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. Introduction

Given a poset P, a very natural problem is to count how many chains it has. A chain 
f length k (or k-chain) in P is a (k+1)-tuple (x0, x1, . . . , xk) of elements of P such that 
0 < x1 < · · · < xk. A saturated chain in P is a chain such that, if x < y are consecutive 
lements in the chain, then y covers x. In the present paper we wish to address the 
roblem of enumerating chains and saturated chains in the case of Dyck lattices. The 
yck lattice of order n, to be denoted Dn, is the lattice of Dyck paths of semilength 
whose associated partial order relation is given by containment: given γ, γ′ ∈ Dn, 

t is γ ≤ γ′ when, in the usual two-dimensional drawing of Dyck paths, γ lies weakly 
elow γ′. In some sources, Dyck lattices are also called Stanley lattices (see, for instance, 
3]). Some papers studying properties of Dyck lattices are [6,8]. Counting saturated chains 
f length 1 is clearly equivalent to enumerating edges in the associated Hasse diagram, 
hich has been considered in [7] not only for Dyck lattices but also for other lattices of 
aths. Here we start by finding a closed expression for the number of k-chains in a Dyck 
attice Dn, which is more precisely a sum of certain Hankel determinants of Catalan 
umbers. Then we provide a general formula for counting saturated chains of length h, 
or any fixed h, in a given Dyck lattice. Next we deal with the cases h = 2, 3, 4, giving for 
hem detailed enumerative results. We also define the notion of Hasse index of order h

thus generalizing the concept of Hasse index proposed in [7]) and compute such an index 
n the three mentioned special cases.

. Preliminaries

In this section, we collect some notations and results which will be used later in the 
aper.
A multichain of length k (or k-multichain) in a poset P is a (k+1)-tuple (x0, x1, . . . , xk)

f elements of P such that x0 ≤ x1 ≤ · · · ≤ xk. Let ck(P) be the number of the k-chains 
n P, and mk(P) be the number of the k-multichains in P. A standard application of 
he principle of inclusion–exclusion yields the following result, which provides a relation 
etween the numbers introduced above:

ck(P ) =
k∑

i=0

(
k

i

)
(−1)k−imi(P ). (1)

A Young tableau is a filling of a Ferrers shape λ using distinct positive integers from 
to n = |λ|, with the properties that the values are (strictly) decreasing along each 

ow and each column of the Ferrers shape (here |λ| denotes the number of cells of the 
errers shape λ). This constitutes a slight departure from the classical definition, which 
equires the word “increasing” instead of the word “decreasing”. However, it is clear that 
ll the properties and results on (classical) Young tableaux can be translated into our 
etting by simply replacing the total order “≤” with the total order “≥” on N. A skew 
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Young tableau is defined exactly as a Young tableau, with the only difference that the
underlying shape consists of a Ferrers shape λ with a (possibly empty) Ferrers shape
μ removed (starting from the top-left corner), in such a way that the resulting shape
is strongly connected: this means that every pair of consecutive rows has at least one
common column and every pair of consecutive columns has at least one common row
(such a shape will be also called a skew Ferrers shape).

A Dyck path is a path starting from the origin of a fixed Cartesian coordinate system,
ending on the x-axis, never going below the x-axis, and using only the two steps u = (1, 1)
and d = (1, −1). A valley (peak) in a Dyck path is a pair of consecutive steps du (ud).
The semilength of a Dyck path is just half the number of its steps. The set of all Dyck
paths of semilength n will be denoted Dn. The number of Dyck paths of semilength n
is the n-th Catalan number Cn = 1

n+1
(2n
n

)
.

The set Dn endowed with the partial order described in the Introduction will be called
the Dyck lattice of order n and denoted Dn. The generating series of saturated chains of
length h in the family of Dyck lattices will be written SCh(x), whereas the number of
saturated chains of length h in Dn (i.e. the coefficient of xn in SCh(x)) will be written
sch(Dn).

At the end of this section, we propose a generalization of the notion of Hasse index
given in [7]. Recall that the Hasse index i(P) of a poset P is given by i(P) = �(P)

|P| , where
�(P) is the number of covering pairs in P. Given a positive integer h, we now define
the Hasse index of order h of P as ih(P) = sch(P)

|P| , where sch(P) denotes the number
of saturated chains of length h of the poset P. Of course i1(P) = i(P). For instance,
for the Boolean algebra Bn having 2n elements, sch(Bn) can be computed by taking
an arbitrary subset having k elements (for 0 ≤ k ≤ n) and then adding any h of the
remaining elements in a specified order. Equivalently, we can choose a subset having h
elements, a linear order on it, and a subset of its complement. Therefore we get

sch(Bn) =
n∑

k=0

(
n

k

)
(n− k)h = (n)h2n−h,

where (a)b = a · (a − 1) · . . . · (a − b +1) denotes a falling factorial. Thus, the Hasse index
of order h of Bn is given by

ih(Bn) = (n)h · 2n−h

2n = (n)h
2h .

We will say that the Hasse index of order h of a sequence P = {P0, P1, P2, . . . , Pn, . . .}
of posets is Boolean when ih(Pn) = (n)h

2h and asymptotically Boolean when ih(Pn) ∼ (n)h
2h

(or, equivalently, ih(Pn) ∼ nh

2h ).
In the computation of the Hasse index we will also use the well known Darboux theorem

(see for instance [2]), which asserts that, given a complex number ξ �= 0 and a complex
function f(x) analytic at the origin, if f(x) = (1 − x/ξ)−αψ(x), where ψ(x) is a series
with radius of convergence R > |ξ| and α /∈ {0, −1, −2, . . .}, then, when n → +∞,
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Fig. 1. A 2-multi-chain in D8 and the corresponding triple of non-intersecting Dyck paths.

[
xn

]
f(x) ∼ ψ(ξ)

ξn
nα−1

Γ (α) ,

here Γ is Euler’s Gamma function.

. Enumeration of chains

Our goal is to use formula (1) to count chains in Dn. To this aim, we first need to find 
n expression for the coefficients mk(Dn).

roposition 3.1. The number the k-multichains in Dn is given by

mk(Dn) = det[Cn+i+j ]ki,j=0 =

∣∣∣∣∣∣∣∣∣

Cn Cn+1 · · · Cn+k

Cn+1 Cn+2 · · · Cn+k+1
...

