. Minkowski addition and support functions of convex sets. The Minkowski sum of

two subsets A0 and A1 of Rn is simply defined as follows

A0 +A1 = {x+ y : x ∈ A0, y ∈ A1} .

Let µ ∈ (0, 1); the Minkowski convex combination of A0 and A1 (with coefficient µ) is given by

Aµ = (1− µ)A0 + µA1 = {(1 − µ)x0 + µx1 : x0 ∈ A0, x1 ∈ A1} .

The famous Brunn-Minkowski inequality states

|Aµ|
1/n ≥ (1− µ)|A0|

1/n + µ|A1|
1/n (2.2)

for every couple A0, A1 of measurable sets such that Aµ is also measurable. In other words, (2.2)

states that the n-dimensional volume (i.e. Lebesgue measure) raised to power 1/n is concave

with respect to Minkowski addition (see the beautiful paper by Gardner [16] for a survey on this

and related inequalities).

When the involved sets are convex, Minkowski addition can be conveniently expressed in

terms of support functions (see property (ii) below). The support function hΩ : Rn → R of a

bounded convex set Ω is defined as follows

hΩ(X) = max
y∈Ω

〈X, y〉 X ∈ R
n .
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Every support function is convex and positively homogeneous of degree 1, that is:

hΩ(X + Y ) ≤ hΩ(X) + hΩ(Y ) for every X,Y ∈ R
n

and

hΩ(tX) = t hΩ(X) for every X ∈ R
n and t ≥ 0 .

Conversely, every convex and positively 1-homogeneous function is the support function of a

convex body (i.e. a closed bounded convex set). This establishes a one to one correspondence

between support functions and convex bodies.

Moreover the following properties hold:

(i) htΩ = thΩ for t ≥ 0;

(ii) hΩ1+Ω2
= hΩ1

+ hΩ2
.

The latter simply reads that the Minkowski addition of convex sets corresponds to the sum of

support functions.

As already said in the introduction, we denote the mean width of Ω by w(Ω), that is

w(Ω) =
1

nωn

∫

Sn−1

(

h(Ω, ξ) + h(Ω,−ξ)
)

dξ =
2

nωn

∫

Sn−1

h(Ω, ξ) dξ .

When Ω is a ball, w(Ω) coincides with its diameter. In the plane w(Ω) coincides with the

perimeter of Ω, up to a factor π−1.

Given a convex set Ω and a point x ∈ ∂Ω, we denote by νΩ(x) the exterior normal cone of Ω

at x, that is

νΩ(x) = {p ∈ R
n : 〈y − x, p〉 ≤ 0 for every y ∈ Ω} .

The normal cone of a convex set is a non-empty convex cone for every boundary point and in

fact Ω is convex if and only if νΩ(x) 6= ∅ for every x ∈ ∂Ω. The following elementary lemma

about Minkowski addition will be useful in the sequel.

Lemma 2.1. Let Ω0, Ω1 ⊆ R
n be open bounded convex sets and µ ∈ (0, 1).

Then Ωµ = (1−µ)Ω0+µΩ1 is an open bounded convex set; moreover if x0 ∈ Ω0 and x1 ∈ Ω1 are

such that x = (1−µ)x0+µx1 ∈ ∂Ω, then x0 ∈ ∂Ω0, x1 ∈ ∂Ω1 and νΩµ(x) = νΩ0
(x0)∩νΩ1

(x1) 6= ∅.

The properties stated in the lemma can be considered folklore in the theory of convex bodies

and the proof is straightforward.

For further details on convex sets, Minkowski addition and support functions, we refer to [37].

2.3. Power concave functions. Let p ∈ [−∞,+∞] and µ ∈ (0, 1). Given two real numbers

a > 0 and b > 0, the quantity

Mp(a, b;µ) =







































max{a, b} p = +∞

[(1− µ)ap + µbp]1/p for p 6= −∞, 0, +∞

a1−µbµ p = 0

min{a, b} p = −∞

(2.3)

is the (µ-weighted) p-mean of a and b. For a, b ≥ 0, we define Mp(a, b;µ) as above if p ≥ 0

and we set Mp(a, b;µ) = 0 if p < 0 and ab = 0. Notice that Mp is continuous with respect to

(a, b) ∈ [0,∞)× [0,∞) for every p. See [18] for more details.
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A simple consequence of Jensen’s inequality is that

Mp(a, b;µ) ≤ Mq(a, b;µ) if −∞ ≤ p ≤ q ≤ +∞ . (2.4)

Definition 2.2. Let Ω be an open convex set in R
n and p ∈ [−∞,∞]. A function v : Ω →

[0,+∞) is said p -concave if

v((1− µ)x+ µy) ≥ Mp(v(x), v(y);µ)

for all x, y ∈ Ω and µ ∈ (0, 1).

In the cases p = 0 and p = −∞, v is also said log-concave and quasi-concave in Ω, respectively.

In other words, a non-negative function v, with convex support Ω, is p-concave if:

- it is a non-negative constant in Ω, for p = +∞;

- vp is concave in Ω, for p > 0;

- log v is concave in Ω, for p = 0;

- vp is convex in Ω, for p < 0;

- it is quasi-concave, i.e. all of its superlevel sets are convex, for p = −∞.

Notice that p = 1 corresponds to usual concavity

It follows from (2.4) that if v is p -concave, then v is q -concave for any q ≤ p. Hence quasi-

concavity is the weakest conceivable concavity property.

It is well known that solutions of elliptic Dirichlet problems in convex domains are often power

concave. For instance, a famous result by Brascamp and Lieb [7] says that the first positive

eigenfunction of the Laplace operator in a convex domain is log-concave; another classical result

states that the square root of the solution to the torsion problem in a convex domain is concave,

see [21, 24, 31]. Power concave solutions have been also studied in [22, 23, 26] and more recent

developments are for instance in [1, 27, 28, 29, 30, 36, 44]; furthermore see [14] and [8], which

are strongly related to the present paper.

2.4. The Borell-Brascamp-Lieb inequality. The Borell-Brascamp-Lieb inequality (see [5,

7]) is a generalization of the Prékopa-Leindler inequality. I recall it here in the form taken from

[16, Theorem 10.1].

