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Abstract We introduce Fundamental solutions of Barenblatt type for the equation

ut =
N∑
i=1

(
|uxi |pi−2uxi

)
xi

, pi > 2 ∀i = 1, ..,N, on 
T = RN × [0, T ],

(1)

and we prove their importance for the regularity properties of the solutions.

Keywords Degenerate orthotropic parabolic equations · p-Laplace ·
Anisotropic · Barenblatt fundamental solution · Self-similarity

1 Introduction

Consider the Cauchy problem

{
ut = divA(x, u,Du), in 
T = RN × (0, T ),
u(x, 0) = Mδ(x),

(2)
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whereM > 0, initial datum is the Dirac function δ(x), the fieldA : 
T ×R×RN →
RN is only measurable and has an anisotropic behavior

{
Ai(x, s, z)zi ≥ �∗|zi |pi
|Ai(x, s, z)| ≤ �∗|zi |pi−1,

(3)

for some constants �∗,�∗ > 0 and pi > 2 for any i ∈ {1, .., N}. We recall that
when all pis are greater than 2 the equation is called degenerate. In order to have the
existence of solutions, we require the following monotonicity property to the field
A:

[A(x, s, ξ)− A(x, s, ζ )] · [ξ − ζ ] > 0, ∀ ξ 
= ζ in RN . (4)

When pi ≡ p Eq. (2) is named the orthotropic p-Laplace, and has nevertheless
a different behavior from the classic p-Laplace, as its principal part evolves in
a way dictated only by the growth in the i-th direction. The problem (2) reflects
the modeling of many materials that reveal different diffusion rates along different
directions, such as liquid crystals, wood or earth’s crust (see [26]). Moreover, as
shown in [14] the solution to this equation have finite speed of propagation. Note
that this is a more reasonable assumption than the usual infinite-speed typical of
heat equation, for most of the physical phenomena.

1.1 The Open Problem of Regularity

The strong nonlinear character and in particular the anisotropy which is prescribed
by Eq. (2) has proved to be a hard challenge from the regularity point of view. The
main difference with standard non linear regularity theory is the growth (3) of the
operator A, usually referred to as non standard growth (see [1, 5]). This opens the
way to a new class of function spaces, called anisotropic Sobolev spaces (see next
Section), and whose study is still open and challenging. Even in the elliptic case,
the regularity theory for such equations requires a bound on the sparseness of the
powers pi . For instance in the general case the weak solution can be unbounded, as
proved in [16, 20]. However, the boundedness of solutions was proved in [5] under
the assumption that

p < N, max{p1, .., pN } < p∗, (5)

where

p :=
(

1

N

N∑
i=1

1

pi

)−1

, p∗ := Np

N − p . (6)
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Regularity properties are proved only on strong assumptions on the regularity of
the coefficients (see [15, 21, 22]). Even in the elliptic case, when the coefficients
are rough, Hölder continuity remains still nowadays an open problem. Indeed,
continuity conditioned to boundedness has been proved in [13] by means of intrinsic
scaling method, but with a condition of stability on the exponents pi which is only
qualitative. Removability of singularities has been considered in [28]. We refer to
[15] and [24] for a complete survey on the subject and related bibliography.

1.2 Aim of the Note

We will consider the homogeneous prototype problem

⎧⎪⎨
⎪⎩
ut =∑N

i=1

(
|uxi |pi−2uxi

)
xi

, in 
T = RN × (0, T ),
u(x, 0) = δo.

The purpose of this note is to show the importance of a Barenblatt Fundamental
solution B to this equation, paralleling the construction of Fundamental solutions
for the p-Laplace equation. We will show a fundamental connection between
the previous equation and a particular Fokker-Planck equation, as proved for the
porous medium equation by Carrillo and Toscani [7]. The achievement of such
Fundamental solution would provide important tools for the study of regularity of
parabolic anisotropic problems as (2). As we will see in the sequel, the problem
is more delicate than in the isotropic case, because of the lack of radial solutions.
In the isotropic case the adoption of radial symmetry brings the equation, set in
a proper scale, to a solvable ODE. In the doubly nonlinear case, a non-explicit
Barenblatt Fundamental solution has been found with this approach in [23], using a
Leray-Schauder technique. Also in mathematical physics, the use of radial solution
is usual. For instance this strategy can be used for the Navier Stokes equation (see
[17]). In our case, as already stated, the anisotropy does not allow the use of radial
solutions, and this fact compels us to look for new ideas.

2 Preliminaries

2.1 Self-Similar Fundamental solutions, Motivations and
Historical Perspectives

The issue of finding Fundamental solutions to elliptic and parabolic equations is
one of paramount importance in the study of linear elliptic and parabolic equations
(see [11]). In nonlinear theory their role is not so evident, and yet the epithet
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“Fundamental” is iconic, because representation in terms of kernels usually fails.
But they are a tool of extraordinary importance in the existence and regularity
theory as well as very important to describe the asymptotic behaviour, that’s why the
name Fundamental Solutions is deserved. Much more information about techniques
to be employed, sharp-condition examples and counterexamples can be extracted
from the knowledge of a Fundamental solution. A typical example is the Barenblatt
Fundamental Solution

B(x, t) = t−
N
λ

{
1 − γp

( |x|
t

1
λ

) p
p−1
} p−1
p−2

+
, t > 0,

for the p-Laplace equation

ut = div(|∇u|p−2∇u), in [0, T ] × RN, p > 1. (7)

These special solutions can be used to reveal a gap between the elliptic theory and
the corresponding parabolic one for p-Laplace type equations. Indeed solutions to

div(|∇u|p−2∇u) = 0, u ∈ W 1,p
loc (�), p > 1, (8)

do obey to a Harnack inequality (see [27]), while the corresponding solutions to the
parabolic version of (8) do not in general. We show this briefly. Let (x0, t0) be a point
of the boundary of the support of B, the free boundary {t = |x|λ}, and let ρ > 0.
The ballBρ(x0) intersects at the time level t0−ρp the support of x → B(x, t0−ρp)
in an open set, hence

B(x0, t0) = 0, but sup
Bρ(x0)

B(x, t0 − ρp) > 0.

