

FLORE Repository istituzionale dell'Università degli Studi di Firenze

Plane R-curves and their steepest descent properties I

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:

Plane R-curves and their steepest descent properties I / M. Longinetti, P. Manselli, A. Venturi. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - ELETTRONICO. - (2019), pp. 1-14. [10.1080/00036811.2018.1466278]

Availability:

This version is available at: 2158/1128036 since: 2021-03-29T13:58:37Z

Published version: DOI: 10.1080/00036811.2018.1466278

Terms of use: Open Access

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

(Article begins on next page)

To appear in *Applicable Analysis* Vol. 00, No. 00, Month 20XX, 1–16

Plane *R*-curves and their steepest descent properties I

M. Longinetti^a* P. Manselli^a and A. Venturi^b

^a DIMAI, Università di Firenze, V.le Morgagni 67, 50134 Firenze-Italy

^b GESAAF, Università di Firenze, P.le delle Cascine 15, 50144 Firenze-Italy

 $(v3.0 \ released$)

AMS Subject Classifications: Primary: 49Q15, 52A30; Secondary: 34A26, 34A60 **Keywords:** steepest descent curves, sets with positive reach, length of curves, detour

Let Γ_R be the class of plane, oriented, rectifiable curves γ , such that for almost every $x \in \gamma$, the part of γ preceding x is outside of the open circle of radius R, centered in $x + Rt_x$, where t_x is the unit tangent vector at x. Geometrical properties of the curves $\gamma \in \Gamma_R$ are proved; it is shown also that the length of a regular curve $\gamma \in \Gamma_R$ is bounded by a constant depending upon R and the diameter of γ only. The curves $\gamma \in \Gamma_R$ turn out to be steepest descent curves for real valued functions with sublevel sets of reach greater than R.

1. Introduction

Let R > 0. Let Γ_R be the class of the plane oriented rectifiable curves γ , starting at a point x_0 and such that for every $x \in \gamma$, for which there exists the unit tangent vector \mathbf{t}_x , the arc $\gamma_{x_0,x}$ (joining x_0 to x) is not contained in the open circle centered at $x + R\mathbf{t}_x$ and of radius R. In the present work the curves $\gamma \in \Gamma_R$ will be called R-curves, for short.

The family Γ_R is a generalization of the family Γ of plane curves studied in [1, 2]. Γ is the class of curves γ for which $\gamma_{x_0,x}$ is contained in the half-plane bounded by the line through x, orthogonal to \mathbf{t}_x . The class Γ has also been studied starting from equivalent definitions, in [3–5]. The curves of Γ are steepest descent curves for a suitable family of nested convex sets [6]. Similarly it can be observed (Theorem 6.2) that a function with sublevel sets of reach greater than R has steepest descent curves in Γ_R . Obviously for every R > 0, $\Gamma \subset \Gamma_R$.

Many natural questions arise for the curves of Γ_R .

(A) Let x a point of γ , $x \neq x_0$. Let us consider the following number naturally associated to $\gamma_{x_0,x}$:

$$\frac{\operatorname{length}(\gamma_{x_0,x})}{\operatorname{dist}(x_0,x)},$$

called the detour of the curve $\gamma_{x_0,x}$, see e.g. [2, 7]. It has been proved in [1–3] that if $\gamma \in \Gamma$ then, the detour of $\gamma_{x_0,x}$ has an a priori bound. Could a similar result be proved for the curves in Γ_R ?

(B) Let $\gamma \in \Gamma_R$ and let's assume that γ is contained in a circle of radius $\tau > 0$; is it possible to bound the length and the detour of γ with a number depending on R, τ only?

(C) Let $\gamma \in \Gamma_R$. Are there functions that have steepest descent curves in Γ_R ? Let us outline the content of our work.

In $\S2$ introductory definitions are given and results on sets of positive reach, needed later, are recalled.

In §3 the definition of R-curves in \mathbb{R}^n is given and several properties are proved.

In §4 properties of plane *R*-curves in small circles are stated and proved; the main one is a sharp bound of the measure of the tangent angle to the hull of $\gamma_{x_0,x}$ at *x*, Theorems 4.3 and 4.4. In these theorems, it has been assumed an additional regularity hypothesis: that is γ has a C^1 parametric representation. This assumption will be removed in a paper in

^{*}Corresponding author. Email: marco.longinetti@unifi.it

progress [8]. Theorem 4.4 proves that plane regular R-curves, in a small circle, are ϕ -self approaching curves (with opposite orientation), for a suitable $\phi < \pi$, see [7].

