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VISCOUS APPROXIMATION OF QUASISTATIC EVOLUTIONS
FOR A COUPLED ELASTOPLASTIC-DAMAGE MODEL

VITO CRISMALE AND GIULIANO LAZZARONI

Abstract. Employing the technique of vanishing viscosity and time rescaling, we show the
existence of quasistatic evolutions for elastoplastic materials with incomplete damage affecting
both the elastic tensor and the plastic yield surface, in a softening framework and in small strain
assumptions.
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Introduction

Materials are subject to irreversible processes resulting in inelastic behaviour, such as damage and
plasticity. Damage, originated by microcracks and microvoids, affects the elastic response of the material
with respect to loading and unloading, whilst plasticity produces residual deformations that remain after
complete unloading. Combining these two models provides a better description of e.g. cyclic loading, see
for instance [15, Section 3.6] or [22, Section 7.5].

Gradient damage models are characterized by a dependence of the elastic modulus on a scalar internal
variable that describes the damage state of the material; indeed, the stored elastic energy decreases
as damage increases [13]. To localize damage, the energy is assumed to contain a term depending on
the derivatives of the damage variable. We consider incomplete damage only, i.e., during the process
the material keeps some elastic properties. We adopt the softening framework of [1, 2], thus damage is
coupled with plasticity by requiring that the plastic yield surface shrinks when damage increases; hence
the plastic dissipation depends on the damage variable.

The existence of quasistatic evolutions for a coupled elastoplastic-damage model was proved in [4]
using the ansatz of global stability; more precisely, at any time instant the configuration is assumed to be
a global minimizer of the sum of the stored elastic energy and of the plastic dissipation. This approach,
based on the so-called energetic formulation of rate-independent processes (see [24] and references therein),
was followed e.g. in [11, 27, 38] for damage evolution, in [5, 6] for plasticity, and in [29, 30] for delamination
problems with damage and plasticity at the interface.

However, the concept of globally-stable evolution is not satisfactory from the physical point of view:
indeed, due the nonconvexity of the total energy, the solution is forced to develop jumps in time between
the energy wells, overtaking energy barriers. To avoid the drawbacks of global minimality, in this paper we
adopt a vanishing viscosity approach, i.e., we obtain a quasistatic evolution as a limit of solutions to some
rate-dependent systems containing a viscous dissipation that tends to zero. Moreover, we characterize
the jumps in time of the limit evolution by means of a suitable time-reparametrization; here we follow a
technique first proposed in [10], then refined in [25, 26, 28], and used e.g. in [18, 17] for damage, in [7, 8]
for plasticity, and in [16, 21] for brittle fracture.
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2 VITO CRISMALE AND GIULIANO LAZZARONI

Description of the model. The formulation of the model is essentially the same as in [4] and follows
[13] for modeling damage and [5] for plasticity.

We study the evolution of damage and plasticity in an elastoplastic body whose reference configuration
is a bounded, Lipschitz, open set Ω ⊂ Rn, n ≥ 2. Starting from a given initial condition, the evolutionary
process in a fixed time interval [0, T ] is driven by a (quasistatic) time-dependent loading; for simplicity we
limit it to a prescribed displacement imposed on the Dirichlet part of the boundary ∂DΩ ⊂ ∂Ω and given
by the trace on ∂DΩ of a function w ∈ H1(Rn; Rn). The remainder of the boundary ∂NΩ is traction free,
and no body forces are present. Under the assumption of small strain, the linearized strain Eu (i.e., the
symmetric part of the spatial gradient of the displacement u) is additively decomposed in an elastic and
a (deviatoric) plastic part, denoted by e and p, respectively.

For every boundary datum w ∈ H1(Rn; Rn), we define A(w), the set of admissible displacements
and strains, as the set of all triples (u, e, p) with u ∈ BD(Ω) a function of bounded deformation, e ∈
L2(Ω; Mn×n

sym ) a function valued in the symmetric matrices, and p ∈Mb(Ω ∪ ∂DΩ; Mn×n
D ) a bounded Borel

measure valued in the trace-free matrices, such that

Eu = e+ p in Ω and p = (w − u)� νHn−1 on ∂DΩ ,

where the latter equation is understood in the sense of traces and Hn−1 is the (n − 1)-dimensional
Hausdorff measure.

Damage is described by an internal variable α, defined on [0, T ] × Ω and with values into [0, 1], with
α = 1 denoting the sound material and α = 0 the most damaged state. The stored elastic energy depends
on α and is defined by Q := 1

2 〈C(α)e, e〉L2 , with e 7→ C(α)e : e nondecreasing in α for every e and
equicoercive with respect to α (indeed, damage is incomplete by assumption). The dissipation relative
to the damage process is given by a term D(α) :=

∫
Ω
d(α) dx, with d sufficiently regular and diverging

to +∞ at zero with a certain rate, so that the state α = 0 is never reached during the evolution; this
corresponds to the hypothesis of incomplete damage.

We introduce a regularizing term
κ

2
|α|2m,2 =

κ

2

∑
|β|=m

‖Dβα‖22 ,

with m := [n2 ] + 1 and κ a positive constant, that can be regarded as a factor of influence of damage (see
e.g. [38]). An analogous regularization was used in [18] with m = n/2; here we need m > n/2 to obtain
compact embedding in C(Ω) and thus the lower semicontinuity of plastic dissipation by Reshetnyak’s
theorem. Another possible choice for the regularizing term would be ‖∇α‖γγ with γ > n, used e.g. in
[4]; however, in the setting of vanishing viscosity this choice does not allow to get an energy equality,
as shown in [17]. We refer to Remark 2.10 below for other comments on the regularization. The total
mechanical energy is then

E(α, e) := Q(α, e) +D(α) +
κ

2
|α|2m,2 .

In order to introduce the plasticity in the model, we consider a family (K(α))α∈[0,1] of convex and
compact subsets of Mn×n

D . Their dependence on α is assumed to be Lipschitz in α with respect to the
Hausdorff distance and such that

Br(0) ⊂ K(0) ⊂ K(α1) ⊂ K(α2) ⊂ K(1) ⊂ BR(0) ,

for every α1 ≤ α2, where 0 < r < R are constant. These sets are called constraint sets, since the
deviatoric part of the stress must belong to K(α(t, x)) for every t and a.e. x. Hence, the support function
of K(α), that is

H(α, ξ) := sup
σ∈K(α)

σ : ξ ,

is convex and positively one-homogeneous in ξ, and Lipschitz in α uniformly with respect to ξ whenever
|ξ| = 1. In some cases, in addition to the assumptions above, we require that H is differentiable in α,
that ∂αH is Lipschitz in α, and that ξ 7→ H(α2, ξ)−H(α1, ξ) is convex for every α1 ≤ α2.

Then for every p ∈Mb(Ω ∪ ∂DΩ; Mn×n
D ) we define the plastic potential as

H(α, p) :=
∫

Ω∪∂DΩ

H

(
α(x),

dp
d|p|

(x)
)

d|p|(x) ,

where p/|p| is the Radon-Nikodym derivative of the measure p with respect to its variation |p|. Given
α : [0, T ] → C(Ω) and p : [0, T ] → Mb(Ω ∪ ∂DΩ; Mn×n

D ), the plastic dissipation in a time interval [s, t] is
given by

VH(α, p; s, t) := sup
{ N∑
j=1

H(α(tj), p(tj)− p(tj−1)) : s = t0 < t1 < · · · < tN = t , N ∈ N
}
.
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We use the fact, proved in [4], that

VH(α, p; s, t) =
∫ t

s

H(α(τ), ṗ(τ)) dτ

whenever α is nondecreasing in time, α(t) is uniformly bounded in Hm(Ω), and p is absolutely continuous
from [0, T ] into Mb(Ω ∪ ∂DΩ; Mn×n

D ). To ease the reading, when α ∈ C(Ω; [0, 1]) does not depend on time
we use the symbol V̂H instead of VH , hence

V̂H(α, p; s, t) =
∫ t

s

H(α, ṗ(τ)) dτ .

Finally we introduce the “generalized energy”

Eλ(α, e; p, t) := E(α, e) + λV̂H(α, p; 0, t) ,

with λ ∈ [0, 1]. Its meaning will be discussed in the final part of this introduction.

Viscous approximation. To prove the existence of a quasistatic evolution for the coupled elastoplastic-
damage model, we first add to the system a viscous term, driven by a small parameter ε > 0. Hence, for
given ε we construct some approximate viscous evolutions by discrete-time approximation. More precisely,
for every k ∈ N we set τk := T/k and define inductively (αik, u

i
k, e

i
k, p

i
k) as a solution to the incremental

minimum problem

min
0≤β≤αi−1

k

(u,η,q)∈A(wik)

{
Eλ(β, η; pk, ti−1

k ) +H(β, q − pi−1
k ) + ε

2 τk
‖β − αi−1

k ‖
2
L2(Ω)

}
, (0.1)

where (α0
k, u

0
k, e

0
k, p

0
k) := (α0, u0, e0, p0) is the (sufficiently regular) initial condition, wik := w(tik) for

i ∈ {1, . . . , k} is the updated boundary loading, and

pk(t) := pjk + t−tjk
τk

(pj+1
k −pjk) for t ∈ [tjk, t

j+1
k ) and j = 0, . . . , k−1

is the piecewise affine interpolant of the solutions pik to problem (0.1) itself. (Notice that the term
Eλ(β, η; pk, ti−1

k ) occurring in (0.1) only depends on p0
k, . . . , p

i−1
k , so the problem is well posed.) We

observe that, if one sets ε = 0, then (0.1) reduces to the incremental global minimum problem used in
[4], so one obtains the energetic formulation in the limit as k → ∞. Instead, passing to the limit first
as k → ∞ and then for ε → 0 allows one to select stationary points that are not necessarily global
minimizers.

Hence, we consider the piecewise affine interpolants αk, uk, ek, pk of the functions αik, u
i
k, e

i
k, p

i
k and

find suitable a priori estimates to pass to the limit as k →∞. A remarkable fact is that, even if we could
expect that αk ∈ H1(0, T ;L2(Ω)) with

∫ T
0
‖α̇k(s)‖2L2(Ω) ≤ Cε since we take in (0.1) an L2-viscosity term,

we actually get that αk ∈ H1(0, T ;Hm(Ω)) with∫ T

0

‖α̇k(s)‖2Hm(Ω) ≤ Cε and
∫ T

0

‖α̇k(s)‖Hm(Ω) ≤ C (0.2)

for k large. These estimates, contained in Propositions 2.7 and 2.8, rely on analogous properties proved
in [18] for damage without plasticity; in our context a key tool is the inequality

‖ėk(t)‖2 + ‖ṗk(t)‖1 + ‖Eu̇k(t)‖1 ≤ C(‖α̇k(t)‖∞ + ‖Eẇk(t)‖2) , (0.3)

obtained adapting arguments from [9, 34], see also [20] for related estimates in the study of sweeping
processes.

The first estimate in (0.2) allows us to pass to the limit as k → ∞ and show the existence of ε-
approximate viscous evolutions, namely quadruples of absolutely continuous functions (αε, uε, eε, pε) sat-
isfying an irreversibility condition for the damage variable, an energy balance, and a first order stability
condition of Kuhn-Tucker type (see Definition 3.1 and Theorem 3.7). From the second estimate in (0.2)
and from (0.3) we obtain that

t+
∫ t

0

‖α̇ε(s)‖Hm(Ω) ds+
∫ t

0

‖ėε(s)‖2 ds+
∫ t

0

‖ṗε(s)‖1 ds =: s◦ε(t)

is uniformly bounded in ε and t. Following [25, 7], we observe that s◦ε admits an inverse function t◦ε which
is a contraction from a suitable interval [0, S] into [0, T ] for every ε; moreover, the 5-tuples

(αε, uε, eε, pε, Id) ◦ t◦ε =: (α◦ε , u
◦
ε, e
◦
ε, p
◦
ε, t
◦
ε)

are Lipschitz in time, uniformly with respect to ε.
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Rescaled quasistatic viscosity evolutions. Passing to the limit as ε → 0, we obtain (up to sub-
sequences) a 5-tuple of Lipschitz functions (α◦, u◦, e◦, p◦, t◦) from [0, S] into Hm(Ω; [0, 1]) × BD(Ω) ×
L2(Ω; Mn×n

sym ) ×Mb(Ω ∪ ∂DΩ; Mn×n
D ) × [0, T ], which we call rescaled quasistatic viscosity evolution (see

Definition 4.1 and Theorem 4.4). The limit evolution inherits some properties of the viscous approximants;
more precisely, α◦ is nonincreasing and the following conditions hold true:

(ev1) kinematic condition and equilibrium: for every s ∈ [0, S]

(u◦(s), e◦(s), p◦(s)) ∈ A(w◦(s)) , div σ◦(s) = 0 in Ω , [σ◦(s)ν] = 0 on ∂NΩ ;

(ev2) stress constraint: for every s ∈ [0, S] and a.e. x ∈ Ω

σ◦D(s, x) ∈ K(α◦(s, x)) ,

where σ◦(s) := C(α◦(s))e◦(s) is the stress and w◦(s) := w(t◦(s)) the rescaled prescribed boundary
displacement.

The technique adopted in the passage to the limit as ε → 0 leads us to consider s = (t◦)−1(t) as a
“slow” time scale used to reparametrize the process. The discontinuities of the evolution in the original
time scale t = t◦(s) correspond now to the set

U◦ := {s ∈ [0, S] : t◦ is constant in a neighbourhood of s} ,
where the rescaled evolution gives a continuous interpolation between the states before and after each
jump. In the remaining part of the interval [0, S] the limit evolution is quasistatic and fulfills the following
first-order stability condition,

(ev3) Kuhn-Tucker inequality: for every s ∈ [0, S] \ U◦

〈∂αEλ(α◦(s), e◦(s); p◦, s), β〉 ≥ 0 for every β ∈ Hm(Ω), β ≤ 0 .

In contrast, in U◦ the limit evolution is governed by a variational inequality of viscous type, representing
a fast unstable propagation in the original time scale.

Finally, the energy dissipated in the processes of damage and plasticity is determined by the following
equality,

(ev4) energy balance: for every s ∈ [0, S]

E(α◦(s), e◦(s)) + λ

∫ s

0

H(α◦(s), ṗ◦(τ)) dτ + (1− λ)
∫ s

0

H(α◦(τ), ṗ◦(τ)) dτ

+
∫ s

0

‖α̇◦(τ)‖2 Φ(∂αEλ(α◦(s), e◦(s); p◦, s)) dτ = E(α0, e0) +
∫ s

0

〈σ◦(τ), Eẇ◦(τ)〉dτ ,

where Φ(f) := sup{〈−f, β〉 : β ∈ Hm(Ω), β ≤ 0, and ‖β‖2 ≤ 1} for every f ∈ (Hm(Ω))′. The fourth
term in the left-hand side gives a null contribution in each subinterval of [0, S] \ U◦ and thus repre-
sents the energy dissipated during the unstable propagation in U◦, cf. (ev3); equivalently, it is also
possible to formulate the energy balance in the original time scale, so this term concentrates at the
time discontinuities. We also show in Lemma 3.4 that in general, for every f ∈ (Hm(Ω))′, Φ(f) coin-
cides with the L2-distance of f from the closed convex set G of nonpositive elements of (Hm(Ω))′, i.e.,
Φ(f) = d2(f,G) := min{‖g‖2 : g ∈ L2(Ω), f + g ∈ G}.

The energy balance (ev4) also shows the role of the parameter λ ∈ [0, 1]. In fact, notice that the
damage variable acts differently in the second and in the third summand of the left-hand side, since it is
computed at the final point of the interval in the former case, whilst it is variable in the latter. Therefore,
if we derive in s and take into account the cancellation, from the two dissipative integrals we obtain

H(α◦(s), ṗ◦(s)) + λ 〈∂αH(α◦(s), ṗ◦(s)), α̇◦(s)〉 ,
the first term being the dissipation potential related to plasticity, the second one giving a contribution
to the dissipation potential related to the damage variable: the latter is damped by the parameter λ.
Tuning λ between zero and one, we account for different effects of the plasticity on the damage process;
indeed, the bigger is λ, the easier it is to damage a portion of the material affected by plastic strain’s
changes. Thus the parameter λ is related to a fatigue phenomenon. Setting λ = 0 leads to an energy
balance analogous to the one of [7]; the choice λ = 1 was instead prescribed in [1, 2].

We conclude our introduction by underlining that our rescaled quasistatic viscosity evolutions satisfy at
every time instant a weak form of the classical Prandtl-Reuss flow rule (that corresponds to a principle of
maximum dissipation). Together with conditions (ev1) and (ev2), this flow rule characterizes the perfect
plasticity. We thus obtain that the triple (u◦, e◦, p◦) is an evolution for the (weakly formulated) model
of perfect plasticity, with time-dependent elastic tensor and constraint sets, as in [35]. The elastic tensor
depends indeed on the damage variable, whose evolution is governed by the Kuhn-Tucker criterion. We
also prove that the functions (u◦, e◦, p◦) may jump in the original time scale only if the damage variable
α◦ jumps.
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1. Mechanical assumptions and mathematical tools

In this section we present the assumptions required on our model and we collect some mathematical
tools needed in the sequel of the paper. Damage phenomena are modeled according to Frémond’s ap-
proach [13], while plasticity is formulated as in [5]. The assumptions are essentially as in [4] with minor
changes.

Notation. We denote by Ln the Lebesgue measure on Rn and by Hn−1 the (n−1)-dimensional Hausdorff
measure. Given a locally compact subset B of Rn and a finite dimensional Hilbert space X, the space
of bounded X-valued Radon measures on B is denoted by Mb(B;X), the indication of X being omitted
when X=R. On Mb(B;X) we define the norm ‖µ‖1 := |µ|(B), where |µ| ∈ Mb(B) is the total variation
of the measure µ. By the Riesz Representation Theorem, Mb(B;X) can be identified with the dual of
C0(B;X), the space of continuous functions ϕ : B → X such that {|ϕ| ≥ ε} is compact for every ε > 0
(see, e.g., [32, Theorem 6.19]). On Mb(B;X) we shall use the weak∗ topology, defined by duality. For
v ∈ Lp(B;X), p ∈ [1,+∞], the symbol ‖v‖p denotes its Lp norm. If L1(B;X) is regarded as a subspace
of Mb(B;X), then ‖ · ‖1 coincides with the induced norm. The brackets 〈·, ·〉 denote the product between
dual spaces.

If X1, X2 are Banach spaces, Lin(X1;X2) denotes the space of linear operators from X1 into X2,
endowed with the usual operator norm. We will consider the space Mn×n

sym of symmetric n× n matrices,
endowed with the Euclidean scalar product ξ : η :=

∑
ij ξijηij and with the corresponding Euclidean

norm |ξ| := (ξ : ξ)1/2, as well as the subspace Mn×n
D of trace free matrices in Mn×n

sym . Given ξ ∈ Mn×n
sym ,

its orthogonal projection on RI is 1
n tr(ξ)I, while its orthogonal projection on Mn×n

D , called deviator, is
ξD := ξ − 1

n (tr ξ)I. Given two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, their symmetrized tensor
product a� b is the symmetric matrix whose entries are (aibj + ajbi)/2, (i, j) ∈ {1, . . . , n}2.

For U open subset of Rn and u ∈ L1(U ; Rn), the symbol Eu denotes the Mn×n
sym -valued distribution on

U whose components are Eiju := 1
2 (Djui + Diuj), (i, j) ∈ {1, . . . , n}2. The space BD(U) of functions

of bounded deformation, defined as the space of all u ∈ L1(U ; Rn) with Eu ∈Mb(U ; Mn×n
sym ), is a Banach

space with the norm ‖u‖1 + ‖Eu‖1. It turns out that BD(U) is the dual of a normed linear space (see
[23] and [37]); this allows us to consider the weak∗ topology on BD(U). Equivalently, a sequence {uk}k
converges to u weakly∗ in BD(U) if and only if uk → u strongly in L1(U ; Rn) and Euk ⇀ Eu weakly∗ in
Mb(U ; Mn×n

sym ). If in addition U is bounded and Lipschitz, for every function u ∈ BD(U) it is possible to
define the trace of u on ∂U , still denoted by u, which belongs to L1(∂U ; Rn). If uk, u ∈ BD(U), uk → u
strongly in L1(U ; Rn), and ‖Euk‖1 → ‖Eu‖1, then uk → u strongly in L1(∂U ; Rn) (see [36, Chapter II,
Theorem 3.1]). Moreover, there exists a constant CU > 0, only depending on U , such that

‖u‖1,U ≤ CU ‖u‖1,∂U + CU ‖Eu‖1,U ,

‖ · ‖p,B denoting the Lp norm of a function on B (see [36, Proposition 2.4 and Remark 2.5]). For the
general properties of BD(U) we refer to [36].