Generalizing the classical heat equation to nonlinear versions, another chief example
in evolution theories is the Porous Medium Equation

ut −�(um) = 0, m > 1. (9)

This equation, introduced in the last century in connection with a number of physical
applications, has been extensively studied (see the monograph [31]) in parallel
to the p-Laplace as another prototype of nonlinear diffusive evolution equation,
with interest also in the geometry of free boundaries. Fundamental solutions were
discovered in 1950’s by Zeldovich and Kompanyeets in [32] and Barenblatt [2], and
later a complete description has been brought by Pattle in [25]. The discovery of
these explicit solutions, usually called Barenblatt solutions since then, has been the
starting point of the rigorous mathematical theory that has been gradually developed
since then.
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The surprising relation between existence and uniqueness of Fundamental
solutions and precise asymptotic behaviour relies on the existence of a scaling group
under whose action the solutions to the equation are invariant. This implies that
a Fundamental solution is self-similar: this is what we call a Barenblatt solution.
Self-similarity has big relevance for the understanding of Fundamental processes
in mathematics and physics, as described in [4]. Self-similar phenomena got in
mathematical physics quite early, perhaps with the famous work of Fourier in
1822 on the analytical theory of heat conduction. In this memoir he performed a
construction of a source-type solution

u(x, t) = A√
t
f

(
x√
t

)
, for f (ζ ) = e−

ζ2

A , A > 0,

to the heat conduction equation

ut = �u. (10)

Subsequently the phenomena under consideration and their mathematical models
became increasingly complicated and very often nonlinear. To obtain self-similar
solutions was considered a success in the pre-computer era. Indeed, the construction
of such solutions always reduces the problem to solving the boundary value
problems for an ODE, which is a substantial simplification, as we will see in
[3]. Furthermore, in ‘self-similar’ coordinates (as u

√
t , x/

√
t for (10)), self-similar

phenomena become time independent. This enlightens a certain type of stabilization.
Thus during the pre-computer era, the achievement of a self-similar solution was the
only way to understand the qualitative features of the phenomena, and the exponents
of the independent variables x, t in self-similar variables were obtained often by
dimensional analysis. Dimensional analysis is merely a simple sequence of rules
based on the Fundamental covariance principle of physics: all physical laws can be
represented in a form which is equally valid for all observers.

The very idea of self-similarity is connected with the group of transformations
of solutions (see [3]). These groups are already present in the differential equations
of the process and are determined by the dimensions of the variables appearing
in them: the transformations of the units of time, length, mass, etc. are the simplest
examples. This kind of self-similarity is obtained by power laws with exponents that
are simple fractions defined in an elementary way from dimensional considerations.
Such a course of argument has led to results of immense and permanent importance,
as the theory of turbulence and the Reynolds number, of linear and nonlinear
heat propagation from a point source, and of a point explosion. Moreover it has
enlightened the way toward to a nonlinear theory developed by DiBenedetto [10]
with the nowadays well-known method of intrinsic scaling (see also [29]).



104 S. Ciani and V. Vespri

The Group of Transformations for the p-Laplace Equation

Let us examine the group of transformations under scaling of the p-Laplace
equation

ut = div(|∇u|p−2∇u).

We apply the following dilation in all variables

u′ = Ku, x ′ = Lx, t ′ = T t,

and impose that the function u′ so defined

u′(x ′, t ′) = Ku

(
x ′

L
,
t ′

T

)
, (11)

is again a solution to the p-Laplace equation above. Then by the simple calculations

ut ′ = K

T
ut

(
x ′

L
,
t ′

T

)
, |∇x ′u′| = K

L
|∇u|

we arrive to the conclusion that u′ is a solution to the p-Laplace equation if and only
if

TKp−2 = Lp.

So we obtain a two-parametric transformation group T (L, T ) acting on the set of
solutions of the p-Laplace equation:

(T u)(x, t) =
(
Lp

T

) 1
p−2

u

(
x

L
,
t

T

)
. (12)

and we can conclude the following Lemma.

Lemma 1 If u is a solution to the p-Laplace equation in a certain class of solutions
S which is closed under dilation in x, t, u, then (T u) given by (12) is again a
solution to the equation in the same class S.

Those special solutions that are themselves invariant under the scaling group are
called self similar-solutions: this means that (T u)(x, t) = u(x, t) for all (x, t) in
the domain of definition, which has to be itself scale-invariant.

Suppose now that we have an important information, such as (27) or conservation
of mass. We want to use some of the free parameters to force T to preserve this
important behaviour of the orbit. Analytically it consists in imposing a new relation
between two independent parameters, as K and L for instance, and in reducing the
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transformation to a one-parameter family of scaled functions. Thus we set

K = L−χ , (13)

and consequently

K = T −α, L = T β,

with α, β, χ linked by conserving the equation:

α(p, χ) = χ

χ(p − 2)+ 2
, β(p, χ) = 1

χ(p − 2)+ 2
, unless χ = −2

(p − 2)
.

Observing that χ = α/β, the equation changes into

(T u)(x, t) = T −αu(x/T β, t/T ), (14)

where α, β are linked by α(p − 2)+ β = 1. The condition of preserving the initial
mass is ∫

RN
Ku0

(
x

L

)
dx =

∫
RN
(T u0)(x)dx =

∫
RN
u0(x)dx (15)

which obliges KLN = 1, so that the one parameter family T will be given by

α = N

N(p − 2)+ 2
, β = 1

N(p − 2)+ 2
, p > 2. (16)

Observe the formula for the transformation of the initial data (which obviously must
satisfy the same transformation) must be

(T u0)(x) = T −N
λ u0

(
x

T
1
λ

)
, λ = N(p − 2)+ p. (17)

In the case of Barenblatt Fundamental solution (24) the couple (x, t) is fixed as a
single variable so that

u(x, t) = t−αu(xt−β, 1) = t−αF (xt−β), (18)

where F(η) = u(η, 1) is the profile of the solution.