A bound, depending on R only, for the length and the detour of a plane R-curve γ in a small circle is obtained, Theorem 4.5, Theorem 4.7.

In §5 R-curves contained in a circle of fixed arbitrary radius τ are studied. A bound of their length and their detour depending only on R, τ is proved, Theorem 5.2, Theorem 5.3. In Proposition 5.4 an example shows that if a curve of $\hat{\Gamma}_R$ is not contained in a circle of fixed radius τ then the detour can be arbitrarily large. In §6 functions defined in bounded sets of \mathbb{R}^2 , with the property that their steepest

descent curves are R-curves, are considered; by Theorem 5.2 it follows that these steepest descent curves have length bounded by a constant depending on R and their diameter.

A first example of functions with the above property is the class of the regular functions whose sublevel sets satisfy the property of R-exterior ball (Definition 2), Theorem 6.1. The family of regular functions whose sublevel sets are of reach greater than R also satisfies the same property, Theorem 6.2.

A differential property for regular functions, in order to satisfy this property, is that these functions must have as domain a closed bounded connected subset of a circle of radius R and level lines with curvature greater or equal than -1/R, Theorem 6.7.

2. **Definitions and preliminaries**

Let

$$B(z,\rho) = \{x \in \mathbb{R}^n : |x-z| < \rho\}, \quad S^{n-1} = \partial B(0,1) \quad n \ge 2$$

and let $D(z,\rho)$ be the closure of $B(z,\rho)$. The notations B_{ρ}, D_{ρ} will also be used for balls of radius ρ , if no ambiguity arises for their center. If a ball is written with a center only, then the radius will be R. The usual scalar product between vectors $u, v \in \mathbb{R}^n$ will be denoted by $\langle u, v \rangle$.

Let $K \subset \mathbb{R}^n$; Int(K) will be the interior of K, ∂K the boundary of K, cl(K) the closure of $K, K^c = \mathbb{R}^n \setminus K$.

For every set $S \subset \mathbb{R}^n$, co(S) is the convex hull of S.

Let K be a non empty closed set. Let $q \in K$; the *tangent cone* of K at q is defined as

 $\operatorname{Tan}_{K}(q) = \{ v \in \mathbb{R}^{n} : \forall \varepsilon > 0, \exists x \in K, r > 0 \quad \text{with} \quad |x - q| < \varepsilon, |r(x - q) - v| < \varepsilon \}.$

Let us recall that

$$S^{n-1} \cap \operatorname{Tan}_{K}(q) = \bigcap_{\varepsilon > 0} cl(\{\frac{x-q}{|x-q|}, q \neq x \in K \cap B(q,\varepsilon)\}).$$

The normal cone at q to K is the non empty closed convex cone, given by:

Nor
$$_K(q) = \{ u \in \mathbb{R}^n : \langle u, v \rangle \le 0 \quad \forall v \in \operatorname{Tan}_K(q) \}.$$

When $q \in Int(K)$, then Tan $K(q) = \mathbb{R}^n$ and Nor K(q) reduces to zero. In two dimensions cones will be called angles with vertex 0. The dual cone K^* of a set K is $K^* = \{y \in \mathbb{R}^n : \langle y, x \rangle \ge 0 \quad \forall x \in K\}.$

For A, B non empty sets of \mathbb{R}^n , $x \in \mathbb{R}^n$, let us denote

dist
$$(x, A) = \inf_{y \in A} \{ |x - y| \}; \quad A^{(\varepsilon)} = \{ x \in \mathbb{R}^n : \text{dist} (x, A) \le \varepsilon \}$$

Let $b \in \mathbb{R}^n \setminus A$; then b has a unique projection point onto A if there exists a unique point $a \in A$ satisfying |b - a| = dist (b, A).

Let A be a closed set. If $a \in A$, then reach(A, a) is the supremum of all numbers ρ for which every $x \in B(a, \rho)$ has a unique projection point onto A. Also, see [9]:

$$reach(A) := \inf\{reach(A, a) : a \in A\}.$$

PROPOSITION 2.1 [9, Theorem 4.8, (12)] If $a \in A$ and reach(A, a) > 0 then

$$\operatorname{Tan}_{A}(a) = -(\operatorname{Nor}_{A}(a))^{*}.$$

Definition 1 Let us say that a ball B_R R-supports A at x, if

$$B_R \cap A = \emptyset, \quad x \in A \cap \partial B_R.$$

If B_R R-supports A at x, then the point x is necessarily a boundary point of A. B_R will be called an R-support ball to A at x.

