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Generalized geometry of pseudo-Riemannian
manifolds and generalized s-operator

Antonella Nannicini

Universita di Firenze, Italy

ABSTRACT. Let (M, g,V) be a pseudo-Riemannian manifold with
a torsion free linear connection and let J9 be the generalized com-
plex structure on M defined by g, [13], [14]. We prove that in the

case JY is V—integrable the +i—eigenbundles of J9, E}];]O, E?,fql, are

complex Lie algebroids. Moreover Eg’gl and (E},’go) are canonically

isomorphic thus we define the concept of generalized 0 — operator
of (M, g,V) and we describe a class of generalized holomorphic sec-
tions of T (M) & T* (M) . Also we relate Lie bialgebroid property of

(E}’go, (E}’go) ) to conditions on the metric g in the case of affine

Hessian manifolds. !

1 Introduction

Let (M, g) be a smooth pseudo-Riemannian manifold, let 7' (M) be the tangent
bundle, let T (M) be the cotangent bundle and let E = T (M) & T* (M) be
the generalized tangent bundle of M. Generalized complex structures were in-
troduced by Nigel Hitchin in [6], and further investigated by Marco Gualtieri
in [8], in order to unify symplectic and complex geometry. In this paper we
consider a more general concept of generalized complex structure introduced in
[13], [14] and also studied in [15], [1]. In the previous papers [13], [14], we defined
a generalized complex structure of M as a complex structure on £ and we stud-
ied some classes of such structures, in particular calibrated complex structures
with respect to the canonical symplectic structure, (, ), of E. Using a torsion
free linear connection, V, on M we introduced a bracket, [, ] , on sections of
E, the corresponding concept of V—integrability for complex structures and we
studied integrability conditions. Moreover in [14] we described a large class of
almost complex structures on cotangent bundles of manifolds endowed with a
torsion free linear connection, induced by generalized complex structures and
we proved that, in the case V has zero curvature, a V—integrable generalized
complex structure on M defines a complex structure on 7™ (M). In this pa-
per we concentrate on the canonical generalized complex structure defined by

! Mathematics Subject Classifications (2010): 53C15, 53D18 53C80 53C38 53D05
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g, J9 = ( ;) g ) . We prove that in the case J?¢ is V—integrable the

+i—eigenbundles of J9, E;;O, E3;17 are complex Lie algebroids. Then we ob-
serve that the natural symplectic structure of T' (M) & T* (M) defines a canon-
ical isomorphism between Ef}’gl and (E};)) and this allows us to define the

generalized O jo —operator on M. We prove that in the case J9 is V—integrable
we get (5Jg)2 = 0, moreover 0y, is the exterior derivative of the Lie algebroid
E};,O, in particular (C’OO (/\' (E;;(J)) A0, }V) , where A is the Schouten
bracket, is a differential Gerstenhaber algebra, [9], [19]. We also study general-
ized holomorphic sections and we prove that, for any X € T(M)®C, the section
o=X+ig9(X) e C> <(E}’g0) ) is generalized holomorphic if and only if g(X)
is a Lagrangian submanifold of 7* (M), in particular in the case (M, g, V) is an
affine Hessian manifold we describe a large class of local generalized holomor-

phic sections of (E;;?) . Finally we study the Lie bialgebroid condition on the

two algebroids in duality (E},’go, (E}’go) ) and we prove that, unlike the case of

generalized complex structures in the sense of Hitchin, this gives restrictions on
g. The paper is organized as in the following. In section 2 we introduce prelim-
inary material: we describe the main geometrical properties of the generalized
tangent bundle and of generalized complex structures; moreover we recall the
basic definitions in the setting of complex Lie algebroids and Lie bialgebroids.
Original results are concentrated in section 3: the definition of the generalized
019 — operator and its properties; in particular we relate generalized holomor-
phic sections of Eg’gl to Lagrangian submanifolds of T (M) . Section 4 is devoted
to Hessian manifold because they occur as interesting examples in our context.