Remark 1 A complete theory of existence and uniqueness for the main equation
would allow us to obtain self-similar solutions almost for free. Indeed we can
consider the solution to the Cauchy problem for scale invariant data, and then use
uniqueness to show that this must be self-similar. Let the initial data for instance be
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of the form

u′(x) = G(ξ)

|x|χ , χ ∈ R, ξ = x

|x| , and G : SN−1 → R.

Let us suppose that we are able to solve with uniqueness the Cauchy problem for
our equation with this initial data, say the solution is u. We produce another solution
to the same equation by T (u) given by (11) and if K = L−χ then the transformed
initial data is the same one:

(T u)(x, 0) = KG(ξ)

∣∣∣∣ xL
∣∣∣∣
−χ

= u(x, 0)

and so u and T (u) solve the same Cauchy problem and u is self-similar.

2.2 Notation and Settings

Given p := (p1, .., pN), p > 1 with the usual meaning, we assume that the
harmonic mean is smaller than the dimension of the space variables

p :=
(

1

N

N∑
i=1

1

pi

)−1

< N, (19)

and we define the Sobolev exponent of the harmonic mean p,

p∗ := Np

N − p . (20)

We will suppose without loss of generality along this note that the pis are ordered
increasingly. Next we introduce the natural parabolic anisotropic spaces. Given T >
0 and a bounded open set � ⊂ R we define

W 1,p
o (�) := {u ∈ W 1,1

o (�)|Diu ∈ Lpi (�)}

W
1,p
loc (�) := {u ∈ L1

loc(�)|Diu ∈ Lpiloc(�)}

Lp(0, T ;W 1,p
o (�)) := {u ∈ L1(0, T ;W 1,1

o (�))|Diu ∈ Lpi (0, T ;Lpiloc(�))}

L
p
loc(0, T ;W 1,p

o (�)) := {u ∈ L1
loc(0, T ;W 1,1

o (�))|Diu ∈ Lpiloc(0, T ;Lpiloc(�))}
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Now let A be a measurable vector field satisfying the growth conditions (3). By a
local weak solution of

ut = divA(x, u,Du), (x, t) ∈ 
T ,

we understand a function u ∈ C0
loc(0, T ;L2

loc(R
N)) ∩ Lp

loc(0, T ;W 1,p(RN)) such
that for all 0 < t1 < t2 < T and any test function ϕ ∈ C∞

loc(0, T ;C∞
o (R

N)) satisfies

∫
uϕ dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
(−u ϕt + A(x, u,Du) ·Dϕ) dxdt = 0, (21)

where the integral is assumed to be in RN when no domain has been specified. By
a density and approximation argument this actually holds for any test function of
the kind ϕ ∈ W 1,2

loc (0, T ;L2
loc(R

n)) ∩ Lp
loc(0, T ;W 1,p

o (�)) for any semirectangular
domain � ⊂⊂ RN (see [18] for a discussion on anisotropic embeddings and
semirectangular domains).

Remark 2 We further give the definition of solution to the prototype equation (1)
with L1 initial data, to be used during the development of our work.

A measurable function (x, t) → u(x, t) defined in 
T is a weak solution to the
Cauchy Problem (2) with L1 initial data if for every bounded open set � ⊂ R, if

u ∈ C(0, T ;L1(�)) ∩ Lp(0, T ;W 1,p(�)), and

∫
�

u(x, t)ϕ(x, t)dx +
∫ t

0

∫
�

{−uϕt +
N∑
i=1

|Diu|pi−2DiuDiϕ}dxdτ

=
∫
�

u0(x)ϕ(x, 0)dx,

(22)

for all 0 < t < T and all test functions ϕ ∈ C∞(0, T ;C∞
o (�)).

Weak subsolutions (resp. supersolutions) are defined as above except that in (22)
equality is replaced by ≤ (resp. ≥) and test functions ϕ ≥ 0 are taken to be
nonnegative.

3 A Self-Similar Solution to the p-Laplace Equation

Consider the equation

{
u ∈ Cloc(0, T ;L2

loc(R
N)) ∩ Lploc(0, T ;W 1,p

loc (R
N),

ut − div(|∇u|p−2∇u) = 0, in 
T = RN × (0, T ). (23)
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In this case we recover the classic p-Laplace equation, and we can write explicitly
its self-similarity source-solution since the work of Barenblatt [2] as

B(x, t) = t−
N
λ

{
1 − γp

( |x|
t

1
λ

) p
p−1
} p−1
p−2

+
, t > 0 (24)

with

λ = N(p − 2)+ p, γp =
(

1

λ

) 1
p−1 p − 2

p
. (25)

We observe that B satisfies the self-similar transformation (18). This function B
solves the Cauchy problem

{
ut − div(|∇u|p−2∇u) = 0, in RN × (0,∞),
B(·, 0) =Mδo,

(26)

where δo is the Dirac measure concentrated at the origin and for every t > 0 the
mass M = ‖B(·, t)‖

L1(RN ) is conserved. The initial datum is taken in the sense of

measures, which is, for every ϕ ∈ Co(RN)∫
RN

B(x, t)ϕ dx → Mϕ(0), as t ↓ 0.

For t > 0 and every ρ > 0 we have the important bound

‖B(·, t)‖L∞(Kρ) = t−
N
λ , (27)

being Kρ the cube of edge ρ. The explicit function B is classically named
Fundamental solution in literature, because it converges pointwise in 
T to the heat
kernel �(x, t) when p approaches 2,

B(x, t)→ (4π)N/2�(x, t) = 1

tN/2
e−

|x|2
4t , if p ↓ 2,

but the name does not refer to the kernel property i.e. solutions to (23) are not
representable as convolutions of B with initial data. Nevertheless all non-negative
solutions to (23) behave as t ↓ 0 like the Fundamental solution B, and as |x| →
∞ they grow no faster than |x|p/(p−2). Barenblatt Fundamental solutions B are
useful, together with the comparison principle, for proving an intrinsic Harnack
estimate (see further Sect. 5), uniqueness in existence with L1 data (as in [19]), and
more generally to understand the behavior of solutions from the point of view of the
physics. In this way, a suitable revisiting of the linear theory had been shaped to face
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nonlinear equations as the p-Laplace. It is possible to build Barenblatt Fundamental
solutions centered in x̄ with initial datum at a time t̄ in the following way

Bk,ρ(x, t, x̄, t̄ ) = kρN

S
N
λ (t)

{
1 −

( |x − x̄|
S

1
λ (t)

) p
p−1

} p−1
p−2

+
, λ = N(p − 2)+ p, (28)

with

S(t) = λ

(
p

p − 2

)p−1

kp−2ρN(p−2)(t − t̄ )+ ρλ. (29)

These functions enjoy the following important properties.