Let us consider a closed set A such that for each point $y \in \partial A$ the normal cone Nor_A(y) is not reduced to zero.

Definition 2 Let R > 0. A closed set A, satisfying the above property, has the property of the *R*-exterior ball if $\forall y \in \partial A$, $\forall n_A(y) \in \text{Nor }_A(y) \cap S^1$, the following fact holds

$$\forall x \in A \Longrightarrow |x - (y + Rn_A(y))| \ge R. \tag{1}$$

The previous definition implies that for every point $y \in \partial A$ there is at least an *R*-support ball to *A* at *y*.

PROPOSITION 2.2 [9, Theorem 4.8, (7)] If a closed set A has reach greater than R, then it satisfies the property of R-exterior ball.

Let $x, y \in \mathbb{R}^n, |x - y| < 2R$. Let us define

$$\mathfrak{h}(x,y,R) = \bigcap \{ D_R(z), z \in \mathbb{R}^n : D_R(z) \supset \{x,y\} \}.$$

$$(2)$$

PROPOSITION 2.3 [10], [11, Theorem 3.8] A closed set A has reach equal or greater than R if and only if $\forall x, y \in A \text{ with } |x - y| < 2R$ the set $A \cap \mathfrak{h}(x, y, R)$ is connected.

Definition 3 Given A a closed set in \mathbb{R}^n , let us define $co_R(A)$, the *R*-hull of A, as the closed set containing A, such that

(i) $co_R(A)$ has reach greater or equal than R;

(ii) if a set $B \supseteq A$ and $reach(B) \ge R$, then $B \supseteq co_R(A)$.

See [11, pp.105-107] for the properties of *R*-hull. It can be shown that

$$co_R(A) = \cap \{B_R^c : B_R \cap A = \emptyset\}$$

The *R*-hull of a closed set A may not exist, see [11, Remark 4.9]. However

PROPOSITION 2.4 [11, Theorem 4.8] If A is a plane closed connected subset of an open circle of radius R, then A has R-hull.

3. Properties of R-curves

In this section the definition and some properties of $R\text{-}\mathrm{curves}$ in \mathbb{R}^n are introduced and proved.

Let $\gamma \subset \mathbb{R}^n$ be an oriented rectifiable curve and let $x(\cdot)$ be its parametric representation with respect to the arc length parameter $s \in [0, L]$. If $x_1 = x(s_1), x_2 = x(s_2) \in \gamma$ with $s_1 \leq s_2$, the notation $x_1 \leq x_2$ will be used. Let us denote x(s) = x,

$$\gamma_x = \{ y \in \gamma : y \preceq x \}; \quad \gamma_{x_1, x_2} = \{ y \in \gamma : x_1 \preceq y \preceq x_2 \}; \quad |\gamma_x| = \operatorname{length}(\gamma_x). \tag{3}$$

In this paper a *curve* in \mathbb{R}^n is also the image of a continuous function on an interval, valued into \mathbb{R}^n .

Definition 4 Let R be a fixed positive number. An R-curve $\gamma \subset \mathbb{R}^n$ is a rectifiable oriented curve with arc length parameter $s \in [0, L]$, tangent vector $\mathbf{t}(s) = x'(s)$ such that the inequality

$$|x(s_1) - x(s) - R \mathbf{t}(s)| \ge R \tag{4}$$

holds for almost all s and for $0 \le s_1 \le s \le L$. Γ_R will denote the class of R-curves in \mathbb{R}^n .

The geometric meaning of (4) is that for every point $x = x(s) \in \gamma$, with tangent vector $\mathbf{t}(s)$, the set γ_x is outside of the open ball of radius R through x centered at $x + R \mathbf{t}(s)$.