2 Preliminary Material
2.1 Geometry of the generalized tangent bundle

Let M be a smooth manifold of real dimension n and let E =T (M) & T* (M)
be the generalized tangent bundle of M, we recall the main geometric properties
of E.
Smooth sections of E are elements X +¢ € C°(E) where X € C>®(T' (M)) is a
vector field and £ € C°(T* (M)) is a 1— form.
FE is equipped with a natural symplectic structure defined by:
1
(X +&Y +n) = -5 (1) —n(X)) 1)

and a natural indefinite metric defined by:

SXHEY 40> = —(E(¥) + (X)) @)



<, > is non degenerate and of signature (n,n).

A linear connection, V, on M, defines, in a canonical way, a bracket on C*°(FE),
[, |y, as follows:

(X +&Y +nlg =[X, Y]+ Vxn— Vy&. (3)

The following holds:

Lemma 2. ([13]) For all X, Y € C®(T (M)), for all {,n € C°(T*(M)) and
for all f € C™®(M) we have:

1. [X+§7Y+U}V:_[Y+777X+§]V7
3. Jacobi’s identity holds for |, |g if and only if V has zero curvature.

Moreover:

Proposition 2. ([14]) Let V be a connection on M then there is a bundle
morphism
OV . T (M)aT* (M) — T(T* (M)) (4)

which is an isomorphism on the fibres and such that:

1. ®V identifies T* (M) with vertical vectors
that is: .
((I)V) (kerm,) =T* (M));

2. Tx O (I)\VT(M) = I|T(M)7
2. w0 (b\vT(M) = I|T(M)a
3. (CIJV)* (Q) =—=2(,) if and only if V has zero torsion;
4. (@V) ([, lg) = [®Y ,®V | if and only if V has zero curvature.
where, we denoted by 7, the tangent map of
7m: T (M) — M, (5)
mo T (T (M) — T (M) (6)
(m (A)) (f) = A(f o)
forall A e T (T (M)) and for all f € C>(M),
and ) = df where 6 is the Liouville’s 1-form defined by:
0(A) = p(A)(7.(A)), forall Ae T (T*(M)). (7

In this paper we consider the following concept of generalized complex structure,
introduced in [13], [14] and also studied in [15], [1] :

Definition 3. A generalized complex structure on M is an endomorphism
J: E — E such that J? = —1I.



A pseudo-Riemannian metric on M, g, defines, in a natural way, a complex
structure J9 on E by:

JUX + &) =—g (&) +g(X) (8)

where g : T (M) — T* (M) is identified to the bemolle musical isomorphism
defined by:

9(X)(Y) = g(X,Y), (9)

J9 = < gO _g_l ) (10)

Let V be a connection on M and let [, ] be the bracket on C*°(FE) defined by
V, the following holds:

Lemma 4. ([14]) Let J : E — E be a generalized complex structure on M and
let

in block matrix form, is:

NY(J):C™®(E) x C*(E) — C*(E) (11)
defined by:
NY(J)(o,7) = [Jo,J7|g — J [Jo, 7]y — J [0, 7] — [0, 7T]v (12)
for all o,7 € C®(E); NV (J) is a skew symmetric tensor.
Definition 5. NV(J) is called the Nijenhuis tensor of J with respect to V.

Definition 6. Let J : E — E be a generalized complex structure on M, J is
said to be V—integrable if NV (J) = 0.