The body and its displacement. We consider an elastoplastic body whose reference configuration is
a bounded, connected, open set Ω ⊂ Rn, n ≥ 2, with Lipschitz boundary ∂Ω = ∂DΩ ∪ ∂NΩ ∪ N . We
assume that ∂DΩ and ∂NΩ are relatively open, ∂DΩ ∩ ∂NΩ = ∅, Hn−1(N) = 0, and

∂DΩ 6= ∅ . (1.1)

We assume that the common boundary Σ := ∂(∂DΩ) = ∂(∂NΩ) (topological notions refer here to the
relative topology of ∂Ω) satisfies the Kohn-Temam condition:

Σ is a (n− 2)-dimensional C2 manifold,

∂Ω is C2 in a neighborhood of Σ .
(1.2)

The only role of this condition is to assure (1.20) below; another sufficient condition for (1.20) is for
instance the one considered in [12, Theorem 6.6].

The displacement of the body is represented by a function u ∈ BD(Ω), so Eu is the corresponding
linearized strain.

We study the evolution of the body under time-dependent external loading. Here we consider only
Dirichlet boundary conditions on ∂DΩ: such a choice notably simplifies the exposition. For including
forces in a related model we refer to e.g. [7] and [34]. The prescribed boundary displacement is extended
into the domain Ω; at every time it is thus a function in H1(Rn; Rn), whose trace on ∂DΩ is the prescribed
boundary value. For the time regularity of the boundary condition, see (1.27).
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The elastic and the plastic strain. Given a displacement u ∈ BD(Ω) and a boundary datum w ∈
H1(Rn; Rn), the elastic and the plastic strain, denoted by e ∈ L2(Ω; Mn×n

sym ) and p ∈Mb(Ω ∪ ∂DΩ; Mn×n
D ),

respectively, are assumed to satisfy the following weak kinematic compatibility conditions

Eu = e+ p in Ω , (1.3a)
p = (w − u)� νHn−1 on ∂DΩ . (1.3b)

The set of admissible displacements and strains for a given boundary datum w ∈ H1(Rn; Rn) on ∂DΩ is

A(w) := {(u, e, p) ∈ BD(Ω)× L2(Ω; Mn×n
sym )×Mb(Ω ∪ ∂DΩ; Mn×n

D ) : (1.3) holds} .
The space of admissible plastic strains is defined by

Π(Ω) := {p ∈Mb(Ω ∪ ∂DΩ; Mn×n
D ) : ∃ (u,w, e) ∈ BD(Ω)×H1(Rn; Rn)× L2(Ω; Mn×n

sym )

s.t. (u, e, p) ∈ A(w)} .

The damage variable and the associated dissipation. Following Frémond’s concept [13], the damage
state of the body is represented by an internal variable α : Ω → [0, 1], where α = 1 marks the sound
material and α = 0 the most damaged state. For technical reasons, in our model the total energy (1.9)
includes a regularizing term on the damage variable proportional to the seminorm

|α|2m,2 :=
∑
|β|=m

‖Dβα‖22 , m :=
[
n
2

]
+ 1 , (1.4)

where [·] denotes the integer part. The corresponding scalar product is

〈α1, α2〉m,2 :=
∑
|β|=m

〈Dβα1, D
βα2〉2 .

We recall that | · |m,2 is a seminorm on the space Hm(Ω) and that the norm

‖ · ‖m,2 := ‖ · ‖2 + | · |m,2
is equivalent to the usual norm in Hm(Ω) defined by ‖α‖Hm(Ω) :=

∑
|β|≤m ‖Dβα‖2. In particular, if a

state has finite energy, the corresponding damage variable is in Hm(Ω), which is compactly embedded in
C(Ω). Therefore, from now on we define all energy terms for α ∈ C(Ω).

Given α0 ∈ C(Ω), we denote the admissible damage states by

D(α0) := {α ∈ C(Ω): 0 ≤ α ≤ α0 in Ω} ,
so that

D(α2) ⊂ D(α1) for every α2 ∈ D(α1) .
Irreversibility is formulated in the following way: if α0 is the current damage state, then all future
damage states are in D(α0). The total energy includes the energy dissipated by the body during the
damage process. For α ∈ C(Ω), the energy dissipated in damage growth is

D(α) :=
∫

Ω

d(α(x)) dx ,

where

d ∈ C2((0,+∞); R+) ∩ C([0,+∞); R+ ∪ {+∞}) , (1.5a)

s2nd(s)→ +∞ as s→ 0+ . (1.5b)

The latter requirements on d force α to be positive; consequently, the material never reaches the most
damaged state at any point. Since d is a dissipated energy, it would be natural to assume it nonincreasing;
however, this hypothesis is not needed to prove our results.

The stored elastic energy. For (α, e) ∈ C(Ω; [0, 1])× L2(Ω,Mn×n
sym ), the stored elastic energy is

Q(α, e) := 1
2

∫
Ω

C(α(x))e(x) : e(x)dx = 1
2 〈C(α)e, e〉L2(Ω;Mn×n

sym ) .

Following [5], [12], and [34], we assume that

C(α)ξ := CD(α)ξD + κ(α)(tr ξ)I , (1.6)

where CD ∈ L∞([0, 1];Sym(Mn×n
D ; Mn×n

D )) , κ ∈ L∞([0, 1]), and

C : [0, 1]→ Lin(Mn×n
sym ; Mn×n

sym ) is of class C1,1 , (1.7a)

α 7→ C(α)ξ : ξ is nondecreasing for every ξ ∈Mn×n
sym , (1.7b)

γ1|ξ|2 ≤ C(α)ξ : ξ ≤ γ2|ξ|2 for everyα ∈ [0, 1], ξ ∈Mn×n
sym , (1.7c)
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where γ1, γ2 are positive constants independent of α and Sym(Mn×n
D ; Mn×n

D ) is the set of symmetric
endomorphisms on Mn×n

D . In particular, this implies

|C(α)ξ| ≤ 2γ2|ξ| . (1.8)

Assumption (1.7b) reflects the fact that the stiffness decreases as the material passes from the sound to
the fully damaged state; at this last stage there is still elastic elastic response, by (1.7c), and thus the
material is not completely damaged. Given α ∈ C(Ω; [0, 1]), it is well known that the function e 7→ Q(α, e)
is weakly lower semicontinuous on L2(Ω; Mn×n

sym ).
In fact, (1.6) is not needed to prove existence results in plasticity, see e.g. [35]. Nevertheless, (1.6) is

assumed for mechanical reasons, since purely volumetric deformations do not affect plastic behavior.

The total energy. Given a damage state α ∈ C(Ω; [0, 1]) and an elastic strain e ∈ L2(Ω,Mn×n
sym ), the

total energy of the configuration is

E(α, e) :=

{
Q(α, e) +D(α) + κ

2 |α|
2
m,2 if α ∈ Hm(Ω; [0, 1]) ,

+∞ otherwise.
(1.9)

The previous assumptions imply that E is lower semicontinuous with respect to the uniform convergence
of the damage variable and the weak∗-L2(Ω; Mn×n

sym ) convergence of the elastic strain. Moreover, for every
e ∈ L2(Ω; Mn×n

sym ) the functional Hm(Ω; [0, 1]) 3 α 7→ E(α, e) is differentiable and

〈∂αE(α, e), β〉 = 1
2 〈C

′(α)βe, e〉+ 〈∂D(α), β〉+ κ〈α, β〉m,2 (1.10)

for every β ∈ Hm(Ω), where ∂D(α) ∈ Mb(Ω) is the differential of D at α, given by 〈∂D(α), β〉 =∫
Ω
d′(α(x))β(x) dx.

The constraint sets and their support functions. The dissipation related to plasticity is defined
through the so-called constraint sets, which are subsets of Mn×n

D containing the admissible stresses. The
coupling between damage and plasticity is reflected in the dependence of such sets on the damage variable.
In a softening framework, we require the constraint sets (K(α))α∈[0,1] to fulfill the following conditions:

K(α) ⊂Mn×n
D is closed and convex for every α ∈ [0, 1] , (1.11a)

Bbr(0) ⊂ K(α1) ⊂ K(α2) ⊂ B bR(0) for every 0 ≤ α1 ≤ α2 ≤ 1 , (1.11b)

dH (K(α1),K(α2)) ≤ CK |α1 − α2| for every α1, α2 ∈ [0, 1] , (1.11c)

where CK , r̂, and R̂ are positive constants and dH is the Hausdorff distance, which is defined for two
compact sets K1,K2 by

dH (K1,K2) := max
{

sup
x∈K1

dist (x,K2) , sup
x∈K2

dist (x,K1)
}
,

with the conventions dH (x, ∅) = diam (Ω) and sup ∅ = 0.
Let us introduce the support function H : [0, 1]×Mn×n

D → R+ defined by

H(α, ξ) := sup
σ∈K(α)

σ : ξ for every α ∈ [0, 1] .

The following Lemma shows that H has the following properties:

H is continuous, (1.12a)

0 ≤ H(α2, ξ)−H(α1, ξ) ≤ CK(α2 − α1) for 0 ≤ α1 ≤ α2 ≤ 1 and ξ ∈Mn×n
D , |ξ| = 1, (1.12b)

ξ 7→ H(α, ξ) is convex and positively one-homogeneous for every α ∈ [0, 1] , (1.12c)

r|ξ| ≤ H(α, ξ) ≤ R|ξ| for every α ∈ [0, 1] and ξ ∈Mn×n
D , (1.12d)

with r, R positive constants independent of α and ξ.

Lemma 1.1. Conditions (1.11) imply (1.12).

Proof. We first prove (1.12b). Let us fix 0 ≤ α1 ≤ α2 ≤ 1, ξ ∈Mn×n
D with |ξ| = 1, and let

(
E1, . . . , EN

)
,

N := n(n+1)
2 − 1, be an orthonormal basis of Mn×n

D with ξ = E1. Hence, for every α

H(α,E1) = max
σ∈K(α)

σ1 ,

where σi is the i-th component of σ in the choosen basis. Since the constraint sets are closed we have that
K(α2) is contained in the tubular neighbourhood

⋃
σ∈K(α1)B(σ, dH (K(α1),K(α2))) of K(α1). Then

for all σ ∈ K(α2) we have σ1 ≤ H(α1, E1) + dH (K(α1),K(α2)); assuming the opposite would imply
σ /∈

⋃
σ∈K(α1)B(σ, dH (K(α1),K(α2))). Taking the supremum for σ ∈ K(α2) we get

H(α2, ξ)−H(α1, ξ) ≤ dH (K(α1),K(α2)) for every |ξ| = 1,
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and together with (1.11b) and (1.11c) we get (1.12b). Properties (1.12c) and (1.12d) follow immediately
from (1.11a) and (1.11b), while (1.12a) comes from (1.12b) and the fact that the functions ξ 7→ H(α, ξ)
are convex with respect to ξ for every α and locally equi-bounded with respect to α, by (1.12d). �

For some of the results (case λ ∈ (0, 1] in the following Sections) we will make the additional assump-
tions that

ξ 7→ H(α2, ξ)−H(α1, ξ) is convex for every 0 ≤ α1 ≤ α2 ≤ 1 , (1.13a)

α 7→ H(α, ξ) ∈ C1,1([0, 1]) and |∂αH(α2, ξ)− ∂αH(α1, ξ)| ≤ CK |α1 − α2| for |ξ| = 1 , (1.13b)

with CK uniform with respect to α and ξ.
All the previous assumptions are satisfied in the usual multiplicative example: K(α) := V (α)K(1), for

V ∈ C1,1([0, 1]; [m,M ]) nondecreasing, 0 < m < M , so H(α, ξ) = V (α)H(1, ξ).

The plastic potential. The plastic potential H : C(Ω; [0, 1])×Mb(Ω ∪ ∂DΩ; Mn×n
D )→ R is defined by

H(α, p) :=
∫

Ω∪∂DΩ

H

(
α(x),

dp
dµ

(x)
)

dµ(x) ,

where µ ∈ Mb(Ω ∪ ∂DΩ)+ is a measure such that p � µ and dp
dµ is the Radon-Nikodym derivative of p

with respect to µ; since H(α(x), ·) is one-homogeneous, the definition is actually independent of µ. We
refer to [14] for the theory of convex functions of measures. By [3, Proposition 2.37]

p 7→ H(α, p) is convex and positively one-homogeneous for every α ∈ C(Ω; [0, 1]) .

In particular,
H(α, p1 + p2) ≤ H(α, p1) +H(α, p2) (1.14)

for every α ∈ C(Ω; [0, 1]) and p1, p2 ∈ Mb(Ω ∪ ∂DΩ; Mn×n
D ). Since | dp

d|p| (x)| = 1 for |p|-a.e. x ∈ Ω ∪ ∂DΩ,
by (1.12) we have

r‖p‖1 ≤ H(α, p) ≤ R‖p‖1 , (1.15)
and

0 ≤ H(α2, p)−H(α1, p) ≤ CK‖α1 − α2‖∞‖p‖1 for 0 ≤ α1 ≤ α2 ≤ 1 . (1.16)

Therefore, by Reshetnyak’s Lower Semicontinuity Theorem, if αk and pk are sequences in C(Ω; [0, 1]) and
Mb(Ω ∪ ∂DΩ; Mn×n

D ) such that αk → α uniformly and pk ⇀ p weakly∗ in Mb(Ω ∪ ∂DΩ; Mn×n
D ), then

H(α, p) ≤ lim inf
k→∞

H(αk, pk) .

Furthermore, under the additional hypothesis (1.13), the functional C(Ω; [0, 1]) 3 α 7→ H(α, p) is differ-
entiable, ∂αH is convex in the second variable, and ∂αH(α, p) ∈Mb(Ω) is given by

〈∂αH(α, p), β〉 =
∫

Ω∪∂DΩ

∂αH
(
α(x),

dp
d|p|

(x)
)
β(x) d|p|(x) for every β ∈ C(Ω) ; (1.17)

thus by (1.13b)
‖∂αH(α, p)‖1 ≤ R‖p‖1 ,

for a suitable R depending only on H, and

‖∂αH(α1, p)− ∂αH(α2, p)‖1 ≤ CK‖α1 − α2‖∞‖p‖1 . (1.18)

Stress-strain duality. We now recall the notion of stress-strain duality, basing on [19], [5], and the more
recent extension to Lipschitz boundaries [12], to which we refer for the properties mentioned below. We
define

Σ(Ω) := {σ ∈ L2(Ω; Mn×n
sym ) : div σ ∈ Ln(Ω; Rn) , σD ∈ L∞(Ω; Mn×n

D )}
and, for σ ∈ Σ(Ω) and p ∈ Π(Ω),

〈[σD : p], ϕ〉 := −
∫

Ω

ϕσ · (e− Ew) dx−
∫

Ω

σ · [(u− w)�∇ϕ] dx−
∫

Ω

ϕ(div σ) · (u− w) dx (1.19)

for every ϕ ∈ C∞c (Rn), where u and e are such that (u, e, p) ∈ A(w). (The definition is indeed independent
of u and e.) Under the previous assumptions σ ∈ Lr(Ω; Mn×n

sym ) for every r < ∞, u ∈ L
n
n−1 (Ω; Rn), and

[σD : p] is a bounded Radon measure such that ‖[σD : p]‖1 ≤ ‖σD‖∞‖p‖1 in Rn. Using the restriction to
Ω ∪ ∂DΩ, we also define

〈σD | p〉 := [σD : p](Ω ∪ ∂DΩ) .
For σ ∈ L2(Ω; Mn×n

sym ) and div σ ∈ L2(Ω; Rn), we denote by [σν] the normal trace on ∂Ω, in general
defined as a distribution. When σ ∈ C(Ω; Mn×n

sym ) we have [σν] = σν where the right-hand side is the
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pointwise product between the matrix σ(x) and the normal vector ν(x) at each x ∈ ∂Ω. By (1.19), if
[σν] ∈ L∞(∂NΩ; Rn) and (1.2) holds, we obtain the integration-by-parts formula

〈σD | p〉 = −〈σ, e− Ew〉 − 〈div σ, u− w〉+ 〈[σν], u− w〉∂NΩ for every σ ∈ Σ(Ω) and (u, e, p) ∈ A(w) .
(1.20)

For α ∈ C(Ω) let

Kα(Ω) := {σ ∈ L2(Ω; Mn×n
sym ) : div σ ∈ Ln(Ω; Rn) , σD(x) ∈ K(α(x)) for a.e. x ∈ Ω} .

Since the multifunction α ∈ [0, 1] 7→ K(α) is continuous, from [12, Proposition 3.9] (which holds also if
div σ is not identically 0) it follows that for every σ ∈ Kα(Ω)

H

(
α,

dp
d|p|

)
|p| ≥ [σD : p] as measures on Ω ∪ ∂DΩ , (1.21)

and, arguing as in [33, Theorem 3.6 and Corollary 3.8], we deduce that, for every p ∈ Π(Ω)

H(α, p) = sup
σ∈Kα(Ω)

〈σD | p〉 . (1.22)

The plastic dissipation. We are now in a position to define the dissipation related to plasticity. A
function p : [0, T ] → Mb(Ω ∪ ∂DΩ; Mn×n

D ) will be regarded as a function defined on the time interval
[0, T ] with values in the dual of the space C0(Ω ∪ ∂DΩ; Mn×n

D ). This space can be identified with the
space of functions in C(Ω; Mn×n

D ) vanishing on ∂NΩ. For every s, t ∈ [0, T ] with s ≤ t the total variation
of p on [s, t] is

V(p; s, t) := sup
{ N∑
j=1

‖p(tj)− p(tj−1)‖1 : s = t0 < t1 < · · · < tN = t, N ∈ N
}
. (1.23)

Let α : [0, T ]→ C(Ω; [0, 1]). The plastic dissipation in the time interval [s, t] is defined by

VH(α, p; s, t) := sup
{ N∑
j=1

H(α(tj), p(tj)− p(tj−1)) : s = t0 < t1 < · · · < tN = t , N ∈ N
}
.

To ease the reading, when α ∈ C(Ω; [0, 1]) does not depend on time we use the following notation:

V̂H(α, p; s, t) := sup
{ N∑
j=1

H(α, p(tj)− p(tj−1)) : s = t0 < t1 < · · · < tN = t, N ∈ N
}
.

Assume now that p ∈ AC([s, t];Mb(Ω ∪ ∂DΩ; Mn×n
D )); then for a.e. t ∈ [0, T ] its weak∗ derivative (i.e.,

the weak∗ limit of the difference quotient) is well defined, see [5, Theorem 7.1], and we denote il by ṗ(t).
By [4, Lemma A.1], if α is strongly continuous (with respect to the strong topology of C(Ω)) at a.e.
τ ∈ [s, t], then

VH(α, p; s, t) =
∫ t

s

H(α(τ), ṗ(τ)) dτ .

Notice that the condition on α is satisfied if α ∈ L∞(0, T ;Hm(Ω)) and it is increasing in time, using
[4, Lemma A.2] and the compact embedding of Hm(Ω) into C(Ω). Moreover, under the additional
assumption (1.13), the functional C(Ω; [0, 1]) 3 α 7→ V̂H(α, p; s, t) is differentiable and〈

∂αV̂H(α, p; s, t), β
〉

=
∫ t

s

〈∂αH(α, ṗ(τ)), β〉dτ (1.24)

for every β ∈ C(Ω). (See also (1.17) for the expression of ∂αH(α, ṗ(τ)).)

The generalized energy. In this paper, we account for different possible couplings between damage
and plasticity, which are described by introducing a parameter λ that varies between zero and one.
Accordingly, in the formulation of the problem we will often use the following functional,

Eλ(α, e; p, t) := E(α, e) + λV̂H(α, p; 0, t) , (1.25)

where λ ∈ [0, 1].
We notice here that, assuming p ∈ AC([0, t];Mb(Ω ∪ ∂DΩ; Mn×n

D )) and (1.13), by (1.10) and (1.24) the
functional Hm(Ω; [0, 1]) 3 α 7→ Eλ(α, e; p, t) is differentiable and

〈∂αEλ(α, e; p, t), β〉 = 1
2 〈C

′(α)βe, e〉+ 〈∂D(α), β〉+ κ〈α, β〉m,2 + λ

∫ t

0

〈
∂αH(α, ṗ(s)), β

〉
ds (1.26)

for every β ∈ Hm(Ω).
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The external and initial data. For the time-dependent prescribed boundary conditions we require the
following regularity:

w ∈ H1(0, T ;H1(Rn; Rn)) . (1.27)
We prescribe initial values α0, u0, e0, p0 for damage, displacement, elastic, and plastic strain, respectively,
that satisfy

α0 ∈ H2m(Ω; [c, 1]) , e0 ∈ L4(Ω) , (u0, e0, p0) ∈ A(w(0)) , σ0 ∈ Kα0(Ω) , div σ0 = 0 in Ω , (1.28)

with c > 0 and σ0 := C(α0)e0. Then the differential ∂αE(α0, e0) given according to (1.10) by

〈∂αE(α0, e0), β〉 = 1
2 〈C

′(α0)βe0, e0〉2 + 〈∂D(α0), β〉+ κ〈α0, β〉m,2
for every β ∈ C(Ω), is represented by an L2 function.

2. Discrete-time viscous approximation

To show the existence of quasistatic evolutions, we adopt the well-known method of vanishing vis-
cosity, thus we study an approximate problem containing a viscous term driven by a (small) parameter
ε > 0. The existence of viscous approximations is proved by time-discretization through an incremen-
tal scheme. Therefore, we divide the time interval introducing k equispaced nodes, solve a unilateral
minimum problem (2.1) including the viscous dissipation, and take a piecewise affine interpolant of the
resulting approximants; this is contained in the present section, together with some a-priori estimates on
the approximants, which allow the passage to the limit as k → ∞ and as ε → 0, performed respectively
in Section 3 and 4.