1. They are weak solutions to (23) in RN × {t > t̄}.
2. If we fix t = t̄ then Bk,ρ ≡ 0 for all x ∈

(
RN − Bρ(x̄)

)
and for t > t̄ the

function x → Bk,ρ vanishes, in a C1 fashion, across the boundary of the ball

{|x − x̄| < S 1
λ (t)}.

Their support evolves compactly:

supp

(
Bk,ρ(x, t, x̄, t̄ )

)
=
{
|x − x̄| ≤ S 1

λ (t)

}
× [t̄ , t∗], (30)

thus

supp

(
Bk,ρ(x, t, x̄, t̄ )

)
⊆ BS1/λ(t∗)(x̄)× [t̄ , t∗]. (31)

3. They are bounded for fixed ρ and k ∈ R+:

Bk,ρ(x, t, x̄, t̄ ) ≤ k, x ∈ RN . (32)

In the sequel when no explicit formula for a solution as (28) (as in (1)), we will
refer to a Barenblatt Fundamental Solution as a function (resp. to (1)) satisfying
properties analogous to 1–3 above.

3.1 The Construction of B: Reduction to an Isotropic
Fokker-Planck Equation

As far as we know if we look for a Barenblatt Fundamental solution as B, we
have to impose the condition (27), because this is the behaviour that non-negative
solutions to the p-Laplace Cauchy problem with the right decay of the initial datum
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do satisfy (see [10] Theorem 4.5). This motivates us to apply the following (formal)
transformations to Eq. (23) and

{
u(x, t) = t−N

λ v(xtα, t) = v(y, t),

y = xtα, α = − 1
λ
,

⇒
{
ux = t−N

λ vyyx = tα−N
λ vy,

∂
∂x

= tα ∂
∂y
.

(33)

Remark 3 We notice that the applied transformation does not belong to the group of
transformations (12), so we expect that Eq. (23) turns into another one. This is what
is called in [30] the continuous rescaling: as the change of variables (33) belongs
to the transformation group only for the fixed time t = 1, source-type solutions
transform into stationary profiles of the transformed equation.

By direct calculation we obtain

ut = −N
λ
t−

N
λ −1v + t−N

λ

[ N∑
i=1

vyi (yi)t + vt
]
=

− N

λ
t−

N
λ −1v + t−N

λ

[
∇yv · αy

t
+ vt

]

and

∇xu = tα−N
λ ∇yv. (34)

We set

ṽ(y, t̃ ) = ṽ(y, ln(t)) = v(y, t), ⇒ ṽt = ṽt̃ t
−1 = vt (35)

and Eq. (23) becomes, by multiplying it for t
N
λ
+1

ṽt̃ =
N

λ
v − N

λ
∇yṽ · y + tα∇y ·

[
t(α−

N
λ
)(p−1)|∇yṽ|p−2∇y ṽ

]
t
N
λ
+1 =

N

λ
v − N

λ
∇yṽ · y +∇y ·

[
|∇y ṽ|p−2∇yṽ

]
tα+(α−

N
λ )(p−1)+N

λ +1 =

N

λ
v − N

λ
∇yṽ · y +∇y ·

[
|∇y ṽ|p−2∇yṽ

]
,

being α = − 1
λ

. So we obtain the isotropic Fokker-Planck equation

ṽt̃ = ∇y ·
(
|∇yṽ|p−2∇y ṽ + yṽ

λ

)
. (36)



An Introduction to Barenblatt Solutions for Anisotropic p-Laplace Equations 111

3.2 Barenblatt Solution Solves the Isotropic Fokker Planck
Equation

Consider the Barenblatt function B(x, t), with explicitly scaled space variables

B(x, t) = t−N
λ

{
1 − γp

(√√√√ N∑
i=1

(
xi

t
1
λ

)2) p
p−1
} p−1
p−2

+
. (37)

We claim that B solves the stationary version of (36), by taking the flux to be zero,
i.e.

|∇y ṽ|p−2∇yṽ + yṽ

λ
= 0.

We have, by setting yi = xit
− 1
λ , that

B(y, t) = t−
N
λ

{
1−γp|y|

p
p−1

} p−1
p−2

+
= t−

N
λ

{
1−γp

(√∑N
i=1 x

2
i

t
1
λ

) p
p−1
} p−1
p−2

+
= B(x, t)

and thus the function

C(y, t) =
{

1 − γp|y|
p
p−1

} p−1
p−2

+

is independent from t , and

∇yC =− γp
(

p

p − 2

){
1 − γp|y|

p
p−1

} 1
p−2

+
|y| 2−p

p−1 y =

= −γp
(

p

p − 2

)
C

1
p−1 |y| 2−p

p−1 y.

Thus by calculation we have that C(y) = t
N
λ B(y, t) solves the zero flux equation

|∇yC|p−2∇yC + yC
λ

=
[
γp

(
p

p − 2

)
C 1
p−1

]p−2

|y| 2−p
p−1 (p−2)|y|p−2

[
− γp

(
p

p − 1

)
C 1
p−1 |y| 2−p

p−1 y

]
+ yC
λ

=

C
[

1

λ
− γp

(
p

p − 2

)p−1]
y = 0, for γ =

(
p − 2

p

)p−1 1

λ
.