Proposition 7. ([14]) Let V be a torsion free connection on M and let

-1
JI9 = ( 2 % ) be the generalized complex structure on M defined by a
pseudo-Riemannian metric g, J9 is V—integrable if and only if g is a Codazzi

tensor, that is for all X, Y € C°(T(M)) we have:
(Vxg)Y = (Vyg) X. (13)
A direct computation gives the following:
s . 0 0
Proposition 8. Let {z1,...,z,} be local coordinates on M, let § —, ..., —
8561 8xn
o 0
be the corresponding local frame for T(M), let ¢g;; = g (&E, &c) and {Fﬁk}
i J
be the Cristoffel symbols of V, then g is a Codazzi tensor if and only if for all
L,5,k=1..,n:

n

39jk- 0gik l I
Or; Oz :;(Fikglj = D) - (14)

Examples with non parallel g can be found in the context of Hessian manifolds,
their description will be the object of section 4.



2.2 Complex Lie algebroids and bialgebroids

The concept of Lie algebroid was introduced by Pradines in [16]; Lie bialgebroids
were introduced by Mackenzie and Xu in [11] to encode the compatibility con-
dition of a pair of two Lie algebroids in duality.

Here we first recall the definition of complex Lie algebroid:

Definition 9. A complex Lie algebroid is a complex vector bundle L over a
smooth real manifold M such that: a Lie bracket [, ] is defined on C*°(L),
a smooth bundle map p : L — T(M), called anchor, is defined and, for all
o,7 € C*(L), for all f € C>°(M) the following conditions hold:

L p(lo,7]) = [p(0),p(7)]
2. [fo,7] = f(lo,7]) = (p(7) (f) o
We now recall the definition of complex Lie bialgebroid.

Let L and its dual vector bundle L* be Lie algebroids; on sections of AL, re-
spectively AL*, the Schouten bracket is defined by:

[7 ]L:COO(APL)XCOO(AQL)_}COO (/\erqflL)

X1 A AXp Vi A LAY, =

a -~ -~
Y ()XY AXL AL AX, AYIA LT LAY,
1j5=1

and, for f € C* (M), X € C* (L)

[va]L == [f?X]L =p(X)(f),

[
M@

.
Il

respectively, by:

[, ], 0 C% (APL) x C™° (NIL*) — €™ (APH9-11%)

[(XTACAXE YA LAY =

p q — —~
ZZ 1)it9 [X; *] AXTANSONXPAYT AT AY

i=1 1

J:
and, for f € C>* (M), X € C* (L*)

(X, flpe = = [f, X]p. = p(X) ().

Moreover the ezterior derivatives d and d, associated with the Lie algebroid



structure of L and L* are defined respectively by:

d:C™ (ANPL*) — C™ (APTILY)

(da) (o0, ...y 0p) =

— i(l)ip(oi) a (00, ,,i,,,ap) + Z(,l)z‘ﬂ‘a ([0“ o], 00, “?“3“,%)

for a € C™ (APL*), 09, ...,0p € C* (L),

and:
d. : C™ (A\PL) — C* (APT1L)

(dex) (00, ..., 0p) =

= i(fl)ip (o))« (O’Q, ..g..,ap) + Z(—l)i”a ([ai, Tl 00,
i=0

i<j

for a« € C* (APL), 0g,...,0, € C (L¥).

~)

7

Definition 10. A complex Lie bialgebroid is a pair of complex dual Lie alge-
broids (L, L*) such that the differential d, is a derivation of (C* (AL),[, |,.),
that is the following compatibility condition is satisfied:

di[o, 7], = [do, 7], + [0,dsT], (15)
for o, 7€ C*(L).

The following facts are well known:

Proposition 11. ([9]) In a Lie bialgebroid (L,L*), d. is a derivation of the
graded Lie algebra (C*° (AL),[, ];), end d is a derivation of (C*> (AL*),[, |;.).

Proposition 12. ([9]) Let (L,L*) be a pair of Lie algebroids in duality; the
following properties are equivalent:

1. (L, L*) is a Lie bialgebroid,

2. dy is a deriwvation of (C™ (AL),[, 1),

3. d is a derivation of (C*° (AL*),[, 1),

4. (L*, L) is a Lie bialgebroid.

In the following section we will define natural Lie algebroids and bialgebroids
in the context of generalized geometry.