In particular, for the piecewise affine interpolants we show, using an argument developed in [34],
that the time derivatives of the strains are bounded by the time derivatives of the damage and of the
external loading, up to a multiplicative constant independent of k and ε (see Lemma 2.6). Combining
this estimate with arguments similar to [18] allows us to prove that the approximate evolutions are H1 in
time uniformly with respect to k for ε fixed and that they are absolutely continuous in time, uniformly
with respect to ε, too.

Henceforth, we always assume that (1.5), (1.7), (1.11) hold and that w and (α0, u0, e0, p0) satisfy
(1.27) and (1.28), respectively. For some of the results (case λ ∈ (0, 1]) we will require also (1.13).

The incremental scheme. We set a sequence of subdivisions of the interval [0, T ] by fixing equispaced
nodes (tik)0≤i≤k,

tik := i
kT .

For every k, we set (α0
k, (u

0
k, e

0
k, p

0
k)) := (α0, (u0, e0, p0)) and for i = 1, . . . , k we define (αik, (u

i
k, e

i
k, p

i
k)) as

a solution to the incremental problem

min
{
Eλ(β, η; pk, ti−1

k ) +H(β, q − pi−1
k ) + ε

2τ ‖β − α
i−1
k ‖

2
2 : (β, (u, η, q)) ∈ D(αi−1

k )×A(wik)
}
, (2.1)

where τ = τk := 1
k and we have used the following interpolants:

wik := w(tik) for every i = 0, . . . , k ,

pk(t) := pjk + t−tjk
τ (pj+1

k −pjk) for t ∈ [tjk, t
j+1
k ) and j = 0, . . . , k−1 . (2.2)

We remark that, according to (1.25) and using (1.14) to evaluate the dissipation of a piecewise affine
function,

Eλ(β, e; pk, tik) = E(β, e) + λ

i∑
j=1

H(β, pjk − p
j−1
k ) for i = 1, . . . , k . (2.3)

The existence of solutions to problem (2.1) can be proved as in [4, Theorem 3.1] with straightforward
modifications to account for the viscous term. In the following Lemma we collect some properties of
discrete solutions which follow from [4, Lemmas 3.2 and 3.3], [5, Theorem 3.6], and [34, Lemma 3.2].

Lemma 2.1. If (αik, (u
i
k, e

i
k, p

i
k)) is a solution to problem (2.1), then the following equivalent conditions

hold:
(a) −H(αik, p) ≤ 〈C(αik)eik, e〉 ≤ H(αik,−p) for every (u, e, p) ∈ A(0),
(b) C(αik)eik ∈ Kαik(Ω) , div (C(αik)eik) = 0 in Ω , [(C(αik)eik)ν] = 0 on ∂NΩ.

Moreover,

Eλ(αik, e
i
k; pk, ti−1

k ) + ε
2τ ‖α

i
k − αi−1

k ‖
2
2 ≤ Eλ(β, η; pk, ti−1

k ) +H(β, q − pik) + ε
2τ ‖β − α

i−1
k ‖

2
2

for every (β, (u, η, q)) ∈ D(αik)×A(wik), and

Q(αik, e
i
k) +Q(αik, η − eik) ≤ Q(αik, η) +H(αik, q − pik) (2.4)

for every (u, η, q) ∈ A(wik).
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Notice that we shall employ in the sequel only the latter of the equivalent conditions (a) and (b) above.
We define the following piecewise constant and piecewise affine interpolants:

αk(t) := αik , uk(t) := uik , ek(t) := eik ,

p
k
(t) := pik , σk(t) := C(αik)eik , wk(t) := wik for t ∈ [tik, t

i+1
k ) ,

(2.5a)

αk(t) := αik , uk(t) := uik , ek(t) := eik ,

pk(t) := pik , σk(t) := C(αik)eik , wk(t) := wik for t ∈ (ti−1
k , tik] ,

(2.5b)

αk(t) := αik + t−tik
τ (αi+1

k −α
i
k) , uk(t) := uik + t−tik

τ (ui+1
k −u

i
k) , ek(t) := eik + t−tik

τ (ei+1
k −e

i
k) ,

σk(t) := C(αk(t))ek(t) , wk(t) := wik + t−tik
τ (wi+1

k −w
i
k) for t ∈ [tik, t

i+1
k ) .

(2.5c)

(Recall also the definition of pk from (2.2).) Definitions (2.5a) and (2.5c) are given for i = 0 . . . k−1, and
(2.5b) for i = 1 . . . k instead. We define αk(T ) = αk(T ) := αkk and αk(0) := α0, and the same for the other
interpolants. By definition αk, αk, and αk are nonincreasing in time; moreover, (uk(t), ek(t), p

k
(t)) ∈

A(wk(t)), (uk(t), ek(t), pk(t)) ∈ A(wk(t)), and (uk(t), ek(t), pk(t)) ∈ A(wk(t)) for every t ∈ [0, T ]. We
shall also use the notation

τk(t) := tik if t ∈ [tik, t
i+1
k ) , τk(t) := ti+1

k if t ∈ (tik, t
i+1
k ] .

The discrete energy inequality. We now derive an energy estimate for the solutions of the incremental
problems. Let us fix i ∈ {1, . . . , k} and for a given integer h with 1 ≤ h ≤ i let u := uh−1

k −wh−1
k +whk and

η := eh−1
k − Ewh−1

k + Ewhk . Since (αh−1
k , (u, η, ph−1

k )) ∈ D(αh−1
k ) × A(whk ), by the minimality condition

(2.1) we obtain

Eλ(αhk , e
h
k ; pk, th−1

k ) +H(αhk , p
h
k − ph−1

k ) + ε
2τ ‖α

h
k − αh−1

k ‖22
≤ Eλ(αh−1

k , eh−1
k ; pk, th−1

k ) + 〈σh−1
k , Ewhk − Ewh−1

k 〉+Q(αh−1
k , Ewhk − Ewh−1

k ) ,
(2.6)

where we have used the identity

Q(α, e1 + e2) = Q(α, e1) + 〈C(α)e1, e2〉+Q(α, e2) ,

which holds for every α ∈ Hm(Ω; [0, 1]) and e1, e2 ∈ L2(Ω; Mn×n
sym ). From the absolute continuity of w

with respect to t we obtain

whk − wh−1
k =

∫ thk

th−1
k

ẇ(t) dt ,

using the notion of Bochner integral for functions with values in H1(Rn; Rn). This implies that

Ewhk − Ewh−1
k =

∫ thk

th−1
k

Eẇ(t) dt , (2.7)

where the integral is again in the sense of Bochner and the target space is L2(Rn; Mn×n
sym ). By the

continuity of Q and (2.7) we get

Q(αh−1
k , Ewhk − Ewh−1

k ) ≤ γ2

(∫ thk

th−1
k

‖Eẇ(t)‖2 dt
)2

.

Since

λV̂H(αhk , pk, 0, t
h−1
k ) +H(αhk , p

h
k − ph−1

k ) = λV̂H(αhk , pk, 0, t
h
k) + (1− λ)H(αhk , p

h
k − ph−1

k ) , (2.8)

from (2.3), (2.6), and (2.7) it follows that

Eλ(αhk , e
h
k ; pk, thk) + (1− λ)H(αhk , p

h
k − ph−1

k ) +
ε

2τ
‖αhk − αh−1

k ‖22

≤ Eλ(αh−1
k , eh−1

k ; pk, th−1
k ) +

∫ thk

th−1
k

〈σh−1
k , Eẇ(t)〉dt+ ωk

∫ thk

th−1
k

‖Eẇ(t)‖2 dt ,

where

ωk := γ2 max
1≤h≤k

∫ thk

th−1
k

‖Eẇ(t)‖2 dt→ 0

by the absolute continuity of the integral. Iterating now the latter inequality for 1 ≤ h ≤ i amounts to
the following property.
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Proposition 2.2. For every i = 1, . . . , k

Eλ(αik, e
i
k; pk, tik) + (1− λ)

i∑
h=1

H(αhk , p
h
k − ph−1

k ) +
i∑

h=1

ε

2τ
‖αhk − αh−1

k ‖22

≤ E(α0, e0) +
∫ tik

0

〈σk(s), Eẇ(s)〉ds+ δk ,

(2.9)

where δk := ωk
∫ T

0
‖Eẇ(t)‖2 dt→ 0.

A priori estimates. Using (1.7c) and (1.12d) in the left-hand side of (2.9), as well as (1.8) and the fact
that the function t 7→ ‖Eẇ(t)‖2 is integrable on [0, T ] in the right-hand side, we find that for every k ∈ N
and t ∈ (ti−1

k , tik]

γ1‖ek(t)‖22 +D(αk(t)) +
κ

2
|αk(t)|2m,2 + r(1− λ)

i∑
h=1

‖phk − ph−1
k ‖1 +

ε

2

∫ tik

0

‖α̇k(s)‖22 ds

≤ E(α0, e0) + 2γ2 sup
t∈[0,T ]

‖ek(t)‖2
∫ T

0

‖Eẇ(s)‖2 ds+ δk .

Thus, by the Cauchy inequality,
sup
t∈[0,T ]

‖ek(t)‖2 ≤ C . (2.10)

Henceforth, C denotes a suitable constant depending only on γ1, γ2, r, and on the functions α0, e0, and
w. We immediately deduce that

sup
t∈[0,T ]

D(αk(t)) ≤ C , (2.11a)

sup
t∈[0,T ]

‖αk(t)‖m,2 ≤ C , (2.11b)

ε

∫ T

0

‖α̇k(s)‖22 ds ≤ C , (2.11c)

and, from the definitions of the interpolants, that

V(p
k
; 0, T ) = V(pk; 0, T ) = V(pk; 0, T ) =

k∑
i=1

‖pik − pi−1
k ‖1 ≤ C . (2.12)

Notice that analogous estimates to (2.10), (2.11a), (2.11b) also hold for the other interpolants from (2.5b)
and (2.5c).

Next we show a bound from below on the damage variable, thanks to assumption (1.5).

Lemma 2.3. There exists m0 > 0 independent of ε, k, t, such that

αk(t) ≥ m0 , αk(t) ≥ m0 , αk(t) ≥ m0 in Ω (2.13)

for every k ∈ N and t ∈ [0, T ].

Proof. By (2.11b) and the continuous immersionHm(Ω) ⊂ C0,1/2(Ω), cf. (1.4), there exists C̃ independent
of ε, k, t, with

|αk(t, x)− αk(t, y)| ≤ C̃|x− y|1/2 for every x, y ∈ Ω .

Let M > 0; by (1.5b), there exists δ > 0 such that d(δ) > Mδ−2n for every 0 < δ ≤ δ. Assume now that
(2.13) does not hold, so we can find k ∈ N, t ∈ [0, T ], and x ∈ Ω such that αk(t, x) < δ

2 . Then αk(t, x) < δ

for every x ∈ B
(
x,
(
δ/(2C̃)

)2). Therefore, D(αk(t)) > Mωn/
(
2C̃
)2n, where ωn is the measure of the

unit ball in Rn. Since M is arbitrary, this contradicts (2.11a) and proves the thesis for αk. The other
statements are analogous. �

By minimality, we get some differential conditions on the damage variable, which correspond to a dis-
crete approximation of the Kuhn-Tucker conditions appearing in the following sections (cf. Definitions 3.1
and 4.1, and Propositions 3.2 and 4.3). We recall that we assume (1.13) when λ 6= 0; in that case we
obtain the Kuhn-Tucker conditions (2.15). If λ = 0, we would still be able to deduce (2.15) assuming
(1.13); however, without that hypothesis, we can obtain the weaker version (2.14), which is sufficient for
the subsequent applications of the lemma.

Lemma 2.4. Let ε > 0, k ∈ N, and t ∈ (0, T ) \ {t1k, . . . , t
k−1
k }.
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Case λ = 0. We have
〈∂αE(αk(t), ek(t)), β〉+ ε〈α̇k(t), β〉2 ≥ 0 (2.14a)

for every β ∈ Hm
− (Ω) := {β ∈ Hm(Ω) : β ≤ 0 in Ω}, and

〈∂αE(αk(t), ek(t)), α̇k(t)〉+ ε‖α̇k(t)‖22 ≤ CK τ‖α̇k(t)‖∞‖ṗk(t)‖1 , (2.14b)

with CK introduced in (1.11c).

Case λ ∈ (0, 1]. Under the additional assumption (1.13) we have

〈∂αEλ(αk(t), ek(t); pk, τk(t)), β〉+ τ〈∂αH(αk(t), ṗk(t)), β〉+ ε〈α̇k(t), β〉2 ≥ 0 (2.15a)

for every β ∈ Hm
− (Ω), and

〈∂αEλ(αk(t), ek(t); pk, τk(t)), α̇k(t)〉+ ε‖α̇k(t)‖22 = −τ〈∂αH(αk(t), ṗk(t)), α̇k(t)〉 . (2.15b)

Proof. Let us denote α̇ik := αik−α
i−1
k

τ . By (2.13), for every β ∈ Hm
− (Ω) there exists δ ∈ (0, 1) such that

αik + δβ > 0 in Ω for every k, i, and 0 < δ ≤ δ, which implies αik + δβ ∈ D(αi−1
k ). By minimality of αik

0 ≤ Eλ(αik + δβ, eik; pk, ti−1
k ) +H(αik + δβ, pik − pi−1

k ) + ε
2τ ‖α

i
k + δβ − αi−1

k ‖
2
2

−
(
Eλ(αik, e

i
k; pk, ti−1

k ) +H(αik, p
i
k − pi−1

k ) + ε
2τ ‖α

i
k − αi−1

k ‖
2
2

)
.

If λ = 0, dividing by δ and letting δ tend to 0, we get (2.14a), sinceH(αik+δβ, pik−p
i−1
k ) ≤ H(αik, p

i
k−p

i−1
k )

by (1.16) (recall also the regularity assumptions on C and D). If λ > 0, exploiting (1.13) and its
consequences (1.17) and (1.18), we deduce (2.15a) using also (1.12c).

Moreover, αik − δ α̇ik ∈ D(αi−1
k ) for δ < τ , so

0 ≤ Eλ(αik − δ α̇ik, eik; pk, ti−1
k ) +H(αik − δ α̇ik, pik − pi−1

k ) + ε
2τ ‖α

i
k − αi−1

k + δ α̇ik‖22

−
(
Eλ(αik, e

i
k; pk, ti−1

k ) +H(αik, p
i
k − pi−1

k ) + ε
2τ ‖α

i
k − αi−1

k ‖
2
2

)
.

If λ = 0 we get

〈∂αE(αk(t), ek(t)), α̇k(t)〉+ ε‖α̇k(t)‖22 − τ〈∂
+
αH(αk(t), ṗk(t)),−α̇k(t)〉 ≤ 0 ,

where

〈∂+
αH(αk(t), ṗk(t)),−α̇k(t)〉 := lim inf

δ→0+

H(αk(t)− δα̇k(t), ṗk(t))−H(αk(t), ṗk(t))
δ

,

and then (2.14b) follows by (1.16). If λ ∈ (0, 1], since we have already proved (2.15a) we get (2.15b) using
again (1.13). �

The next remark will turn out to be useful in the sequel.

Remark 2.5. Differentiating (2.8) with respect to the damage variable, we get that for every λ ∈ (0, 1]
and β ∈ Hm(Ω)

λ〈∂αV̂H(αk(t), pk; 0, τk(t)), β〉+ τ〈∂αH(αk(t), ṗk(t)), β〉

= λ〈∂αV̂H(αk(t), pk; 0, τk(t)), β〉+ (1− λ)τ〈∂αH(αk(t), ṗk(t)), β〉 ,
and then

〈∂αEλ(αk(t), ek(t); pk, τk(t)), β〉+ τ〈∂αH(αk(t), ṗk(t)), β〉
= 〈∂αEλ(αk(t), ek(t); pk, τk(t)), β〉+ (1− λ)τ〈∂αH(αk(t), ṗk(t)), β〉 .

(2.16)

The following lemma permits to bound the norm of u̇k, ėk, and ṗk by the norm of α̇ik and ẇik times a
constant independent of k and ε; this will be very useful to get the estimates in Propositions 2.7 and 2.8.
In the proof we adapt an argument developed in [34, Lemma 3.3].

Lemma 2.6. For every k ∈ N and 0 ≤ i ≤ k − 1 let

ω̃ik := ‖αi+1
k − αik‖∞ + ‖Ewi+1

k − Ewik‖2 .
Then there exists a positive constant C independent of ε, k, and i such that

‖ei+1
k − eik‖2 ≤C ω̃ik , (2.17a)

‖pi+1
k − pik‖1 ≤C ω̃ik , (2.17b)

‖Eui+1
k − Euik‖1 ≤C ω̃ik , (2.17c)

‖ui+1
k − uik‖BD ≤C(ω̃ik + ‖wi+1

k − wik‖2) . (2.17d)

In particular, dividing by τ , we have that for every t ∈ (0, T ) \ {t1k, . . . , t
k−1
k }

‖ėk(t)‖2 + ‖ṗk(t)‖1 + ‖Eu̇k(t)‖1 ≤ 3C(‖α̇k(t)‖∞ + ‖Eẇk(t)‖2) .
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Finally, for every t ∈ (0, T ) \ {t1k, . . . , t
k−1
k }

H(αk(t), ṗk(t)) ≤ 〈(σk(t))D|ṗk(t)〉+ Cτ
(
‖α̇k(t)‖2∞ + ‖Eẇk(t)‖22

)
. (2.18)

Proof. By Lemma 2.1 we obtain σik := C(αik)eik ∈ Kαik(Ω), div σik = 0 in Ω, and [σikν] = 0 on ∂NΩ for
every k and i. One can easily see that

(αi+1
k , (uik + wi+1

k − wik, eik + E(wi+1
k − wik), pik)) ∈ D(αik)×A(wi+1

k ) ,

and then by minimality

Q(αi+1
k , ei+1

k ) +H(αi+1
k , pi+1

k − pik) ≤ Q(αi+1
k , eik + E(wi+1

k − wik)) . (2.19)

Since for every α ∈ Hm(Ω; [0, 1]) and every e1, e2 ∈ L2(Ω; Mn×n
sym )

Q(α, e1)−Q(α, e2) = 1
2 〈C(α)(e1 + e2), e1 − e2〉 , (2.20)

recalling the integration-by-parts formula (1.20) and condition (b) of Lemma 2.1, by (2.19) we infer that

H(αi+1
k , pi+1

k −p
i
k) ≤ 〈σi+1

k , E(wi+1
k −w

i
k)− (ei+1

k −e
i
k)〉+Q(αi+1

k , E(wi+1
k −w

i
k))

− 〈C(αi+1
k )(ei+1

k −e
i
k), E(wi+1

k −w
i
k)〉+Q(αi+1

k , ei+1
k −e

i
k)

=〈(σi+1
k )D | pi+1

k −p
i
k〉+Q(αi+1

k , E(wi+1
k −w

i
k))

− 〈C(αi+1
k )(ei+1

k −e
i
k), E(wi+1

k −w
i
k)〉+Q(αi+1

k , ei+1
k −e

i
k) .

(2.21)

By (2.21), using (1.15) and the Cauchy inequality we have

r‖pi+1
k −p

i
k‖1 ≤ C1

(
‖E(wi+1

k −w
i
k)‖2 + ‖ei+1

k −e
i
k‖2
)
, (2.22)

where C1 depends on γ2 introduced in (1.7c) and on the constant in (2.10).
Testing (2.4) by (ui+1

k − (wi+1
k −wik), ei+1

k −E(wi+1
k −wik), pi+1

k ) ∈ A(wik), by simple algebraic manip-
ulations we obtain

Q(αik, e
i
k) +Q(αik, e

i+1
k − eik) + 〈σik, E(wi+1

k − wik)〉 ≤ Q(αik, e
i+1
k ) +H(αik, p

i+1
k − pik) .

Using (2.19), it follows that

Q(αik, e
i+1
k − eik) ≤Q(αik, e

i+1
k )−Q(αik, e

i
k) +Q(αi+1

k , eik)−Q(αi+1
k , ei+1

k )

+ 〈
[
C(αi+1

k )− C(αik)
]
eik, E(wi+1

k − wik)〉+Q(αi+1
k , E(wi+1

k −w
i
k))

+H(αik, p
i+1
k −p

i
k)−H(αi+1

k , pi+1
k −p

i
k) .

(2.23)

Notice now that, employing again (2.20),

Q(αik, e
i+1
k )−Q(αik, e

i
k) +Q(αi+1

k , eik)−Q(αi+1
k , ei+1

k ) = 1
2 〈
[
C(αik)− C(αi+1

k )
]

(eik + ei+1
k ), (ei+1

k − eik)〉 .
(2.24)

By (2.23), (2.24), (1.7c), (1.16), and the Cauchy inequality, we deduce

γ1‖ei+1
k −e

i
k‖22 ≤

γ1
4 ‖e

i+1
k −e

i
k‖22 + γ1r

2

4(C1)2 ‖p
i+1
k −p

i
k‖21

+ C2

(
‖αi+1

k −α
i
k‖2∞ + ‖E(wi+1

k −w
i
k)‖22

)
,

(2.25)

with C2 depending on the constant in (2.10), w, Lip(C), CK , r, γ1, γ2, κ. Thus (2.17a) and (2.17b) follow
from (2.22) and (2.25). Arguing as in [5, Theorem 3.8], we obtain also (2.17c) and (2.17d). Finally, using
(2.17) and the Cauchy inequality, we get (2.18) from (2.21). �

Combining Lemma 2.6 and some arguments from [18, Proposition 4.1], we prove that for ε fixed the
functions αk are bounded in H1(0, T ;Hm(Ω)), uniformly in k.

