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Let I'r be the class of plane, oriented, rectifiable curves 7, such that for almost every x € =,
the part of v preceding x is outside of the open circle of radius R, centered in = + Rt,, where
t, is the unit tangent vector at x. Geometrical properties of the curves v € I'r are proved; it
is shown also that the length of a regular curve v € I'g is bounded by a constant depending
upon R and the diameter of v only. The curves v € I'g turn out to be steepest descent curves
for real valued functions with sublevel sets of reach greater than R.

Introduction

Let R > 0. Let ' be the class of the plane oriented rectifiable curves +, starting at a point
zo and such that for every x € ~, for which there exists the unit tangent vector t;, the arc
Yeo,x (joining zo to ) is not contained in the open circle centered at x + Rty and of radius
R. In the present work the curves v € I'p will be called R-curves, for short.

The family I'g is a generalization of the family I' of plane curves studied in |1, [2]. T" is the
class of curves v for which 7z, is contained in the half-plane bounded by the line through
z, orthogonal to t;. The class I' has also been studied starting from equivalent definitions,
in [3H5]. The curves of I" are steepest descent curves for a suitable family of nested convex
sets [6]. Similarly it can be observed (Theorem [62) that a function with sublevel sets of
reach greater than R has steepest descent curves in I'g. Obviously for every R > 0, I' C I'g.

Many natural questions arise for the curves of I'g.

(A) Let z a point of 7, x # xg. Let us consider the following number naturally associated
to Yzg,z:

length (vzo,2)
dist (zo,x)

called the detour of the curve vzq,«, see e.g. [2,1]. It has been proved in [IH3] that if v € T
then, the detour of vz, has an a priori bound. Could a similar result be proved for the
curves in I'p?

(B) Let v € T'r and let’s assume that v is contained in a circle of radius 7 > 0; is it
possible to bound the length and the detour of v with a number depending on R, 7 only?

(C) Let v € T'g. Are there functions that have steepest descent curves in I'p?

Let us outline the content of our work.

In §2lintroductory definitions are given and results on sets of positive reach, needed later,
are recalled.

In §3lthe definition of R-curves in R™ is given and several properties are proved.

In §4] properties of plane R-curves in small circles are stated and proved; the main one is
a sharp bound of the measure of the tangent angle to the hull of vz,,» at «, Theorems [£3]
and 4] In these theorems, it has been assumed an additional regularity hypothesis: that is
~ has a C! parametric representation. This assumption will be removed in a paper in
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progress |§]. Theorem [L4] proves that plane regular R-curves, in a small circle, are ¢-self
approaching curves (with opposite orientation), for a suitable ¢ < m, see [1].

A bound, depending on R only, for the length and the detour of a plane R-curve v in a
small circle is obtained, Theorem Theorem .71

In 8] R-curves contained in a circle of fixed arbitrary radius 7 are studied. A bound of
their length and their detour depending only on R, T is proved, Theorem [5.2] Theorem
In Proposition [5.4] an example shows that if a curve of I'g is not contained in a circle of
fixed radius 7 then the detour can be arbitrarily large.

In §6] functions defined in bounded sets of R?, with the property that their steepest
descent curves are R-curves, are considered; by Theorem it follows that these steepest
descent curves have length bounded by a constant depending on R and their diameter.

A first example of functions with the above property is the class of the regular functions
whose sublevel sets satisfy the property of R-exterior ball (Definition [2)), Theorem 61l The
family of regular functions whose sublevel sets are of reach greater than R also satisfies the
same property, Theorem

A differential property for regular functions, in order to satisfy this property, is that these
functions must have as domain a closed bounded connected subset of a circle of radius R
and level lines with curvature greater or equal than —1/R, Theorem 67

Definitions and preliminaries

Let
B(z,p) ={z €R™ : |z —2| <p}, S 1=0B(0,1) n>2

and let D(z, p) be the closure of B(z, p). The notations B,, D, will also be used for balls of
radius p, if no ambiguity arises for their center. If a ball is written with a center only, then
the radius will be R. The usual scalar product between vectors u,v € R™ will be denoted by
(u, v).

Let K C R™; Int(K) will be the interior of K, 0K the boundary of K, cl(K) the closure
of K, K =R"\ K.

For every set S C R™, co(S) is the convex hull of S.

Let K be a non empty closed set. Let ¢ € K; the tangent cone of K at g is defined as

Tang(q) ={v €R™:Ve >0,z € K, r >0 with |z—gq|<e, |[r(z —q) —v| <e}.
Let us recall that

q

S" 1A Tan x(q) = ) cl({Z—:q, a#z€ KNB(ge)}).

e>0 ‘ ‘
The normal cone at g to K is the non empty closed convex cone, given by:
Nor g (¢) = {u € R" : (u,v) <0 Vv € Tang(q)}.

When ¢ € Int(K), then Tan g (¢) = R™ and Nor x(g) reduces to zero. In two dimensions
cones will be called angles with vertex 0.

The dual cone K* of aset K is K* ={y e R" : (y,z) >0 Vz € K}.

For A, B non empty sets of R", x € R", let us denote

dist (z, A) = 1I€1f4{|az —yll; A = {z e R" : dist (z,A) < c}.
y

Let b € R™\ A; then b has a unique projection point onto A if there exists a unique point
a € A satisfying |b — a| = dist (b, A).

Let A be a closed set. If a € A, then reach(A,a) is the supremum of all numbers p for
which every z € B(a, p) has a unique projection point onto A. Also, see |d]:

reach(A) := inf{reach(A,a) : a € A}.

PROPOSITION 2.1 [9, Theorem 4.8, (12)] If a € A and reach(A,a) > 0 then

Tan 4(a) = —(Nor a(a))*.