3 Generalized J-operator associated to J9

Let (M,g) be a pseudo-Riemannian manifold and let J9 be the generalized
complex structure on M defined by g, let

EC=(T(M)eT* (M))®C

be the complexified generalized tangent bundle. The splitting in +i eigenspaces
of JY is denoted by:

EC=EY o EY) (16)
with
ES) = Ejy). (17)
A direct computation gives:
Ey) ={Z—ig(2) | ZeT(M)&C}, (18)

and, for any linear connection V, the following holds:
Lemma 13. E}’go and Eg’gl are [, |g —involutive if and only if NV (J9) = 0.

Proof. Let Z,W € T (M) ® C, then we have:

12 +ig(2), W % ig(W)lg FiJ |2+ ig(2),W +ig(W)]g =

=—(IF J9)NY(J9)(Z,W).
O
Moreover:

Lemma 14. If J9is V-integrable then Jacobi identity holds for [, |g on E}’go
and Eg’gl.

Proof. Let Z, W,V € T (M) ® C, then we have:

Jac[[Z £ig(Z),W +ig(W)lg,V +ig(V)]g =

= Jacl[Z, W], V] +ig(Jac[[Z,W],V]) =0

where Jac denotes Jacobiator, that is:

Jac[[oz,,@]v 7'7]v = Haaﬁ]v 77}v + Hﬁa'ﬂv aa]v + H%a]v 76]V .0

In particular we get:



Proposition 15. If J9 is V-integrable then E},;O and Eg’gl are complex Lie
algebroids.

The following holds:

Proposition 16. The natural symplectic structure on E defines a canonical
isomorphism between Eg’gl and the dual bundle of E}’go, (E}’g()) .

Proof. Let Z, W € T (M) ® C, we define:
(W +1igW))(Z —ig(2)) = (W +ig(W), Z —ig(Z)) .
We get:
W +igW)) (Z —ig(Z)) = —ig(W, Z).
O

The canonical isomorphism between Eg’gl and the dual bundle (E}’g()) allows

us to define the 0 ;o — operator associated to the complex structure J9 as in the
following:

let f € C®(M) and let df € C(T* (M)) — C®(T (M) ® T* (M)), we pose

By f =2(df)"" = df +iJdf

or: .
dyof =df —ig™" (df);

moreover we define:
Do : C™ (Ef};}) % (/\2 (Ef}gl))
via the natural isomorphism

*
1,0 0,1
(EJg ) ~ E7,

s (£ ) o (2 ()

(8190) (0,7) = p(o) a(r) = p(T) a (o) — a(lo,7]gy)
for a € O™ ((E§;0>*>, o, 7€ C® (E}fq(J) .

as:

In general:



B0 € (w7 (Ellg())) - ¢ (At (E17g0>)
is defined by:
(0150) (G0, 0p) =

= i(_l)ip(ai) o (Uo7 n?.,ap) + Z(—l)"”a ([ai,aj]v ,00, ..?..;..,ap)
1=0 i<j

for « € C™ (/\” (E};O) ), 00,...,0p € C (E}]?qo> .

Definition 17. 07 is called generalized O—operator of (M, g, V) or generalized
09 — operator.

We have immediately that 0 ;s is the exterior derivative, dy, of the Lie algebroid
L= E(lj’go. Moreover the exterior derivative dy« of L* = (E‘l,’go) is given by the
operator 0ys defined by:

o0 (1 (53)) = o (7 (53)

(0ja0) (aa,...,al*)) =
a % i+7 * * * 2 7 *
= Z(—l)lp(af)a (ozé7 ..’..,a;) + Z(—l)"“a ([ai,aj]v LAy ..J..,ap)
i=0 (Y]

for o € O (/\p (E},’go)), ag, ..o € C= ((E};O)*) )

We get the following:
Proposition 18. If J9 is V — integrable then (5Jg)2 =0 and (9;5)> = 0.