...
...

Cn+k Cn+k+1 · · · Cn+2k

∣∣∣∣∣∣∣∣∣
. (2)

roof. Given a k-multichain (γ0, γ1, . . . , γk) in Dn, we can consider the k-tuple 
γ′
0, γ

′
1, . . . , γ

′
k) of non-intersecting Dyck paths, defined by setting γ′

0 = γ0 and γ′
i =

2iγid
2i, for all i ≤ k. In this way, the path γ′

i starts from the point Ai = (−2i, 0) and 
nds at the point Bi = (2n + 2i, 0). See Fig. 1 for an example.

By applying the Lindström–Gessel–Viennot Theorem (see, for instance, [1] or the 
pecial case reported in [12], Theorem 2, which is precisely the situation which is relevant 

pcd
Nota
Write "multichain" instead of "multi-chain".

pcd
Nota
It should be "$(k+1)$-tuple" instead of "$k$-tuple".
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to us), we have that the number of the k + 1 non-intersecting Dyck paths starting from
one point in {A0, A1, . . . , Ak} and ending at one point in {B0, B1, . . . , Bk} is

det
[
p(Ai, Bj)

]n
i,j=0

where p(Ai, Bj) is the number of all Dyck paths from Ai to Bj . Since p(Ai, Bj) = Cn+i+j ,
the proposition is proved. �
Theorem 3.1. The number of k-chains in Dn is given by

ck(Dn) =
k∑

i=0

(
k

i

)
(−1)k−i ·

∏i+1
j=1 Cn+j−1 ·

∏i
j=1(2j + 1)!∏i

j=1(n + j + 1)j · (n + 2i + 2 − j)j
(3)

Proof. From formula (1) and Proposition 3.1 we immediately get

ck(Dn) =
k∑

i=0

(
k

i

)
(−1)k−i

∣∣∣∣∣∣∣∣∣

Cn Cn+1 · · · Cn+i

Cn+1 Cn+2 · · · Cn+i+1
...

...
...

Cn+i Cn+i+1 · · · Cn+2i

∣∣∣∣∣∣∣∣∣
. (4)

To compute the above “Catalan” determinant, we refer to [12]: just apply Theorem 3
with n = i + 1 and αs = n + s, for 0 ≤ s ≤ k. The expression given in [12] can then be
reduced to the one appearing in the statement of this theorem by recognizing that some
partial factors give rise to instances of the Catalan numbers. �
Remark. We point out that the case k = 1 (chains of length 1 or, equivalently, intervals)
appears in [11].

4. Saturated chains: the general enumeration formula

Let γ(0) < γ(1) < · · · < γ(h) be a saturated chain (of length h) in Dn. It is easy to
see that two consecutive paths of the chain only differ by a pair of consecutive steps,
namely a valley (a peak) in the smallest (largest) one. More generally, the minimum
γ(0) and the maximum γ(h) differ by a set of steps in such a way that the sum of the
areas of the regions delimited by these steps is equal to h. To be more precise, this
means that the two paths can be factorized as γ(0) = α1γ

(0)
1 α2γ

(0)
2 · · ·αkγ

(0)
k αk+1 and

γ(h) = α1γ
(h)
1 α2γ

(h)
2 · · ·αkγ

(h)
k αk+1, where, for every i, the two factors γ(0)

i and γ(h)
i

have the same length, and the sum of the areas of the regions determined by the pairs
of factors (γ(0)

i , γ(h)
i ) is equal to h (see Fig. 2).

Each of the regions determined by the pairs (γ(0)
i , γ(h)

i ) can be regarded as a skew
Ferrers shape. To fix notations, we will suppose that such a shape is that obtained by
rotating the sheet of paper by 45◦ anticlockwise. Referring again to Fig. 2, the pair of
Dyck paths on the left determines the pair of skew Ferrers shapes on the right.

pcd
Nota
Replace the sentence "we have ... is" with the sentence "we have that the number of all families consisting of $k+1$ non-intersecting Dyck paths starting from $A_i$ and ending at $B_i$, $i=0,1,\ldots ,k$, is"
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ig. 2. A pair of Dyck paths γ (thick) and γ′ (dashed), with γ < γ′, and the corresponding set of skew 
errers shapes.

Now suppose to select a saturated chain from γ(0) to γ(h). This corresponds to choos-
ng, one at a time, the h cells belonging to the skew Ferrers shapes described above. 
ore formally, this defines a linear order on the set of all cells of the skew Ferrers shapes 

etermined by the two paths such that, on each row and on each column, cells are in 
ecreasing order. This means that a saturated chain essentially generates a set of skew 
oung tableaux.
Let now γ ∈ Dn. We want to determine the number of saturated chains of length 
starting from γ in Dn. According to the above considerations, to describe any such 

hain we start by giving a partition λ = (λ1, . . . , λk) of h. Next we have to choose a set 
1, . . . , γk of factors of γ such that, for any i ≤ k, we can build a skew Ferrers shape ϕi

n γi having area λi. Finally, to determine the saturated chain, we just have to linearly 
rder the cells of the Ferrers shapes thus obtained, or, equivalently, to endow each of the 
hapes with a skew Young tableaux structure.