Definition 1 Let us say that a ball B R-supports A at z, if

BrnNA=0, z€ ANoBg.
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If Br R-supports A at z, then the point z is necessarily a boundary point of A. Br will be called an
R-support ball to A at x.

Let us consider a closed set A such that for each point y € A the normal cone Nor 4(y)
is not reduced to zero.

Definition 2 Let R > 0. A closed set A, satisfying the above property, has the property of the R-exterior
ball if Vy € OA, Vna(y) € Nor 4(y) N ST, the following fact holds
Ve € A= |z — (y+ RBna(y))| =2 R. (1)
The previous definition implies that for every point y € QA there is at least an R-support
ball to A at y.

PROPOSITION 2.2 [9, Theorem 4.8, (7)] If a closed set A has reach greater than R, then it satisfies the
property of R-exterior ball.

Let z,y € R", |z — y| < 2R. Let us define
h(z,y, R) = {Dr(2),2 € R" : Dr(2) D {z,y}}. (2
PROPOSITION 2.3 [10],[11, Theorem 3.8] A closed set A has reach equal or greater than R if and only if
Vz,y € A with |z — y| < 2R the set ANh(z,y, R) is connected.
Definition 3 Given A a closed set in R™, let us define cor(A), the R-hull of A, as the closed set containing
A, such that
(i) cor(A) has reach greater or equal than R;

(ii) if a set B O A and reach(B) > R, then B D cor(A).

See [11, pp.105-107] for the properties of R-hull. It can be shown that
cor(A) =N{B% : BR N A= 0}.

The R-hull of a closed set A may not exist, see [11, Remark 4.9]. However

PROPOSITION 2.4 [11, Theorem 4.8] If A is a plane closed connected subset of an open circle of radius
R, then A has R-hull.

3. Properties of R-curves

In this section the definition and some properties of R-curves in R™ are introduced and
proved.

Let v C R™ be an oriented rectifiable curve and let z(-) be its parametric representation
with respect to the arc length parameter s € [0, L]. If z1 = z(s1), xz2 = z(s2) € v with
s1 < sg, the notation 1 < z2 will be used. Let us denote z(s) = x,

Ye={ye€v:y=x}; Yo, ={yE€v:z1 Jy=x2}; |72| =length(vz). (3)

In this paper a curve in R™ is also the image of a continuous function on an interval, valued
into R™.

Definition 4 Let R be a fixed positive number. An R-curve v C R™ is a rectifiable oriented curve with
arc length parameter s € [0, L], tangent vector t(s) = 2’(s) such that the inequality

|z(s1) —a(s) — Rt(s)| = R (4)

holds for almost all s and for 0 < s1 <s< L.
I'r will denote the class of R-curves in R™.

The geometric meaning of () is that for every point z = z(s) € ~, with tangent vector
t(s), the set 7, is outside of the open ball of radius R through x centered at = + R t(s).
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Let us notice the following equivalent formulations of (@) for 0 < sy <s< L:

|z(s1) — 2(s)[* = 2R (z(s1) — (s)), 6(s)) > 0; (5)
x(s — (S 2
(als) = (o), (s 2 — 22O ©
x(s1) — xz(s) lx(s1) —z(s)| .
(mvt(s» Y it @(s1) # x(s). (7)

LEMMA 3.1 Let v be a rectifiable curve with arc length parametrization x(s). Then, the inequality ({) is
equivalent to

|z(s) — z(s1)| > |z(s2) — z(sl)\e(”*S)/@R) for 0<s;1<s3<s<L. (8)

Proof. Inequality (@) can be written as

(s — (s 2
dela(s) —a(sy))? > el
i loglz(s) — z(s1)]* > — 5,
d%(logh:(s) —x(s1)]% + %(8 —s1)) > 0.

1

log [2(s) — (s1)> + 7 (s — s1) > log |z(s2) — (s1)|* + % (s2 — 51),

() — x(s1)le TR > |a(s2) — x(s1)]e 2R

Therefore () follows. Conversely, if  satisfies (), then inequality (@) is obtained, by using the previous
inequalities in ascending order. O

COROLLARY 3.2 An R-curve does not intersect itself.

Proof. By contradiction, let us assume that z(s) = @(s1), s1 < s. Then (&) implies that z(s2) = z(s) =
z(s1) for all s between s; and s; so the curve z(-) is constant in [s1, s]. This is impossible as s is the arc
length. O

Remark 1 Let us notice that I' C I'g, where T' is the class of rectifiable curves v for which for almost

every x € v with tangent vector t, the set 4 is contained in the half-plane bounded by the line through
x, orthogonal to tg. Therefore if v € T', then (8) holds for every R > 0, namely

|z (s) — x(s1)| > |z(s2) —z(s1)] for 0<s1<s2<s<L. 9)

This property is a “key” property of the curves of T' (called self expanding property, see [3], [6]). Let us
notice that the property (), which seems an expanding property, makes the arc length of the R-curve
appear, in striking difference from (@)).

THEOREM 3.3 Let v € I'r. For every s € (0,L), © = x(s), y& S 7, the following two subsets of S™1:
Uf ={ue8™"t:3s, >s, lim a'(s) =u}, Uy ={uec 8" 1:3s, <s, lim a'(sp) = u}
SEp—>s SE—>s

are non empty.

Moreover the following properties hold.