Proposition 2.7. There exists a positive constant C independent of ε, k, and t such that for every ε > 0,
k ∈ N, t ∈ (0, T ) \ {t1k, . . . , t

k−1
k }

ε‖α̇k(t)‖2 ≤ Ce
C
ε τk(t) , (2.26a)

ε

∫ τk(t)

0

‖α̇k(s)‖2m,2 ds ≤ CeCε τk(t) . (2.26b)

Proof. We start from (2.14), denoting α̇ik := αik−α
i−1
k

τ , ėik = eik−e
i−1
k

τ , ṗik = pik−p
i−1
k

τ , and ẇik = wik−w
i−1
k

τ
for every k ∈ N and 1 ≤ i ≤ k. Let now fix k and i. First we consider the case 2 ≤ i ≤ k; the case i = 1
needs a slightly different treatment and will be considered below.

We take (2.14b) in the case λ = 0, respectively (2.15b) in the case λ ∈ (0, 1], evaluated at t ∈ (ti−1
k , tik),

thus αk(t) = αik and α̇k(t) = α̇ik. Then we subtract (2.14a) (resp. (2.15a)) evaluated at t ∈ (ti−2
k , ti−1

k ),
(thus αk(t) = αi−1

k and α̇k(t) = α̇i−1
k ), and tested by β := α̇ik. Recall that the differentiability of
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Eλ(·, e; p, t) follows from (1.13), which is assumed if λ ∈ (0, 1], while for λ = 0 the energy reduces to
E(α, e) and some terms disappear, see also above. We obtain that for every 2 ≤ i ≤ k and every λ ∈ [0, 1]

ε〈α̇ik − α̇i−1
k , α̇ik〉+ κ〈αik − αi−1

k , α̇ik〉m,2 ≤−
[

1
2 〈C

′(αik)α̇ike
i
k, e

i
k〉 − 1

2 〈C
′(αi−1

k )α̇ike
i−1
k , ei−1

k 〉
]

− 〈∂D(αik)− ∂D(αi−1
k ), α̇ik〉+ CK τ‖α̇ik‖∞‖ṗik‖1

− λ
i−1∑
h=1

〈
∂αH(αik, p

h
k − ph−1

k )− ∂αH(αi−1
k , phk − ph−1

k ), α̇ik
〉
.

When λ ∈ (0, 1] the inequality stated above follows from (1.26) and (2.16) by neglecting the term
(1 − λ)〈∂αH(αi−1

k , pi−1
k − pi−2

k ), α̇ik
〉
, which is negative by the softening assumption (1.11b) and by the

monotonicity in time of αk. Therefore

ε〈α̇ik − α̇i−1
k , α̇ik〉+ κ〈αik − αi−1

k , α̇ik〉m,2 ≤ 1
2

∣∣∣〈[C′(αik)− C′(αi−1
k )]α̇ike

i
k, e

i
k〉
∣∣∣

+ 1
2

∣∣∣〈C′(αi−1
k )α̇ike

i
k, e

i
k〉 − 〈C′(αi−1

k )α̇ike
i−1
k , ei−1

k 〉
∣∣∣

+ Cτ‖α̇ik‖2∞
(
1 + V(pk; 0, τk(t))

)
+ CK τ‖α̇ik‖∞‖ṗik‖1 ,

taking into account the regularity assumptions on C, D, H (see (1.7), (1.5), (1.12), (1.13)). Using the
fact that 2a(a− b) ≥ a2 − b2 for every a, b, we get

ε〈α̇ik − α̇i−1
k , α̇ik〉 ≥

ε

2

(
‖α̇ik‖22 − ‖α̇i−1

k ‖
2
2

)
,

and then, using (2.12), we obtain that
ε

2

(
‖α̇ik‖22 − ‖α̇i−1

k ‖
2
2

)
+ τκ|α̇ik|2m,2 ≤ Cτ

(
‖α̇ik‖2∞ + ‖α̇ik‖∞‖ėik‖2 + ‖α̇ik‖∞‖ṗik‖1

)
≤ Cτ

(
‖α̇ik‖2∞ + ‖Eẇik‖22

) (2.27)

for every 2 ≤ i ≤ k, where C depends on the C1,1 norm of C, D, H (if λ ∈ (0, 1]), and on the constants
r, γ1, γ2. Notice that in the last inequality we have used Lemma 2.6.

Since ∂αE(α0, e0) ∈ L2(Ω), using (2.14b) we get

ε‖α̇1
k‖22 ≤ 〈−∂αE(α0, e0), α̇1

k〉 −
[

1
2

(
〈C′(α1

k)α̇1
ke

1
k, e

1
k〉 − 〈C′(α0)α̇1

ke0, e0〉L2

)
+ 〈∂D(α1

k)− ∂D(α0), α̇1
k〉+ κ〈α1

k − α0, α̇
1
k〉m,2 + CK τ‖ṗ1

k‖1‖α̇1
k‖∞

]
≤ 1

2ε
‖∂αE(α0, e0)‖22 +

ε

2
‖α̇1

k‖22 − τκ|α̇1
k|2m,2 + Cτ

(
‖α̇1

k‖2∞ + ‖Eẇ1
k‖22
)
,

(2.28)

arguing as before, since (α0, (u0, e0, p0)) satisfies (1.28). We can read (2.28) as
ε

2
‖α̇1

k‖22 + τκ|α̇1
k|2m,2 ≤ C

(1
ε

+ τ
(
‖α̇1

k‖2∞ + ‖Eẇ1
k‖22
))
. (2.29)

Since Hm(Ω) is compactly embedded into L∞(Ω), for every δ > 0 there exists a constant Cδ > 0 such
that

‖ · ‖2∞ ≤ δ| · |2m,2 + Cδ‖ · ‖22 . (2.30)

For every 2 ≤ h ≤ k, summing (2.27) for 2 ≤ i ≤ h and (2.29) and taking into account (2.30) for δ = 1
2C ,

we get
ε

2
‖α̇hk‖22 +

τκ

2

h∑
i=1

|α̇ik|2m,2 ≤ C

(
1
ε

+ τ
( h∑
i=1

‖α̇ik‖22 +
h∑
i=1

‖Eẇik‖22
))

. (2.31)

Adding τκ
2

∑h
i=1 ‖α̇ik‖22 to both sides of (2.31), it follows that for every t ∈ (0, T ) \ {t1k, . . . , t

k−1
k },

ε

2
‖α̇k(t)‖22 +

κ

2

∫ τk(t)

0

‖α̇k(s)‖2m,2 ds ≤ C

(
1
ε

+
∫ τk(t)

0

‖α̇k(s)‖22 ds+
∫ τk(t)

0

‖Eẇk(s)‖22 ds

)

≤ C

(
1
ε

+ 1 +
∫ τk(t)

0

‖α̇k(s)‖22 ds

)
,

(2.32)

where we have used (1.27) in the last inequality. Now Gronwall’s Inequality implies that

ε‖α̇k(t)‖22 ≤ C
(1
ε

+ 1
)
e
C
ε τk(t) ,

for every t ∈ (0, T ) \ {t1k, . . . , t
k−1
k }. We recover (2.26a) multiplying with ε and taking the square root.

Now (2.26b) follows from (2.26a) and (2.32). �
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Arguing as in [18, Proposition 4.3] we improve the estimate of Proposition 2.7 and show that the
functions αk are bounded in AC([0, T ], Hm(Ω)) by a constant independent of ε and k.

Proposition 2.8. There exists a positive constant C independent of ε, k, and t such that for every
0 < ε < 1 and k ∈ N, with k ≥ (4ε)−1, ∫ t

0

‖α̇k(s)‖m,2 ds ≤ C .

Proof. Let α̇ik := αik−α
i−1
k

τ and ẇik = wik−w
i−1
k

τ for every k ∈ N and 1 ≤ i ≤ k. From the inequality

‖α̇ik‖2
(
‖α̇ik‖2 − ‖α̇i−1

k ‖2
)
≤ 〈α̇ik − α̇i−1

k , α̇ik〉2 ,

arguing as done for (2.27), we get that for every 2 ≤ i ≤ k

ε‖α̇ik‖2
(
‖α̇ik‖2 − ‖α̇i−1

k ‖2
)

+ τκ|α̇ik|2m,2 ≤ Cτ
(
‖α̇ik‖2∞ + ‖Eẇik‖22

)
. (2.33)

By the compact embedding of Hm(Ω) into L∞(Ω), for every δ > 0 there exists a constant C(δ) > 0 such
that

‖ · ‖2∞ ≤ δ| · |2m,2 + Cδ‖ · ‖21 ≤ δ| · |2m,2 + C̃δ‖ · ‖1‖ · ‖2 , (2.34)

since Ω is bounded. Adding a term τκ‖α̇ik‖22 to both sides of (2.33) and using (2.34) with δ = 1
2C , we

obtain that

ε‖α̇ik‖2
(
‖α̇ik‖2 − ‖α̇i−1

k ‖2
)

+
κ

2
τ‖α̇ik‖2m,2 ≤ Cτ

(
‖α̇ik‖1‖α̇ik‖2 + ‖Eẇik‖22

)
,

for 2 ≤ i ≤ k. Multiplying the inequality above by 2/ε and taking into account that ‖α̇ik‖2m,2 ≥ ‖α̇ik‖22,
we have that

2‖α̇ik‖2
(
‖α̇ik‖2 − ‖α̇i−1

k ‖2
)

+
τκ

2ε
‖α̇ik‖22 +

τκ

2ε
‖α̇ik‖2m,2 ≤

2τC
ε

(
‖α̇ik‖1‖α̇ik‖2 + ‖Eẇik‖22

)
(2.35)

for 2 ≤ i ≤ k. We now set

ai := ‖α̇ik‖2, bi :=
(τκ

2ε

)1/2

‖α̇ik‖m,2, ci :=
(2τC

ε

)1/2

‖Eẇik‖2 di :=
τC

ε
‖α̇ik‖1 ζ :=

τκ

4ε
for 2 ≤ i ≤ k. This definition allows us to recast (2.35) in the form

2ai(ai − ai−1) + 2ζa2
i + b2i ≤ c2i + 2aidi ,

and so to follow the proof performed in [18]. Indeed, by a discrete Gronwall-type inequality with weights
(see [18, Lemma 4.1], to which we refer for all details), we conclude that

κ

2ε

h∑
i=2

τ(1 + ζ)2(i−h)−1‖α̇ik‖2m,2 ≤ 2(1 + ζ)−2h‖α̇1
k‖22 + 16Cζ

h∑
i=2

(1 + ζ)2(i−h)−1‖Eẇik‖22

+ 4C2

( h∑
i=2

τ

ε
(1 + ζ)i−h−1‖α̇ik‖1

)2

,

(2.36)

for 2 ≤ h ≤ k. We bound the right hand side of (2.36) with[
√

2(1 + ζ)−h‖α̇1
k‖2 +

(
1 + 16Cζ

k∑
i=2

(1 + ζ)2(i−h)−1‖Eẇik‖22
)

+ 2C
h∑
i=2

τ

ε
(1 + ζ)i−h−1‖α̇ik‖1

]2

,

using the fact that for every a, b, c > 0

a2 + b2 + c2 ≤ (a+ b+ c)2 ≤ (a+ (1 + b2) + c)2 .

In order to estimate from below the left hand side of (2.36), we appeal to the Hölder inequality,

κ

2ε

h∑
i=2

τ(1 + ζ)2(i−h)−1‖α̇ik‖m,2 ≤
( κ

2ε

h∑
i=2

τ(1 + ζ)2(i−h)−1
) 1

2
( κ

2ε

h∑
i=2

τ(1 + ζ)2(i−h)−1‖α̇ik‖2m,2
) 1

2
.

Evaluating the geometric sum and using the fact that τκ
2ε ≤ 2ζ ≤ 2κ, we deduce that

1
2ε

h∑
i=2

τ(1 + ζ)2(i−h)−1 ≤ κ+ 1 .
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Therefore from (2.36) we obtain

1
ε

h∑
i=2

τ(1 + ζ)2(i−h)−1‖α̇ik‖m,2 ≤ C
(

1 + (1 + ζ)−h‖α̇1
k‖2 + ζ

h∑
i=2

(1 + ζ)2(i−h)−1‖Eẇik‖22

+
h∑
i=2

τ

ε
(1 + ζ)i−h−1‖α̇ik‖1

)
.

(2.37)

Now we multiply both sides of (2.37) by τ and sum over h = 2, . . . , k. Recalling the formula of the
geometric sum we get for every k ∈ N and ρ2, ρ3, . . . , ρk ≥ 0

1
ε

k∑
h=2

τ

h∑
i=2

τ(1 + ζ)2(i−h)−1ρi = 4
1 + ζ

2 + ζ

k∑
i=2

τρi
(
1− (1 + ζ)2(i−k)−2

)
, (2.38)

where we have changed the order of the sums; this identity will be used to rewrite the left hand side of
(2.37) setting ρi = ‖α̇ik‖m,2 and the third term in the right hand side setting ρi = ‖Eẇik‖22. Moreover,
for the second and the fourth summand in the right hand side of (2.37) we have

k∑
h=2

τ(1 + ζ)−h‖α̇1
k‖2 ≤

8ε
κ
‖α̇1

k‖2 (2.39)

and
k∑
h=2

τ

h∑
i=2

τ

ε
(1 + ζ)i−h−1‖α̇ik‖1 ≤

4
κ

k∑
i=2

τ‖α̇ik‖1 . (2.40)

Collecting (2.37)–(2.40) we obtain that
k∑
i=2

τ‖α̇ik‖m,2 ≤ C
(
T + ε‖α̇1

k‖2 +
k∑
i=2

τ‖Eẇik‖22 +
k∑
i=2

τ‖α̇ik‖1
)

+
k∑
i=2

τ(1 + ζ)2(i−k)−2‖α̇ik‖m,2 .

The last term in the equation above is estimated with (2.37), so we get
k∑
i=2

τ‖α̇ik‖m,2 ≤ C
(
T + ε‖α̇1

k‖2 +
k∑
i=2

τ‖Eẇik‖22 +
k∑
i=2

τ‖α̇ik‖1
)
. (2.41)

We are now left to estimate the term with i = 1. From (2.29) and (2.34) it follows that

τ |α̇1
k|2m,2 ≤ C

(
1
ε

+ τ‖α̇1
k‖21 + τ‖Eẇ1

k‖22
)
.

Multiplying by τ , since τ
2ε ≤ 2 we get

τ2|α̇1
k|2m,2 ≤ C

(
1 + τ2‖α̇1

k‖21 + τ2‖Eẇ1
k‖22
)
≤ C

(
1 + τ‖α̇1

k‖1 + τ‖Eẇ1
k‖2
)2
,

and then

τ‖α̇1
k‖m,2 ≤ C

(
1 + τ‖α̇1

k‖1 + τ‖Eẇ1
k‖2
)

+ τ‖α̇1
k‖2 ≤ C

(
1 + τ‖α̇1

k‖1 + τ‖Eẇ1
k‖2 + ε‖α̇1

k‖2
)
. (2.42)

Summing up (2.41) and (2.42) gives
k∑
i=1

τ‖α̇ik‖m,2 ≤ C
(
T + ε‖α̇1

k‖2 +
k∑
i=1

τ‖Eẇik‖22 +
k∑
i=1

τ‖α̇ik‖1
)

≤ C
(

1 +
∫ T

0

‖Eẇk(s)‖22 +
∫

Ω

α0(x)− αkk(x) dx
)
,

where in the last inequality we have used the fact that αik ≤ αi−1
k and (2.26a) for t ∈ (0, t1k) = (0, τ),

taking into account that τ
ε ≤ 4. Thus we conclude, recalling (1.27), (2.11b), and the fact that C is

independent of ε, k, and t. �

Remark 2.9. Using Lemma 2.6, by Proposition 2.7 we get that

ε

∫ T

0

‖ėk(s)‖22 ds ≤ C, ε

∫ T

0

‖ṗk(s)‖21 ds ≤ C, ε

∫ T

0

‖u̇k(s)‖2BD ds ≤ C , (2.43)

while by Proposition 2.8 it follows that∫ T

0

‖ėk(s)‖2 ds ≤ C,
∫ T

0

‖ṗk(s)‖1 ds ≤ C,
∫ T

0

‖u̇k(s)‖BD ds ≤ C (2.44)

for 4kε > 1, where C is a constant independent of ε, k, and t.
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Remark 2.10. We conclude this section with a short discussion on the choice of the regularizing term in
(1.9). Let us consider the general case of a damage regularization in a Banach space X, namely, whenever
the energy is finite, the damage variable belongs to X. In order to differentiate the energy with respect
to time, a priori estimates for αk in the space W 1,1(0, T ;X) should be derived, in such a way that α̇ is in
duality with ∂αE ∈ X ′, cf. (1.10). In the present context, following [18], we exploit the Hilbert structure
of the space X = Hm(Ω), see Lemma 2.8. Instead, the choice X = W 1,γ(Ω) (γ > n) considered in [17]
(for damage without plasticity) provides only a uniform estimate for αk in W 1,1(0, T ;H1(Ω)). For this
reason in [17] the evolution fulfills only an energy inequality, see also Remark 3.4 therein.

3. Viscous evolutions

In this section we pass to the limit in the discrete-time problems as the time step converges to zero.
For every fixed ε > 0 we then find a quadruple (αε, uε, eε, pε) satisfying for every t ∈ [0, T ]:

• admissibility and equilibrium conditions, with αε nonincreasing in time;
• a first order stability condition in the damage, referred to as Kuhn-Tucker inequality;
• an energy balance including viscous dissipation.

Such quadruples are called ε-approximate viscous evolutions (see Definition 3.1 and Theorem 3.7). We
also prove some crucial estimates for the passage to the limit as viscosity vanishes, which will be studied
in Section 4.

We start introducing the notion of ε-approximate viscous evolution. Notice that when X is the dual
space of a Banach space Y we denote

L2
w(0, T ;X) := {p : [0, T ]→ X weakly∗ measurable : t 7→ ‖p(t)‖ ∈ L2(0, T )} ,

with f : (0, T )→ X weakly∗ measurable if and only if (0, T ) 3 t 7→ 〈f(t), g〉 is measurable for every g ∈ Y ,
and

H1
w(0, T ;X) :=

{
p ∈ L2

w(0, T ;X) : ∃ p̃ ∈ L2
w(0, T ;X) s.t. for every ϕ ∈ C1

c ((0, T );Y )∫ T

0

〈p(t), ∂tϕ(t)〉dt = −
∫ T

0

〈p̃(t), ϕ(t)〉dt
}
.

Definition 3.1. Let (1.5), (1.7), (1.11) hold, and let w be as in (1.27). We say that a function
(αε, uε, eε, pε) from [0, T ] into Hm(Ω; [0, 1]) × BD(Ω) × L2(Ω; Mn×n

sym ) × Mb(Ω ∪ ∂DΩ; Mn×n
D ) is an ε-

approximate viscous evolution if

αε ∈ H1(0, T ;Hm(Ω)) , eε ∈ H1(0, T ;L2(Ω; Mn×n
sym )) ,

uε ∈ H1
w(0, T ;BD(Ω)), pε ∈ H1

w(0, T ;Mb(Ω ∪ ∂DΩ; Mn×n
D )) ,

(3.1)

and, setting σε(t) := C(αε(t))eε(t) for every t ∈ [0, T ], the following conditions are satisfied:
(ev0)ε irreversibility : for every x ∈ Ω

[0, T ] 3 t 7→ αε(t, x) is nonincreasing ;

(ev1)ε kinematic condition and equilibrium: for every t ∈ [0, T ]

(uε(t), eε(t), pε(t)) ∈ A(w(t)) , div σε(t) = 0 in Ω , [σεν] = 0 on ∂NΩ ;

(ev2)ε stress constraint : for every t ∈ [0, T ]

σε(t) ∈ Kαε(t)(Ω) ;

(ev3)ε Kuhn-Tucker inequality : for a.e. t ∈ (0, T )

〈∂αEλ(αε(t), eε(t); pε, t), β〉+ ε〈α̇ε(t), β〉 ≥ 0 for every β ∈ Hm
− (Ω) = {β ∈ Hm(Ω) : β ≤ 0 in Ω} ;

(ev4)ε energy balance: for every t ∈ [0, T ]

Eλ(αε(t), eε(t); pε, t) + (1− λ)
∫ t

0

H(αε(s), ṗε(s)) ds+ ε

∫ t

0

‖α̇ε(s)‖22 ds

= E(α0, e0) +
∫ t

0

〈σε(s), Eẇ(s)〉ds .