Now we will try to describe more formally the above argument. Denote by SkFS

he set of all skew Ferrers shapes. Given ϕ ∈ SkFS, we write A(ϕ) for the area of ϕ, 
.e. the number of cells of ϕ. We also define SkFS(n) = {ϕ ∈ SkFS | A(ϕ) = n}. 
iven a set of words γ1, . . . , γn on the alphabet {u, d}, we say that they are a set of 
airwise disjoint occurrences (p.d.o.) in γ when they appear as factors of γ having no 
airwise intersection. A skew Ferrers shape ϕ is delimited by two paths, both starting at 
ts bottom left corner and ending at its top right corner. Each of such paths can be seen 
s a word on {u, d}, by simply encoding a horizontal step with the letter d and a vertical 
tep with the letter u. The word having d as its first letter is called the lower border of 
and is denoted b(ϕ). Finally, for any given ϕ ∈ SkFS, let t(ϕ) be the number of skew 
oung tableaux of shape ϕ.
For any path γ ∈ Dn, let λ = (λ1, . . . , λk) be a partition of the positive integer h

this will also be written as λ 	 h). Next we have to choose a set γ1, . . . , γk of pairwise 
isjoint occurrences in γ such that, for any i ≤ k, there exists a skew Ferrers shape 

i ∈ SkFS(λi) for which b(ϕi) = γi. Now, to get a saturated chain, we have to select 
 k-tuple (ϕ1, . . . , ϕk) ∈ SkFSk such that b(ϕi) = γi and A(ϕi) = λi, and for each 
omponent ϕi we have to choose one among the t(ϕi) possible skew Young tableaux. 
inally, since the set of integers actually used to fill in the cells of each ϕi can be any 
ossible set of |λi| integers less than or equal to h, we have proved the following result.
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Theorem 4.1. The number sch(Dn) of saturated chains of length h of the lattice Dn is
given by

∑
γ∈Dn

∑
λ�h

∑
γ1,...,γkp.d.o.

(∀i)(∃ϕi∈SkFS(λi))b(ϕi)=γi

∑
(ϕ1,...,ϕk)∈SkFSk

(∀i)(b(ϕi)=γi,A(ϕi)=λi)

(
h

A(ϕ1), . . . , A(ϕk)

)

× t(ϕ1) · · · t(ϕk). (5)

In the rest of the paper, our main aim is to apply the above formula to the special
cases h = 2, h = 3 and h = 4 (the case h = 1 having already been examined in [7]), thus
finding some new results on the poset structure of Dyck lattices.

We end the present section by recalling that this problem could also be tackled from
a slightly different point of view. Indeed, given two Dyck paths of the same length γ1

and γ2 such that γ1 ≤ γ2, the set of all saturated chains between γ1 and γ2 can be
represented by means of a suitable Polya festoon, more precisely a Polya festoon whose
components cannot be “−polygons” (see [9]). It seems that this approach could be more
elegant, but should lead to more difficult computations.

We also remark that, in the paper [4], pairs of noncrossing free Dyck paths (also
called Grand–Dyck paths in different sources) are considered, also in connection with
several different combinatorial structures, such as noncrossing partitions and vacillating
tableaux. It could be of some interest to extend our results to the case of free Dyck paths
and successively interpret them on the above mentioned combinatorial objects via the
bijections described in [4].

Finally, a similar problem is addressed by Gessel in [10]. In this paper the author
uses the language of Young’s lattice (rather than the language of lattices of paths),
and deals with a similar problem. However, Gessel’s approach is completely different,
relying heavily on algebraic notions, whereas we tackle the problem using only direct
combinatorial methods.

5. Saturated chains of length 2

In order to apply formula (5) to the case of saturated chains of length 2 we simply
have to set h = 2. Doing this way, one immediately observes that there are only two
partitions of 2, namely (1, 1) and (2), and that there exists one pair of “admissible” skew
Ferrers shapes of area 1, i.e. ( , ), and two different skew Ferrers shapes of area 2,

i.e. and . Since each of these shapes can be endowed with only one Young tableau
structure, we arrive at the following result.

Proposition 5.1. The generating series for the number of saturated chains of length 2 of
Dyck lattices is given by

pcd
Nota
Formula (5) should appear on a single line. If this is not possible, after all the summation signs, you should simply write "S(h; \varphi_1 ,\ldots ,\varphi_k )," and, below formula (5), add the sentence "where $S(h;\varphi_1 ,\ldots ,\varphi_k )={h\choose A(\varphi_1 ),\ldots ,A(\varphi_k )}t(\varphi_1 )\cdotst(\varphi_k )$.".
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SC 2(x) =
∑
n≥0

( ∑
γ∈Dn

(
2 · #(du, du)γ + #(ddu)γ + #(duu)γ

))
xn, (6)

here with #(γ1, . . . , γk)γ we denote the number of pairwise disjoint occurrences of the 

i’s in γ.

All we have to do now is to evaluate the three unknown quantities appearing in (6). 
he following proposition translates formula (6) into an expression more suitable for 
omputing.

roposition 5.2. Denote with F (q, x) the generating series of all Dyck paths where x
eeps track of the semilength and q keeps track of the factor duu (resp. ddu), that is

F (q;x) =
∑
n≥0

∑
γ∈Dn

q#(duu)γxn =
∑
n≥0

∑
γ∈Dn

q#(ddu)γxn

here #(duu)γ (resp. #(ddu)γ) is the number of occurrences of the factor duu (resp. 
du) in the Dyck path γ. Similarly, denote with V (q, x) the generating series of all Dyck 
aths where x keeps track of the semilength and q keeps track of the factor du (i.e. 
alleys). Then

SC 2(x) = 2 ·
[
∂F

∂q

]
q=1

+
[
∂2V

∂q2

]
q=1

. (7)

roof. Since the factors ddu and duu are obviously equidistributed on the set of Dyck 
aths, the expression

[
∂F

∂q

]
q=1

=
∑
n≥0

∑
γ∈Dn

#(duu)γxn =
∑
n≥0

∑
γ∈Dn

#(ddu)γxn

ives the generating series of Dyck paths with respect to the number of factors duu, or, 
quivalently, with respect to the number of factors ddu. Similarly, the expression [∂V∂q ]q=1
ives the generating series of Dyck paths with respect to the number of valleys, and the 
xpression [∂

2V
∂q2 ]q=1 gives the generating series of Dyck paths with respect to the number 

f (non-ordered) pairs of valleys. All this implies formula (7). �
We are now in a position to find a neat expression for the generating series SC2(x).

heorem 5.1. The generating series for the number of saturated chains of length 2 of 
yck lattices is given by

SC 2(x) =
∑

sc2(Dn)xn = 1 − 6x + 6x2 − (1 − 4x)
√

1 − 4x
−(1 − 4x)

√
1 − 4x

, (8)

n≥0

Original text:
Inserted Text:
non ordered

pcd
Nota
Replace "F(q;x)" with "F(q,x)".
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where

sc2(Dn) =
(

2n
n

)
(n− 1)(n− 2)

2(2n− 1) (n ≥ 1). (9)

Proof. Let G(q, x), H(q, x) be the generating series of Dyck paths starting with a peak
and Dyck paths starting with two consecutive up steps, respectively, where x keeps track
of the semilength and q keeps track of the factor duu. Since any non-empty Dyck path γ
decomposes uniquely as γ = Uγ′Dγ′′, where γ′, γ′′ ∈ D, and γ′′ starts either with a peak
or with two consecutive up steps (if it is not the empty path), we arrive at the following
system (where F is defined as in the previous proposition):

⎧⎨
⎩

F = 1 + xF (1 + G + qH)
G = x(1 + G + qH)
H = x2F (1 + G + qH)2.