(i) if x(-) is differentiable at s, then '(s) € U UUy ;
(i) if u € Uf UU; then

|z (s1) — z(s)|? — 2R {(x(s1) — z(s),u) >0 for 0<s1 <s<L; (10)
ii1) let B = B(x + Ru), u € St so that BN~ =0, then
(i)
Fut e US : (uT,u) <0, Ju~ €Uy, : {(u™,u) >0 (11)
(iv) if there exist ST 3 up — u, s, — 8, s < 8, with x(s},) € OB* := OB(x + Ruy), then

Juy € Uy : (up,u) <0. (12)
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Proof. The set G = {7:7 > s:3z'(7)} is a dense set in (s, L); let {74} C G having s has an adherence
point; by possibly passing to a subsequence, {z’(7})} has limit u € S?*~1 € UF. Then U and similarly Uy
are non empty. Moreover as the sets v, (-, ) have an R-support ball at z(7y), centered at z(7y) + Rz (1),

then (I0) is obtained from (&) with s = 74 passing to the limit.
To prove (), let us notice that the assumption B® N~y = () implies @) (thus (@) with u instead of t(s)

and s — % in place of si; therefore

S z(s — L) —x(s)]2
/l(x'(t),u)dt:<a:(s)—a:(s—%),u)2—% for 8—%6(0711). (13)

s=x
Then, for all k, sufficiently large, there exists o € (s — %, s) with

(s — 1) — z(s)|2
<z/(0k)7u> > 7]@%.

Since by definition of arc length |z(s — %) —z(s)| < %, it follows that

25 = $) — ()

(2’ (o) u) > — 7

By possibly passing to a subsequence, z’(0) — u~ € Uy ; then the second inequality in (1)) is proved
as |z(s— %) —z(s)| = 0. To prove first inequality in () let us notice that assumption B% N~ = ) implies
@) (thus (@) with u instead of t(s) and s1 = s + % > s, k large enough. Then

i jz(s + §) — a(s)]?

stk B 1 1
/S (@ (0), ude = (a(s + 1) — (s), u) < = for s+ €(0,L)

Arguing as above the first inequality in () is obtained.
To prove (iv), since x(s) € OB¥, then equality holds in ([[3) with s in place of s — % and uy, in place
of u. Thus

/s (' (), ug)dt = _W <o

Therefore there exists oy, € (s, s) so that (z'(o)), ux) < 0 and 2’(0x) — u; € Uz . Then [I2) is obtained
by passing to the limit. O

4. R-curves in disks of radius R

In this section let us assume that « is a plane R-curve of length L = |y| contained in a
closed circle of radius less than R. Let x(-) be the parametric representation of v with
respect to the arc length and let 0 < s < L, z = z(s) € y. According to Proposition 24 v,
has R-hull cor(vz)-

For a plane convex body K let us denote per(K) the perimeter of the boundary 0K. Let
p be a point not in K. The simple cap body KP? is the convex hull of K U {p}, see [12].

For a vector u = (a, b), let ut = (—=b,a).

THEOREM 4.1 Letx € v €I'r, v C Br. Let

W ={u e S': (B(z + Ru))® D vz} (14)
Then
UFuu; c Wy; (15)
moreover
Wi = Nor ¢ (v, (x) N ST (16)
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Proof. Let u € U U Uy, then inequality (I0) holds, which means that (B(z + Ru))¢ D 7, and (H) is
proved. Let w € W and let B = B(z + Rw). As v C B¢ and reach(B¢) = R, then by (ii) of Definition
Bl cor(vz) C B€. This fact implies that

NOT ¢6 5 (44) (2) 2 Nor ge(z) = {Aw, X > 0}.
Then
NOT 6 1 (7,) () N ST D W (17)

Let us prove now the opposite inclusion. Let u & Wy ,u € S. Then in B(z + Ru) there are points of 7z,
thus there exists a point y € cor(v2)NB(z+Ru), y # x. Then, by Proposition 23] h(z,y, R)Ncor (7z) has a
connected component F joining z and y, F' C (B(z+ Ru)U{x}). Therefore, as h(z,y, R) C B(z+ Ru)U{z},
in the tangent cone of F' at x there is a vector making an acute angle with u; so in the tangent cone to
cor(7Vz) there is a vector making an acute angle with u. Then u & Nor ., (+,)(z), the opposite inclusion
of (7)) holds and (@) is proved. O

Definition 5 Let b and ¢ two distinct points in the plane with |b — ¢| < 2R. Let us consider the following
geometric construction. Let B(b) and B(c) two open circles, of radius R and center b, ¢ respectively. Let
x € 0B(b) N OB(c). Let I be the line through b and ¢, let H be the half plane with boundary ! containing

x.
The unbounded region ang(bxzc) := B(b)¢ N B(c)¢ N H will be called a curved angle. Moreover

meas(ang(brc)) := meas(Tan 474(pzc) () N s

is the measure of the angle between the half tangent lines at x to the boundary of ang(bxc).

It is not difficult to see that

b—
meas(ang(bxc)) = m — 2arcsin | 2RC‘ . (18)

When z,y are points on a circumference 9B, let us denote with arc(z,y) the shorter arc
on 9B from z to y.

LEMMA 4.2 Let x,x2 € R?, |[z—22| < R. Let B2 = B(b, R) with 9B? D {x,x2}. Let B* = B(c«) the ball of
radius R, with OB* orthogonal at x2 to OB2 and x € B*. Let us assume that there exists x1 € (B* UBQ)C
with the properties:
(i) |x1 — x| < R,|z2 — 1| < R;
(i) x1 lies in the half plane with boundary the line through x and x2 not containing b;
(iii) there ezists B! = B(c1, R) with {z1,2} C 0B, with arc(z,z1) C (B2)¢, such that the line through
x and x1 separates c1 and 3.

Then the measure of the curved angle ang(bxci) is less than 7/2.

Proof. Let {w} = arc(z,z1) N dB*( possibly it can be w = z1). As |r — w| < R, |z — b| = R, then
lw—b| <|r—w|+|z—b <R+ R=2R.
Let us remark that the circles B* and B! both have w on the boundary (see Fig.1).
It is not difficult to see that the convex angle bicy contains the convex angle bwes. The two triangles bwcy

and bwex have one side in common and the sides we«, wer have the same length R. Then [b—cx| < |[b—ec1].
Thus by ([@8)

/2 = meas(ang(bracy) > meas(ang(brcr) (19)

and the thesis is proved. O

THEOREM 4.3 Let N > 1. Let v be a C! plane R-curve. Assume that for every x € =y, vz is contained in
the disk D(z, R/N). Then, the measure of Nor ¢, (~,)(®) N St is equal or greater than /2.