112 S. Ciani and V. Vespri

Consequently, so does B(x, t). Now we show that the converse reasoning holds too,
in order to show how the whole calculation is in fact reduced to a ODE solution.

3.3 Function C Solves a Particular ODE

Consider

C(η) =
{

1 − γpη
p
p−1

} p−1
p−2

+
= C(|y|), η > 0. (38)

In 0 ≤ η <
(

1
γp

) p−1
p

we have

C(η)
p−2
p−1 = 1 − γpη

p
p−1 .

We derive the equation to obtain

(
p − 1

p − 2

)
C(η)−

1
p−1 C ′(η)dη = −

(
p − 2

p

)
1

λ1/(p−1)

(
p

p − 1

)
η

1
p−1 dη.

Now, we manipulate the equation with C ′(η) ≤ 0, because

C ′(η) =
(
p − 1

p − 2

){
1 − γpη

p
p−1

}− 1
p−2

+

(
− γ

(
p

p − 1

)
η

1
p−1

)
≤ 0

so that

(
(−C ′(η))p−1

C(η)

) 1
p−1 =

(
η

λ

) 1
p−1

and so the desired mono-dimensional Fokker-Planck equation is obtained

|C ′(η)|p−2C ′(η)+ ηC(η)
λ

= 0. (39)

If one reads conversely from the end to the beginning of these calculations, it is clear
how to arrive to a solution to the isotropic Fokker Planck equation (36) by imposing
radial symmetry.
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4 Solving the Isotropic Cauchy Problem with Measure Data

Suppose now that we are not able to solve by radial symmetry the isotropic Fokker-
Planck equation (36). If we look for a solution to (26) that exhibits the properties
(30)–(32), we may adopt the following strategy. First we find a general solution u to
(26) with datum the Dirac measure δo, we show that it is positive by the maximum
principle, and then we use the transformation (33) to get a solution w to (36).
Observe that a comparison principle for subsolutions to the p-Laplace equation can
be transported to a comparison principle for subsolutions to the isotropic Fokker-
Planck equation. But we need a solution to the stationary Fokker-Planck equation to
recover the self-similarity (see Remark 3), so that we can control the behavior for
all times by scaling, and we gain for free the correct evolution of its support. More
generally speaking, if the initial data in (22) is given by

u0(·, 0) = μ, (40)

where μ is a σ—finite Borel measure in RN , then we say that u is a weak solution
of (22) with measura data if for every bounded open set � ⊂ RN and ∀t ∈ (0, T ),
u satisfies the above integral equality (22) with the right-hand side replaced by

∫
�

ϕ(x, 0)dμ,

∀ϕ ∈ C1(�T ) such that x → ϕ(x, t) is compactly supported in � ∀t ∈ [0, T ].
In the pioneering work [12] for the isotropic p-Laplace, the authors consider a

way of measuring the growth of a function f ∈ L1
loc(R

N) as |x| → ∞ by setting

|‖f ‖|r := sup
ρ≥r

ρ−λ/(p−2)
∫
Bρ

|f |dx, r > 0, λ = N(p − 2)+ p.

Note that if f ∈ L1(RN) then |‖f ‖|r < ∞, ∀r > 0. Similarly, if μ is a σ -finite
Borel measure in RN , we set

|‖μ‖|r := sup
ρ≥r

ρ−λ/(p−2)
∫
Bρ

|dμ|,

where |dμ| is the variation of μ.
In that Fundamental work, the authors demonstrate the existence of a weak

solution to the problem (22) in its isotropic configuration, within 
T = 
T (μ),
where

T (μ) =

⎧⎪⎨
⎪⎩
C0(N, p)

[
limr→∞ |‖μ‖|r

](2−p)
, if limr→∞ |‖μ‖|r > 0

+∞ if limr→∞ |‖μ‖|r = 0.

(41)
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So the existence is proved in a cylindrical domain whose last time T is dictated
by the behavior at infinity of the initial measure μ. The method relies on suitable
estimates and compactness, which permit a standard limiting process. Indeed, given
a σ—finite Borel measure μ in RN satisfying |‖μ‖|r < ∞ for some r > 0, there
exists a sequence of regular functions {u0,n}n∈N ∈ C∞

o (R
N) such that ∀ϕ ∈ Co(RN)

we have ∫
RN
u0,nϕ dx →

∫
RN
ϕdμ, & |‖u0,n‖|r → |‖μ‖|r , r > 0.

The Cauchy Problem

{
ut − div(|Du|p−2Du) = 0 in 
T , p > 2,

u(·, 0) = u0,n.
(42)

has a unique solution un, global in time (see [6]). Next, the authors prove the
following estimates, for all 0 < t < Tr(μ) := C0[‖|μ‖|r ](2−p), ∀ρ ≥ r > 0:

‖|u(·, t)‖|r ≤ C1(N,p)‖|μ‖|r , (43)

‖u(·, t)||L∞(Bρ) ≤ C2(N,p)t
−N/λρp/(p−2)|‖μ‖|p/λr , (44)

‖Du(·, t)||L∞(Bρ) ≤ C3(N, p)t
−(N+1)/λρ2/(p−2)‖|μ‖|2/λr , (45)

∫ t

0

∫
�
|Du|qdxdτ ≤ C4(N,P, ε, diam�) |‖μ‖|C5(N,p,ε)

r , q = p − (N + ε)/(N + 1),

(46)

and in particular with ε = 1 we obtain

∫ t

0

∫
Bρ

|Du|p−1dxdτ ≤ C5(N.p)t
1/λρ1+λ/(p−2) |‖μ‖|1+(p−2)/λ

r (47)

Moreover the function (x, t) → Du(x, t) is Hölder continuous in �× [η, T (μ) −
η], 0 < η < T (μ), with Hölder constants and exponents depending upon
N,p,C1, .., C4, diam�, η, |‖μ‖|r . It can be shown that their estimates are sharp,
by means of Barenblatt solutions. Finally, the estimates above (43)–(45) with a
monotonicity property as (4), permit to pass to the limit in the approximating
problems (42).