(10)

Solving for F , we find the following expression:

F (q, x) = 1 − 2(1 − q)x−
√

1 − 4x + 4x2 − 4qx2

2qx .

Moreover, the explicit expression of V (q, x) (see again the previous proposition) can
be found in [5,7], and is the following:

V (q, x) =
1 − (1 − q)x−

√
1 − 2(1 + q)x + (1 − q)2x2

2qx . (11)

We can therefore apply the previous proposition, thus obtaining formula (8). �
The integer sequence associated with SC2(x) starts 0, 0, 0, 4, 30, 168, 840, 3960, 18 018,

80 080, . . . . We observe that the terms of the above sequence divided by 2 yield sequence
A002740 of [14]. In terms of Dyck paths, this sequence gives the sum of the abscissae of
the valleys in all Dyck paths of semilength n −1. It would be nice to have a combinatorial
explanation of this fact.

The results of the present section allow us to compute the Hasse index of order 2 of
Dyck lattices. Recall that in [7] it is shown that the Hasse index of order 1 is asymptot-
ically Boolean.

Proposition 5.3. The Hasse index of order 2 of the class of Dyck lattices is asymptotically
Boolean.

Proof. Since |Dn| =
(2n
n

) 1
n+1 , from formula (9) we get

i2(Dn) = sc2(Dn) = (n− 1)(n− 2)(n + 1) ∼ n2
,
|Dn| 2(2n− 1) 4
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hich means precisely that the Hasse index of order 2 is asymptotically Boolean. �
. Saturated chains of length 3

Setting h = 3 in (5) we obtain a formula for the enumeration of saturated chains of 
ength 3 of Dyck lattices. Similarly to what we did in the previous section, we observe 
hat there are three partitions of the integer 3, namely (1,1,1), (2,1) and (3). Moreover, 
he unique “admissible” triple of skew Ferrers shapes of area 1 is ( , , ), whereas 
here are two pairs of skew Ferrers shapes whose first component have area 1 and whose 

econd component has area 2, namely ( , ) and ( , ), and there are four skew Ferrers 

hapes having area 3, i.e. , , and . Unlike the previous case, now we have 
wo of the shapes of area 3 that have two different Young tableaux structures. More 

recisely, we have to consider the two skew Young tableaux 
3

2 1 , 
2

3 1 and the two (skew) 

oung tableaux 
3 1
2 , 

3 2
1 . Thus, a direct application of formula (5) leads to the following 

tatement.

roposition 6.1. The generating series for the number of saturated chains of length 3 of 
yck lattices is given by

SC 3(x) =
∑
n≥0

∑
γ∈Dn

(
6 · #(du, du, du)γ + 3 · #(du, ddu)γ

+ 3 · #(du, duu)γ + #(dddu)γ + #(duuu)γ
+ 2 · #(dduu)γ + 2 · #(dudu)γ

)
xn. (12)

Our next step will be the evaluation of the unknown quantities appearing in (12).
Analogously to the case of saturated chains of length 2, we start by finding an expres-

ion of (12) better suited for computation.

roposition 6.2. Denote with A(q, x), B(q, x) and D(q, x) the generating series of Dyck 
aths where x keeps track of the semilength and q keeps track of the factors dduu, dudu
nd duuu, respectively. Moreover, let V (q, x) be defined as in the previous section. Fi-
ally, let F (p, q, x) be the generating series of Dyck paths obtained from the series F (q, x)
efined in the previous section by adding the indeterminate p keeping track of valleys (i.e. 
f the factor du). Then

SC 3(x) = 2 ·
[
∂A

∂q

]
q=1

+ 2 ·
[
∂B

∂q

]
q=1

+ 2 ·
[
∂D

∂q

]
q=1

+
[
∂3V

∂q3

]
q=1

+ 6 ·
[
∂2F

∂p∂q
− ∂F

∂q

]
p=q=1

. (13)
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Proof. We start by observing that the knowledge of the generating series F (p, q, x) allows
us to compute the term of (12) associated with the pair (du, duu). Indeed, it is clear that,
if we differentiate F with respect to p and q and then evaluate at p = q = 1, we obtain
the generating series of Dyck paths with respect to semilength and number of pairs
(du, duu). However, in this way we are going to consider also those pairs in which the
valley du is part of the factor duu. Thus, to obtain what we need, we have to subtract the
derivative of F with respect to q, then evaluate at p = q = 1, which yields the expression

[
∂2F

∂p∂q
− ∂F

∂q

]
p=q=1

.

Moreover, it is clear that the generating series describing the distribution of the pair
(du, ddu) is the same, and this explains the coefficient 6 in front of the above displayed
expression in formula (13).

Finally, the meaning of the partial derivatives of the generating series A, B and D are
obvious (notice, in particular, that the factors dddu and duuu are clearly equidistributed,
so they are both described by series D), as well as the triple partial derivative of V
evaluated in q = 1, which gives 6 times the distribution of triples of valleys in Dyck
paths. �
Theorem 6.1. The generating series for the number of saturated chains of length 3 of Dn

is given by

SC 3(x) =
∑
n≥0

sc3(Dn)xn = P (x) −Q(x)
√

1 − 4x
x(1 − 4x)3 , (14)

where

P (x) = 1 − 13x + 59x2 − 100x3 + 16x4 + 64x5 = (1 − 4x)3
(
1 − x− x2),

Q(x) = 1 − 11x + 39x2 − 40x3 − 22x4.