Proposition 2.3. Let µ ∈ (0, 1), f, g, h nonnegative functions in L1(Rn), and −1/n ≤ s ≤ ∞.

Assume that

h
(

(1− µ)x+ µy
)

≥ Ms(f(x), g(y);µ) (2.5)

for all x ∈ sprt(f), y ∈ sprt(g). Then
∫

Rn

hdx ≥ Mq

(
∫

Rn

f dx,

∫

Rn

g dx ;µ

)

,

where

q =











1/n if s = +∞,

s/(ns+ 1) if s ∈ (−1/n,+∞),

−∞ if s = −1/n.

(2.6)

The Prékopa-Leindler inequality corresponds to the case s = 0 and it is a functional version

of the Brunn-Minkowski inequality.
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3. The (p, µ)-convolution of non-negative functions

From now on, throughout the paper, we consider two open bounded convex sets Ω0, Ω1 ⊂ R
n

and a fixed real number µ ∈ (0, 1), and denote by Ωµ the Minkowski convex combination (with

coefficient µ) of Ω0 and Ω1, i.e. Ωµ = (1− µ)Ω0 + µΩ1.

Definition 3.1. Let p ∈ R, µ ∈ (0, 1), u0 ∈ C(Ω0) and u1 ∈ C(Ω1) such that ui ≥ 0 in Ωi,

i = 0, 1. The (p, µ)-convolution of u0 and u1 is the function up,µ : Ωµ → R defined as follows:

up,µ(x) = sup
{

Mp

(

u0(x0), u1(x1);µ
)

:
x = (1− µ)x0 + µx1 , xi ∈ Ωi, i = 0, 1

}

.
(3.1)

The above definition can be extended to the case p = ±∞, but we do not need here. Let me

recall however that the case p = −∞ has been useful in [6, 11] to prove the Brunn-Minkowski

inequality for p-capacity of convex sets.

Let p 6= 0; then, roughly speaking, the graph of upp,µ is obtained as the Minkowski convex

combination (with coefficient µ) of the graphs of up0 and up1; precisely we have

K(p)
µ = (1− µ)K

(p)
0 + µK

(p)
1 ,

where

K(p)
µ = {(x, t) ∈ R

n+1 : x ∈ Ωµ, 0 ≤ t ≤ up,µ(x)
p} ,

K
(p)
i = {(x, t) ∈ R

n+1 : x ∈ Ωi, 0 ≤ t ≤ ui(x)
p} , i = 0, 1 .

In other words, the (p, µ)-convolution of u0 and u1 corresponds to the (1/p)-power of the supre-

mal convolution (with coefficient µ) of up0 and up1. When p = 0, the above geometric consider-

ations continue to hold with logarithm in place of power p and exponential in place of power

1/p. When p = 1, u1,µ is just the usual supremal convolution of u0 and u1. For more details on

infimal/supremal convolutions of convex/concave functions, see [34, 38] (and also [12, 35]).

From Definition 3.1 and (2.4), for every µ ∈ (0, 1) we get

u ≤ up,µ ≤ uq,µ for −∞ ≤ p ≤ q ≤ +∞ . (3.2)

Clearly u is p-concave if and only if u = up,µ for every µ ∈ (0, 1).

Lemma 3.2. Let p ∈ [−∞,+∞), µ ∈ (0, 1). For i = 0, 1 let ui ∈ C(Ωi) such that ui = 0 on

∂Ωi and ui > 0 in Ωi. Then up,µ ∈ C(Ωµ) and

up,µ > 0 in Ωµ, up,µ = 0 on ∂Ωµ. (3.3)

Proof. The proof of this lemma is almost straightforward and completely analogous to the

proof of [8, Lemma 1]. We just notice that up,µ > 0 in Ω by the very definition of up,µ while

up,µ = 0 on ∂Ω by Lemma 2.1. �

Notice that, as Ωi is compact for i = 0, 1 and Mp, u0 and u1 are continuous, then the

supremum in (3.1) is in fact a maximum. Hence for every x̄ ∈ Ωµ there exist x0 ∈ Ω0 and

x1 ∈ Ω1 such that

x̄ = (1− µ)x0 + µx1 , up,µ(x̄) = Mp(u0(x0), u1(x1);µ) . (3.4)

The next lemma is fundamental to this paper.
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Lemma 3.3. Let p ∈ [0, 1), µ ∈ (0, 1), ui ∈ C1(Ωi) ∩ C(Ωi) such that ui = 0 on ∂Ωi, ui > 0 in

Ωi for i = 0, 1.

In case p > 0 assume furthermore that for i = 0, 1 it holds

lim inf
y→x

∂ui(y)

∂ν
> 0 (3.5)

for every x ∈ ∂Ωi, where ν is any inward direction of Ωi at x.

If x̄ lies in the interior of Ωµ, then the points x0 and x1 defined by (3.4) belong to the interior

of Ω0 and Ω1, respectively, and

u0(x0)
p−1Du0(x0) = u1(x1)

p−1Du1(x1) . (3.6)

Proof. First we prove that xi ∈ Ωi for i = 0, 1.

The case p = 0 easily follows from (3.3) and the definition of M0, since up,µ(x̄) > 0 while

u0(x0)
1−µu1(x1)

µ = 0 if x0 ∈ ∂Ω0 or x1 ∈ ∂Ω1.

Then let p > 0. By contradiction, assume that (up to a relabeling) x0 ∈ ∂Ω0. Then u0(x0) = 0

and x1 must lie in the interior of Ω1, otherwise up,µ(x̄) = 0, contradicting (3.3). Notice that in

this case

up,µ(x̄) = µ1/pu1(x1) .

Set v0 = up0, v1 = up1 and

a = |Dv1(x1)| = p u1(x1)
p−1|Du1(x1)| .

By the regularity of u1, we have

|Dv1| < a+ 1 in B(x1, r1) ⊂ Ω1 (3.7)

for r1 > 0 small enough.