An Introduction to Barenblatt Solutions for Anisotropic p-Laplace Equations 115

5 An Application of B to Intrinsic Harnack Estimates

In this section we outline the importance of the construction of a Barenblatt
Fundamental solution for the aim of proving regularity. Indeed the rough idea is
that once that we have a solution of (23) whose support and positivity can be
easily manipulated, by means of a comparison argument is possible to expand the
positivity set of a whatever solution that is bigger than the Fundamental one in
the parabolic boundary. More precisely we will review the proof of the following
Theorem of [10].

Theorem 1 Let u be a non-negative weak solution of Eq. (23) in �T = �× [0, T ]
where� ⊂ RN bounded open set. Fix a point (x0, t0) ∈ �T and assume u(x0, t0) >

0. There exist constants γ > 1 and C > 1, depending only on N,p, such that

u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t0 + θ), θ = Cρp

[u(x0, t0)]p−2 , (48)

provided the cylinder

Q4ρ(θ) = {|x − x0| < 4ρ} × {t0 − 4θ, t0 + 4θ} (49)

is contained in �T .

Remark 4 As we can see, the geometry is intrinsically defined by the value of
the solution in (x0, t0). This brings to light a difficulty in exposition, as a priori
weak solutions to (23) are not meant to be well defined in every point. Nonetheless
by standard regularity theory we know that local weak solutions to (23) are
locally Hölder continuous, and so they are well defined pointwise as elements of
C(0, T ;W 1,p

loc (�)).

Remark 5 The constants γ and C in previous Theorem tend to infinity as p tend to
infinity, but they are stable as p ↓ 2 in the following meaning

lim
p↓2

γ (N, p) = γ (N, p), and lim
p↓2

C(N,p) = C(N,p). (50)

5.1 Outline of the Proof of Theorem 1

For the sake of conciseness ad to the aim of highlighting the importance of
Barenblatt Fundamental solutions, we will demonstrate only the case when p is
not too close to 2. The proof for p ∈ (2, 5/2] uses local comparison functions built
especially to do the same job of B, being subsolutions of (23) and observing the
same ordering imposed by the following Lemma.
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Lemma 2 Let u, v be two solutions of (23) in �T = � × [0, T ] such that u, v ∈
C(0, T ;L2(�))∩Lp(0, T ;W 1,p(�))∩C(�T ). If u ≥ v in the parabolic boundary
of �T , then u ≥ v in �T .
STEP 1. Transforming the problem by scaling.
Let (x0, t0) ∈ �T , ρ > 0 to be fixed a posteriori, assume that u(x0, t0) > 0 and for
a constant C to be determined later let Q4ρ be the box

Q4ρ = {|x − x0| < 4ρ} ×
{
t0 − 4Cρp

[u(x0, t0)]p−2 , t0 +
4Cρp

[u(x0, t0)]p−2

}
. (51)

Now introduce the change of variables

!(x, t) =
(
x − x0

ρ
,
(t − t0)[u(xo, t0)]p−2

ρp

)
, !(Q4ρ) = B4 × (−4C, 4C) =: Q

(52)

Let us denote again with x, t the new variables!(x, t), and observe that the function

v(x, t) = 1

u(x0, t0)
u

(
x0 + ρx, tρp

[u(x0, t0]p−2

)
, (53)

is a bounded non-negative solution to the Cauchy problem

{
vt − div(|Dv|p−2Dv) = 0, (x, t) ∈ Q
v(0, 0) = 1.

(54)

Theorem 1 will be proved, as shown by a simple converse rescaling, if we are able to
find constants γo ∈ (0, 1], C > 1 depending only upon N,p holding the inequality

inf
B1
v(x,C) ≥ γo. (55)

The constant γo defined successively in (62) tends to zero as p ↓ 2.
STEP 2. Finding qualitatively a point where v equals a power-like function of time.
We consider the family of nested and expanding boxes

Qτ = {|x| < τ } × (−τp, 0], τ ∈ (0, 1] (56)

and for each of these boxes we consider the numbers

Mτ = sup
Qτ

v, Nτ = (1 − τ )−b, (57)

where the number b > 0 will be suitably defined later to render quantitative the
following estimate. As M0 = N0 and considering that Mτ remains a bounded
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function of τ (because v is a bounded solution) while Nτ → +∞ when τ tends
to 1, we can choose a number τo to be the largest root of the equation

Mτ = Nτ .

This implies by construction

sup
Qτ

v ≤ Nτ , ∀τ > τo. (58)

Since v is continuous inQ there exists at least one point (x̄, t̄ ) ∈ Qτo such that

v(x̄, t̄ ) = Nτo = (1 − τo)−b. (59)

STEP 3. Ordering v and (1 − τo)−b within a small ball centered in x̄.
Let

R = 1 − τo
2

,

and consider the cylinder [(x̄, t̄ ) +Q(Rp,R)] = {|x − x̄| < R} × {t̄ − Rp, t̄}. As
τo ∈ (0, 1] we have the inclusion [(x̄, t̄ )+Q(Rp,R)] ⊂ Q 1+τo

2
which implies

sup
[(x̄,t̄)+Q(Rp,R)]

v ≤ N 1+τo
2

= 2b(1 − τo)−b =: ω.

Now we use Hölder continuity of the function v in the fashion of Proposition 3.1
of Chap. III of [10], choosing b > 0 so large that the starting one of the family of
shrinking cylinders is contained in [(x̄, t̄ ) + Q(Rp,R)]. Hence there exist γ > 1
and a, εo ∈ (0, 1) such that for all r ∈ (0, R] we have

osc
[(x̄,t̄ )+Q(Rp,R)]

v(·, t̄ ) ≤ γ (ω + Rεo)
(
r

R

)a

≤ 2b+1γ (1 − τo)−b
(
r

R

)a (60)

We let r = σR and we choose σ so small that for all {|x − x̄| < σR} we obtain

v(x, t̄ ) ≥ v(x̄, t̄ )− 2b+1γ (1 − τo)−bσ a

(1 − 2b+1)γ σa)(1 − τo)−b
1

2
(1 − τo)−b, ∀{|x − x̄|} < σR, R = 1

2
(1 − τo)

(61)
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STEP 5. Expansion of the positivity set and conclusion.
In this last step we will choose the constants b > 1 and C > 1 so that the qualitative
largeness of v(·, t̄ ) in the small ball BσR(x̄) turns into a quantitative bound below
over the full sphere B1 at some later time level C. This will be carried on by means
of the comparison with the functions Bk,ρ defined in (28) by

Bk,ρ(x, t, x̄, t̄ ) = kρN

S
N
λ (t)

{
1 −

( |x − x̄|
S

1
λ (t)

) p
p−1
} p−1
p−2

+
,

S(t) = λ

(
p

p − 2

)p−1

kp−2ρN(p−2)(t − t̄ )+ ρλ.