The coefficients sc3(Dn) can be expressed as

sc3(Dn) =
(

2n
n

)
(n3 − 7n + 2)(n− 2)

4(n + 1)(2n− 1) (n ≥ 2).

Proof. We start by considering the generating series F , G, H defined in the previous sec-
tion. Similarly to what we did in the above proposition, we need to add an indeterminate
p which will keep track of valleys. Thus, in the following, we will have F = F (p, q, x),
and the same for G and H.

Using the same decomposition of Dyck paths described in Theorem 5.1, we can now
rewrite system (10) taking into account the presence of the indeterminate p, thus ob-
taining

Original text:
Inserted Text:
the the
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⎧⎨
⎩

F = 1 + xF (1 + pG + pqH)
G = x(1 + pG + pqH)
H = x2F (1 + pG + pqH)2.

(15)

he solution of such a system is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F =
1 − (1 + p− 2pq)x−

√
(1 + 2p + p2 − 4pq)x2 − 2(1 + p)x + 1

2pqx

G = (1 − (1 + p)x−
√

Δ)(1 − (1 + p− 2pq)x +
√

Δ )
4pqx− 4p2q(1 − q)x2

H = (−1 + (1 + p)x +
√

Δ )(1 − (1 + p− 2pq)x +
√

Δ)
2pqx(4pqx− 4p2q(1 − q)x2) ,

here Δ = 1 − 2(1 + p)x + (1 + 2p + p2 − 4pq)x2.
The expression of F allows us to compute the term of (12) associated with the pair 

du, duu):

[
∂2F

∂p∂q
− ∂F

∂q

]
p=q=1

= −2 + 15x− 30x2 + 10x3 + (2 − 11x + 12x2)
√

1 − 4x
2x(1 − 4x)

√
1 − 4x

.

Recalling the expression of the generating series V reported in (11), we obtain:

[
∂3V

∂q3

]
q=1

= 3(1 − 11x + 40x2 − 50x3 + 10x4 − (1 − 9x + 24x2 − 16x3)
√

1 − 4x)
x(1 − 4x)2

√
1 − 4x

.

The generating series A and B can be easily computed starting from the functional 
quations they satisfy, which can be found in [13] and are reported below for the reader’s 
onvenience:

{
x
(
q + (1 − q)x

)
A2 −

(
1 + (1 − q)(x− 2)x

)
A + 1 − (1 − q)x = 0

xB2 +
(
(1 − q)(x− 1)x− 1

)
B + (1 − q)x + 1 = 0.

More precisely, we obtain the following expressions:

⎧⎨
⎩

A(q, x) = −1+2(1−q)x−(1−q)x2+
√

1−4x+2(1−q)x2+(1−q)2x4

−2x(q+(1−q)x)

B(q, x) = 1+(1−q)x−(1−q)x2−
√

1−2(1+q)x−(5−4q−q2)x2−2(1−q)2x3+(1−q)2x4

2x .
(16)

Differentiating with respect to q and evaluating at q = 1 we then obtain:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂A

∂q

]
q=1

= 1 − 5x + 5x2 − (1 − 3x + x2)
√

1 − 4x
2x

√
1 − 4x[

∂B

∂q

]
= 1 − 3x− (1 − x)

√
1 − 4x

2
√

1 − 4x
.

q=1
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Instead the computations related to the generating series D are a little bit more
complicated. Again in [13] we find the following functional equation satisfied by D:

qxD3 +
(
3(1 − q)x− 1

)
D2 −

(
3(1 − q)x− 1

)
D + (1 − q)x = 0.

Differentiating both sides with respect to q and then solving for ∂D∂q yields:

∂D

∂q
= − xD3 − 3xD2 + 3xD − x

3qxD2 + 2(3(1 − q)x− 1)D − 3(1 − q)x + 1 .

Now, evaluating at q = 1 and recalling that D(1, x) = C(x) = 1−
√

1−4x
2x is the gener-

ating series of Catalan numbers, we get the following series:
[
∂D

∂q

]
q=1

= −1 + 6x− 9x2 + 2x3 + (1 − 4x + 3x2)
√

1 − 4x
x(1 − 4x−

√
1 − 4x)

.

We finally have all the information needed to compute SC3(x) using (13), and we
obtain formula (14). A careful algebraic manipulation of this series yields the stated
expression for the coefficients sc3(Dn). �

The integer sequence sc3(Dn) starts 0, 0, 0, 2, 38, 322, 2112, 12 210, 65 494, 334 334, . . . .
Neither this sequence nor such a sequence divided by 2 appear in [14].

Proposition 6.3. The Hasse index of order 3 of the class of Dyck lattices is asymptotically
Boolean.

Proof. Since we have not fully explained the computations needed to derive the coeffi-
cients sc3(Dn), we will provide a proof independent from the explicit knowledge of such
coefficients.

Since series (14) can be rewritten as:

SC 3(x) = 1
x

(
1 − x− x2 − Q(x)

(1 − 4x)5/2

)
,

when n is sufficiently large we have

sc3(Dn) =
[
xn

]
SC 3(x) = −

[
xn+1]Q(x)(1 − 4x)−5/2.

Using Darboux’s theorem, we get

sc3(Dn) ∼ −Q(ξ)
ξn+1

(n + 1)5/2−1

Γ (5/2) ,

where ξ = 1
4 . Since Q(ξ) = 3

128 and Γ (5
2 ) = 3

√
π

4 , we obtain

sc3(Dn) ∼ 22n−3n3/2
√ .

π

pcd
Nota
Replace "Darboux's" with "Darboux".
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Recalling that |Dn| ∼ 4n

n
√
nπ

, we finally have

i3(Dn) = sc3(Dn)
|Dn|

∼ n3

8 . �
. Saturated chains of length 4

Our last application of the general formula (5) concerns the enumeration of saturated 
hains of length 4. This corresponds to setting h = 4 in (5).

The integer partitions of 4 are (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1) and (4). In the table 
elow, for each of such partitions, we depict the possible tuples of skew Ferrers shapes, 
lso specifying all the different Young tableau structures they can be endowed with (in 
ase there is more than one).