Proof. It follows from the fact that Jacobi identity holds on E}]’go and (E},’QO> .
O

Definition 19. o € C* (/\p (E}f) ) is called generalized holomorphic if
5.]90[ =0.

We remark that 00 f = 0 <= df = 0, so the generalized holomorphic condition
for functions gives only constant functions on connected components of M.

Proposition 20. Let 0 = X +ig(X) € ngql then 090 = 0 if and only if g(X)
s a d-closed 1-form.

Proof. Let X,Y € T (M) ® C, we have:



(Dga0) (Y —ig(Y),Z —ig(Z))

= Y(X +ig(X),Z —ig(Z)) — Z(X +ig(X),Y —ig(Y))+
—(X +ig(X), [Y, Z] —ig([Y, Z]))

=i{Yg(X,Z)+ Zg(X,Y) + g(X,[Y, Z])}

= —i(dg(X))(Y, Z). O

In particular, by using a classical result in symplectic geometry, [12], we get:

Proposition 21. Let X € T (M)®C, then 0 = X +ig(X) € Eg’gl is 0 s —cloded
if and only if g(X) is a Lagrangian submanifold of T* (M) with the standard
symplectic structure.

4 Examples

As we remarked in section 2. Hessian manifolds appear naturally in this con-
text and provide interesting examples. Their introduction was inspired by the
Bergmann metric on bounded domains in C" and are a very interesting topic,
related to many other fields in mathematics and theoretical physics as, for ex-
ample: Kihler and symplectic geometry, affine differential geometry, special
manifolds, string theory and mirror symmetry, [2], [4], [5], [10], [17], [18].

We now recall the general definition of Hessian metric:

Definition 22. Let (M, g, V) be a pseudo-Riemannian manifold with a torsion
free linear connection, g is called of Hessian type if there exists u € C*(M)
such that g = Hess(u) = VZu. (M, g, V) is called Hessian (pseudo-Riemannian,)
manifold if g is of Hessian type.

We prove the following:

Proposition 23. Let (M,g,V) be a Hessian (pseudo-Riemannian) manifold
then g is a Codazzi tensor if and only if V is flat.

Proof. Let {z1,...,2,} be local coordinates on M, let g = V?u, then:

ik = 83: 83% ; Jk@x;

in particular g is a Codazzi tensor if and only if for all 4,5,k =1,....,n

3y ) N —ifl' o*u
ijamkaxz &rZ axl 7% 9w, 02

ort, du N, 9%
O, &rkaxj Z Oz oz, ;Fik 0x,0%;
" 0%u - ou 0%u - ou
_ L v r Y7l gyw r Y%
B (FZk (83}18% ; Tl 89@) Tk (81‘[8331- 7; T oz, ) ) ’

10
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or:

. Oy, ar.ljk P r ol ou

and thus the statement. [J

We remark that under the hypothesis of Proposition 23 ¢ is Codazzi if and
only if (M,g¢,V) is an affine Hessian manifold. Hessian manifolds are more
general than affine manifolds, [10], however in the following we will consider
affine Hessian manifolds.

Moreover the following is well known:

Proposition 24. ([3]) Let (R, V) be the euclidean n-dimensional space with V
Levi Civita connection of the standard flat metric and let g be a symmetric tensor
of type (2,0), then g is a Codazzi tensor if and only if there exists u € C*°(R™)
such that g = Hess(u).

We have the following;:
Proposition 25. Let (M,g,V) be an affine Hessian (pseudo-Riemannian)

manifold, let {x1,...,x,} be affine local coordinates, let i,....7i and
oy ox,,
{dz1,...,dx,} be corresponding local frames for T (M) and T*(M) respectively,

let gij =g ((‘3(2’ 82) then for oll k =1,...,n the local section
i 0T

0 o [ 0,1
O = albk +1 E gridz; € C (EJg )
is 070 —cloded.