Proof. Let H; = (B(x+ Ru;))¢,i = 1,2, where u; are the two vectors bounding W5 = S N Nor con(va)(®)
(may be u1 = ug then Hy = Hz). Then

cor(vz) C H1 N Hay N D(z, R/N).

If u1 = —u2 then the measure of Nor ., (+,)(2) is equal ™ and the thesis holds.
Let u1 # —uo.
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Figure 1. Curved angles

There are two possible cases:
(a) at least one of the two sets v, NOH; \ {z} , i=1,2, is empty;
(b) there exist at least two points x; € v, N 0H;, z; # x (i=1,2).

Case (a): with no loss of generality one can assume that
vz NOH \ {z} = 0.
Let u1 = (cosa1,sinaq),0 < a1 < 27 and let
u® := (cos(ay — &), sin(ay — 6)).

By definition of the vectors w1, us, bounding Nor COR(%)(JI) NS, for 6 > 0 sufficiently small, one has

vz N B(x + Ru®) # 0.

This means that, for § = % > 0 and k sufficiently large, there exists a sequence s — s, s < s such that

() € OB(x + Ru®)\ D(z + Ru1, R).

Then, by (iv) of Theorem B3} there exists u; € Uy C Nor ¢op(4,)(2) so that (u] ,u1) < 0. The thesis
follows. ‘

Case (b): with no restriction one can assume x; = z(s;) (i=1,2), with s; < s2 < s and that the triangle
z1x22 is clockwise oriented, see Fig.1.
Let us consider the point x2 € 0B(z + Ruz). Let 42 so that © + Rus = x2 + Ruz and let

B? := B(z + Rus) = B(z2 + Ruz), B':= B(z + Ru1).

Let us notice that, by Theorem ET] up € Wy, = S1 N Nor cor( (z2). AS Yzg,o C (B?)¢ the tangent
vector z’(s2) is tangent to B2 at x2 = x(s2). That is (z/(s2),2) = 0.

Let us consider the closed region Q bounded by arc(zz2, ) on dB2, arc(z,x1) on B! and Yep,zo- Let
us show that as v, C H1 N Ha N D(z, R/N), then vz5,2 C Q. Otherwise, vz, would have a point y # x2
outside @ and it would be Yz, 25 NYy,z # 0, in contradiction with Corollary 3221 Then z’(s2) is tangent
to arc(ze,x) at x2 and (z'(s2), —ta®) = 1.

Let B* := B(z2 + Ra'(s2)). As 2/(s2) € Uf, UU,,, by (IT) the following inclusion holds

Yzq,w9)

Yz1,me C (B*)C'

Then the point 1 ¢ B* and, as |z2 — z| < R, the ball B* contains z. Let ¢1 =  + Ru1, b = x2 + Rua, ¢«
the center of B*.
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Let us consider the curved angles ang(bxci) and ang(bracy). As B2 and dB* are orthogonal at w2,
the hypotheses of Lemma [£2l for x,z2,b,c1,x1 are satisfied. Thus

meas(ang(bzer)) < w/2.
Since
meas(Nor ¢o 4 (v,) (2) N S1) = 7 — meas(ang(bzcy )

the thesis follows. O
Remark 2 The assumption on the regularity of v in Theorem [£3] will be removed in a work in progress.
Previous theorem provides a bound for the measure of Nor ., , (+,) (@) for R-curves - in a small circle. This

bound implies, Theorem 4] a bound on the measure of the tangent angle Tan co(%)(x).

Definition 6 Let v be an oriented curve, z € v, N > 1; v satisfies the property Py (vz) if
(1 (z)) <m/2+42 i —1 (20)
m n rcsin
eas(Tan co(+,) (% arcsin -

holds.

THEOREM 4.4 Let v be a C' plane R-curve. Assume that for every x € v, vy is contained in D(x, R/N),
N > 1. Then v, satisfies Pn(vz) for every x € 7.

Proof. Let u1,uz be, as in the previous theorem, the unit vectors bounding S' N Nor cop(vs) (@) Ifur =

—u2, then v is contained in an equilateral triangle with vertex z, then Tan co(%)(m) is acute and the
thesis holds. If u; # —ug let A; the connected component of

(B(z + Ru1))° N (B(z + Ru2))° N D(z, R/N),

containing z. Let us notice that reach(A1,z) > R and Nor ¢, (+,)(z) = Nor 4, (z). Then, by Proposition

211 the sets Tan 4, () and Tan ., (-, )(2) coincide. Then, by Theorem 3]

meas(Tan 4, (z)) < 7/2.

It is an easy exercise to show that
o1
meas(Tan c,(4,)(z)) = meas(Tan 4, ()) + 2 arcsin N’

As co(yz) C co(Ar),
meas(Tan ¢4(+, ) () < meas(Tan .o(4,)(x)),

from the previous equality and inequalities, the property Py (7z) follows. O

Remark 3 This theorem proves that the R-curves, satisfying the assumptions of Theorem F3] are ¢-self-
approaching curves with ¢ = 7/2 + 2 arcsin %, opposite oriented, according to Definition 1 in [7].
In what follows, bounds for the curves’ length and detour are proved with a simple
extension of the techniques in [I] and in a different way than [7].
Let, for simplicity, |y| be the length of 7, ¥(s) = v, (s) and p(s) := per(co(v(s))).