Now take any direction ν pointing inwards into Ω0 at x0; by assumption (3.5) we get

lim inf
x→x0

∂v0(x)

∂ν
= +∞ , (3.8)

whence
∂v0
∂ν

> a+ 1 in Ω0 ∩B(x0, r0) (3.9)

for r0 > 0 small enough.

Next we take ρ < min{(1− µ)r0, µr1} and we consider the points

x̃0 = x0 +
ρ

(1−µ)ν ,

x̃1 = x1 −
ρ
µν .

We have

x̃0 ∈ B(x0, r0) ∩ Ω0 , x̃1 ∈ B(x1, r1)

and

x̄ = (1− µ)x̃0 + µx̃1 . (3.10)

Then from (3.7) and (3.9) we get

u0(x̃0)
p = v0(x̃0) > v0(x0) + (a+ 1) ρ

(1−µ) = (a+ 1) ρ
(1−µ) ,

u1(x̃1)
p = v1(x̃1) ≥ v1(x1)

p − (a+ 1) ρµ = u1(x1)
p − (a+ 1) ρµ ,



MEAN WIDTH REARRANGEMENTS 9

whence
[

(1− µ)u0(x̃0)
p +µu1(x̃1)

p
]1/p

>
[

(1− µ)(a+ 1) ρ
(1−µ) + µu1(x1)

p − µ(a+ 1) ρµ

]1/p
= up,µ(x̄)

which contradicts the definition of up,µ, due to (3.10).

So far, we have proved that xi must stay in the interior of Ωi for i = 0, 1. Then by the

Lagrange Multipliers Theorem we easily get (3.6). In fact, we could just notice that x0 ∈ Ω0 is

an interior maximum point for the function

f(x) = Mp

(

u0(x), u1
( x̄− (1− µ)x

µ

)

;µ

)

and ∇f(x0) = 0 gives (3.6).

The proof of the lemma is complete. �

3.1. The (p, µ)-convolution of more than two functions. The definition of the (p, µ)-

convolution of two functions is easily extended to an arbitrary number of functions.

Let 3 ≤ m ∈ N and set Γ+
m = {(x1, . . . , xm) ∈ R

m : xi ≥ 0 , i = 1, . . . ,m} and

Γ1
m =

{

(µ1, . . . , µm) ∈ Γ+
m : µi > 0 for i = 1, . . . ,m and

m
∑

i=1

µi = 1

}

.

Let p ∈ [−∞,+∞], µ ∈ Γ1
m and a = (a1, . . . , am) ∈ Γ+

m. If
∏m

i=1 ai > 0, the p-mean of a1, . . . , am
with coefficient µ is defined as follows:

Mp(a1, . . . , am;µ) =







































max{a1, . . . , am} p = +∞

[
∑m

i=1 µia
p
i ]
1/p

p 6= −∞, 0, +∞

∏m
i=1 a

µi

i p = 0

min{a1, . . . , am} p = −∞

If
∏m

i=1 ai = 0, we define Mp(a, µ) as above if p ≥ 0 and we set Mp(a, µ) = 0 if p < 0.

If we now considerm non-negative functions u1, u2, . . . , um supported in the sets Ω1,Ω2, . . . ,Ωm

respectively, we can define

up,µ(x) = sup
{

Mp (u0(x0), . . . , um(xm);µ) :
xi ∈ Ωi, i = 1, . . . ,m, x =

∑m
i=1 µixi

}

.
(3.11)

Clearly all the properties and lemmas stated and proved before for the case m = 2 continue to

hold in the case m ≥ 3, with the obvious modifications. In particular we explicitly write the

following.

Lemma 3.4. Let p ∈ [−∞,+∞), µ ∈ Γ1
m. Let ui ∈ C(Ωi) such that ui = 0 on ∂Ωi and ui > 0

in Ωi, for i = 1, . . . ,m. Then up,µ ∈ C(Ωµ) and

up,µ > 0 in Ωµ, up,µ = 0 on ∂Ωµ. (3.12)
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As before, since Ωi is compact for i = 1, . . . ,m and Mp, u1, . . . , um are continuous, the

supremum in (3.11) is in fact a maximum. Hence for every x̄ ∈ Ωµ there exist x0 ∈ Ω0, . . . , xm ∈

Ωm such that

x̄ =

m
∑

i=1

µixi , up,µ(x̄) = Mp(u1(x1), . . . , um(xm);µ) . (3.13)

Lemma 3.5. Let p ∈ [0, 1), µ ∈ (0, 1), ui ∈ C1(Ωi) ∩ C(Ωi) such that ui = 0 on ∂Ωi, ui > 0 in

Ωi for i = 1, . . . ,m. In case p > 0 assume furthermore that for (3.5) holds for i = 1, . . . ,m.

If x̄ lies in the interior of Ωµ, then the points x1, . . . , xm defined by (3.4) belong to the interior

of Ω1, . . . ,Ωm, respectively, and

u1(x1)
p−1Du1(x1) = · · · = um(xm)p−1Dum(xm) . (3.14)

4. The main theorem

As before and throughout, Ω0 and Ω1 are open bounded convex sets in R
n, µ ∈ (0, 1) and

Ωµ = (1− µ)Ω0 + µΩ1.

For i = 0, 1, µ, we denote by ui a solution of the following problem

(Pi)







Fi(x, ui,Dui,D
2ui) = 0 in Ωi ,

ui = 0 on ∂Ωi ,
ui > 0 in Ωi ,

where Fi : Ωi × [0,+∞)× R
n × Sn is a proper elliptic operator.

If not otherwise specified, we will consider classical solutions for i = 0, 1 (that is: u0 ∈

C2(Ω0)∩C(Ω0) and u1 ∈ C2(Ω1)∩C(Ω1) and they satisfy pointwise everywhere all the equations

in (P0) and (P1), respectively), while uµ ∈ C(Ωµ) may be a viscosity solution of the corresponding

problem (Pµ).