Indeed, we choose appropriately

k = 1

2
(1 − τo)−b, ρ = σR,

and we observe that at the time level t = C the support of Bk,ρ(·, C, x̄, t̄ ) is the ball

|x − x̄|λ < S(t) = {dγ p−2(1 − τo)(N−b)/(p−2)(C − t̄ )+ (σR)λ)}

for

γ (N, b) = 1

2

(
σ

2

)N
, and d = λ

(
p

p − 2

)p−1

.

Now choose

b = N, C = 3λ

dγ p−2 , (62)

so that the support of Bk,ρ(·, C, x̄, t̄ ) contains B2 and we can use the comparison
principle with v as we have in Bρ

v(·, t̄ ) ≥ 1

2
(1 − τo)−N = k ≥ Bk,ρ(·, t̄ ). (63)

Thence

inf
x∈B1

v(x,C) ≥ inf
x∈B1

Bk,ρ(x, C, x̄, t̄ )

≥ 2−(1+2N/λ)
(
σ

2

)N{
1 −

(
2

3

) p
p−1
} p−1
p−2 =: γo,

(64)

and the proof is concluded.
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6 Looking for a Barenblatt-Type Solution to (1)

In this section we calculate the right exponents for the transformation of Eq. (1) into
an anisotropic Fokker-Planck equation. Next we observe that the impossibility of
using radial solutions does not allow us to obtain an ODE from the Fokker-Planck
equation. Finally we show a strategy to find a non-explicit Barenblatt Fundamental
solution.

Remark 6 Observe initially that we can construct a source-type solution, but that
unfortunately has not a compact support. Indeed, consider the following solution to
(1). Let i ∈ {1, .., N} and

fi(xi, t, Ti) = κi

( |xi |pi
(Ti − t)

) 1
pi−2

, κi = κi(pi) > 0, pi > 2, (65)

be solutions of the equations

ut − (|uxi |pi−2uxi )xi = 0, xi ∈ R, t > 0. (66)

Then the function

F(x, t) =
N∑
i=1

fi(xi, t, Ti)

=
N∑
i=1

κi

( |xi |pi
(Ti − t)

) 1
pi−2

(67)

solves the prototype equation (1). The same can be done by choosing fi ≡ Bi the
mono-dimensional Barenblatt solutions solving (66). These functions reveal some
of the physical aspects of Eq. (1): for instance they can be used to show that the
lifetime of solutions is dictated by the largest exponent pN in the case of large
initial mass (see Remark 3 in [8]). Unfortunately solutions so-built do not have a
compactly supported evolution and we cannot use them to expand the positivity by
comparison as done in Sect. 5.

6.1 Finite Speed of Propagation

Consider the Cauchy problem

{
ut = div(A(t, x, u,∇u)), in 
T = RN × (0, T ),
u(x, 0) = u0(x) ∈ L2(RN),

(68)
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where A(t, x, u,∇u) = (Ai(x, t, u,∇u))i=1,..,N is a Caratheodory vector field
satisfying the growth conditions (3). In [14] the authors proved the following decay
properties, that will be useful to us to intercept the right exponents in the scaling
transformation leading to the Fokker-Planck equation for solutions to (1).

Theorem 2 Suppose that pi > 2 for all i ∈ {1, .., N}. Let u be a local weak
solution to (68) in 
T under the growth conditions (3) with

u0 ∈ L2(RN), ∅ 
= supp(u0) ⊆ [−R0, R0]N (69)

Then there is a solution ũ 
= 0 such that

supp(ũ(·, t)) ⊆
N∏
i=1

[−Rj(t), Rj (t)], (70)

for any t < T , where

Rj (t) = 2R0 + Ct
N(p̄−pj )+p̄

λpj ||u0||
p̄
pj

pj−2
λ

1 , λ = N(p̄ − 2)+ p̄. (71)

Moreover, they proved the followingL∞-L1 estimates of the decay for the solution.

Theorem 3 Let p̄ < N and let u ∈ ∩Ni=1Lpi (
T ) solve (68) for u0 ∈ L1(RN) ∩
L2(RN). Then if pi > 2, ∀i = 1, .., N the following estimate holds true for any
τ ∈ [0, T ]

||u(·, t)||
L∞(RN ) ≤ Ct−

N
λ ||u0||

p̄
λ

L1(RN )
. (72)

6.2 The Anisotropic Fokker-Planck Equation

We consider a similar continuous transformation as (17), owing the choice of the
right exponent to the decay of a solution to (68), and we perform the following
formal calculations.

u(x, t) = t−βv
(
x1t

α1 , . . . , xN t
αN , t

)
= t−βv(y1, .., yN , t),

⎧⎨
⎩yi = xi t

αi ,

∂
∂xi

= tαi ∂
∂yi
.

(73)
We calculate formally

ut = −βt−β−1v+t−β
[ N∑
i=1

(
∂

∂yi
v

)
∂yi

∂t
+vt

]
=−βt−β−1v+t−β

N∑
i=1

(
∂

∂yi
v

)[
αixi t

αi

t

]
+t−βvt ,
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being

∂

∂xi
u = tαi−β ∂

∂yi
v.