Two characterizations of the approximate viscous evolutions are given below: the first ensures in
particular that the damage variable satisfies the Kuhn-Tucker conditions, while the second will be useful
in the proof of Theorem 3.7.

Proposition 3.2. Let (αε, uε, eε, pε) be a function satisfying the conditions (3.1), (ev0)ε–(ev3)ε, with
αε(t) ∈ Hm(Ω; [0, 1]). Then (αε, uε, eε, pε) is an ε-approximate viscous evolution, i.e. it satisfies the
energy balance (ev4)ε, if and only if any of the conditions below holds true:
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(ev4’)ε for a.e. t ∈ (0, T ) the following hold:
– Kuhn-Tucker equality:

〈∂αEλ(αε(t), eε(t); pε, t), α̇ε(t)〉+ ε‖α̇ε(t)‖22 = 0 ; (3.2)

– Hill’s maximum plastic work principle:

H(αε(t), ṗε(t)) = 〈σε(t))D| ṗε(t)〉 .

(ev4”)ε energy inequality: for every t ∈ [0, T ]

Eλ(αε(T ), eε(T ); pε, T ) + (1− λ)
∫ T

0

H(αε(t), ṗε(t)) dt+ ε

∫ T

0

‖α̇ε(t)‖22 dt

≤ E(α0, e0) +
∫ T

0

〈σε(t), Eẇ(t)〉dt .

Proof. Ad (ev4)ε ⇐⇒ (ev4’)ε: From the absolute continuity of αε, eε, and pε, we obtain that the
function t 7→ Eλ(αε(t), eε(t); pε, t) is absolutely continuous and

d
dt
Eλ(αε(t), eε(t); pε, t) = 〈∂αEλ(αε(t), eε(t); pε, t), α̇ε(t)〉+ λH(αε(t), ṗε(t)) + 〈σε(t), ėε(t)〉 (3.3)

for a.e. t ∈ (0, T ). Property (ev1)ε and [5, Lemma 5.5] imply that

(u̇ε(t), ėε(t), ṗε(t)) ∈ A(ẇ(t)) for a.e. t ∈ (0, T ) ,

so that, from the integration by parts formula (1.20),

〈σε(t), ėε(t)〉 = 〈σε(t), Eẇ(t)〉 − 〈(σε(t))D| ṗε(t)〉 (3.4)

for a.e. t ∈ (0, T ). Then (ev4)ε is equivalent to

−(1− λ)H(αε(t), ṗε(t))− ε‖α̇ε(t)‖22 + 〈σε(t), Eẇ(t)〉 =
d
dt
Eλ(αε(t), eε(t); pε, t)

for a.e. t ∈ (0, T ), which is also equivalent to

〈∂αEλ(αε(t), eε(t); pε, t), α̇ε(t)〉+ ε‖α̇ε(t)‖22 +H(αε(t), ṗε(t))− 〈(σε(t))D| ṗε(t)〉 = 0 (3.5)

for a.e. t ∈ (0, T ). Now, from (ev2)ε and (1.22) it follows that

〈(σε(t))D| ṗε(t)〉 ≤ H(αε(t), ṗε(t)) , (3.6)

since ṗε(t) ∈ Π(Ω) for a.e. t ∈ [0, T ]. Then, using (ev3)ε with β = α̇ε, we get that (3.5) is equivalent to
(ev4’)ε.

Ad (ev4)ε ⇐⇒ (ev4”)ε: Let us prove that (ev4”)ε implies (ev4)ε, the converse being trivial. Gathering
(ev3)ε with β = α̇ε(t), (3.3), (3.4), and (3.6), we deduce that

d
dt
Eλ(αε(t), eε(t); pε, t) ≥ −(1− λ)H(αε(t), ṗε(t))− ε‖α̇ε(t)‖22 + 〈σε(t), Eẇ(t)〉

for a.e. t ∈ (0, T ). Integrating, we get for every 0 ≤ t1 ≤ t2 ≤ T the inequality

Eλ(αε(t2), eε(t2); pε, t2) + (1− λ)
∫ t2

t1

H(αε(s), ṗε(s)) ds+ ε

∫ t2

t1

‖α̇ε(s)‖22 ds

≥ Eλ(αε(t1), eε(t1); pε, t1) +
∫ t2

t1

〈σε(s), Eẇ(s)〉ds ,

which implies the energy balance (ev4)ε in view of (ev4”)ε. This concludes the proof. �

Using the Kuhn-Tucker conditions, we can rewrite the energy balance as in the following Remark.

Remark 3.3. Let (αε, uε, eε, pε) be an ε-approximate viscous evolution. From (ev3)ε and (3.2) it follows
that

ε‖α̇ε(t)‖2 = sup
β∈F
〈−∂αEλ(αε(t), eε(t); pε, t), β〉 = − inf

β∈F
〈∂αEλ(αε(t), eε(t); pε, t), β〉 (3.7)

for a.e. t ∈ (0, T ), where
F := {β ∈ Hm

− (Ω) : ‖β‖2 ≤ 1} .
Indeed, by (ev3)ε

ε〈α̇ε(t), β〉 ≥ 〈−∂αEλ(αε(t), eε(t); pε, t), β〉 ,
for every β ∈ Hm

− (Ω), while (3.2) implies that the supremum in (3.7) is a maximum, attained for
β = α̇ε(t)

‖α̇ε(t)‖2 if ‖α̇ε(t)‖2 > 0.
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Then, by (3.7), (ev4)ε reads as

Eλ(αε(T ), eε(T ); pε, T ) + (1− λ)
∫ T

0

H(αε(t), ṗε(t)) dt+
∫ T

0

‖α̇ε(t)‖2Ψ(αε(t), eε(t); pε, t) dt

= E(α0, e0) +
∫ T

0

〈σε(t), Eẇ(t)〉dt ,
(3.8)

where
Ψ(α, e; p, t) := Φ(∂αEλ(α, e; p, t)) , (3.9)

for every α ∈ Hm(Ω; [0, 1]), e ∈ L2(Ω; Mn×n
sym ), p ∈ AC([0, T ];Mb(Ω ∪ ∂DΩ; Mn×n

D )), t ∈ [0, T ], with

Φ(f) := sup
β∈F
〈−f, β〉 for every f ∈ (Hm(Ω))′ . (3.10)

Notice that Ψ(α, e; p, t) ∈ [0,+∞].

In the following lemma we characterize the operator Φ introduced above.

Lemma 3.4. Let Φ be the operator defined in (3.10), and let

G := {h ∈ (Hm(Ω))′ : 〈h, β〉 ≥ 0 for every β ∈ Hm
− (Ω)}

and
d2(f,G) := min{‖g‖2 : g ∈ L2(Ω), f + g ∈ G} for every f ∈ (Hm(Ω))′ , (3.11)

which is well defined for every f . Then

Φ(f) = d2(f,G) for every f ∈ (Hm(Ω))′ . (3.12)

Proof. Let us fix f ∈ (Hm(Ω))′.

Proof of Φ(f) ≤ d2(f,G). Let d2(f,G) < +∞ and g ∈ L2(Ω) such that f + g ∈ G: we have that

〈−f, β〉 ≤
∫

Ω

g β dx ≤ ‖g‖2 for every β ∈ F

and we conclude by definition of Φ(f) and d2(f,G).

Proof of d2(f,G) ≤ Φ(f). We can assume Φ(f) < +∞; then

〈f, β〉 ≤ Φ(f)‖β‖2 for every β ∈ Hm
+ (Ω) = {β ∈ Hm(Ω) : β ≥ 0 in Ω} . (3.13)

Let B ⊂ Rn be an open set such that Ω ⊂ B and

〈S, β〉 := 〈f, β|Ω〉 for every β ∈ Hm
0 (B) ; (3.14)

by (3.13)
〈S, β〉 ≤ Φ(f)‖β‖L2(B) for every β ∈ Hm

0 (B) .

By Lemma A.2 we get that there exists a unique pair (g, µ) with g ∈ L2(B), g ≥ 0 and µ ∈ M+(B)
(namely µ is a nonnegative measure on B) such that g dx and µ are mutually singular and

〈S, β〉 =
∫
B

g β dx−
∫
B

β dµ for every β ∈ Hm
0 (B) ;

in particular the former property implies that
∫
B
g dµa = 0.

Using (3.14) we have that g ∈ L2(Ω) and µ ∈M+(Ω). Therefore

〈f, β〉 =
∫

Ω

g β dx−
∫

Ω

β dµ for every β ∈ Hm(Ω) ;

then −〈g, ·〉2 + f ∈ G, and this gives
d2(f,G) ≤ ‖g‖2 . (3.15)

Let us fix ε > 0. We claim that there exists β ∈ C∞c (Ω) ∩ F such that

−
∫

Ω

g β dx > ‖g‖2 − ε and −
∫

Ω

β dµa < ε , (3.16)

where µ = µa + µs is the decomposition of µ ∈ M+(Ω) into its absolutely continuous and its singular
part (with respect to Ln). Indeed, we can first consider h ∈ L∞(Ω) with compact support such that
− g
‖g‖2 ≤ h ≤ 0 and

−
∫

Ω

g hdx > ‖g‖2 − ε
2 , (3.17)
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for instance h =
(
−1Ωk

g
‖g‖2

)
∨ (−k) for Ωk compact such that Ω ⊂ Ωk+B(0, 1

k ) and k ∈ N large enough.

Then we set hk := h∗%k
1∨‖h∗%k‖2 for a suitable k ∈ N (here ρk(t) := k ρ( tk ), with ρ the standard mollifier in

R), so that hk ∈ F , ‖hk‖∞ ≤ ‖h‖∞ for every k, and

lim
k→∞

∫
Ω

hk dµa =
∫

Ω

hdµa = 0 , (3.18)

where the first equality follows by Dominated Convergence Theorem and the second from − g
‖g‖2 ≤ h ≤ 0

and
∫

Ω
g dµa = 0. Since hk → h in L2(Ω), for k large ‖h− hk‖2 < ε

2‖g‖2 and then we get (3.16) by (3.17)
and (3.18).

Let us now consider µs ∈M+(Ω); let E be the set on which µs is concentrated, and K be a compact
subset of E such that

µs(E \K) < ε
‖β‖∞ . (3.19)

Since Ln(E) = 0, for every η > 0 we can find an open set U such that K ⊂ U and Ln(U) < η. Let us
take ϕ ∈ C∞c (Ω; [0, 1]) such that ϕ = 0 in K and ϕ = 1 in Ω \ U , and let β := β ϕ. Then β ∈ F and we
can assume that β satisfies (3.16), choosing η sufficiently small: then

Φ(f) ≥ −〈f, β〉 = −
∫

Ω

g β +
∫

Ω

β dµa +
∫
E\K

β dµs > ‖g‖2 − 3ε ≥ d2(f,G)− 3ε ,

by (3.15), (3.16), and (3.19). The proof is concluded since ε is arbitrary. �

Remark 3.5. The identity (3.12) can be used to connect the notions of solutions provided in [18] and
in [28], in the context of damage (without plasticity). The energy balance has the same structure for the
two evolutions; the term related to the energy dissipated during jumps in the energy balance of [18] is
given in terms of d2(·, G), while the one in [28] is given in terms of Φ.

The following Lemma states some semicontinuity properties that will be useful for the proof of Theo-
rem 3.7. For the reader’s convenience we give the proof following the lines of [7, Lemmas 6.1 and 6.2], to
which we refer for full details.

Lemma 3.6. Let βk, β ∈ C([0, T ];C(Ω; [0, 1])) such that

βk → β in C([0, T ];C(Ω)) , (3.20)

and qk, q ∈ H1(0, T ;Mb(Ω ∪ ∂DΩ; Mn×n
D )) such that

qk(t) ∗⇀ q(t) in Mb(Ω ∪ ∂DΩ; Mn×n
D ) (3.21)

for every t ∈ [0, T ] and ∫ T

0

‖q̇k(t)‖1 dt+
∫ T

0

‖q̇(t)‖1 dt ≤ C (3.22)

for C independent of k. Then for every t ∈ [0, T ]∫ t

0

H(β(s), q̇(s)) ds ≤ lim inf
k→∞

∫ t

0

H(βk(s), q̇k(s)) ds (3.23)

and
〈∂αV̂H(β1, q; 0, t), β2〉 ≤ lim inf

k→∞

[
〈∂αV̂H(β1, qk; 0, t), β2〉

]
(3.24)

for every β1 ∈ C(Ω; [0, 1]) and β2 ∈ C(Ω; [0,∞)).

Proof. Let us fix t ∈ [0, T ] and define µk, µ ∈Mb((0, t)×(Ω ∪ ∂DΩ); Mn×n
D ) by setting

〈ϕ, µk〉 :=
∫ t

0

〈ϕ(s, ·), q̇k(s)〉ds and 〈ϕ, µ〉 :=
∫ t

0

〈ϕ(s, ·), q̇(s)〉ds

for every ϕ ∈ C0((0, t)×(Ω ∪ ∂DΩ); Mn×n
D ). Using (3.21) and (3.22) it is possible to see that

µk ⇀ µ weakly∗ in Mb((0, t)×(Ω ∪ ∂DΩ); Mn×n
D ) (3.25)

by uniform approximation, cf. [7, Lemma 6.1].
Since s 7→ |q̇(s)| is weakly∗ measurable from (0, t) into Mb(Ω ∪ ∂DΩ; Mn×n

D ), we define νk, ν ∈
Mb((0, t)×(Ω ∪ ∂DΩ)) by

〈ϕ, νk〉 :=
∫ t

0

〈ϕ(s, ·), |q̇k(s)|〉ds and 〈ϕ, ν〉 :=
∫ t

0

〈ϕ(s, ·), |q̇(s)|〉 ds
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for every ϕ ∈ C0((0, t)×(Ω ∪ ∂DΩ)). As in [7, Lemma 6.1], we have that µk � νk, µ� ν and∫ t

0

H(β(s), q̇k(s)) ds =
∫

(0,t)×(Ω∪∂DΩ)

H
(
β(s, x),

dµk
dνk

(s, x)
)

dνk(s, x) ,∫ t

0

H(β(s), q̇(s)) ds =
∫

(0,t)×(Ω∪∂DΩ)

H
(
β(s, x),

dµ
dν

(s, x)
)

dν(s, x) .

By Reshetnyak’s Lower Semicontinuity Theorem and (3.25), we have∫ t

0

H(β(s), q̇(s)) ds ≤ lim inf
k→∞

∫ t

0

H(β(s), q̇k(s)) ds . (3.26)

In order to get (3.23), it is enough to observe that (1.16) gives∣∣∣ ∫ t

0

H(βk(s), q̇k(s)) ds−
∫ t

0

H(β(s), q̇k(s)) ds
∣∣∣ ≤ CK sup

s∈[0,t]

‖βk(s)− β(s)‖∞
∫ t

0

‖q̇k(s)‖1 ds ,

and the same holds replacing qk with q. Then we get (3.23) by (3.20), (3.22), and (3.26).
We can argue similarly to prove (3.24), noticing that

〈∂αV̂H(β1, qk; 0, t), β2〉 =
∫

(0,t)×(Ω∪∂DΩ)

∂αH
(
β1(x),

dµk
dνk

(s, x)
)
β2(x) dνk(s, x) ,

〈∂αV̂H(β1, q; 0, t), β2〉 =
∫

(0,t)×(Ω∪∂DΩ)

∂αH
(
β1(x),

dµ
dν

(s, x)
)
β2(x) dν(s, x) ,

and applying Reshetnyak’s Lower Semicontinuity Theorem, since (x, ξ) 7→ ∂αH(β1(x), ξ)β2(x) is a non-
negative continuous function positively 1-homogeneous and convex in the second variable. This allows us
to conclude. �

We prove now the existence of a family of absolutely continuous ε-approximate viscous evolutions
according to Definition 3.1, satisfying in addition a uniform bound on the L1-norm of the time derivative.

Theorem 3.7. Assume (1.5), (1.7), (1.11), (1.27), (1.28) for given α0, u0, e0, p0 and, if λ ∈ (0, 1],
also (1.13). There exists a family {(αε, uε, eε, pε)}ε>0 of ε-approximate viscous evolutions such that
(αε(0), uε(0), eε(0), pε(0)) = (α0, u0, e0, p0) and∫ T

0

‖α̇ε(t)‖m,2 dt+
∫ T

0

‖ėε(t)‖2 dt ≤ C (3.27)

with C independent of ε.

Proof. The proof is divided in subsequent steps.

Time-discretization and time-continuous limit. Let us fix ε > 0. Starting with the given initial
condition (α0, u0, e0, p0) we consider the incremental problems (2.1) in correspondence with the parameter
ε > 0, thus obtaining a sequence of approximate solutions

αk,ε ≡ αk, uk,ε ≡ uk ek,ε ≡ ek pk,ε ≡ pk .

We use the same notation of Section 2 for their piecewise constant interpolants.
From (2.26b) we have

‖αk − αk‖L∞(0,T ;Hm(Ω)) ≤ τ1/2‖α̇k‖L2(0,T ;Hm(Ω)) ≤ Cετ1/2 ,

and the same holds for uk, ek, and pk, by Remark 2.9. By standard compactness results and Helly’s The-
orem, there exist αε ∈ H1(0, T ;Hm(Ω)) and eε ∈ H1(0, T ;L2(Ω; Mn×n

sym )) such that (up to subsequences)

αk ⇀ αε in H1(0, T ;Hm(Ω)) , ek ⇀ eε in H1(0, T ;L2(Ω; Mn×n
sym )) , (3.28)

αk(t) ⇀ αε(t) in Hm(Ω) , ek(t) ⇀ eε(t) in L2(Ω; Mn×n
sym ) for every t ∈ [0, T ] , (3.29)

and
αk → αε in C([0, T ];C(Ω)) , (3.30)

since Hm(Ω) is compactly embedded into C(Ω).
In particular, since α̇k ⇀ α̇ε in L1(0, T ;Hm(Ω)) and ėk ⇀ ėε in L1(0, T ;L2(Ω; Mn×n

sym )), by Proposi-
tion 2.8 and (2.44) there exists a constant C independent of ε > 0 such that∫ T

0

‖α̇ε(t)‖m,2 dt+
∫ T

0

‖ėε(t)‖2 dt ≤ C

for every ε > 0.
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Taking into account (2.43) and the fact that pk(0) = p0 and uk(0) = u0 for every k, from Lemma A.1 it
follows that there exist pε ∈ H1

w(0, T ;Mb(Ω ∪ ∂DΩ; Mn×n
D )), uε ∈ H1(0, T ;Lq(Ω; Rn)), with 1 ≤ q < n

n−1 ,
and Eε ∈ H1

w(0, T ;Mb(Ω; Mn×n
sym )) such that, for a suitable subsequence,

ṗk
∗
⇀ ṗ in L2

w(0, T ;Mb(Ω ∪ ∂DΩ; Mn×n
D )) ,

u̇k ⇀ u̇ε in L2(0, T ;Lq(Ω; Rn)) , Eu̇k
∗
⇀ Ėε in L2

w(0, T ;Mb(Ω; Mn×n
sym )) ,

and
pk(t) ∗⇀ pε(t) in Mb(Ω ∪ ∂DΩ; Mn×n

D ) , (3.31)

uk(t) ⇀ uε(t) in L1(Ω; Rn), Euk(t) ∗⇀ Eε(t) in Mb(Ω; Mn×n
sym )

for every t ∈ [0, T ]. This implies that Euε(t) = Eε(t) for every t ∈ [0, T ], hence

uε ∈ H1
w(0, T ;BD(Ω)), uk(t) ∗⇀ uε(t) in BD(Ω) for every t ∈ [0, T ] . (3.32)

Let us now prove that (αε, uε, eε, pε) is an ε-approximate viscous evolution. The irreversibility condition
(ev0)ε holds by (3.29) and the monotonicity in time of the αk. We can assume that (3.29), (3.31), and
(3.32) hold for the same subsequence and thus (ev1)ε follows by [5, Lemma 2.1] and by the fact that
wk(t)→ w(t) in H1(Rn; Rn) for every t (w being continuous into H1(Rn; Rn)).

We now prove (ev2)ε. Let us fix t ∈ [0, T ]. For

σ̂k(t, x) := ΠK(αε(t,x))(σk(t, x)) ,

ΠK(αε(t,x)) being the projection onto K(αε(t, x)), we have by (1.11c) that

|σk(t, x)− σ̂k(t, x)| ≤ CK |αk(t, x)− αε(t, x)|

for every x such that σk(t, x) ∈ K(αk(t, x)), and then

‖σk(t)− σ̂k(t)‖∞ ≤ CK‖αk(t)− αε(t)‖∞ .

We now recall that σk(t) ∈ Kαk(t)(Ω), σk(t) ⇀ σε(t) in L2(Ω; Mn×n
sym ), and αk(t) → αε(t) uniformly in

Ω for every t ∈ [0, T ]. Therefore Kαε(t)(Ω) 3 σ̂k(t) ⇀ σε(t) in L2(Ω; Mn×n
sym ) and σε(t) ∈ Kαε(t)(Ω), by

convexity of the sets K(α).
By Proposition 3.2, it is enough to prove the energy inequality (ev4”)ε and the Kuhn-Tucker inequality

(ev3)ε.