For i = 0, 1, µ and for every fixed (θ, p) ∈ R
n× [0,∞) we define G

(θ)
i,p : Ωi× (0,+∞)×Sn → R

as

G
(θ)
i,p (x, t, A) = Fi(x, t

1

p , t
1

p
−1θ, t

1

p
−3A) for p > 0 , (4.1)

and

G
(θ)
i,0 (x, t, A) = Fi(x, e

t, etθ, etA) . (4.2)

Assumption (Aµ,p). Let µ ∈ (0, 1) and p ≥ 0. We say that F0, F1, Fµ satisfy the assumption

(Aµ,p) if, for every fixed θ ∈ R
n, the following holds:

G
(θ)
µ,p

(

(1− µ)x0 + µx1, (1− µ)t0 + µt1, (1 − µ)A0 + µA1

)

≥

min{G
(θ)
0,p(x0, t0, A0); G

(θ)
1,p(x1, t1, A1)}

for every x0 ∈ Ω0, x1 ∈ Ω1, t0, t1 > 0 and A0, A1 ∈ Sn.

Now we are ready to state the main result of the paper.

Theorem 4.1. Let µ ∈ (0, 1) and Ωi and ui, i = 0, 1, µ, be as above described. Assume that the

operator Fµ satisfies the comparison principle (CP ) and that F0, F1, Fµ satisfy the assumption

(Aµ,p) for some p ∈ [0, 1). If p > 0, assume furthermore that (3.5) holds true for i = 0, 1.

Then

uµ((1− µ)x0 + µx1) ≥ Mp(u0(x0), u1(x1);µ) (4.3)

for every x0 ∈ Ω0, x1 ∈ Ω1.



MEAN WIDTH REARRANGEMENTS 11

We remark that assumption (3.5) is not needed for p = 0, while for p > 0 it is in general

provided by a suitable version of the Hopf’s Lemma. Notice also that, for p < 1, (3.5) implies

(3.8). In fact, we could also apply our argument to the case p ≥ 1; in such a case however we

would need to assume directly (3.8) instead of (3.5).

Coupling (4.3) with the Borell-Brascamp-Lieb inequality (i.e. Proposition 2.3) leads to a

comparison of the Lr norms of uµ with suitable combinations of the Lr norms of u0 and u1.

Precisely, we have the following corollary.

Corollary 4.2. In the same assumptions and notation of Theorem 4.1, for every r > 0 we have

‖uµ‖Lr(Ωµ) ≥ Mq(‖u0‖Lr(Ω0), ‖u1‖Lr(Ω1);µ) , (4.4)

where

q =







pr
np+r for r ∈ (0,+∞)

p for r = +∞ .

Proof. The inequality for the L∞ norms is a straightforward consequence of (4.3), obtained

by taking x0 and x1 as points which realize the maximum of u0 and u1, respectively (in fact

in this case equality holds in (4.4)). The proof of the inequality for a generic r ∈ (0 + ∞)

follows from Proposition 2.3, applied to the functions h = urµ, f = ur0 and g = ur1 with s = p/r,

assumption (2.5) being satisfied thanks to (4.3). �

Notice that in some special cases, involving particular operators, results similar to those we

could obtain by applying Theorem 4.1 and Corollary 4.2 to the situations at hands, has been

already proved (even though not explicitly stated) and used to prove Brunn-Minkowski type

inequalities for variational functionals, see for instance [10, 12, 29, 36, 43]. Indeed, Theorem 4.1

could be regarded as a general Brunn-Minkowski inequality for solutions of PDE’s (and then

applied to obtain Brunn-Minkowskii type inequalities for possibly related functionals).

5. Proof of Theorem 4.1

The proof of Theorem 1.1 essentially consists of the following lemma.

Lemma 5.1. In the same assumptions and notation of Theorem 4.1, it follows that up,µ is a

viscosity subsolution of problem (Pµ).

Proof. The proof follows somehow the steps of [8, 14, 20] and the strategy is the following:

for every x̄ ∈ Ωµ, we construct a function ϕp,µ ∈ C2(Ωµ) which touches up,µ by below at x̄ and

such that

F (x̄, ϕp,µ(x̄),Dϕp,µ(x̄),D
2ϕp,µ(x̄)) ≥ 0. (5.1)

Clearly this implies that up,µ is a viscosity subsolution of (Pµ): indeed every test function φ

touching up,µ at x̄ by above must also touch ϕp,µ at x̄ by above, then

φ(x̄) = ϕp,µ(x̄) , Dφ(x̄) = Dϕp,µ(x̄) and D2φ(x̄) ≥ D2ϕp,µ(x̄)

and (2.1) follows from the ellipticity of F .

Then consider x̄ ∈ Ω. By Lemma 3.3, there exist x0 ∈ Ω0 and x1 ∈ Ω1 satisfying (3.4) and

such that (3.6) holds.
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First we treat the case p > 0 and, for a small enough r > 0, we introduce the function

ϕp,µ : B(x̄, r) → R defined as follows

ϕp,µ(x) =
[

(1− µ)u0 (x0 + a0(x− x̄))p + µu1 (x1 + a1(x− x̄))p
]1/p

(5.2)

where

ai =
ui(xi)

p

up,µ(x̄)p
, for i = 0, 1. (5.3)

The following facts trivially hold:

(A) (1− µ)a0 + µa1 = 1 by (3.4);

(B) x = (1 − µ)(x0 + a0(x − x̄)) + µ(x1 + a1(x − x̄)) for every x ∈ B(x̄, r), thanks to (A)

and the first equation in (3.4);

(C) ϕp,µ(x̄) = up,µ(x̄);

(D) ϕp,µ(x) ≤ up,µ(x) in B(x̄, r) (this follows from (B) and the definition of up,µ).

In particular, (C) and (D) say that ϕp,µ touches up,µ from below at x̄.