Proof. Let u € C°°(M) such that g = V2u, as da1, ..., dz, are V—parallel, we
have Fé—k = 0, then:

0w
ik = 8zj8xk’

in particular:

9< ) ngldfﬂl Z 8$k8xl

and:

- 0 ) Oay.
d <Z gkld9€,> = 8gkl dxj ANdx; = Z <8gxk»l - ;;;) dxj Adx; =0
-1 Lj=1 <l i

then the statement. O

Moreover we can prove the following:

11



Proposition 26. Let (M,g,V) be an affine Hessian manifold then the pair of
complex dual Lie algebroids (E}’E,O, (E}’g()) ) is a Lie bialgebroid if and only if
g s constant.

Proof. Let {z1,...,x,} be affine local coordinates, let i, ey 9 and
o0x1 oxy,
{dz1,...,dx,} be corresponding local frames for T'(M) and T*(M) respectively,

let gi;j = ¢ (;U,(?i) and, for all Kk =1,...,n, let o = aixk — ingld:cl €
i J =1

C> (E}’go) , we have:

[Uk7UT]V = _'L’Zvigrsdw‘s_"izvigkldxl

o—1 oz -1 ox,

n

( agmd +Zgrs< ad%) Z gkldﬂcl > gm (Vadwz>>

=1 =1
agrs 8gks
= — — d s = U.
' Z <8xk oz, > % =0
On the other hand:

0
op=———1 ngld:cl is 0js—closed, then we have immediately:
83% =1

0js [O'kaa'r]v = [aJ.qO'k,O'r]v + [O'k,a].qa,-]v =0;
moreover, for all f € A° (Ei’go), we have:

8‘79 [fa Uk]v - [a.fgfa o—k}v + [fv anO—k]v

- an [fa O-k]V - [8J9f7 Uk?]V

= ya (=p(ok) ) = [df +ig~"df,p(ok) —igp (k)] g =0
if and only if:

of B )
d <6ij> = V 8 df V —1dfg <ax )
0 0
-1 - — —1 _ o gp—
g d (8%) V%g df vy dfa.’bk

or:

0
V%df—vqufg <8.’Ek>

of
a (a)

, )
-1 <v82kdf—vg—1dfg <8mk>> = V%g_ldf_vg—ldfaixk

12



The second condition in (19) is a consequence of V-integrability of J9, then the
Lie bialgebroid condition (15) is reduced to:

af \ _
d(ax,)—v

or, by using Einstein’s convention on repeated indices:

0

hs agk’i _

0x

then, for all 4, k, s:
Ogri
0z

=0 (21)
and thus the statement. OJ
In particular we can reformulate Proposition 26 as the following:

Proposition 27. Let (M,g,V) be an affine Hessian manifold then the pair of
complex dual Lie algebroids (E}’go, (E}f) ) is a Lie bialgebroid if and only if

V is the Levi Civita connection of g.

We remark that the generalized 0 ;s — operator introduced in this paper,
Do : C™ (Eg’gl) — C® (/\2 (Eg’gl)> ,

and the 07 — operator for Hitchin’s generalized complex structures,
0y :C (Eg’l) — O™ (/\2 (Egl)) ,

are defined formally in the same way, (see ([7]), Section 3.3). Here we use [, |g,
restricted to sections of Eg"gl, instead of the Courant bracket, restricted to sec-
tions of Eg’l, and the standard symplectic form instead of the standard pseudo-

*
Euclidean metric on T (M) & T* (M), in the identifications EY," = (Eggl) and
Eg’l = (Eg’l) respectively. However Proposition 27 shows different behavior
of the two operators regarding Lie bialgebroid structure of (E;;IO7 (E},’go) ) and

*
(E},’O, (E.1]’0> ), since a generalized complex structure in Hitchin’s sense always

induces a Lie bialgebroid structure.

13
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