Proof of the energy inequality (ev4”)ε. From the absolute continuity of αk, ek, and pk, we get that
t 7→ Eλ(αk(t), ek(t); pk, t) is absolutely continuous and for every k ∈ N, t ∈ (0, T ) \ {t1k, . . . , t

k−1
k },

d
dt
Eλ(αk(t), ek(t); pk, t) = 〈∂αEλ(αk(t), ek(t); pk, t), α̇k(t)〉+ λH(αk(t), ṗk(t)) + 〈σk(t), ėk(t)〉 .

We first consider the case λ ∈ (0, 1]. By (2.15b) and (2.16)

d
dt
Eλ(αk(t), ek(t); pk, t) = −ε‖α̇k(t)‖22 + λH(αk(t), ṗk(t)) + 〈σk(t), ėk(t)〉+ δk(t) , (3.33)

where
δk(t) :=− (1− λ)τ〈∂αH(αk(t), ṗk(t)), α̇k(t)〉 − 1

2 〈
[
C′(αk(t))− C′(αk(t))

]
α̇k(t)ek(t), ek(t)〉

− 1
2

[
〈C′(αk(t))α̇k(t)ek(t), ek(t)〉 − 〈C′(αk(t))α̇k(t)ek(t), ek(t)〉

]
− 〈∂D(αk(t))− ∂D(αk(t)), α̇k(t)〉 − κ〈αk(t)− αk(t), α̇k(t)〉m,2

− λ
[
〈∂αV̂H(αk(t), pk; 0, t), α̇k(t)〉 − 〈∂αV̂H(αk(t), pk; 0, t), α̇k(t)〉

]
.

Let us estimate δk(t). First remark that∫ T

0

∣∣ 1
2 〈
[
C′(αk(t))− C′(αk(t))

]
α̇k(t)ek(t), ek(t)〉

∣∣+
∣∣〈∂D(αk(t))− ∂D(αk(t)), α̇k(t)〉

∣∣
+ λ
∣∣〈∂αV̂H(αk(t), pk; 0, t), α̇k(t)〉 − 〈∂αV̂H(αk(t), pk; 0, t), α̇k(t)〉

∣∣
+ κ
∣∣〈αk(t)− αk(t), α̇k(t)〉m,2

∣∣dt
≤ C‖αk − αk‖L∞(0,T ;Hm(Ω))

∫ T

0

‖α̇k(t)‖Hm(Ω) ,

where C depends on D, CK , κ, supt ‖ek(t)‖2, VH(pk; 0, T ), and on the C1,1 norm of C. Moreover,

〈∂αH(αk(t), ṗk(t)), α̇k(t)〉 ≤ C
(
‖α̇k(t)‖2∞ + ‖ṗk(t)‖21

)
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and ∫ T

0

∣∣∣〈C′(αk(t))α̇k(t)ek(t), ek(t)〉 − 〈C′(αk(t))α̇k(t)ek(t), ek(t)〉
∣∣∣ dt

≤ C‖ek − ek‖L∞(0,T ;L2(Ω;Mn×n
sym ))

∫ T

0

‖α̇k(t)‖∞ .

Therefore, by Lemma 2.6 we get∫ T

0

δk(t) dt ≤ C
(

sup
t∈[0,T ]

‖αk −αk‖m,2 + sup
t∈[0,T ]

‖ek − ek‖2 + τ
)∫ T

0

‖α̇k(t)‖2Hm(Ω) + ‖Eẇk(t)‖22 dt . (3.34)

In the case λ = 0 we obtain, using (2.14b),

d
dt
E(αk(t), ek(t)) ≤ −ε‖α̇k(t)‖22 + 〈σk(t), ėk(t)〉+ δ′k(t) , (3.35)

with
δ′k(t) := Cτ‖α̇k(t)‖∞‖ṗk(t)‖1 − 〈∂D(αk(t))− ∂D(αk(t)), α̇k(t)〉 − κ 〈αk(t)− αk(t), α̇k(t)〉m,2

− 1
2

[
〈C′(αk(t))α̇k(t)ek(t), ek(t)〉 − 〈C′(αk(t))α̇k(t)ek(t), ek(t)〉

]
,

so that∫ T

0

δ′k(t) dt ≤ C
(

sup
t∈[0,T ]

‖αk −αk‖m,2 + sup
t∈[0,T ]

‖ek − ek‖2 + τ
)∫ T

0

‖α̇k(t)‖2Hm(Ω) + ‖Eẇk(t)‖22 dt . (3.36)

The rest of the proof is common for both cases λ = 0 and λ ∈ (0, 1].
Now, we have that

〈σk(t), ėk(t)〉 = 〈σk(t), ėk(t)〉+ 〈
[
C(αk(t))− C(αk(t))

]
ek(t), ėk(t)〉

+ 〈C(αk(t))(ek(t)− ek(t)), ėk(t)〉
(3.37)

with ∫ T

0

∣∣∣〈[C(αk(t))− C(αk(t))
]
ek(t), ėk(t)〉+ 〈C(αk(t))(ek(t)− ek(t)), ėk(t)〉

∣∣∣
≤ C sup

t

(
‖αk(t)− αk(t)‖∞ + ‖ek(t)− ek(t)‖2

) ∫ T

0

‖ėk(t)‖2 dt .

(3.38)

Since, by definition of interpolants and Lemma 2.1, div σk(t) = 0 and (u̇k(t), ėk(t), ṗk(t)) ∈ A(ẇk(t)) for
every t ∈ [0, T ], it follows from the integration by parts formula (1.20) that

〈σk(t), ėk(t)〉 = 〈σk(t), Eẇk(t)〉 − 〈(σk(t))D|ṗk(t)〉 . (3.39)

By (2.18) (recall also (1.16)), for a.e. t ∈ (0, T )

−〈(σk(t))D|ṗk(t)〉 ≤ −H(αk(t), ṗk(t)) + Cτ
(
‖α̇k(t)‖2∞ + ‖Eẇk(t)‖22

)
+ CK sup

t
‖αk(t)− αk(t)‖∞‖ṗk(t)‖1 . (3.40)

Gathering (3.37), (3.38), (3.39), and (3.40), it follows that∫ T

0

〈σk(t), ėk(t)〉dt ≤
∫ T

0

〈σk(t), Eẇk(t)〉dt−
∫ T

0

H(αk(t), ṗk(t)) dt

+ C sup
t

(
‖αk(t)− αk(t)‖∞ + ‖ek(t)− ek(t)‖2

) ∫ T

0

‖ėk(t)‖2 dt

+ Cτ

∫ T

0

(
‖α̇k(t)‖2∞ + ‖Eẇk(t)‖22

)
dt+ CK sup

t
‖αk(t)− αk(t)‖∞

∫ T

0

‖ṗk(t)‖1 dt .

(3.41)

Integrating (3.33) (resp. (3.35)) between 0 and T , by (3.34) (resp. (3.36)) and (3.41) we get that

Eλ(αk(T ), ek(T ); pk, T ) + (1− λ)
∫ T

0

H(αk(t), ṗk(t)) dt+ ε

∫ T

0

‖α̇k(t)‖22 dt

≤ E(α0, e0) +
∫ T

0

〈σk(t), Eẇk(t)〉dt+ ηk ,

(3.42)

with

ηk := C
(

sup
t∈[0,T ]

‖αk − αk‖m,2 + sup
t∈[0,T ]

‖ek − ek‖2 + τ
)∫ T

0

‖α̇k(t)‖2m,2 + ‖Eẇk(t)‖22 dt ,
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taking into account Lemma 2.6. By (3.30), (3.31), and (2.43) we can apply Lemma 3.6 obtaining that∫ T

0

H(αε(T ), ṗε(t)) dt ≤ lim inf
k→∞

∫ T

0

H(αk(T ), ṗk(t)) dt , (3.43a)∫ T

0

H(αε(t), ṗε(t)) dt ≤ lim inf
k→∞

∫ T

0

H(αk(t), ṗk(t)) dt . (3.43b)

Since σk(t) ⇀ σε(t) for every t ∈ [0, T ] and Eẇk(t) → Eẇ(t) in L2(Ω) for a.e. t ∈ (0, T ), by (1.27), we
have that ∫ T

0

〈σk(t), Eẇk(t)〉dt −→
∫ T

0

〈σε(t), Eẇ(t)〉dt as k →∞ (3.44)

by the Dominated Convergence Theorem.
Convergence (3.28) gives ∫ T

0

‖α̇ε(t)‖22 dt ≤ lim inf
k→∞

∫ T

0

‖α̇k(t)‖22 dt . (3.45)

By (3.42), (3.43), (3.44), (3.45), and the semicontinuity of E , we get the inequality (ev4”)ε.

Proof of the Kuhn-Tucker inequality (ev3)ε. Let us consider a function β ∈ L∞(0, T ;Hm(Ω)) such
that β(t) ∈ Hm

− (Ω) for a.e. t ∈ (0, T ). We can say that for every λ ∈ [0, 1] and a.e. t ∈ (0, T ).

0 ≤ 1
2 〈C

′(αε(t))β(t)ek(t), ek(t)〉+ 〈∂D(αk(t)), β(t)〉+ κ 〈αk(t), β(t)〉m,2 + ε〈α̇k(t), β(t)〉2
+ λ〈∂αV̂H(αε(t), pk; 0, t), β(t)〉+ 1

2 〈
[
C′(αk(t))− C′(αε(t))

]
ek(t), ek(t)〉

+ λ〈∂αV̂H(αk(t), pk; 0, t)− ∂αV̂H(αε(t), pk; 0, t), β(t)〉 ,

(3.46)

using (2.14a) in the case λ = 0 and (2.15a) when λ ∈ (0, 1]. By (2.43), (3.31), and by choice of β,
Lemma 3.6 gives

−〈∂αV̂H(αε(t), pε; 0, t), β(t)〉 ≤ lim inf
k→∞

[
−〈∂αV̂H(αε(t), pk; 0, t), β(t)〉

]
. (3.47)

for a.e. t ∈ (0, T ).
In addition, by weak lower semicontinuity of positive semidefinite quadratic forms, we get that for a.e.

t ∈ (0, T )

−〈C′(αε(t))β(t)eε(t), eε(t)〉 ≤ lim inf
k→∞

[
−〈C′(αε(t))β(t)ek(t), ek(t)〉

]
. (3.48)

By (3.47), (3.48), and Fatou’s Lemma, we have that

−
∫ T

0

[
1
2 〈C

′(αε(t))β(t)eε(t), eε(t)〉+ λ〈∂αV̂H(αε(t), pε; 0, t), β(t)〉
]

dt

≤ lim inf
k→∞

∫ T

0

−
[

1
2C′(αε(t))β(t)ek(t), ek(t)〉+ λ〈∂αV̂H(αε(t), pk; 0, t), β(t)〉

]
dt .

(3.49)

The fact that αk ⇀ αε in H1([0, T ];L2(Ω)) implies that α̇k ⇀ α̇ε in L2([0, T ];L2(Ω)) and then∫ T

0

〈α̇k(t), β(t)〉dt −→
∫ T

0

〈α̇ε(t), β(t)〉dt . (3.50)

Since αk(t) ⇀ αε(t) weakly in Hm(Ω) for every t, it follows that

〈∂D(αk(t)), β(t)〉 −→ 〈∂D(αε(t)), β(t)〉 and 〈αk(t), β(t)〉m,2 −→ 〈αε(t), β(t)〉m,2

for every t, thus by the Dominated Convergence Theorem∫ T

0

[
〈∂D(αk(t)), β(t)〉+κ 〈αk(t), β(t)〉m,2

]
dt −→

∫ T

0

[
〈∂D(αε(t)), β(t)〉+κ 〈αε(t), β(t)〉m,2

]
dt . (3.51)

Notice now that∣∣∣〈[C′(αk(t))− C′(αε(t))
]
β(t)ek(t), ek(t)〉+ λ〈∂αV̂H(αk(t), pk; 0, t)− ∂αV̂H(αε(t), pk; 0, t), β(t)〉

∣∣∣
≤ C‖αk(t)− αε(t)‖∞‖β(t)‖∞ ,

(3.52)

where C depends on an upper bound for the C1,1 norm of C and CK (if λ ∈ (0, 1]), supt ‖ek(t)‖2, and
VH(pk; 0, t). Integrating (3.46) from 0 and T and passing to the limit as k →∞, we deduce from (3.49),
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(3.50), (3.51), and (3.52) that

0 ≤
∫ T

0

1
2

[
〈C′(αε(t))β(t)eε(t), eε(t)〉+ 〈∂D(αε(t)), β(t)〉+ κ 〈αε(t), β(t)〉m,2

+ λ〈∂αV̂H(αε(t), pε; 0, t), β(t)〉
]

dt+ ε

∫ T

0

〈α̇ε(t), β(t)〉dt .

We now fix β ∈ Hm
− (Ω) and set β(t) := 1A(t)β where A is a measurable subset of [0, T ]. Since A is

arbitrary, we find
1
2 〈C

′(αε(t))βeε(t), eε(t)〉+ 〈∂D(αε(t)), β〉+ κ 〈αε(t), β〉m,2
+ λ〈∂αV̂H(αε(t), pε; 0, t), β〉+ ε〈α̇ε(t), β〉 ≥ 0 ,

for t ∈ [0, T ] \Eβ , where Eβ is a negligible set depending on β. Thanks to the separability of Hm
− (Ω), it

is easily seen that the inequality holds for every t ∈ [0, T ] \E, where E is a negligible set independent of
β. Then the Kuhn-Tucker inequality (ev3)ε is proved. �

Remark 3.8. By (2.10) and (3.29), there exists C independent of ε such that supt ‖σε(t)‖2 ≤ C for
every ε and t ∈ [0, T ]. Then, the energy balance (ev4)ε and (1.15) imply that∫ T

0

‖ṗε(t)‖1 dt ≤ C (3.53)

for every ε > 0, C being independent of ε.

4. Rescaled quasistatic viscosity evolutions

In this section we study the asymptotic behavior of ε-approximate viscous evolutions as ε tends to
0 using the rescaling technique of [10, 25, 7]. Thanks to estimates (3.27) and (3.53) in Theorem 3.7
and Remark 3.8, the total arclength of the graphs of the functions t 7→ (αε(t), eε(t), pε(t)) ∈ Hm(Ω) ×
L2(Ω; Mn×n

sym )×Mb(Ω ∪ ∂DΩ; Mn×n
D ) is uniformly bounded in ε. Then the inverse functions of the arclength

reparametrizations converge uniformly to a map t◦, up to subsequences.
Using to the “slow” time scale s = (t◦)−1(t) and passing to the limit as ε → 0, we obtain a rescaled

quasistatic viscosity evolution. In the intervals where the original time t = t◦(s) increases, such an
evolution behaves as a “0-approximate viscous evolution”, namely conditions (ev0)ε, . . . , (ev4)ε hold with
ε = 0.

Definition 4.1. Let us assume (1.5), (1.7), (1.11), and let w be as in (1.27). We say that a 5-
tuple of Lipschitz functions (α◦, u◦, e◦, p◦, t◦) from [0, S] into Hm(Ω; [0, 1]) × BD(Ω) × L2(Ω; Mn×n

sym ) ×
Mb(Ω ∪ ∂DΩ; Mn×n

D ) × [0, T ] is a rescaled quasistatic viscosity evolution in the time interval [0, S] with
datum w if, setting for every s ∈ [0, S]

σ◦(s) := C(α◦(s))e◦(s) , w◦(s) := w(t◦(s)) , and

U◦ := {s ∈ [0, S] : t◦ is constant in a neighbourhood of s} ,
the following conditions are satisfied:

(ev0) irreversibility: t◦ is nondecreasing and surjective, and for every x ∈ Ω

[0, S] 3 s 7→ α◦(s, x) is nonincreasing;

(ev1) kinematic condition and equilibrium: for every s ∈ [0, S]

(u◦(s), e◦(s), p◦(s)) ∈ A(w◦(s)) , div σ◦(s) = 0 in Ω , [σ◦(s)ν] = 0 on ∂NΩ ;

(ev2) stress constraint: for every s ∈ [0, S]

σ◦(s) ∈ Kα◦(s)(Ω) ;

(ev3) Kuhn-Tucker inequality in [0, S] \ U◦: for every s ∈ [0, S] \ U◦

〈∂αEλ(α◦(s), e◦(s); p◦, s), β〉 ≥ 0 for every β ∈ Hm
− (Ω) ;

(ev4) energy balance: for every s ∈ [0, S]

Eλ(α◦(s), e◦(s); p◦, s) + (1− λ)
∫ s

0

H(α◦(τ), ṗ◦(τ)) dτ +
∫ s

0

‖α̇◦(τ)‖2Ψ(α◦(τ), e◦(τ); p◦, τ) dτ

= E(α0, e0) +
∫ s

0

〈σ◦(τ), Eẇ◦(τ)〉dτ ,

where Ψ is defined in (3.9) and we use the convention 0 · ∞ = 0.
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Remark 4.2. By [7, Remark 4.2] the integrals in (ev4) make sense. Moreover, by definition of Ψ (see
also Remark 3.3 and Lemma 3.4) and (ev3) we have that

Ψ(α◦(s), e◦(s); p◦, s) = d2(∂αEλ(α◦(s), e◦(s); p◦, s), G) = sup
β∈F
〈−∂αEλ(α◦(s), e◦(s); p◦, s), β〉 = 0 (4.1)

for every s ∈ [0, S] \ U◦.

Below we give two characterizations of the notion of rescaled quasistatic viscosity evolution: the
first will be employed to derive a condition of Kuhn-Tucker type for the damage variable and a weak
formulation of the Prandtl-Reuss flow rule; the second will be useful in the proof of Theorem 4.4.

Proposition 4.3. Let (α◦, u◦, e◦, p◦, t◦) be a 5-tuple of Lipschitz functions from [0, S] into Hm(Ω; [0, 1])×
BD(Ω)× L2(Ω; Mn×n

sym )×Mb(Ω ∪ ∂DΩ; Mn×n
D )× [0, T ] satisfying (ev0)–(ev3). Then (α◦, u◦, e◦, p◦, t◦) is

a rescaled quasistatic viscosity evolution, i.e. it satisfies the energy balance (ev4), if and only if any of
the two following conditions holds true:

(ev4’) for a.e. s ∈ (0, S) the following hold:
– generalized Kuhn-Tucker equality:

〈−∂αEλ(α◦(s), e◦(s); p◦, s), α̇◦(s)〉 = ‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ; (4.2a)

– Hill’s maximum plastic work principle:

H(α◦(s), ṗ◦(s)) = 〈(σ◦(s))D, ṗ◦(s)〉 . (4.2b)

(ev4”) energy inequality:

Eλ(α◦(S), e◦(S); p◦, S) + (1− λ)
∫ S

0

H(α◦(s), ṗ◦(s)) ds+
∫ S

0

‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ds

≤ E(α0, e0) +
∫ S

0

〈σ◦(s), Eẇ◦(s)〉ds .

Proof. Ad (ev4)⇐⇒ (ev4’): Since α◦, e◦, p◦ are Lipschitz, the function s 7→ Eλ(α◦(s), e◦(s); p◦, s) is
absolutely continuous and for a.e. s ∈ (0, S)

d
ds
Eλ(α◦(s), e◦(s); p◦, s) = 〈∂αEλ(α◦(s), e◦(s); p◦, s), α̇◦(s)〉+ 〈σ◦(s), ė◦(s)〉+ λH(α◦(s), ṗ◦(s)) . (4.3)

Moreover, property (ev1) and [5, Lemma 5.5] give that

(u̇◦(s), ė◦(s), ṗ◦(s)) ∈ A(ẇ◦(s)) for a.e. s ∈ (0, S) ,

and then the integration by parts formula (1.20) implies

〈(σ◦(s))D | ṗ◦(s)〉 = 〈σ◦(s), Eẇ◦(s)〉 − 〈σ◦(s), ė◦(s)〉 (4.4)

for a.e. s ∈ (0, S). Then (ev4) holds if and only if

d
ds
Eλ(α◦(s), e◦(s); p◦, s) =− (1− λ)H(α◦(s), ṗ◦(s)) + 〈σ◦(s), Eẇ◦(s)〉

− ‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ,

which in turn is equivalent to

〈∂αEλ(α◦(s), e◦(s); p◦, s), α̇◦(s)〉 − ‖α̇◦(s)‖2 inf
β∈F
〈∂αEλ(α◦(s), e◦(s); p◦, s), β〉

+H(α◦(s), ṗ◦(s))− 〈(σ◦(s))D | ṗ◦(s)〉 = 0 ,
(4.5)

see (3.9) for the definition of Ψ. Now, by (ev2) and (1.22), and since ṗ◦(s) ∈ Π(Ω) for a.e. s, we can say
that

〈(σ◦(s))D | ṗ◦(s)〉 ≤ H(α◦(s), ṗ◦(s)) (4.6)

for a.e. s ∈ (0, S). Then (4.5) is equivalent to (ev4’).