A straightforward calculation yields

Dϕp,µ(x̄) = ϕp,µ(x̄)
1−p

[

(1− µ)u0(x0)
p−1a0 Du0(x0) + µu1(x1)

p−1a1 Du1(x1)
]

,

Then, by (3.6), (5.3) and the definition of ϕp,µ, we get

Dϕp,µ(x̄) = ϕp,µ(x̄)
1−pui(xi,p)

p−1Dui(xi,p) for i = 0, 1. (5.4)

Thanks to another straightforward calculation and using (3.6), (5.3), (5.4) and the definition of

ϕp,µ, we also obtain

D2ϕp,µ(x̄) = (1− µ)
u0(x0)

3p−1

ϕp,µ(x̄)3p−1
D2u0(x0) + µ

u1(x1)
3p−1

ϕp,µ(x̄)3p−1
D2u1(x1) +

+(1− p)ϕp,µ(x̄)
−1ADϕp,µ(x̄)⊗Dϕp,µ(x̄) ,

where

A = 1− ϕp,µ(x̄)
−p[(1− µ)u0(x0)

p + µu1(x1)
p] .

Now notice that (C) and (3.4) give

A = 0 .

Then

D2ϕp,µ(x̄) = (1 − µ)
u0(x0)

3p−1

ϕp,µ(x̄)3p−1
D2u0(x0) + µ

u1(x1)
3p−1

ϕp,µ(x̄)3p−1
D2u1(x1) . (5.5)

Since u0 and u1 are classical solutions of (P0) and (P1) respectively, it follows that for i = 0, 1

G
(θ)
i,p (xi, ui(xi)

p, ui(xi)
3p−1D2ui(xi)) = Fi(xi, ui(xi),Dui(xi),D

2ui(xi)) = 0 ,

where

θ = ϕp,µ(x̄)
p−1Dϕp,µ(x̄) .

Then, by setting µ0 = (1− µ) and µ1 = µ, assumption (Aµ,p) entails

G(θ)
µ,p

(

1
∑

i=0

µixi,
1
∑

i=0

µiui(xi)
p,

1
∑

i=0

µi ui(xi)
3p−1D2ui(xi)

)

≥ 0 ,
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and thanks to (C) and (5.5) this precisely coincides with

G(θ)
µ,p(x̄, ϕp,µ(x̄)

p, ϕp,µ(x̄)
3p−1D2ϕp,µ(x̄)) ≥ 0 .

The latter implies (5.1) by the definition of G
(θ)
µ,p and this concludes the proof for p > 0.

The case p = 0 is similar, the only difference consisting in that we set

ϕ0,µ := exp
(

(1 − λ) log u0(x1,0 + x− x̄) + µ log u1(xn+1,0 + x− x̄)
)

,

which means ai,0 = 1 for i = 0, 1. �

The proof of Theorem 4.1 is now very easy.

Proof of Theorem 4.1. Under the assumptions of the theorem, we can apply the previous lemma

to obtain that up,µ is a viscosity subsolution of (Pµ). Then by the Comparison Principle we get

the thesis. �

5.1. A generalization. Looking at the proof of Lemma 5.1, it is easily understood that as-

sumption (Aµ,p) can be in fact substituted by a slightly weaker one: precisely what really

matters is that the inequality in (Aµ,p) holds only for (xi, ti, Ai) such that Gp,θ(xi, ti, Ai) = 0,

i = 0, 1. Moreover, it is clear that, when considering the combination of more than two Dirichlet

problems, a generalized version of Theorem 4.1 continues to hold.

Exactly: let m ∈ N, m ≥ 2, and µ = (µ1, µ2, . . . , µm) ∈ Γ1
m; let Ωi, Fi and ui be a convex set,

a proper elliptic operator and the solution of problem (Pi), respectively, for i = 1, . . . ,m and

i = µ, where

Ωµ =
m
∑

i=1

µiΩi ;

define G
(θ)
i,p as in (4.1) and (4.2) and set

Z
(θ)
i,p = {(x, t, A) : G

(θ)
i,p (x, t, A) = 0}

for i = 1, . . . ,m; then we say that the operators Fµ, F1, . . . , Fm satisfies the Assumption Weak

(Aµ,p) if

(WAµ,p) S(θ)
µ,p = {(x, t, A) : G(θ)

µ,p(x, t, A) ≥ 0} ⊇
m
∑

i=1

µiZ
θ
i,p

for every θ ∈ R
n.

Theorem 5.2. Assume that the operator Fµ satisfies the comparison principle (CP ) and that

F1, . . . , Fm, Fµ satisfy the assumption (WAµ,p) for some p ∈ [0, 1).

If p > 0, assume furthermore that for i = 1 . . . ,m it holds

lim inf
y→x

∂ui(y)

∂ν
> 0 (5.6)

for every x ∈ ∂Ωi, where ν is any inward direction of Ωi at x.

Then

uµ
(

∑

µixi
)

≥ Mp(u1(x1), . . . , um(xm);µ) (5.7)

for every x1 ∈ Ω1, x2 ∈ Ω2 . . . , xm ∈ Ωm.

Obviously the key point is that it holds an appropriate version of Lemma 5.1, that is the

following.
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Lemma 5.3. In the same assumptions and notation of Theorem 5.2, it follows that up,µ, defined

by (3.11), is a viscosity subsolution of (1.4) in Ωµ.

The proof of this lemma is just a straightforward adaptation of the proof of Lemma 5.1 and

we omit it.

6. Rearrangements

Throughout p will be a real positive number and Ω ⊂ R
n an open bounded convex set.

We say that Ω♯
m is a rotation mean of Ω if there exist a numberm ∈ N and ρ1, . . . , ρm ∈ SO(n)

such that

Ω♯
m =

1

m
(ρ1Ω+ · · ·+ ρmΩ) .

The following theorem is due to Hadwiger.

Theorem 6.1. [37, Theorem 3.3.2]. Given an open bounded convex set Ω, there exists a sequence

of rotation means of Ω converging in Hausdorff metric to a ball Ω♯ with diameter equal to the

mean width w(Ω) of Ω.

Let u ∈ C(Ω) be a non-negative function, positive in Ω and vanishing on ∂Ω, and let ρ ∈

SO(n); we set

uρ(x) = u(ρ−1x) for x ∈ ρΩ . (6.1)

Now let {ρi}
∞

i=1 ⊂ SO(n) be the sequence of rotations associated to Ω by Theorem 6.1, such

that Ω♯
m converges to Ω♯, and set

Ωi = ρiΩ , ui = uρi in Ωi , for i ∈ N .