THEOREM 4.5 Let R be a positive number and let N > 1. Let zo be a fized point in the plane. If v is a
plane R-curve, v C D(z0, R/(2N)) and the property Pn(vz) holds for every x € v,then

1

p)21- = ae sc0hl; (21)
™

bl < 7R (22)
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LEMMA 4.6 Let K be a plane convez body. Let po € 0K, u = (cos o, sina) € —Tan g (po). Let 0 <w < 7
the amplitude of Tan g (po). Let € > 0, pe = po + eu, KP= the simple cap body of K at pe, then

per(KPe) — per(K) > e(1 4 cosw). (23)

Proof. Let T := Tan g (po) and N := Nor g (po) the normal cone of K at pg. Since the amplitude of T is
less than 7, u € T. The assumptions of [, Theorem 3.1] hold and formula [6, (19)] implies that

per(KP¢) — per(K) > a/ (©,u)dO,
NNnSIn{u}*

where © = (cos0,sinf). Since u € —T, then N = (=T)* C {u}* and the amplitude of N is 7 — w. Let
NN S = {(cosh,sinh),0 < § < 7 — w}. The previous integral is equal to

/W_w cos(f — a)df = sin(w + a) + sina = f(a).
0

Since u € —T the constraint § —w < a < 7 holds and in that interval f(«) is bounded below by 1+-cos w.O

Proof. The proof is strongly similar to the proof of Theorem IV in [I]. First let us observe that p(s), the
perimeter of co(y(s)), is increasing since vy(s) is increasing by inclusion; thus p(s) and z(s) are derivable
a.e in [0, |7|]. Let us consider a point x on the curve v, let us observe that as v C D(z0, R/(2N)), then for
all z € vy, vo C D(z, R/N). By @0) the measure w of T := Tan ¢,(y,) () satisfies

1
< 2 in — . 24
w < + 2 arcsin N <7 ( )

|

By assumption co(yz) C TN D(z, R/N) and for h > 0 the point T = z(s) + ha'(s) is in the angle opposite
to T. Since w is less than 7, then Z & T'. Let co(y(s))® := co(co(v(s))U{Z}) the simple cap body of co(y(s))
at T. Let per(K) be the perimeter of a plane convex body K. The hypothesis of Lemma [L.6] are satisfied
with K = co(y(s)), po = z(s) € 8K, u = 2'(s), € = h. Thus

per(co(+(s))7) — per(co((s)) > (1 + cosw)h. (25)

Let w := z(s + h) and let us consider co(y(s))¥ the simple cap body of co(y(s)) at w. Arguing as in
the proof of [1, Theorem VII, p. 222, line 11], the following asymptotic inequality holds:

per(co(y(s))") = per(co(y(s))") +o(h), for h— 0. (26)
Since
co(y(s)) C co(v(s))" C co(v(s + h)),
then
p(s) < per(co(v(s))") < p(s +h).
From (Z8):
p(s + h) = p(s) = per(co(v(s))*) — per(co(+(s))) = per(co(v(s))T) — per(co(v(s))) + o(h)
and from (25)

p(s +h) —p(s) > (1 +cosw)h +o(h) for h—0T.
Thus, from 24),

, 1
p'(s)>1+cosw>1— N e s € [0, |7]]-
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This proves ZI)). As p(s) is a not decreasing functions, by integrating (ZIJ) in [0, |y|], the following inequality

pll) ~p(0) > (1 = )1 21)

holds. As co(7y) is contained in a circle of radius % then p(|y]) < 7'(% and (22) is proved. O

THEOREM 4.7 Let v be a plane R-curve, contained in a circle of radius less than R/M and centered at
zo, with M > 2. Let Ppr(ve) holds for every x € ~. Then the detour of vz, ,« is bounded by a constant
c¢(M). Moreover if M > 3, ¢(M) < 67e™.

Proof. From () of Lemma[3d] for 0 <s1 <sy <s<L

ja(s) — a(s1)|e 5 > |o(s2) — a(s1)).

[7]

Therefore the circle of radius |z(s) — #(s1)|e2R centered in x(s1) contains v, (s;),z(s)- It follows that

per(co(agsy ya(s))) < 27l(s) — x(s1)]ePH . (28)

Let 1 = z(s1),z = z(s); by assumption vz, C D(zo, R/M); then, from (@) of Theorem with
N = M/2, it follows that

"75017SC| < 1 _ M .
percoltima)) S1- 2~ M-2
then, from (28)
[Ya1 el _ Yz ,a per(co(Yz1,2)) < M 271'6%.
|z —z1]  per(co(vey,2))  |z1 — 2 M -2

From (22)), it follows that

‘7501@' _271' M e(M’:Q)-
| — 21| M—2

Then ¢(M) < 27 T2 If M > 3, then ¢(M) < 6me™. O

M
M—-2

Remark 4 The bound for ¢(M) in the previous theorem is not sharp. A better bound can be obtained
using |7, Theorem 7].

5. Bounds for the length and the detour of plane R-curves

LEMMA 5.1 Let 0 <r1 <7 and let xg,...,Tm be points in the closed ball D(wo,T) of R™, satisfying
|z; — x| >r1, for 0<i#j<m.

Then

4y/nt

T1

m < ( )" (29)

Proof. The cubes Q; centered in x; with sides 71/1/n do not have internal points in common; moreover
each cube @Q; is contained in the cube @ centered in xo with side 47. Since

Zmeas(Qj) < meas(Q)
J

the bound (29) is obtained. O

The following theorem gives an answer to question (B) of the introduction.