Ad (ev4)⇐⇒ (ev4”): It is obvious that (ev4) implies (ev4”); let us prove the converse. By (4.3), (4.4),
and (4.6) we deduce that

d
ds
Eλ(α◦(s), e◦(s); p◦, s) ≥− (1− λ)H(α◦(s), ṗ◦(s)) + ‖α̇◦(s)‖2 inf

β∈F
〈∂αEλ(α◦(s), e◦(s); p◦, s), β〉

+ 〈σ◦(s), Eẇ◦(s)〉
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for a.e. s ∈ (0, S). Integrating, we get for every 0 ≤ s1 ≤ s2 ≤ S the inequality

Eλ(α◦(s2), e◦(s2); p◦, s2) + (1− λ)
∫ s2

s1

H(α◦(s), ṗ◦(s)) ds+
∫ s2

s1

‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ds

≥ Eλ(α◦(s1), e◦(s1); p◦, s1) +
∫ s2

s1

〈σ◦(s), Eẇ◦(s)〉ds ,

which implies the energy balance (ev4) thanks to (ev4”). This concludes the proof. �

The following theorem is the main result of the paper.

Theorem 4.4. Assume (1.5), (1.7), (1.11), and let w and α0, u0, e0, p0 satisfy (1.27) and (1.28) re-
spectively. If λ ∈ (0, 1], assume also (1.13). Then there exist S > 0 and a rescaled quasistatic vis-
cosity evolution in the time interval [0, S] according to Definition 4.1 such that (α0, u0, e0, p0, 0) =
(α◦(0), u◦(0), e◦(0), p◦(0), t◦(0)).

Proof. The proof is divided in subsequent steps.

Viscous approximation. Let {(αε, uε, eε, pε)}ε>0 be a family of ε-approximate viscous evolutions sat-
isfying (3.27), whose existence follows from Theorem 3.7. For every ε > 0 and t ∈ [0, T ] let us define the
function

s◦ε(t) := t+
∫ t

0

‖α̇ε(s)‖m,2 ds+
∫ t

0

‖ėε(s)‖2 ds+
∫ t

0

‖ṗε(s)‖1 ds .

It is easy to see that s◦ε is absolutely continuous, increasing, bijective on its domain, and

s◦ε(t2)− s◦ε(t1) ≥ t2 − t1 for every 0 ≤ t1 ≤ t2 ≤ Sε := s◦ε(T ) .

Let t◦ε : [0, Sε] 7→ [0, T ] be the inverse of s◦ε. By (3.27) and (3.53), it follows that supε Sε < +∞ and then,
up to a subsequence, Sε → S as ε→ 0, with S ≥ T , since Sε(T ) ≥ T . For every ε > 0, define the rescaled
functions on [0, Sε] by

α◦ε(s) := αε(t◦ε(s)) , u◦ε(s) := uε(t◦ε(s)) , e◦ε(s) := eε(t◦ε(s)) ,

p◦ε(s) := pε(t◦ε(s)) , σ◦ε (s) := σε(t◦ε(s)) , w◦ε(s) := w(t◦ε(s)) .
(4.7)

Up to assuming that the rescaled functions and t◦ε take their value at Sε also in (Sε, S], with S :=
supε>0 Sε, we may consider them to be defined on the fixed time interval [0, S].

By compactness we may assume that t◦ε converges weakly∗ in W 1,∞((0, S); [0, T ]) to a function t◦ such
that t◦(0) = 0 and

0 ≤ t◦(s2)− t◦(s1) ≤ s2 − s1 for every 0 ≤ s1 ≤ s2 ≤ S .
By the uniform convergence of t◦ε to t◦ we immediately get that for every s ∈ [0, S]

w◦ε(s)→ w◦(s) in H1(Rn; Rn) ,

where we recall that w◦(s) = w(t◦(s)). From the definitions of s◦ε and t◦ε we obtain that

‖α◦ε(s2)− α◦ε(s1)‖m,2 + ‖e◦ε(s2)− e◦ε(s1)‖2 + ‖p◦ε(s2)− p◦ε(s1)‖1 ≤ s2 − s1 (4.8)

for every 0 ≤ s1 < s2 ≤ S. Arguing as in [7, proof of (5.29)–(5.32)] and using (4.8) we see that
there exist a quadruple of functions (α◦, u◦, e◦, p◦) from [0, S] into Hm(Ω) × BD(Ω) × L2(Ω; Mn×n

sym ) ×
Mb(Ω ∪ ∂DΩ; Mn×n

D ), such that, up to a (not relabeled) subsequence of α◦ε , u
◦
ε, e
◦
ε, p
◦
ε, it holds

α◦ε(sε) ⇀ α◦(s) weakly in Hm(Ω) , (4.9a)

u◦ε(sε) ⇀ u◦(s) weakly∗ in BD(Ω) , (4.9b)

e◦ε(sε) ⇀ e◦(s) weakly in L2(Ω; Mn×n
sym ) , (4.9c)

p◦ε(sε) ⇀ p◦(s) weakly∗ in Mb(Ω ∪ ∂DΩ; Mn×n
D ) , (4.9d)

for every s ∈ [0, S] and sε → s. Moreover (u◦(s), e◦(s), p◦(s)) ∈ A(w◦(s)), div σ◦(s) = 0, and

α◦ε → α◦ in C([0, S];C(Ω)) . (4.10)

In particular (ev0) and (ev1) follow. By lower semicontinuity we obtain from (4.8) that

‖α◦(s2)− α◦(s1)‖m,2 + ‖e◦(s2)− e◦(s1)‖2 + ‖p◦(s2)− p◦(s1)‖1 ≤ s2 − s1 (4.11)

for every 0 ≤ s1 < s2 ≤ S, hence

‖α̇◦(s)‖m,2 + ‖ė◦(s)‖2 + ‖ṗ◦(s)‖1 ≤ 1 for a.e. s ∈ [0, S] .

We now define

s◦−(t) := sup{s ∈ [0, S] : t◦(s) < t} for t ∈ (0, T ] ,

s◦+(t) := inf{s ∈ [0, S] : t◦(s) > t} for t ∈ [0, T ) ,
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and s◦−(0) := 0, s◦+(T ) := S. Then

s◦−(t) ≤ lim inf
ε→0

s◦ε(t) ≤ lim sup
ε→0

s◦ε(t) ≤ s◦+(t) and t◦(s◦−(t)) = t = t◦(s◦+(t))

for every t ∈ [0, T ],
s◦−(t◦(s)) ≤ s ≤ s◦+(t◦(s))

for every s ∈ [0, S], the set
S◦ := {t ∈ [0, T ] : s◦−(t) < s◦+(t)} (4.12)

is at most countable, and
U◦ =

⋃
t∈S◦

(s◦−(t), s◦+(t)) , (4.13)

where U◦ is defined in (4.1). Moreover, for every t ∈ [0, T ] \ S◦,
uε(t) ⇀ u◦(s◦−(t)) weakly∗ in BD(Ω) , (4.14a)

eε(t) ⇀ e◦(s◦−(t)) weakly in L2(Ω; Mn×n
sym ) , (4.14b)

pε(t) ⇀ p◦(s◦−(t)) weakly∗ in Mb(Ω ∪ ∂DΩ; Mn×n
D ) , (4.14c)

αε(t)→ α◦(s◦−(t)) strongly in C(Ω) . (4.14d)

These convergences will be used at the end of the proof.
From (ev2)ε and (4.7) we have

σ◦ε (s) ∈ Kα◦ε(s) for every s ∈ [0, S] ,

thus the convexity of K(α) for every α ∈ [0, 1], (1.11c) and (4.9) imply (ev2). By Proposition 4.3, in
order to show that (α◦, u◦, e◦, p◦, t◦) is a rescaled quasistatic viscosity evolution it remains to prove only
(ev3) and inequality (ev4”).

Proof of (ev3). Setting

A◦ :=
{
s ∈ [0, S] : Ψ(α◦(s), e◦(s); p◦, s) > 0

}
, (4.15)

in order to get (ev3) it is enough to show that A◦ ⊂ U◦.
Arguing as in the proof of the energy inequality (ev4”)ε in Theorem 3.7 and using (4.9c), (4.9d), (4.10),

we see that for every s ∈ [0, S] and β ∈ Hm
− (Ω)

〈−∂αEλ(α◦(s), e◦(s); p◦, s), β〉 ≤ lim inf
ε→0

〈−∂αEλ(α◦ε(s), e
◦
ε(s); p

◦
ε, s), β〉 ,

thus
Ψ(α◦(s), e◦(s); p◦, s) ≤ lim inf

ε→0
Ψ(α◦ε(s), e

◦
ε(s); p

◦
ε, s) . (4.16)

Moreover, for every β ∈ Hm
− (Ω) s 7→ 〈∂αV̂H(α◦(s), p◦; 0, s), β〉 is continuous, being an integral function.

Together with (4.11), this implies that s 7→ 〈−∂αEλ(α◦(s), e◦(s); p◦, s), β〉 is continuous for every β ∈
Hm
− (Ω), and consequently that

s 7→ Ψ(α◦(s), e◦(s); p◦, s) is lower semicontinuous . (4.17)

Thus, A◦ is open.
We now set D◦ := {s ∈ (0, S) : ṫ◦(s) = 0} and prove that

lim sup
ε→0

ṫ◦ε(s) > 0 for a.e. s ∈ (0, S) \D◦ . (4.18)

Indeed, assuming the opposite, we could find a measurable set A ⊂ (0, S) \ D◦ with positive measure
such that

lim
ε→0

ṫ◦ε(s) = 0 for every s ∈ A ,

t◦ε being nondecreasing. Since the functions t◦ε are 1-Lipschitz, the Dominated Convergence Theorem
implies that

lim
ε→0

∫
A

ṫ◦ε(s) ds = 0 .

On the other hand,

lim
ε→0

∫
A

ṫ◦ε(s) ds =
∫
A

ṫ◦(s) ds ,

because t◦ε ⇀ t◦ weakly∗ in W 1,∞. But ∫
A

ṫ◦(s) ds > 0 ,

since ṫ◦(s) > 0 for a.e. s ∈ (0, S) \D◦. Then (4.18) is proved.



30 VITO CRISMALE AND GIULIANO LAZZARONI

Since H is 1-homogeneous in the second variable, the reparametrization t = t◦ε(s) gives∫ t◦ε(S)

0

H(αε(t), ṗε(t)) dt =
∫ S

0

H(α◦ε(s), ṗ
◦
ε(s)) ds . (4.19)

By (1.24), for every s ∈ [0, S] and β ∈ C(Ω)

〈∂αV̂H(αε(t◦ε(s)), pε; 0, t◦ε(s)), β〉 = 〈∂αV̂H(α◦ε(s), p
◦
ε; 0, s), β〉 , (4.20)

thus
〈∂αEλ(αε(t◦ε(s)), eε(t

◦
ε(s)); pε, t

◦
ε(s)), β〉 = 〈∂αEλ(α◦ε(s), e

◦
ε(s); p

◦
ε, s), β〉 . (4.21)

By (4.16)

0 ≤ Ψ(α◦(s), e◦(s); p◦, s) ≤ lim inf
ε→0

Ψ(α◦ε(s), e
◦
ε(s); p

◦
ε, s) = lim inf

ε→0
ε‖α̇ε(t◦ε(s))‖2

= lim inf
ε→0

ε
‖α̇◦ε(s)‖2
ṫ◦ε(s)

= 0

for a.e. s ∈ (0, S)\D◦, where the first equality follows from (3.7), (3.9), and (4.21) and the last from (4.8)
and (4.18). Therefore for a.e. s ∈ A◦ we have ṫ◦(s) = 0. Since A◦ is open by (4.17), every s ∈ A◦ has an
open neighborhood where ṫ◦ = 0; then A◦ ⊂ U◦ since t◦ is Lipschitz and hence absolutely continuous.

Proof of the energy inequality (ev4”). Using the change of variable t = t◦ε(s) in the left-hand side
of (3.8), we get by (4.19), (4.20), and (4.21)

Eλ(α◦ε(S), e◦ε(S); p◦ε, S) + (1− λ)
∫ S

0

H(α◦ε(s), ṗ
◦
ε(s)) ds+

∫ S

0

‖α̇◦ε(s)‖2Ψ(α◦ε(s), e
◦
ε(s); p

◦
ε, s) ds

= E(α0, e0) +
∫ t◦ε(S)

0

〈σε(t), Eẇ(t)〉dt .
(4.22)

By (4.9d), (4.10), (4.11), and using Lemma 3.6 we deduce that∫ S

0

H(α◦(s), ṗ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(α◦ε(s), ṗ
◦
ε(s)) ds , (4.23a)∫ S

0

H(α◦(S), ṗ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(α◦ε(S), ṗ◦ε(s)) ds . (4.23b)

Let us now prove that∫
A◦
‖α̇◦(s)‖2 Ψ(α◦(s), e◦(s); p◦, s) ds ≤ lim inf

ε→0

∫
A◦
‖α̇◦ε(s)‖2 Ψ(α◦ε(s), e

◦
ε(s); p

◦
ε, s) ds . (4.24)

For every compact set C ⊂ A◦ and every continuous function ψ : C → [0,+∞) such that

Ψ(α◦(s), e◦(s); p◦, s) > ψ(s) for every s ∈ C ,
by the compactness of C and (4.16), for ε sufficiently small we get

Ψ(α◦ε(s), e
◦
ε(s); p

◦
ε, s) > ψ(s) for every s ∈ C .

We now claim that ∫
C

‖α̇◦(s)‖2 ψ(s) ds ≤ lim inf
ε→0

∫
C

‖α̇◦ε(s)‖2 ψ(s) ds

for every compact C ⊂ A◦ and every continuous function ψ : C → [0,+∞). This can be proved as in [7,
Lemma 6.4] using (4.8) and (4.9a) and noticing that for every ϕ ∈ Cc(Ω) with ‖ϕ‖2 = 1 the functions
s 7→ 〈ϕ, α̇◦ε(s)〉 are equi-Lipschitz on [0, S] and converge to s 7→ 〈ϕ, α̇◦(s)〉 for every s. By (4.17) and a
standard approximation argument, (4.24) follows.

Let us now consider the left-hand side of (4.22): by (4.9), (4.23), and (4.24) we have

Eλ(α◦(S), e◦(S); p◦, S) + (1− λ)
∫ S

0

H(α◦(s), ṗ◦(s)) ds+
∫ S

0

‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ds

≤ lim inf
ε→0

[
Eλ(α◦ε(S), e◦ε(S); p◦ε, S) + (1− λ)

∫ S

0

H(α◦ε(s), ṗ
◦
ε(s)) ds

+
∫ S

0

‖α̇◦ε(s)‖2Ψ(α◦ε(s), e
◦
ε(s); p

◦
ε, s) ds

]
.

(4.25)

As for the right-hand side, by (4.14) and the Dominated Convergence Theorem,∫ T

0

〈σ◦(s◦−(t)), Eẇ(t)〉dt = lim
ε→0

∫ t◦ε(S)

0

〈σε(t), Eẇ(t)〉dt . (4.26)
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Since t◦ is nondecreasing and Lipschitz, by (1.27) the function w◦ is absolutely continuous and

Eẇ◦(s) = Eẇ(t◦(s)) ṫ◦(s) for a.e. s ∈ [0, S] .

Hence∫ T

0

〈σ◦(s◦−(t)), Eẇ(t)〉dt =
∫ S

0

〈σ◦(s◦−(t◦(s))), Eẇ(t◦(s)) ṫ◦(s)〉ds =
∫ S

0

〈σ◦(s), Eẇ◦(s)〉ds . (4.27)

The last equality holds since ṫ◦(s) = 0 for a.e. s ∈ U◦ and s◦−(t◦(s)) = s for a.e. s ∈ [0, S] \ U◦. (The
only exceptions are the points of the form s = s◦+(t) for t ∈ S◦.) From (4.22), (4.25), (4.26), and (4.27)
we get finally the energy inequality (ev4”). Thus the proof is completed. �

Remark 4.5. From (4.2a) and (4.15) we immediately get the classical Kuhn-Tucker conditions in
[0, S] \A◦:

• For every s ∈ [0, S] \A◦

〈∂αEλ(α◦(s), e◦(s); p◦, s), β〉 ≥ 0 for every β ∈ Hm
− (Ω) .

• For a.e. s ∈ [0, S] \A◦

〈∂αEλ(α◦(s), e◦(s); p◦, s), α̇◦(s)〉 = 0 .

5. Properties of rescaled quasistatic viscosity evolutions

In the following we highlight some properties of rescaled viscosity evolutions, whose existence has been
proved in Section 4 by time rescaling [10, 25, 7].

In the first part of this section we study what happens when the original time scale t = t◦(s) is
constant, i.e., in the jumping regime. In Lemma 5.1 we observe that if the damage variable is constant
in a subinterval of U◦, then also the other variables are constant. On the other hand, if α̇◦ > 0 in an
interval then, up to a further time rescaling, the evolution is governed formally by (ev0)ε, . . . , (ev4)ε with
ε = 1 (see Proposition 5.3 and Remark 5.4).

Moreover, exploiting the results [5, 12, 33] in Proposition 5.5 we recover a weak formulation of the
Prandtl-Reuss flow rule, in the presence of damage. Together with conditions (ev1) and (ev2), this flow
rule characterizes the perfect plasticity.

Finally, following [8], we come back to the original time variable t and correspondingly we define
the notion of quasistatic viscosity evolution. Such an evolution satisfies an energy balance with terms
depending only on t; the energy dissipated during the jumping regime is thus concentrated on the jump
instants. The state after a jump is known through the slow time scale description, which allows then
evaluating the dissipation.

Henceforth we assume that (α◦, u◦, e◦, p◦, t◦) is a rescaled viscosity evolution in the time interval [0, S]
with datum w, and we use the notation of Section 4.

Lemma 5.1. If α̇◦(s) = 0 in Ω for every s in an interval (s1, s2) ⊂ U◦, then

u◦(s) = u◦(s1) , e◦(s) = e◦(s1) , p◦(s) = p◦(s1) , t◦(s) = t◦(s1) for every s ∈ (s1, s2) .

In other words, the evolution is trivial in (s1, s2). Moreover, it cannot happen that (s1, s2) is a connected
component of the set A◦ defined in (4.15).

Proof. Let (s1, s2) ⊂ U◦ be such that α̇◦(s) = 0 in Ω for every s ∈ (s1, s2); by definition of U◦ we have
that

t◦(s) = t◦(s1) , w◦(s) = w◦(s1) for every s ∈ (s1, s2) , (5.1)
and by assumption

α◦(s) = α◦(s1) for every s ∈ (s1, s2) (5.2)
in the interval (s1, s2). By [33, Theorem 3.10], (ev1) and (ev2) are equivalent to the fact that the triple
(u◦(s), e◦(s), p◦(s)) solves the minimum problem

min
(u,e,p)∈A(w◦(s1))

{Q(α◦(s1), e) +H(α◦(s1), p− p◦(s))}

for every s ∈ (s1, s2). Moreover, in view of (5.1) and (5.2), we can write the energy balance in the time
interval (s1, s2) as

E(α◦(s1), e◦(s2)) +
∫ s2

s1

H(α◦(s1), ṗ◦(τ)) dτ = E(α0, e0) .

Thus (u◦, e◦, p◦) is a quasistatic evolution in perfect plasticity (for heterogeneous materials) according to
[33, Definition 3.13] with C = C(α◦(s1)), K = K(α◦(s1)) and constant external loading in (s1, s2). Then
by [33, Theorem 3.14] we deduce

u◦(s) = u◦(s1) , e◦(s) = e◦(s1) , p◦(s) = p◦(s1) for every s ∈ (s1, s2) .
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In order to prove the final statement, assume that α̇◦(s) = 0 in Ω for every s in a connected
component (s1, s2) of A◦. This implies ∂αEλ(α◦(s), e◦(s); p◦, s) = ∂αEλ(α◦(s1), e◦(s1); p◦, s1) for ev-
ery s ∈ [s1, s2], which is impossible by definition of A◦: indeed, Ψ(α◦(si), e◦(si); p◦, si) = 0 for i = 1, 2
and Ψ(α◦(s), e◦(s); p◦, s) > 0 for s ∈ (s1, s2). �

We now show a variational inequality describing the jumping regime and further reparametrize it.

Proposition 5.2. For a.e. s ∈ (0, S)

‖α̇◦(s)‖2〈∂αEλ(α◦(s), e◦(s); p◦, s), β − α̇◦(s)〉+ Ψ(α◦(s), e◦(s); p◦, s)〈α̇◦(s), β − α̇◦(s)〉2 ≥ 0 (5.3)

for every β ∈ Hm
− (Ω).

In particular, if α̇◦(s) ≤ −C < 0 in Ω, then

‖α̇◦(s)‖2〈−∂αEλ(α◦(s), e◦(s); p◦, s), β〉 = Ψ(α◦(s), e◦(s); p◦, s)〈α̇◦(s), β〉2
for every β ∈ Hm(Ω).

Proof. In this proof it is convenient to use the characterization (3.12) of Ψ in terms of d2. Let us consider
the nontrivial case when α̇◦(s) is not identically zero. Assume that g ∈ L2(Ω) realizes the distance
d2(∂αEλ(α◦(s), e◦(s); p◦, s), G), i.e., g + ∂αEλ(α◦(s), e◦(s); p◦, s) ∈ G and

‖g‖2 = d2(∂αEλ(α◦(s), e◦(s); p◦, s), G) = Ψ(α◦(s), e◦(s); p◦, s) .