Then for every m ∈ N, we take

µm = (1/m, . . . , 1/m) ∈ Γ1
m

and define the function

u♯p,m : Ω
♯
m → [0,+∞)

as the (p, µm)-mean up,µm of the functions u1, . . . , um, according to (3.11).

Lemma 6.2. In the assumptions and notation given above, for p > 0 the sequence {u♯p,m}∞m=1

is uniformly convergent (up to a subsequence) in Ω
♯
to a function u♯p ∈ C(Ω

♯
) vanishing on ∂Ω♯.

Proof. First we notice that, by Lemma 3.4, it follows u♯p,m ∈ C(Ω
♯
m), u♯p,m(x) > 0 for x ∈ Ω♯

m

and u♯p,m(x) = 0 for x ∈ ∂Ω♯
m.

Since up is continuous in the compact set Ω, we have that up is uniformly continuous in Ω and

we denote by ωp its modulus of continuity. Obviously upi is also uniformly continuous in Ωi with

the same modulus of continuity ωp for every i ∈ N. Then, as supremal convolution of functions

with the same modulus of continuity, also (u♯p,m)p is uniformly continuous in Ω
♯
m with modulus

of continuity ωp for every m ∈ N (see [38] for instance). Now let R = max{dist(x, 0) : x ∈ Ω}

and let B = B(0, 2R) the ball centered at the origin with radius 2R. Then ρΩ ⊂ B for every

ρ ∈ SO(n), so that Ω
♯
m ⊂ B for every m ∈ N and consequently Ω

♯
⊂ B. We set u(x) = 0 for

x ∈ B \ Ω, ui(x) = 0 for x ∈ B \ Ωi for every i and u♯p,m(x) = 0 for x ∈ B \ Ω♯
m for every m.

So extended, up, upi and (u♯p,m)p obviously remain uniformly continuous, with the same modulus

of continuity ωp, in B. Moreover, since 0 ≤ ui(x) ≤ M for x ∈ ρiB, where M = maxΩ u,
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it follows 0 ≤ u♯p,m(x)p ≤ Mp for x ∈ B for every m. Finally {(u♯p,m)p}∞m=1 is a sequence

of equibounded and equicontinuous functions in B and it is possible to extract an uniformly

convergent subsequence, say (u♯p,mk
)p. We set

u♯p(x) =

(

lim
k→+∞

u♯p,mk
(x)p

)1/p

x ∈ B. (6.2)

We have just to prove that u♯p(x) = 0 for x ∈ ∂Ω♯. Since u♯p ∈ C(B) (as uniform limit of a

sequence of continuous functions), we can just prove that u♯p vanishes in B \ Ω
♯
. Then consider

a point x ∈ B \ Ω
♯
, that is a point x such that dist(x,Ω♯) = d > 0: since Ω♯

m converges to Ω♯

in Hausdorff metric as m → ∞, there exists Mx such that d(x,Ω♯
m) > d/2 for every m ≥ Mx.

Then x ∈ B \Ω♯
m and u♯p,m(x) = 0 for m ≥ Mx, whence u♯p(x) = 0. �

The previous lemma contains the definition (6.2) of u♯p, which may look quite involved, as

already said in the Introduction. To give a geometric insight, let me say that it is somewhat

reminiscent of a rearrangement technique introduced by Tso in [42] to treat the case of Monge-

Ampère equation, where every sublevel set of a convex function is substituted by a ball with the

same mean width; here, instead, the level sets of u♯p are not necessarily balls, apart from Ω♯ =

{u♯p ≥ 0}, and their mean width is in general greater than the mean width of the corresponding

level sets of u, apart again from the ground domain (indeed, we are not acting separately on each

level sets, but globally on the function). Notice also that (6.2) may be considered not completely

satisfying as a definition of a rearrangement, since it seems to depend on the chosen subsequence

u♯p,mk
. Nevertheless it suffices to prove a priori estimates similar to (1.2)-(1.3) of the solution u

of (1.4) in terms of the solution v in Ω♯ when F is a rotationally invariant operator, i.e. when

F (ρx, u, ρθ, ρAρT ) = F (x, u, θ,A) (6.3)

for every (x, u, θ,A) ∈ R
n × R× R

n × Sn and every ρ ∈ SO(n).

Examples of rotationally invariant operators are the Laplacian, the q-Laplacian, the mean

curvature operator, the Hessian operators, etc. Moreover notice that F is rotationally invariant

when it depends on x, θ and A only in terms of |x|, |θ| and the eigenvalues of A, respectively.

Remark 6.3. If F is rotationally invariant and u solves (1.4) in Ω, then uρ (defined in (6.1))

solves (1.4) in ρΩ. This is the reason for we consider rotationally invariant operators.

In view of (4.1), given an operator F , a real number p > 0 and a vector θ ∈ R
n, we set

G(θ)
p (x, t, A) = F (x, t

1

p , t
1

p
−1θ, t

1

p
−3A) (x, t, A) ∈ R

n × [0,∞) × Sn . (6.4)

Lemma 6.4. Let Ω be a bounded open convex set in R
n and u a classical solution of (1.4) in

Ω, where F is a rotationally invariant proper elliptic operator and u satisfies assumption (3.5)

for every x ∈ ∂Ω.

Let p ∈ (0, 1) and assume that

the set {(x, t, A) ∈ [0,∞)× Sn : G(θ)
p (x, t, A) ≥ 0} is convex (6.5)

for every fixed θ ∈ R
n.

Then u♯p is a viscosity subsolution of problem (1.4) in Ω♯.
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Proof. Set µ = (1/m, . . . , 1/m), Fµ = F and Fi = F for i = 1, . . . ,m. Then assumption

(6.5) implies that (WCµ,p) holds for the operators Fµ and F1, . . . , Fm. Hence u♯p,m is a viscosity

subsolution in Ωm for every m ∈ N by Lemma 5.3. The conclusion follows thanks to the stability

of viscosity subsolutions with respect to uniform convergence. �

Remark 6.5. Notice that assumption (6.5) is satisfied if the function G
(θ)
p is quasi-concave for

every θ ∈ R
n, hence if it is q-concave for some q ∈ R.