10
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THEOREM 5.2 Let wo € R2, R > 0. Let v be a C' plane R-curve, ¥ C D(wo,T). Then there exists a
positive constant ¢(R,T), depending on R and T only so that

[v] < e(R,7), (30)
where
(i) if T < %, then ¢(R,7) < 47t < wR;
(ii) if T > 2 then
e(R, 7)< (1+ (16\/56”/2)2(%)%3. (31)

Proof. Case (i): let N = % > 2. Then

R
D = D(wop, —).
v C D(wo, T) (wo, 2N)

Then, by Theorem

™ ™
< R=———R=27(1
I'YI—N_l B _q (14

27

o)

As R > 47, |y| < 477 and in case (i) inequality (30) holds.
Case (ii): let 40 be the closed connected component of v N D(xz(0), R/4) starting at x(0), then Theorem
A3 applies to vo with zo = z(0), N = 2; by [22)), it follows that |yo| < wR. If v N dB(x(0), R/4) = 0, thus
~v =70 and by previous inequality |y| < mR. Thus (30) is proved with the constant given in (ZIJ).

In case Ep := 79 N 0B(z(0), R/4) # (. Let 1 be the end point of vy. Let v1 be the closed connected
component of ({z1}U (v \ vz,)) N D(z1, R/4). Then, by Theorem L5

| < 7R
Let v1 NOB(z1, R/4) = 0, thus v = o U ~1; then
vl = ol +Iml <27R

and (30) is proved with the constant given in (3.

Let us assume that F1 := y1NdB(z1, R/4) # (. An iterative procedure can be constructed. Let us assume
that 70,71, ...,7m are connected subsets of -y already defined; let x; and ;1 be the starting and the end
points of each v; (j = 0,...,m—1); v, is the closed connected component of ({z;} U (v \ Ve, ))ND(z;, R/4)
starting at x;; moreover v; N 9B(xj, R/4) #0 (j =0,...,m — 1) and

|vi] < 7R. (32)
Let us consider
B = ({am} U (7 \ 7e,)) N O(B(@m, R/4)).

There are two possibilities: either Ey, = @ or Ep, # 0. If Ey, = 0 then the procedure stops and v = U™ ;.
Otherwise, if Ep, # 0, let zy,+1 be the end point of v, and let vm,m+1 be the closed connected component
of ({$m+1} U ('y\'ywm+1)) N D(xm+1, R/4). If ym+1 reduces to the point zm,41 the procedure stops.
Otherwise the procedure continues.

Claim : |x; — x| > %67% for0<i#j7<m.

The claim will be proved later.

—_
2

From Lemma B0l with 71 := £e™ 2, since {zo,...,@m} C v C D(wo, ), the iterative procedure stops

4
with m < (%)2. Then v = U ,v;; from (B2) and the previous bound on m it follows that

42

T1

=35l < e (e

=0

Inequality (30) follows with ¢(R, T) given by (3.
Proof of the claim: Let ©; = x(s;),z; = x(s;), s; < s;. The claim holds true if z; € B(x;, R/4). Assume
that x; € B(z;, R/4). Let us recall that v \ 7z, has points outside of B(z;, R/4). Thus the connected

11
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component 7 of v N D(x;, R/4) that contains x; reenters in D(x;, R/4) in a point x(3) € 0B(z;, R/4),
$; <3 < sj. By Theorem [LT]

s; =5 < |3| < 7R.
By Lemma 3] as 0 < s; <5 < s; then
-3

24

[2(s5) = 2(s0)] 2 |o(®) — a(si)le T > Lo/ > Homnrz

holds. The claim is proved. O

The bound for the constant ¢(R, T) obtained above is not the best one, but the exponent
of the factor 72 in (3I) cannot be lowered. As an example, let us consider the square of sides
(p+1)R, p € N, p pair, with vertices O = (0,0), (pR,0), (pR, pR), (0,pR). Let v the
piecewise linear line joining the points

(0,0), (pR,0), (pR, R), (0, R),
(0,2kR), (PR, 2kR), (pR, (2k + 1)), (0, (2k + 1)),
(07 (p - 2)R)7 (pR7 (p - 2)R)7 (pR7 (p - I)R)v (07 (p - l)R)7
(0,pR), (PR, pR), (PR, (p + 1)R).
7 is a piecewise linear R-curve with length (p + 1)(pR) + pR + R = (1 + p)2R. Let

(p+1)V2R = 7. Then v C B(O, 7) and |y| = 72/2R. With a standard smoothing technique
the previous example can be extended to a C! plane R-curve.

THEOREM 5.3 Let 20 € R2, R> 0. Let v be a C! plane R-curve, ¥ C D(z0,7). Then the detour of Yz, =
is bounded for all z1,x € v by a constant depending on R and T only.

Proof. Let z1,x €, z1 < . If vz,,2 C D(z1, R/3) C D(z0,7) then the result follows from Theorem [£7]
Otherwise per(co(Ye,,z)) > 2|z — z1| > %R. Then

1 < 3
|z —21] "R’
Then from (30) and the previous inequality
Ieyel _ gel® 1)
|z — z1] R

follows. O

Let us conclude this section by showing that in the previous theorem the dependence on
T is needed.

PROPOSITION 5.4 Let xg, T be two given points with distance 2R. For every K > 0 there exists v € 'Ry,
with first point xo and last point T such that the detour

—l%"’i‘ > K.
lzo — 7|

Proof. Let m > 3 be a real number. Let C a circumference of radius p = mR through zo,=. Let v be
obtained from C' by deleting the shorter arc joining zo,Z. The curve v is an R-curve, it satisfies () for
every z(s) € 7. The arc v;, 7z has detour

(2 — 2 arcsin %)p

o 1om .1
= (27 — 2arcsin —) — = (7w — arcsin —)m.
2R m’” 2 m

This number can be made arbitrarily large, by choosing m suitably. O

12



June 5, 2017

Applicable Analysis Rsdc-2017-06-05gapa

6. R-curves as steepest descent curves

In this section the R-curves are seen as steepest descent curves of classes of functions. The
bound on their length proved in previous sections, generalizes the results of [1], [2], [3], [4],
15], [6], for quasi convex functions.