By (4.2a) we get

‖g‖2 ‖α̇◦(s)‖2 = 〈−∂αEλ(α◦(s), e◦(s); p◦, s), α̇◦(s)〉 ≤
∫

Ω

g α̇◦(s) dx ≤ ‖g‖2 ‖α̇◦(s)‖2 ,

where the first inequality above follows from (3.11) and the fact that α̇◦(s) ∈ Hm
− (Ω). Hence, by the

Cauchy inequality g is proportional to α̇◦(s), and so

g = Ψ(α◦(s), e◦(s); p◦, s)
α̇◦(s)
‖α̇◦(s)‖2

.

Therefore (5.3) follows from (3.11) and (4.2a). The last assertion follows by substituting β with δβ+α̇◦(s)
in (5.3) for suitable δ > 0. �

Proposition 5.3. Let (s1, s2) be an interval in A◦ (defined in (4.15)) containing no subintervals where
‖α̇◦(s)‖2 = 0 for a.e. s. Setting

%(s) := Ψ(α◦(s), e◦(s); p◦, s) , (5.4)
and

r](s) :=
∫ s

s1+s2
2

‖α̇◦(σ)‖2
%(σ)

dσ for s ∈ (s1, s2) ,

it turns out that r] is locally Lipschitz and strictly monotone, and we call s] its inverse function. Then

α](r) := α◦(s](r)) for r ∈ r]((s1, s2))

has bounded variation and is continuous into Hm(Ω), and

‖α̇◦(s](r))‖22
[
〈∂αEλ(α](r), e](r); p], r), β − α̇](r)〉+ 〈α̇](r), β − α̇](r)〉2

]
≥ 0 (5.5)

for a.e. r ∈ r]((s1, s2)).

Proof. By (4.15), (4.17) and (5.4) it follows that for every compact set K ⊂ A◦ there exists δK > 0
such that %(s) ≥ δK for s ∈ K. Thus r] is locally Lipschitz on (s1, s2) and in particular Ln(r](E)) = 0
for every E ⊂ (s1, s2) such that Ln(E) = 0. Moreover r] is strictly increasing, because by assumption
every subinterval in (s1, s2) has a subset of positive measure where ‖α̇◦(s)‖2 > 0. This implies that s] is
continuous and strictly increasing, and α] is continuous and has bounded variation, α◦ being Lipschitz.

Therefore, using the change of variables s = s](r) in (5.3) and the analogous of (4.21), we obtain that
for a.e. r ∈ (r1, r2) := r]((s1, s2))

‖α̇◦(s](r))‖2〈∂αEλ(α](r), e](r); p], r), β − α̇◦(s](r))〉+ %(s](r))〈α̇◦(s](r)), β − α̇◦(s](r))〉2 ≥ 0 (5.6)

for every β ∈ Hm
− (Ω). Since α] has bounded variation in Hm(Ω), it is Hm(Ω)-weakly differentiable at

a.e. r ∈ (r1, r2), and the chain rule

α̇](r) = α̇◦(s](r))ṡ](r) = α̇◦(s](r))
%(s](r))

‖α̇◦(s](r))‖2
a.e. in Ω

holds for a.e. r such that ‖α̇◦(s](r))‖2 > 0. Thus for a.e. r ∈ (r1, r2)

‖α̇◦(s](r))‖2 α̇](r) = α̇◦(s](r))%(s](r)) a.e. in Ω . (5.7)
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By (5.7), the inequality (5.6) reads as

‖α̇◦(s](r))‖2
[
〈∂αEλ(α](r), e](r); p], r), β − α̇◦(s](r))〉+ 〈α̇](r), β − α̇◦(s](r))〉2

]
≥ 0

for every β ∈ Hm
− (Ω); so by using again (5.7) we get (5.5), since %(s](r)) > 0 for a.e. r ∈ (r1, r2). This

concludes the proof. �

Remark 5.4. In addition to the hypoteses above, let us assume that ‖α̇◦(s)‖2 > 0 for every s ∈ (s1, s2)
and that for every K compact set in (s1, s2) there exists δK > 0 such that ‖α̇◦(s)‖2 ≥ δK for s ∈ K.
Then r] is locally bi-Lipschitz, α] is locally Lipschitz, and

〈∂αEλ(α](r), e](r); p], r), β − α̇](r)〉+ 〈α̇](r), β − α̇](r)〉2 ≥ 0 for a.e. r ∈ r]((s1, s2)) .

In particular, this variational inequality is equivalent to{
〈∂αEλ(α](r), e](r); p], r), β〉+ 〈α̇](r), β〉2 ≥ 0 for a.e. r ∈ r]((s1, s2)),
〈∂αEλ(α](r), e](r); p], r), α̇](r)〉+ ‖α̇](r)〉‖22 = 0 .

(5.8)

Thus, in those intervals of A◦, (α], u], e], p], t]) := (α◦, u◦, e◦, p◦, t◦) ◦ s] is a 1-approximate viscous
evolution, in the sense that the evolution satisfies the same properties (ev1)ε–(ev4’)ε of an ε-approximate
viscous evolution, with ε = 1. In particular, (5.8) is the analogous of the Kuhn-Tucker conditions (ev3)ε
and (3.2).

We now prove a weak formulation of the Prandtl-Reuss flow rule: together with conditions (ev1) and
(ev2) in Definition 4.1, this corresponds to the formulation of quasistatic evolution for perfect plasticity
in the presence of damage.

Proposition 5.5 (Maximum plastic work principle and flow rule). From (4.2b), (ev2), and (1.21) we
easily deduce the maximum plastic work principle:

H

(
α◦(s),

dṗ◦(s)
d|ṗ◦(s)|

)
|ṗ◦(s)| = [(σ◦(s))D : ṗ◦(s)] as measures on Ω ∪ ∂DΩ,

for a.e. s ∈ (0, S), where the measure denoted by square brackets has been introduced in (1.19). Moreover,
defining µ(s) := Ln + |ṗ◦(s)| for every s ∈ [0, S], there exists σ̂◦D(s) ∈ L∞µ(s)(Ω ∪ ∂DΩ; Mn×n

D ) for a.e.
s ∈ (0, S) such that

σ̂◦D(s) = σ◦D(s) Ln–a.e. on Ω ,

[σ◦D(s) : ṗ◦(s)] =
(
σ̂◦D(s) :

dṗ◦(s)
d|ṗ◦(s)|

)
|ṗ◦(s)| on Ω ∪ ∂DΩ ,

dṗ◦(s)
d|ṗ◦(s)|

(x) ∈ NK(α◦(s,x))(σ̂◦D(s, x)) for |ṗ◦(s)|–a.e. x ∈ Ω ∪ ∂DΩ ,

where σ̂◦D(s, x) denotes the value of σ̂◦D(s) at the point x and NK(α◦(s,x))(σ◦D(s, x)) is the normal cone to
the closed convex set K(α◦(s, x)) at σ◦D(s, x).

Proof. It is enough to repeat the same construction of the precise representative of the stress as in [5,
Theorem 6.4], using [33, Lemma 3.16]. To this end, notice that in [12, Theorem 6.2] it is proved that
the density of the Ln–absolutely continuous part of [σD : p] is σD : pa, where pa is the density of the
Ln–absolutely continuous part of a plastic strain p and σ is an elastic stress, and that [33, Lemma 3.16]
does not use the regularity of Ω. �

From now on we study the evolutions in terms of the original variable t.

Definition 5.6. Let us assume (1.5), (1.7), (1.9), (1.11), and (1.27) for a given w. We say that
(α, u, e, p) is a quasistatic viscosity evolution with datum w if there exists a rescaled viscosity evolu-
tion (α◦, u◦, e◦, p◦, t◦) with the same datum such that t◦ : [0, S]→ [0, T ] and for every t ∈ [0, T ]

α(t) = α◦(s◦−(t)) , u(t) = u◦(s◦−(t)) , e(t) = e◦(s◦−(t)) , p(t) = p◦(s◦−(t)) ,

where we recall that s◦−(t) := sup{s ∈ [0, S] : t◦(s) < t}. Moreover, we denote

σ(t) := σ◦(s◦−(t)) .

By continuity with respect to time of rescaled viscosity evolutions and by left continuity of s◦−, the
functions introduced above are left-continuous in the norm topologies of their target spaces. Since

lim
h→0

s◦−(t+ h) = s◦+(t)

for every t ∈ [0, T ], the right limits α(t+), u(t+), e(t+), and p(t+) in their norm topologies satisfy

α(t+) = α◦(s◦+(t)) , u(t+) = u◦(s◦+(t)) , e(t+) = e◦(s◦+(t)) , p(t+) = p◦(s◦+(t)) . (5.10)
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Notice that p : [0, T ] → Mb(Ω ∪ ∂DΩ; Mn×n
D ) has bounded variation, since p◦ is Lipschitz and s◦− is

nondecreasing. Then we define µ as the unique Radon measure on [0, T ] such that

µ([0, t]) = V(p; 0, t) ,

for every continuity point t of t 7→ V(p; 0, t), with V(p; 0, t) the total variation of p on [0, T ] introduced
in (1.23). By the continuity properties of p, we have that µ({t}) = 0 for every t /∈ S◦ (recall (4.12)), and
then the diffuse part µd of µ satisfies

µd = µ−
∑
τ∈S◦

µ({t})δτ ,

where δτ is the unit mass at τ .
By [8, Theorem 7.1], there is a unique (up to µ-equivalence) function νp : [0, T ]→Mb(Ω ∪ ∂DΩ; Mn×n

D )
such that for every ϕ ∈ C0(Ω ∪ ∂DΩ; Mn×n

D ) the function t 7→ 〈νp(t), ϕ〉 is µ-integrable and

〈p(b)− p(a)〉 =
∫ b

a

〈νp(t), ϕ〉dµ(t)

for every a, b ∈ [0, T ], with a ≤ b, such that µ({a}) = µ({b}) = 0. Moreover,

‖νp(t)‖1 ≤ 1

for µ-a.e. t ∈ [0, T ].

Proposition 5.7. Let (α, u, e, p) be a quasistatic viscosity evolution with datum w. Then

E(α(τ), e(τ))− E(α(τ+), e(τ+)) ≥ 0 (5.11)

for every τ ∈ S◦ ∩ [0, T ), and

E(α(T ), e(T )) + λ

∫ T

0

H(α(T ), νp(t)) dµd(t) + (1− λ)
∫ T

0

H(α(t), νp(t)) dµd(t)

+
∑

τ∈S◦∩[0,T )

(
E(α(τ), e(τ))− E(α(τ+), e(τ+))

)
= E(α0, e0) +

∫ T

0

〈σ(t), Eẇ(t)〉dt .
(5.12)

Proof. For every τ ∈ S◦ ∩ [0, T ) evaluating the energy balance (ev4) in (s◦−(τ), s◦+(τ)) ⊂ U◦ gives, since
ṫ◦ = 0 in U◦,∫ s◦+(τ)

s◦−(τ)

(
λH(α◦(s◦−(T )), ṗ◦(s)) + (1− λ)H(α◦(s), ṗ◦(s)) + ‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s)

)
ds

= E(α◦(s◦−(τ)), e◦(s◦−(τ)))− E(α◦(s◦+(τ)), e◦(s◦+(τ))) .

(5.13)

By definition of quasistatic viscosity evolutions and (5.10), we get immediately (5.11). Moreover, arguing
as in [8, Lemma 5.5] we deduce∫

(0,s◦−(T ))\U◦

(
λH(α◦(s◦−(T )), ṗ◦(s)) + (1− λ)H(α◦(s), ṗ◦(s))

)
ds

=
∫ T

0

(
λH(α(T ), νp(t)) + (1− λ)H(α(t), νp(t))

)
dµd(t) .

(5.14)

The energy balance (ev4) in (0, s◦−(T )) reads

E(α◦(s◦−(T )), e◦(s◦−(T ))) + λ

∫ s◦−(T )

0

H(α◦(s◦−(T )), ṗ◦(s)) ds+ (1− λ)
∫ s◦−(T )

0

H(α◦(s), ṗ◦(s)) ds

+
∫

(0,s◦−(T ))∩U◦
‖α̇◦(s)‖2Ψ(α◦(s), e◦(s); p◦, s) ds = E(α0, e0) +

∫ s◦−(T )

0

〈σ◦(s), Eẇ◦(s)〉ds ,

hence we deduce (5.12) from (5.13) and (5.14), recalling (4.13) and the definition of quasistatic viscosity
evolution. �

Remark 5.8. Neglecting the positive viscous terms in (5.12) an energy inequality can be written in every
subinterval [t1, t2] of [0, T ]. This inequality holds as an equality, also with µd = µ, in every subinterval
[t1, t2] such that [t1, t2] ∩ S◦ = ∅, with S◦ introduced in (4.12).
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A. Auxiliary results

We collect in this appendix two abstract results used throughout the paper.
First we prove a compactness result used to construct ε-approximate viscous evolutions in Section 3.

If X is a reflexive space it is well known that L2(0, T ;X) is isomorphic to the dual space of L2(0, T ;X ′),
where X ′ is the dual space of X. We now consider the case when X is only the dual of a separable
Banach space Y : every function in L2(0, T ;X) is in the dual of L2(0, T ;Y ) but the limit (in the sense
of the dual of L2(0, T ;Y )) of a converging sequence in L2(0, T ;X) could be weakly∗ measurable but not
strongly measurable.

A function f : (0, T ) → X is said weakly∗ measurable if (0, T ) 3 t 7→ 〈f(t), g〉 is measurable for every
g ∈ Y . Let us denote

L2
w(0, T ;X) := {p : [0, T ]→ X weakly∗ measurable : t 7→ ‖p(t)‖ ∈ L2(0, T )} .

Adapting the proof of [39, Theorem IV.1.8] we can see that there is an algebraic isomorphism I between
the dual space of L2(0, T ;Y ) and L2

w(0, T ;X) given, for every p ∈ L2
w(0, T ;X) and ϕ ∈ L2(0, T ;Y ), by

I(p)(ϕ) :=
∫ T

0

〈p(t), ϕ(t)〉dt, with ‖I(p)‖2 =
∫ T

0

‖p(t)‖2 dt .

This defines the weak∗ convergence in L2
w(0, T ;X). In the following we study the space of functions with

distributional time derivative in L2
w(0, T ;X). In Section 3 the lemma below is applied to the case of

X = Mb(Ω ∪ ∂DΩ; Mn×n
D ) and Y = C0(Ω ∪ ∂DΩ; Mn×n

D ). Notice that Y can be identified with the space
of functions in C(Ω; Mn×n

D ) vanishing on ∂NΩ.

Lemma A.1. Let X be the dual space of a separable Banach space Y and let

H1
w(0, T ;X) :=

{
p ∈ L2

w(0, T ;X) : ∃ p̃ ∈ L2
w(0, T ;X) s.t. for every ϕ ∈ C1

c ((0, T );Y )∫ T

0

〈p(t), ∂tϕ(t)〉dt = −
∫ T

0

〈p̃(t), ϕ(t)〉dt
}
.

(A.1)

Then every p ∈ H1
w(0, T ;X) admits a unique representative absolutely continuous into X, its distributional

derivative p̃ is characterized by

p̃(t) = w∗- lim
s→t

p(s)− p(t)
s− t

=: ṗ(t) for a.e. t ∈ (0, T ) , (A.2)

and
‖p‖C0,1/2([0,T ];X) ≤ C

(
‖p(·)‖2 + ‖ṗ(·)‖2

)
, (A.3)

with C independent of p ∈ H1
w(0, T ;X).

Moreover, for every sequence {pk}k ⊂ H1
w(0, T ;X) with ‖pk(·)‖2 + ‖ṗk(·)‖2 ≤ C for every k, there

exists a function p ∈ H1
w(0, T ;X) such that, up to a subsequence,

pk(t) ∗⇀ p(t) weakly∗ in X for every t ∈ [0, T ] , ṗk
∗
⇀ ṗ weakly∗ in L2

w(0, T ;X) .

Proof. Let ρ be the standard mollifier in R and ρk(t) := k ρ( tk ). For every t1 ≤ t2 ∈ [0, T ], ψ ∈ Y , we
take in (A.1) ϕk(t) = ψ ωk(t), where ωk is the convolution product between ρk and the indicator function
of [t1, t2], and let k tend to +∞. Then we get that for every p ∈ H1

w(0, T ;X)

〈p(t2)− p(t1), ψ〉 =
∫ t2

t1

〈p̃(s), ψ〉ds . (A.4)

Since
∫ t2
t1
〈p̃(s), ψ〉ds ≤

∫ t2
t1
‖p̃(s)‖ ds for every ‖ψ‖ ≤ 1, it follows that

‖p(t2)− p(t1)‖ ≤
∫ t2

t1

‖p̃(s)‖ ds , (A.5)

and then p is absolutely continuous, s 7→ ‖p̃(s)‖ being in L2. Then [5, Lemma 7.1] implies that for a.e.
t ∈ (0, T ) the weak∗ limit ṗ(t) defined in (A.2) exists. Let us now consider the function h(t) := ‖p(t)‖:
we have

|h(t)− h(s)| ≤ ‖p(t)− p(s)‖ ,
and therefore, by (A.5) and the Hölder inequality, h ∈ H1(0, T ) and |ḣ(t)| ≤ ‖ṗ(t)‖ for a.e. t ∈ (0, T ).
From the Sobolev embedding theorem for real valued functions (A.3) follows.

By (A.4) and a standard argument that uses the separability of Y , we obtain that for a.e. t ∈ (0, T ) it
holds

lim
s→t

〈p(s)− p(t)
s− t

, ψ
〉

= 〈p̃(t), ψ〉 for every ψ ∈ Y ,

and then (A.2) follows.
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By (A.3), every sequence {pk}k as in the statement is equibounded in C0,1/2([0, T ];X), and in particular
‖pk(t)‖ ≤ M for every k and t. It is now well known that, since Y is separable, there exists a distance
dM on BM , the ball of X with radius M centered in the origin, inducing the weak∗ convergence, and
the metric space (BM , dM ) is complete. Then the Arzelà-Ascoli Theorem implies that there exists
p ∈ C0,1/2([0, T ];X) such that, up to a subsequence,

pk(t) ∗⇀ p(t) in X, for every t ∈ [0, T ] .

Since ‖ṗk(·)‖2 ≤ C, there exists p̂ ∈ L2
w(0, T ;X) such that, up to a subsequence,

ṗk ⇀ p̂ weakly∗ in L2
w(0, T ;X) .

This implies that for every ϕ ∈ C∞c ((0, T );Y )∫ T

0

〈p̂(t), ϕ(t)〉dt = −
∫ T

0

〈p(t), ∂tϕ(t)〉dt ,

and therefore p̂ = ṗ. This concludes the proof. �

The following lemma is a generalization of the Riesz Representation Theorem for bounded linear
functionals acting on the space of continuous functions. It is employed in Lemma 3.4.

Lemma A.2. Let B be an open bounded subset of Rn, and let S be a distribution on B such that

〈S, β〉 ≤ C‖β‖p for every β ∈ C∞c (B) , (A.6)

with C > 0 and p ∈ [1,∞). Then there exists a unique pair (g, µ) such that g ∈ Lp′(B), with 1
p′ + 1

p = 1,
g ≥ 0, µ ∈M+(B) (namely µ is a nonnegative measure on B), g dx and µ are mutually singular, and

〈S, β〉 =
∫
B

g β dx−
∫
B

β dµ for every β ∈ C∞c (B) . (A.7)

Proof. In the following we will use the notation C+
0 (B) := {β ∈ C0(B) : β ≥ 0}, and the analogous for

C−0 (B).
Recall that every β ∈ C+

0 (B) can be approximated uniformly (and thus in Lp-norm) from below in
C∞c (B) ∩ C+

0 (B). We define

〈S+, β〉 := sup
ϕ∈C∞c (B)

0≤ϕ≤β

〈S, ϕ〉 for every β ∈ C+
0 (B) , (A.8)

which satisfies
0 ≤ 〈S+, β〉 ≤ C‖β‖p

for every β ∈ C+
0 (B) by (A.6). Following [31, Proposition 24], we extend S+ by setting

〈S+, β〉 := −〈S+,−β〉 for every β ∈ C−0 (B)

and we see that the functional S+ is linear and positive on C0(B). Moreover

|〈S+, β〉| = |〈S+, β+〉 − 〈S+, β−〉| ≤ 2C‖β‖p for every β ∈ C0(B) ,

and thus there exists g ∈ Lp′(B) such that

〈S+, β〉 =
∫
B

g β dx for every β ∈ C0(B) . (A.9)

Since 〈S+, β〉 ∈ R for every β, the distribution

〈S−, β〉 := 〈S+, β〉 − 〈S, β〉 for every β ∈ C∞c (B) (A.10)

is well defined and by (A.8) we obtain

〈S−, β〉 ≥ 0 for every C∞c (B) ∩ C+
0 (B) .

It is well known from the theory of distributions that there exists a nonnegative measure µ ∈ M+(B)
such that

〈S−, β〉 =
∫
B

β dµ for every C∞c (B) . (A.11)

Collecting (A.9), (A.10), and (A.11) we find that g and µ satisfy the properties as in the statement. Since
every measure is uniquely decomposed into a nonnegative and a nonpositive part, the uniqueness of g
and µ follows. Thus the proof is concluded. �
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