Theorem 6.6. In the same assumptions of the previous lemma, if F satisfies the comparison

principle (CP ), then (1.5) and (1.7) hold, where u and v are the solutions of problem (1.4) and

(1.6), respectively.

Proof. First notice that (1.5) follows from Lemma 6.4 using the comparison principle.

Then, (1.5) yields

‖u♯p‖Lq(Ω♯) ≤ ‖v‖Lq(Ω♯) for every q ∈ (0,∞] . (6.6)

Next we prove that for every q ∈ (0,∞]

‖u‖Lq(Ω) ≤ ‖u♯p,m‖Lq(Ωm) for every m ∈ N . (6.7)

The case q = +∞ is almost trivial, since we obviously have M = maxΩ u = maxΩi
ui for every

i, then max
Ω

♯
m

u♯p,m = M for every m. Now let q ∈ (0,∞). By the layer cake formula, it holds

‖u‖Lq(Ω) =

∫ M

0
|Ω(t)| dt , (6.8)

where

Ω(t) = {x ∈ Ω : u(x) ≥ t} ,

and

‖u♯p,m‖Lq(Ωm) =

∫ M

0
|Ωm(t)| dt , (6.9)

where

Ωm(t) = {x ∈ Ωm : u♯p,m(x) ≥ t} .

On the other hand, the definition of u♯p,m implies

Ωm(t) ⊇
1

m

m
∑

i=1

ρiΩ(t) ,

then

|Ωm(t)| ≥ |Ω(t)| for every t ∈ [0,M ] (6.10)

by the Brunn-Minkowski inequality (2.2). In view of (6.8) and (6.9), (6.10) yields (6.7).

Finally, since

‖u♯p‖Lq(Ω♯) = lim
m→∞

‖u♯p,m‖Lq(Ωm)

by uniform convergence, then by coupling (6.6) and (6.7) we get (1.7) and the proof is complete.

�

As a final remark on u♯p, let me notice that it is not equidistributed with u (in contrast with

Schwarz symmetrization), but in fact each one of its level sets has greater measure than the

corresponding level set of u by (6.10).



MEAN WIDTH REARRANGEMENTS 17

7. Examples

We first give examples of applications of Theorem 4.1, then we consider the mean width

rearrangement and give examples of applications of Theorem 6.6. Throughout this section, f

and fi, i = 0, 1, µ, are non-negative smooth functions.

7.1. Applications of Theorem 4.1. The first example is the Laplacian. Let:

Fi(x, u,Du,D2u) = ∆u+ fi(x, u,Du) i = 0, 1, µ

and

g
(θ)
i,p (x, t) =







t
3− 1

p f(x, t
1

p , t
1

p
−1

θ) p > 0
i = 0, 1, µ .

e−tf(x, et, etθ) p = 0

(7.1)

In this case condition (WAµ,p) is satisfied if

g(θ)µ,p((1 − µ)x0 + µx1, (1 − λ)t0 + λt1) ≥ (1− λ)g
(θ)
0,p(x0, t0) + λg

(θ)
1,p(x1, t1) (7.2)

for every x0 ∈ Ω0, x1 ∈ Ω1, t0, t1 ≥ 0 and for every fixed θ ∈ R
n.

For instance, let u0 and u1 be the solutions of the following problems






∆u0 + f0(x) = 0 in Q = [−1, 1] × [−1, 1]

u0 = 0 on ∂Q

and






∆u1 + f1(x) = 0 in B(0, 1)

u1 = 0 when |x| = 1,

respectively.

Then take µ = 1/2 and set

Ω =
1

2
Q+

1

2
B(0, 1) ,

see Figure 1. Now let uµ be the solution of






∆uµ + fµ(x) = 0 in Ω

uµ = 0 on ∂Ω.

Then (7.2) for p=1/3 reads

fµ
(x0 + x1

2

)

≥
1

2
f0(x0) +

1

2
f1(x1) (7.3)

(please, compare with (2.5)) and Theorem 4.1 tells that we can estimate uµ in terms of u0 and

u1; precisely it holds

uµ
(x0 + x1

2

)

≥

[

1

2
3
√

u0(x0) +
1

2
3
√

u1(x1)

]3

for every x0 ∈ Q, x1 ∈ B(0, 1)

and Corollary 4.2 yields

‖uµ‖Lr(Ωµ) ≥ Mq(‖u0‖Lr(Q), ‖u1‖Lr(B(0,1));µ)
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Figure 1. The Minkowski combination of a square and a circle: Ω = 1
2Q+ 1

2B(0, 1).

for every r ∈ (0,+∞], where

q =







r
n+3r , r ∈ (0,+∞)

1/3 , r = +∞
.

Notice in particular that, if

f0 = f1 = fµ = f : Rn → [0,+∞) ,

condition (7.3) simply means f is concave. More generally, in this particular case, we can write

the following result.

Proposition 7.1. Let f be a smooth nonnegative function defined in R
n. Let µ ∈ (0, 1) and Ω0

and Ω1 be convex subsets of Rn and denote by u0, u1 and uµ the solutions of






∆ui + f(x) = 0 in Ωi

ui = 0 on ∂Ωi

for i = 0, 1, µ respectively, where Ωµ = (1− µ)Ω0 + µΩ1, as usual.

Assume f is β-concave for some β ≥ 1, that is fβ is concave.

Then (4.3) holds with

p =
β

1 + 2β

and consequently (4.4) holds with

q =











βr
nβ+r(1+2β) , for r ∈ (0,∞)

β
1+2β , for r = +∞ .
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In case f is a positive constant (β = +∞), the same conclusions follow with p = 1/2 and

q =

{

r/(n+ 2r) , for r ∈ (0,∞)
1/2 , for r = +∞ .

Proof. The proof is a direct application of Theorem 5.2, in view of Lemma A.1 of [19]. �

Notice that the assumptions of the above proposition imply that the involved solutions u0,

u1 and uµ are all p-concave in their own domains, see [8, 24, 26].