We substitute these into (1) to get

−βt−β−1v + t−β
N∑
i=1

αiyi

t

(
∂

∂yi
v

)
+ t−βvt =

N∑
i=1

tαi
∂

∂yi

(
t (αi−β)(pi−1)

∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
.

Re-ordering and multiplying each term for tβ+1 we get

tvt = βv −
N∑
i=1

αiyi
∂

∂yi
v +

N∑
i=1

t(αi−β)(pi−1)+αi+β+1 ∂

∂yi

(∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
=

βv +
N∑
i=1

αiv +
N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
− αiyiv

]
,

by choosing

(αi − β)(pi − 1)+ αi + β + 1 = 0,

which means

αi = β − 1 + 2β

pi
< 0. (74)

This is an Euler equation. So, by redefining v(y, t) = w(y, ln(t)) Eq. (1) becomes
the non-homogeneous Fokker-Planck equation

wt =
(
β +

N∑
i=1

αi

)
w +

N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2

∂

∂yi
w

)
− αiyiw

]
. (75)

If, according to (72), we consider

β = N

N(p̄ − 2)+ p̄ , (76)

then the equation reduces to

wt =
N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2

∂

∂yi
w

)
− αiyiw

]
. (77)
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Remark 7 Equation (77) conserves the L1(�)-norm in time.
Moreover, a solution to the stationary version of (77) would give us the wanted

Barenblatt Fundamental solution to (1).

This anisotropic Fokker-Planck type equation is deeply different from its
isotropic counterpart (36). Anisotropy does not permit the identification of a single
variable ODE as in (39), and this is physically evident and due to the lack of radial
symmetry of the diffusion process in consideration: there is no homogeneous flux
here to be vanished. Moreover the steady equation

N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2 ∂

∂yi
w

)
− αiyiw

]
, in � ⊂ RN, (78)

is not a variational one i.e. it is not known if it can be written as the Euler Lagrange
equation of an energy functional. Moreover, its monotonicity and coercivity prop-
erties suffer heavily the second term influence relatively to the length in the i-th
direction of the medium �. These considerations leading to the difficulty of an
explicit formula as in the previous case (24), the existence and the main properties
characterizing a Barenblatt Fundamental solution may be derived by the simpler
original equation (1) and then defining a suitable function which solves the steady
Fokker-Planck equation (78). This would ensure that the solution to (1) found has
the properties of Theorem 2, which characterize a Barenblatt Fundamental Solution.

6.3 On the Solvability of the Anisotropic Cauchy Problem with
Measure Initial Data

We consider the prototype problem with measure initial data, i.e

{
ut −∑N

i=1(|uxi |pi−2uxi )xi = 0, (x, t) ∈ RN × [0, T ],
u(x, 0) = u0(x), x ∈ RN .

(79)

We begin the study of a weak solution to (79) i.e. a function u ∈ C(0, T ;L1(RN))∩
Lp(0, T ;W 1,p(RN)) such that for each open bounded � ⊂ RN and for all
t ∈ [0, T ) satisfies for all test function ϕ(x, t) ∈ W 1,∞([0, T , L∞(�)) ∩
L∞([0, T ],W 1,∞

o (�)) the equality

∫
�

uϕ(x, t)dx +
N∑
i=1

∫ t

0

∫
�

|uxi |pi−2uxiϕxi dxdτ

=
∫
�

ϕ(x, 0)du0 +
∫ t

0

∫
�

uϕτ (x, τ )dxdτ. (80)
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This has been done in [8, 9] for more general doubly nonlinear anisotropic
equations. We recall the notation λ = N(p − 2) + p. In [8] the authors prove a
generalised version of the following a priori estimates.

Theorem 4 Consider the problem (79) with 2 < pi ≤ p̄
(

1 + 1
N

)
, u0(x) ≥ 0 and

‖|u0‖|r := sup
ρ≥r

ρ−
λ
N

∫
Bρ

u0(x)dx <∞, r > 0, (81)

being

Bρ :=
{
x ∈ RN ||xi | ≤ ρ

p̄(pi−2)
pi (p̄−2)

2

}
.

Define by monotonicity M∞ := limr→∞ |‖u0‖|r and for a γ > 0 to be specified
later

T∗ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞, if M∞ = 0,(
M∞
γ

)N(p−pN )+p
p(pN−2)

, if M∞ ≥ γ,(
M∞
γ

)
N(p−p1)+p
p(p1−2) , if M∞ < γ.

(82)

Then there exists a positive constant γ (pi,N) such that every nonnegative weak
solution to (79) defined on [0, T∗] must satisfy the following estimates for all t, t̄ ∈
(0, T∗):

|‖u(·, t)‖|r ≤ C|‖u0‖|r , (83)

‖u(·, t)‖L∞(Br ) ≤ Cr
p
N t−

N
λ ‖|u0‖|

p
λ
r , (84)

N∑
i=1

∫ t

0

∫
Br

|uxi |pi−1dxdτ < C(r, t), (85)

N∑
i=1

∫ t

t

∫
Br

|uxi |pi dxdτ < C(r, t, t). (86)

Remark 8 For pi = p, ∀i = 1, .., N estimates (83), (84), (85), (86) and the number
T∗ > 0 do coincide with the ones of Sect. 4 for the isotropic equation found in [12].
Secondly, it is interesting to observe that the lifetime of the solution is determined
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by the largest exponentpN in case of large initial mass ‖u0‖|r while it is determined
by the smaller p1 in case of a modest initial mass.

7 Future Strategy and Conclusion

In this note we have proven the strong connection between the Barenblatt Funda-
mental solution and the solutions to the stationary equation (78). We have shown
the existence of solutions to (77) thanks to a recent result in [9]. However, this is
not enough to use this result to prove regularity results. Indeed, we can invoke the
previous Theorem to find a solution u to (1). We already know that there exists a
solution of u that satisfies the growths (70), (72). But what is missing, to repeat
the same ideas of Sect. 1, is a nice description from below of the support of u. The
aim of our next papers is to carry on a deep analysis of the interplay between these
two equations and to develop the necessary tools for deriving regularity results and
Harnack inequalities for nonnegative solutions to (1).
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