(1, 1, 1, 1)

(2, 1, 1)

(2, 2)

(3, 1)

3 1
2

3 2
1

3
2 1

2
3 1

(4)

4 3 2
1

4 3 1
2

4 2 1
3

3 1
4 2

3 2
4 1

4 1
3 2

4 3
2 1

4 2
3 1

4 3
2 1

4 2
3 1

4
3 2
1

4
3 1
2

2
4 1
3

3
4 2
1

3
4 1
2

2
4 3 1

3
4 2 1

4
3 2 1

4
3

2 1

4
2

3 1

3
2

4 1

4 3
2
1

4 2
3
1

4 1
3
2
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Also in this case, applying Theorem 4.1, we obtain the following result, in which the
generating series of saturated chains of length 4 is expressed in terms of the number of
occurrences of certain tuples of factors.

Proposition 7.1. The generating series for the number of saturated chains of length 4 of
Dyck lattices is given by

SC 4(x) =
∑
n≥0

∑
γ∈Dn

(
24 · #(du, du, du, du)γ + 12 · #(du, du, ddu)γ

+ 12 · #(du, du, duu)γ + 6 · #(ddu, ddu)γ

+ 6 · #(ddu, duu)γ + 6 · #(duu, duu)γ

+ 4 · #(du, dddu)γ + 4 · #(du, duuu)γ

+ 8 · #(du, dudu)γ + 8 · #(du, dduu)γ

+ #(duuuu)γ + #(ddddu)γ) + 3 · #(duddu)γ

+ 5 · #(ddudu)γ + 2 · #(dduu)γ) + 5 · #(duduu)γ

+ 3 · #(ddduu)γ + 3 · #(dduuu)γ) + 3 · #(duudu)γ
)
xn. (17)

In the rest of this section we will determine all the bivariate generating series which
describe the distribution of each of the set of pairwise disjoint occurrences appearing in
the above proposition among all Dyck paths of fixed semilength. Actually, to be more
precise, we reduce the number of generating series to compute by observing that some of
them trivially coincide (by a simple application of the involution which maps every Dyck
path γ to the Dyck path obtained by reading γ from right to left and exchanging u and
d steps, as we already did in previous sections). For instance, the distribution of the set
(du, dddu) is equal to the distribution of the set (du, duuu); similarly, the distribution of
the factor ddudu is equal to the distribution of the factor duduu.

In order to keep the length of the paper to a minimum, we will give details only
for some of the above cases, leaving the analysis of remaining ones to the reader. In
particular, in the first case we examine (which is that of the factor duuuu), we also
carefully describe how to obtain a system of equations satisfied by certain generating
series (see below) from purely combinatorial considerations. In all the remaining cases,
the reader is invited to employ similar arguments to verify that the displayed systems
are indeed correct.

Before starting, here is a list of general notations we will use in what follows. We warn
the reader that some of the letters we use below are the same we have used in previous
sections, but the meaning may in general be very different.

• Sγ1,...,γr
(x): generating series of Dyck paths with respect to the number of pairwise

disjoint occurrences of γ1, . . . , γr (γ1, . . . , γr are words on the alphabet {u, d}).

Query text:
Inserted query:
Q5: This [opening/closing] parenthesis does not have a corresponding [closing/opening] parenthesis. Please insert the parenthesis in the appropriate position.

Query text:
Inserted query:
Q6: This [opening/closing] parenthesis does not have a corresponding [closing/opening] parenthesis. Please insert the parenthesis in the appropriate position.

Query text:
Inserted query:
Q7: This [opening/closing] parenthesis does not have a corresponding [closing/opening] parenthesis. Please insert the parenthesis in the appropriate position.

pcd
Nota
Delete each closing parenthesis that does not have a corresponding open parenthesis (three occurrences). In particular, concerning Q7, the closing parenthesis that has to be deleted is the first unmatched parenthesis of line 19 (the second one matches the first opening parenthesis of line 8).
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• p, q: names for indeterminates keeping track of the number of occurrences of several 
kinds of words on {u, d} (in each case, we will specify which words is associated with 
p and q, except for the cases in which we deal with a single factor).

• A: generating series for unrestricted Dyck paths.
• Bi: generating series for Dyck paths starting with exactly i u steps.
• D: generating series for Dyck paths starting with at least a certain number of u steps 

(such number will be clear in each case).
• C: generating series of Catalan numbers, i.e. C(x) = 1−

√
1−4x

2x .
• D: set of all Dyck paths.

duuuu) It is clear that any nonempty Dyck path is counted by either B1, B2, B3 or D, 
and an analogous fact holds for those paths starting with ud (if we remove the 
starting peak). Moreover, every Dyck path γ starting with uud can be decomposed 
as γ = uγ′dγ′′, with γ′, γ′′ ∈ D and γ′ starting with a peak ud. In this decom-
position we observe that, if we remove γ′, we are left with another path starting 
with ud. An analogous argument can be employed for Dyck paths starting with 
uuud. Finally, if a Dyck path starts with at least 4 u steps, then we have two cases: 
either it start with exactly 4 u steps, in which case it starts with an elevated path 
starting with uuud (and if we remove it we are left with a path starting with ud), 
or it starts with at least 5 u steps, in which case it starts with an elevated path 
with at least 4 u steps (and if we remove it we are left with a path starting with 
ud). These considerations lead us to the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A = 1 + B1 + B2 + B3 + D

B1 = x(1 + B1 + B2 + B3 + qD)
B2 = B2

1
B3 = B2 ·B1
D = (B3 + D) ·B1.

(18)

Replacing D = B4
1

1−B1
in the first equation gives A = 1

1−B1
; the same substitution 

in the second equation leads to the following equality:

(1 − q)xB4
1 −B2

1 + B1 − x = 0. (19)

Setting q = 1 in (19) gives

[B1]q=1 = 1 −
√

1 − 4x
2 = xC(x).

We now need to compute [∂A∂q ]q=1. We have:

[
∂A

∂q

]
=

[
1

(1 −B )2
∂B1

∂q

]
= 1

(1 − xC(x))2

[
∂B1

∂q

]
.

q=1 1 q=1 q=1
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Deriving equality (19) with respect to q we obtain:

−xB4
1 + 4(1 − q)xB3

1
∂B1

∂q
− 2B1

∂B1

∂q
+ ∂B1

∂q
= 0.