Let © C R? be an open bounded connected set. Q2 will be called regular if for every
y € 0N there exists a neighborhood U of y so that 9Q N cl(U) is a regular curve. Let Q be
regular, u € C%(cl(Q)), Du(x) # 0 for u(zx) > ming o) u. Let us consider the sublevel sets of
win cl(): @ = {z € cl(Q) : u(z) <1}, for I > ming ) u and let assume that 9Q = Qmax u-
Let argminu := {z : u(z) = ming (o) u}.

A simple rectifiable curve  will be called regular if its parametric representation x(-)
with respect to its arc length is C2. Let us recall that v (with ascent parameter s) is called a
steepest descent curve for the function u in Q if it is a solution of the differential equation

Du(x) .
= ——"% x€Q)\argminu.
| Du(z)]

THEOREM 6.1 Let Q,u be satisfying the above assumptions. Let R > 0. If all sublevel sets ; of u have
the property of the R-exterior ball, then

(i) the steepest descent curves of u are R-curves,

(ii) their lengths are uniformly bounded by a constant depending only on R and the diameter of 2.

Proof. The set Q; has the property of the R-exterior ball (Definition 2)); then Yy € 9Q;, Vz € Q, such that
u(z) < u(y),

Du(y)
‘x_(y'i‘Rm” >R (33)

holds.
Let x(-) a steepest descent curve for u; let y = x(s), © = (s — h) with A > 0, then u(z) < u(y) and
from (33)), it follows that

lz(s — h) = (z(s) + R

Du(z(s)) )| > R
|D

u(z(s))]

As Du(z(s))/|Du(z(s))| is the tangent vector t(s) at z(s), the inequality (@) holds and (i) is proved. The
assert (ii) follows from Theorem u|

THEOREM 6.2 Let Q and u be satisfying the assumptions of the previous theorem. Let R > 0 and let all
the sublevel sets of u have reach greater than R; then

(a) the steepest descent curves of u are R-curves;

(b) the steepest descent curves of u have length bounded by c(R,diam Q).

Proof. Let y € Q\ argmin u. The sets ; have reach greater than R; then, by Proposition [Z2] ; have the
property of R exterior ball. Therefore, by (ii) of Theorem (G.1J), the thesis holds with ¢(R, diam (£2)) given

by @E1). O

Next Theorem provides a simple way to check when a “small” connected compact
plane set A has the property of R-exterior ball. The goal of what follows is to prove that if
A C Bpr and 0A has the curvature equal or greater than —1/R in each point, then A has the
R-exterior ball property (Theorem [6.6]).

Let n be the support of a plane oriented regular simple curve parametrized by s — z(s), s
arc length. The signed curvature k;, at a point z(s) is defined by the Frenet formula:

d
—t(s) = kyn(s),

where t(s) and n(s) are the tangent and the normal vector to n at z(s); it is assumed that a
counterclockwise rotation of 7/2 maps t(s) on n(s). When 7 is the graph of a function

y = f(x), f € C?(~L, L), oriented according to the z-axis orientation, the curvature of n at
a point (z, f(x)) is

_ f// -
SN CERTTO TR

LEMMA 6.3 Let I =[0,1] ([-1,0]), with0 <l < R. Let f : I -+ R a C? real function. Let

g(z)=vVR2—-22—-R, z€l

13



June 5, 2017 Applicable Analysis Rsdc-2017-06-05gapa

Let f satisfy the conditions:

f(0)=0, f'(0)=0, (34)

f// 1
ajjﬁﬁﬁgw)z—ﬁ,mef, (35)
F) <g() (f(=1) <g(=1). (36)

Then

fx) =g(@), =zel
Proof. Let I =0,1]. Since

g// 1

1+ R
inequality (B3] implies that

/

g

d f d
do (1+(g)2)1/2

do (1+(f1)2)172

%

Thus, as f/(0) = ¢’(0), integrating the previous inequality between 0 and x we obtain

I S g
14+ NHHY2 = 1+ (g)H)V?

0<z<l,

As the function is strictly increasing in ¢ € R, the inequality

_t
(1+t2)1/2
f(@)>g'(x), 0<z<l,

holds in [0,!]. As

l
0> £(1) - g(l) = /0 (f'(@) — ¢/ (@))dz > 0,

then f/ =g’ in [0,1]. As f(0) = g(0) then, f =g in [0,1].
Let I = [—1,0]. For the functions f = f(—(-)) and g = g the previous procedure applies in [0,1], then
the thesis follows. O

LEMMA 6.4 Let G, H be plane, open, bounded, simply connected sets with G C H. Let 0G, OH have the
same orientation. Assume that there exists y € 0GNOH and that in a neighborhood U of y the set UNOG
(UNOH) is support of a regular curve o () with orientation induced by OG (0H). Aty the sets G and
H have the same exterior normal vector. Thus o and B8 have the same tangent vector at y, accordingly to
their orientation.

LEMMA 6.5 Let B?, the open disk of radius R, centered at w* € R?,i = 0,1, 0 < |w! —w?| < 2R. Let n
be an oriented regular plane curve joining two different points yo,y1 € 0B such that

n C cl(B%)\ BL.