The example of the Laplace operator can be generalized by considering the q-laplacian for

q > 1:

F (x, u,Du,D2u) = ∆qu+ f(x, u,Du) ,

where ∆qu = div(|Du|q−2Du), as usual. In this case we set

g
(θ)
i,p (x, t) =











tq+1− q−1

p fi(x, t
1

p , t
1

p
−1θ) if p 6= 0

i = 0, 1, µ .

et(1−q)fi(x, e
t, etθ) if p = 0

(7.4)

and we can apply Theorem 5.2 again if (7.2) holds.

Another generalization of the Laplacian is the Finsler Laplacian ∆Hu, which for a regular

function u is defined as follows

∆Hu = div(H(Du)∇ξH(Du)) ,

where H(ξ) is a given norm in R
n, that is a nonnegative centrally symmetric 1-homogeneous

convex function (or, if you prefer, the support function of a centrally symmetric convex body),

and ∇ξ denotes the gradient with respect to the variable ξ ∈ R
n. For more detail, please refer

for instance to [15] and references therein. Our results can be applied to the operator

F (x, u,Du,D2u) = ∆Hu+ f(x, u,Du)

exactly in the same assumptions as for the Laplacian, that is when (7.2) holds, where g
(θ)
i,p is

given by (7.1).

The Laplacian and the q-Laplacian are however classical matters of investigation and the

results above stated could be considered to some extent not completely new. Indeed results

similar to the ones we could obtain by applying Theorem 5.2 to some suitable particular situ-

ation, have been already used to prove Brunn-Minkowski type inequalities for some variational

functionals: see for instance [10, 12] for the Laplacian and q-Laplacian, while in the case on the

Finsler Laplacian related results can be found in [43].

Completely new applications are instead obtained when considering for instance Dirichlet

problems for the Pucci’s Extremal Operator M−

λ,Λu.

The Pucci’s Extremal Operators were introduced by C. Pucci in [33] and they are perturbations

of the usual Laplacian. Precisely, given two numbers 0 < λ ≤ Λ and a real symmetric n × n

matrix M , whose eigenvalues are ei = ei(M), for i = 1, ..., n, the Pucci’s extremal operators are

M+
λ,Λ(M) = Λ

∑

ei>0

ei + λ
∑

ei<0

ei (7.5)
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and

M−

λ,Λ(M) = λ
∑

ei>0

ei + Λ
∑

ei<0

ei. (7.6)

We recall that M+
λ,Λ and M−

λ,Λ are uniformly elliptic and positively homogeneous of degree 1;

moreover M+
λ,Λ is convex, while M−

λ,Λ is concave over Sn (see [9] for instance).

Again Theorem 5.2 can be applied to

F (x, u,Du,D2u) = M−

λ,Λ(D
2u) + f(x, u,Du)

in the same assumptions as for the Laplacian and the Finsler laplacian, that is when (7.2) holds,

where g
(θ)
i,p is given by (7.1).

In fact the same conclusion holds for every elliptic equation of the type

F (D2u) + f(x, u,Du) = 0 ,

where F : Sn → R is concave and positively 1-homogeneous, as it is easily seen.

7.2. Applications of Theorem 6.6. Next we discuss applications of the rearrangement tech-

nique introduced in Section 6 to the examples given in the previous subsection. Also in light of

the above discussion, it is easily seen that Theorem 6.6 can be applied to the Laplacian and in

particular to the problem
{

∆u+ f(|x|, u, |Du|) = 0 in Ω ,
u = 0 on ∂Ω ,

when the function

gp(s, t) = t3−
1

p f(s, t
1

p , t
1

p
−1r)

is not increasing with respect to s ∈ [0,+∞) and concave with respect to (s, t) ∈ [0,∞)2, for

every r ≥ 0, for some p ∈ (0, 1). In this case we can compare the mean width rearrangement

of u with the solution v of the same problem in the ball Ω♯ wit the same mean width of Ω and

finally get (1.7).

For instance, when f = 1, we can express the result so obtained in a striking way in terms

of torsional rigidity: among convex sets of given mean width, the torsional rigidity is maximized

by the ball. When we denote by τ(A) the torsional rigidity of the set A, we can translate the

latter sentence in the following Urysohn’s type inequality (see [17]):

τ(Ω) ≤ τ(Ω♯) for every convex set Ω .

On the other hand this is weaker than the well known inequality (see [32]) τ(Ω) ≤ τ(Ω⋆) , since

τ is increasing with respect to inclusion and

Ω⋆ ⊆ Ω♯

by the classical Urysohn’s inequality between mean width and volume. The latter in fact implies

that, in general, we cannot expect to find interesting new inequalities by applying Theorem 6.6

to equations involving the Laplacian or some other divergence type operator, which Schwarz

symmetrization fits better. Similar considerations obviously hold for the p-Laplacian. In the

case of Finsler Laplacian instead, Theorem 6.6 neither can be applied due to the fact that ∆H

is not invariant with respect to rotation.
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When instead considering the Pucci’s extremal operators, Schwarz symmetrization has not

been successfully applied until now, at least to my knowledge. In this case Theorem 6.6 can be

applied to the operator

F (x, u,Du,D2u) = M−

λ,Λ(D
2u) + f(|x|, u, |Du|)

precisely under the same assumptions as for the Laplacian, and in this case it yields completely

new results.

As a paradigmatic explicit example, let me write the following proposition.

Proposition 7.2. Let Ω be an open bounded convex set in R
n and Ω♯ a ball with the same mean

width of Ω. Let u and v solve the following problems
{

M−

λ,Λ(D
2u) + 1 = 0 in Ω ,

u = 0 on ∂Ω ,

and
{

M−

λ,Λ(D
2v) + 1 = 0 in Ω♯ ,

v = 0 on ∂Ω♯ ,

respectively.

Then

‖u‖Lp(Ω) ≤ ‖v‖Lp(Ω⋆)

for every p > 0, including p = +∞.

Similarly to what observed at the end of the previous subsection, the results obtained for the

Pucci operator M−

λ,Λ hold in fact for every elliptic equation of the type

F (D2u) + f(|x|, u, |Du|) = 0 ,

where F : Sn → R is concave, rotationally invariant and positively 1-homogeneous, as it is easily

seen.
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