Setting q = 1 we get

−x5C(x)4 − 2xC(x)
[
∂B1

∂q

]
q=1

+
[
∂B1

∂q

]
q=1

= 0

and hence

[
∂B1

∂q

]
q=1

= x5C(x)4

1 − 2xC(x) .

Standard computations then lead to the following expression for Sduuuu(x) =
[∂A∂q ]q=1:

Sduuuu(x) = −1 − 8x− 19x2 − 13x3 − (1 − 6x + 9x2 − 2x3)
√

1 − 4x
2x(1 − 4x) .

(duudu) The generating series A(q, x), B1(q, x), B2(q, x), D(q, x) satisfy the following
system:

⎧⎪⎪⎨
⎪⎪⎩

A = 1 + B1 + B2 + D

B = x
(
1 + B1 + xB1 + qB1(B1 − x) + D

)
C = B1B1
D = B1(B2 + D).

Using an argument completely analogous to the previous case, we are able to de-
termine a functional equation satisfied by B1, hence (differentiating with respect
to q and then evaluating in q = 1) the following expression for [∂B1

∂q ]q=1:

[
∂B1

∂q

]
q=1

= −x4C(x) + x3(1 + x)C(x)2 − x3C(x)
1 − 2xC(x) .

This result can be used to determine the generating series Sduudu(x) as follows:

Sduudu(x) =
[
∂A

∂q

]
q=1

=
[

1
(1 −B2

1)
∂B1

∂q

]
q=1

= 1
(1 − xC(x))2

[
∂B1

∂q

]
q=1

= x4C(x)4√
1 − 4x

= −1 − 6x + 8x2 − (1 − 4x + 2x2)
√

1 − 4x
2(1 − 4x) .
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(

(

(

duduu) The generating series A(q, x), B1(q, x), D(q, x) satisfy the following system:
⎧⎨
⎩

A = 1 + B1 + D

B1 = x + x2(1 + B1 + qD) + xD

D = B1(B1 + D).

Solving such a system then leads to the following expression for Sduduu(x) =
[∂A∂q ]q=1:

Sduduu(x) = 1 − 4x + 2x2 − (1 − 2x)
√

1 − 4x
2
√

1 − 4x
.

dduu) This generating series has already been computed in the previous section (it is 
[∂A∂q ]q=1 in the proof of Theorem 6.1).

dduuu) The generating series A(q, x), B1(q, x), B2(q, x), D(q, x) satisfy the following 
system:

⎧⎪⎪⎨
⎪⎪⎩

A = 1 + B1 + B2 + D

B1 = xA

B2 = xB1(1 + B1 + B2 + qD)
D = x(B2 + D)(1 + B1 + B2 + qD).

Solving such a system then leads to the following expression for Sdduuu(x) =
[∂A∂q ]q=1:

Sdduuu(x) = 1 − 6x + 9x2 − 2x3 − (1 − 4x + 3x2)
√

1 − 4x
2x

√
1 − 4x

.

du,duuu) Here p and q keep track of the factors du and duuu, respectively.
The generating series A(p, q, x), B1(p, q, x), B2(p, q, x), D(p, q, x) satisfy the follow-
ing system:

⎧⎪⎪⎨
⎪⎪⎩

A = 1 + B1 + B2 + D

B1 = x(1 + pB1 + pB2 + pqD)
B2 = B1B1
D = (B2 + D) ·B1.

From the above system we also get the following identities:

A = 1
1 −B1

, D = B3
1

1 −B1

which in turn yield the following identity satisfied by B:

p(1 − q)xB3
1 −B2

1 +
(
1 − (1 − p)x

)
B1 − x = 0. (20)
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Observe that the generating series we are interested in can be expressed in terms
of A (hence of B1) as follows:

Sduu,duuu(x) =
[
∂2A

∂p∂q
− ∂A

∂q

]
p=q=1

=
[

2
(1 −B1)3

∂B1

∂p

∂B1

∂q
+ 1

(1 −B1)2
∂2B1

∂p∂q
− 1

(1 −B1)2
∂B1

∂q

]
p=q=1

.

(21)

By differentiating Eq. (20) with respect to p and q (separately), we obtain respec-
tively:

(1 − q)xB3
1 + 3p(1 − q)xB2

1
∂B1

∂p
− 2B∂B1

∂p
−

(
1 + (1 − p)x

)∂B1

∂p
= 0

pxB3
1 − 3p(1 − q)xB2

1
∂B1

∂q
+ 2B1

∂B1

∂q
+

(
1 + (1 − p)x

)∂B1

∂q
= 0,

hence, by setting p = q = 1:
[
∂B1

∂p

]
p=q=1

= x2C(x)
1 − 2xC(x) and

[
∂B1

∂q

]
p=q=1

= x4C(x)4

1 − 2xC(x) .

In a similar fashion, differentiating Eq. (20) with respect to both p and q, and then
setting p = q = 1, we get

[
∂2B1

∂p∂q

]
p=q=1

= 1√
1 − 4x

(
x4C(x)3 + 3x4(1 + x)C(x)3√

1 − 4x
+ 2x6C(x)4√

1 − 4x

)
.

Plugging into (21) the expressions obtained for the partial derivatives of B1, after
suitable simplifications we finally get the series:

Sdu,duuu(x) = 1 − 10x + 32x2 − 32x3 − (1 − 8x + 18x2 − 8x3 − 2x4)
√

1 − 4x
x(1 − 4x)2 .

(ddu,duu) Here p and q keep track of the factors ddu and duu, respectively.
The generating series A(p, q, x), B1(p, q, x), D(p, q, x) satisfy the following system:

⎧⎨
⎩

A = 1 + B1 + D

B1 = x(1 + B1 + qD)
D = x(A− 1) + x(A− 1)(pB1 + pqD).

Solving such a system then leads to the following expression for Sddu,duu(x) =
[ ∂2A
∂p∂q ]p=q=1 − Sdduu(x):

Sddu,duu(x) = −2 − 17x + 44x2 − 34x3 + 4x4 − (2 − 13x + 22x2 − 8x3)
√

1 − 4x
3/2 .
2x(1 − 4x)
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(

(

(

duu,duu) The generating series A(q, x), B1(q, x), D(q, x) satisfy the following system:

⎧⎨
⎩

A = 1 + B1 + D

B1 = x(1 + B1 + qD)
D = (B1 + D) ·B1.