Let’s assume that one of the points yo,y1 is in BY. Let y1 follow yo according to the clockwise orientation
of OB and yo < y1 on 1. If the curvature of n satisfies the inequality

ky > —, 37
then

n C OB (38)

14
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Proof. Let
B = B(twy + (1 — t)wo, R), 0<t<1

the family of plane balls connecting B® with B. Let E = {t : n C cl(B*)}. By assumption, 0 € E. Let
t* = sup E. If t* = 1, the lemma is proved. Otherwise, since n C cl(Bt*)7 there exists ¥ € n N BBt*,
Y # yo,y1. Thus n N OB'" is a non empty set and of course it is closed. Let us prove that it is also open.
At each point y € nﬁ@Bt* let us consider a Cartesian coordinate system with origin 3y and z-axis oriented
as the tangent to 8B clockwise oriented. As n C Bt and it is a regular curve, then 7 is tangent to
OB at 7. In a neighborhood of 7 the support of 1 is the graph of a function y = f(x) in the coordinate
system (z,y). Let us prove that 7 is oriented accordingly to the graph of f, to say according to the z-axis
orientation at §. Let H := Bt" \ ¢I(B'), G the open set bounded by 1 and arc(yo,y1) on OB clockwise
oriented. Then ¥ satisfies the assumptions of Remark [6.4] and the curves n and oBY" \ B! have the same
tangent vector. Then the assumptions of Lemma are satisfied in a suitable neighborhood of ¥y since
the bound (ZZ) implies (BF). Lemma [E3] implies that n N &Bt" is also open. Then N B! = 7. Then

Y0,Y1 € OB!" NOB. As 1 C cl(BY) it follows that t* € {0, 1}. Since one of the points 3o, y1 is in BY, then
t* = 1. Contradiction. O

THEOREM 6.6 Let A C cl(BRr) be a regular plane compact set such that DA is connected and the coun-
terclockwise oriented curve n with support A has curvature greater or equal than —1/R. Then A has the
property of the R-exterior ball.

Proof. Let zo € OA and n4(z0) be the exterior normal to A at zo. Let
B! = B(z0 + Rna(z0)), B°=Bg.

In what follows 9B! will be clockwise oriented and arc(a,b) will be the shorter arc on B! from a to b,
a, b are points on OBL.

If 2o € OB, then n C cl(BP) is tangent to dB°; as A and cl(B°) have the same outer normal vector,
then BN A =0 and B! R-supports A at zg.

Let zo € BO. Let us notice that if z € cl(B°%) N cl(BY), then |z — 20| < 2R. If A C (B')°, then A has
the property of the exterior ball at zg. To prove this fact it will be shown that there exist two points
Z(T,ZO_ € nNoB! (Z(T,Z(; possibly coinciding with zp), such that n is the union of arc(zo_,zg) and a
regular curve 77, with end points zaL, zg , where

i\ {z5, 25 } C (cl(BY))".

Let (z,y) be a Cartesian coordinate system centered at zg, with y-axis in the opposite direction of n 4 (z0)
and the z axis in the direction of the tangent vector to n at zp. Let U be a neighborhood of zp such that
n N U is the graph of a function y = f(z) and B! N U is the graph of y = g(x).

If nN U contains a point z € cl(BY) Ncl(B®)\ {20} then, for a suitable 0 < I < R, either z = (I, f(I)) or
z = (=1, f(=1)). Then f, g satisfy the assumptions of Lemma [6.3] Therefore n. ., NU C OBt (Nz0,=NU C
oBY).

Let ¢ be the maximal closed connected component of 7 N cl(B') containing 2. As £ C cl(B') N cl(B°)
then diam (¢) < 2R; then ¢ is an arc on 9B shorter than 7R, with end points Zg za', where 25 < 20 < ZJ
on OB N cl(BY); it can be zp = 2g 5 20 = zar, moreover by the regularity of n both zaL, zy &€ OBY.

Let 77 = n \ € oriented accordingly to the counterclockwise orientation of JA. Let

W ={wei:zd < Wi, \ {28, w} C (c(BY)}; (39)

W= ={wei:w=<z,1, - \{z, v} C (cl(B')}. (40)

The above argument shows that W+, W~ are non empty sets. Let wT the supremum of W+ ( w™ the
infimum of W) accordingly to the ordering of 7. Then {w*,w~} C B! and T+ s 11 _ are subsets
0° 0

w2z,
of . If wt = 25 then also w™ = za" and vice versa, moreover in this case

i\ {2020 } C (cl(B"))°

and the thesis holds.
Let us show first that wt # 25, w™ # Z(T cannot hold. Let 9B N9B° = {u~,uT}, with u™ < z5 <
zd <ut on B N cl(BY).
Let us show that wt € arc(zf,ut) (w™ € arc(u™, 2y )) cannot hold. As B, B! and N+ .+ Satisy
0>
the hypothesis of Lemma with yo = zaL7 y1 = wt, that would imply N4 wt C OB!. This fact would
0>

contradict the maximality property of zar ( similar procedure for w™). The remaining case would be

15
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wT € arc(u™,z; ) and w™ € arc(zaL,qu). This would imply that 7_+ ., and 7 _ — should cross and
0> 20

that 7 is not a simple curve. This is impossible. O

The R-exterior ball property cannot hold for a set A without suitable topological
assumptions. As example let us consider two concentric disks D(O, R), D(O, 2R) centered at
the origin O. Let V a convex angle of vertex O with amplitude € > 0. Let
U =D(0,2R)\ (D(O,R)U V). U is a regular domain (excepted four points) which can be
modified in a neighborhood of this four points into a smooth domain A such that A has
the curvature greater or equal than —1/R at each point. It easy to see that each Bg ball
with boundary through a point on 9A N OV meets the interior of A for £ small enough.

The assumption that 0A is connected is necessary too. Let us consider as A the union of
two disjoint small circles contained in Br. The counterclockwise oriented boundary of the
circles have positive curvature but the R-exterior ball property does not hold.

In a forthcoming work [g] it will be shown that Theorem is sharp. If A C cl(Bgr+e) ,
with € > 0 the result may not hold.

THEOREM 6.7 Let Q C Dpg. Let the curvature of the level lines {x € Q : u(z) = I} (counterclockwise
oriented), with | > ming u, greater or equal than f%. Then the level sets of u have the property of the
R-exterior ball and its steepest descent curves are R-curves.

Proof. From the previous theorem, applied to each set A = €, it follows that the level sets of u have the
property of the R-exterior ball; then, by Theorem the steepest descent curves of u are R-curves. 1
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