Solving such a system then leads to the following expression for Sduu,duu(x) =
1
2 [∂

2A
∂q2 ]q=1:

Sduu,duu(x) = 1 − 10x + 32x2 − 32x3 − (1 − 8x + 18x2 − 8x3 − 2x4)
√

1 − 4x
2x(1 − 4x)2 .

du,dudu) Here p and q keep track of the factors du and dudu, respectively.
The generating series A(p, q, x), B1(p, q, x), D(p, q, x) satisfy the following system:

⎧⎨
⎩

A = 1 + B1 + D

B1 = x
(
1 + px + pq(B1 − x) + pD

)
D = B1(B1 + D).

Solving such a system then leads to the following expression for Sdu,dudu(x) =
[ ∂2A
∂p∂q − 2∂A

∂q ]p=q=1:

Sdu,dudu(x) = −1 − 7x + 12x2 − 2x3 − (1 − 5x + 4x2)
√

1 − 4x
(1 − 4x)3/2

.

du,dduu) Here p and q keep track of the factors du and dduu, respectively.
The generating series A(p, q, x), B1(p, q, x), D(p, q, x) satisfy the following system:

⎧⎨
⎩

A = 1 + B1 + D

B1 = x(1 + pB1 + pD)
D = x(A− 1)(1 + pB1 + pqD).

Solving such a system then leads to the following expression for Sdu,dduu(x) =
[ ∂2A
∂p∂q − ∂A

∂q ]p=q=1:

Sdu,dduu(x) = −1 − 8x + 18x2 − 8x3 − 2x4 − (1 − 6x + 8x2)
√

1 − 4x
x(1 − 4x)3/2

.

du,du,duu) Here p and q keep track of the factors du and duu, respectively.
The generating series A(p, q, x), B1(p, q, x), D(p, q, x) satisfy the following system:

⎧⎨
⎩

A = 1 + B1 + D

B1 = x(1 + pB1 + pqD)

D = (B1 + D) ·B1.
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Solving such a system then leads to the following expression for Sdu,du,duu(x) =
[ 12

∂3A
∂2p∂q − ∂2A

∂p∂q + ∂A
∂q ]p=q=1:

Sdu,du,duu(x)

= 3 − 34x + 130x2 − 180x3 + 50x4 + 4x5 − (3 − 28x + 80x2 − 64x3)
√

1 − 4x
2x(1 − 4x)5/2

.

(du,du,du,du) In this case we simply have to compute [∂
4V

∂q4 ]q=1, where V (q, x) is the
generating series given in (11), thus obtaining:

Sdu,du,du,du(x)

= 12(−1+15x−84x2+210x3−210x4+42x5+2x6+(1−13x+60x2−112x3+64x4)
√

1−4x )
x(1−4x)7/2 .

We are now ready to state and prove the formula for the number of saturated chains
of length 4.

Theorem 7.1. The generating series for the number of saturated chains of length 4 of Dn

is

SC 4(x) =
∑
n≥0

sc4(Dn)xn = p(x) − q(x)
√

1 − 4x
x(1 − 4x)4 , (22)

where

p(x) = 1 − 12x + 31x2 + 144x3 − 864x4 + 1280x5 − 256x6,

q(x) = 1 − 10x + 13x2 + 154x3 − 560x4 + 488x5 + 88x6.

Moreover, the coefficients sc4(Dn) can be expressed as

sc4(Dn) =
(

2n
n

)
(n4 + 2n3 − 13n2 + 4n + 8)(n− 3)(n− 2)

4(2n− 1)(2n− 3)(n + 1) (n ≥ 2), (23)

which also implies that the Hasse index of order 4 of the class of Dyck lattices is asymp-
totically Boolean.

Proof. Just collect all the results obtained above and plug them into the series SC3(x)
given in (17) to get (22). Observe that this series can be decomposed as

SC 3(x) = −4 + x + 9
4
√

1 − 4x + 11
32x

√
1 − 4x− 1 −

√
1 − 4x
x

+ 15
128

1
(1 − 4x)3+1/2

− 39 1
2+1/2 − 21 1

1+1/2 + 273 1√ .
128 (1 − 4x) 64 (1 − 4x) 64 1 − 4x
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Now, since

[
xn

] 1
(1 − 4x)k+1/2 =

(
2n
n

)(2n+2k
2k

)
(
n+k
k

) ,

e have (for n ≥ 2)

sc3(Dn) =
(

2n
n

)[
−9

4
1

2n− 1 − 11
32

n

2(2n− 1)(2n− 3) − 2
n + 1 + 15

128

(2n+6
6

)
(
n+3

3
)

− 39
128

(2n+4
4

)
(
n+2) − 21

64

(2n+2
2

)
(
n+1) + 273

64
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2 1

hich can be reduced to (23). �
. Conclusions and further work

We have derived a general formula for the enumeration of saturated chains of any 
xed length h in Dyck lattices. However, we have applied such a formula only when h
s small (namely h = 2, 3, 4). When h becomes bigger, computations become much more 
omplicated. Is it possible to conceive a different approach more suitable for effective 
omputation? Notice that, from the results we have found, as well as from some numerical 
xperiments, it seems plausible to conjecture that, for n ≥ h:

sch(Dn) =
(2n−h

n

)
(2n
n

) 1
n− h + 1ph(n)Cn =

(
2n− h

n

)
ph(n)

(n + 1)(n− h + 1) ,

here ph(n) is a monic polynomial of degree h + 1.
We have proved that the Hasse indexes of order 1, 2, 3 and 4 of Dyck lattices are 

symptotically Boolean. The natural conjecture is that the Hasse index of any order 
 ≥ 1 is asymptotically Boolean, i.e. that ih(Dn) = sch(Dn)

|Dn| ∼ nh

2h (for n → +∞) for 
very h ≥ 1.

The problem of enumerating (saturated) chains can also be posed for other classes of 
osets. In this context, it would be interesting to find analogous results in the case of 
otzkin and Schröder lattices.
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