Let us notice the following equivalent formulations of (4) for $0 \le s_1 < s \le L$:

$$|x(s_1) - x(s)|^2 - 2R \langle x(s_1) - x(s) \rangle, \mathbf{t}(s) \rangle \ge 0;$$
(5)

$$\langle x(s) - x(s_1), \mathbf{t}(s) \rangle \ge -\frac{|x(s_1) - x(s)|^2}{2R};$$
 (6)

$$\left\langle \frac{x(s_1) - x(s)}{|x(s_1) - x(s)|}, \mathbf{t}(s) \right\rangle \le \frac{|x(s_1) - x(s)|}{2R}, \quad \text{if} \quad x(s_1) \ne x(s).$$
 (7)

LEMMA 3.1 Let γ be a rectifiable curve with arc length parametrization x(s). Then, the inequality (4) is equivalent to

$$|x(s) - x(s_1)| \ge |x(s_2) - x(s_1)|e^{(s_2 - s)/(2R)} \quad for \quad 0 \le s_1 \le s_2 \le s \le L.$$
(8)

Proof. Inequality (6) can be written as

$$\begin{aligned} \frac{d}{ds} |x(s) - x(s_1)|^2 &\geq -\frac{|x(s_1) - x(s)|^2}{R}, \\ \frac{d}{ds} \log |x(s) - x(s_1)|^2 &\geq -\frac{1}{R}, \\ \frac{d}{ds} \left(\log |x(s) - x(s_1)|^2 + \frac{1}{R}(s - s_1) \right) &\geq 0. \end{aligned}$$
$$\log |x(s) - x(s_1)|^2 + \frac{1}{R}(s - s_1) &\geq \log |x(s_2) - x(s_1)|^2 + \frac{1}{R}(s_2 - s_1), \\ |x(s) - x(s_1)| e^{\frac{s - s_1}{2R}} &\geq |x(s_2) - x(s_1)| e^{\frac{s_2 - s_1}{2R}}.\end{aligned}$$

Therefore (8) follows. Conversely, if γ satisfies (8), then inequality (6) is obtained, by using the previous inequalities in ascending order.

COROLLARY 3.2 An R-curve does not intersect itself.

Proof. By contradiction, let us assume that $x(s) = x(s_1)$, $s_1 < s$. Then (8) implies that $x(s_2) = x(s) = x(s_1)$ for all s_2 between s_1 and s; so the curve $x(\cdot)$ is constant in $[s_1, s]$. This is impossible as s is the arc length. \Box

Remark 1 Let us notice that $\Gamma \subset \Gamma_R$, where Γ is the class of rectifiable curves γ for which for almost every $x \in \gamma$ with tangent vector \mathbf{t}_x the set γ_x is contained in the half-plane bounded by the line through x, orthogonal to \mathbf{t}_x . Therefore if $\gamma \in \Gamma$, then (8) holds for every R > 0, namely

$$|x(s) - x(s_1)| \ge |x(s_2) - x(s_1)| \quad \text{for} \quad 0 \le s_1 \le s_2 \le s \le L.$$
(9)

This property is a "key" property of the curves of Γ (called self expanding property, see [3], [6]). Let us notice that the property (8), which seems an expanding property, makes the arc length of the *R*-curve appear, in striking difference from (9).

THEOREM 3.3 Let $\gamma \in \Gamma_R$. For every $s \in (0, L)$, x = x(s), $\gamma_x \subsetneq \gamma$, the following two subsets of S^{n-1} :

$$U_x^+ = \{ u \in S^{n-1} : \exists s_k \ge s, \lim_{s_k \to s} x'(s_k) = u \}, \quad U_x^- = \{ u \in S^{n-1} : \exists s_k \le s, \lim_{s_k \to s} x'(s_k) = u \}$$

are non empty. Moreover the following properties hold. (i) if $x(\cdot)$ is differentiable at s, then $x'(s) \in U_x^+ \cup U_x^-$; (ii) if $u \in U_x^+ \cup U_x^-$ then

$$|x(s_1) - x(s)|^2 - 2R \langle x(s_1) - x(s), u \rangle \ge 0 \quad for \quad 0 \le s_1 < s < L;$$
(10)

(iii) let $B^0 = B(x + Ru)$, $u \in S^1$ so that $B^0 \cap \gamma = \emptyset$, then

$$\exists u^+ \in U_x^+ : \langle u^+, u \rangle \le 0, \qquad \exists u^- \in U_x^- : \langle u^-, u \rangle \ge 0; \tag{11}$$

(iv) if there exist $S^1 \ni u_k \to u$, $s_k \to s$, $s_k < s$, with $x(s_k) \in \partial B^k := \partial B(x + Ru_k)$, then

$$\exists u_1^- \in U_x^- : \langle u_1^-, u \rangle \le 0.$$
⁽¹²⁾

Proof. The set $G = \{\tau : \tau \ge s : \exists x'(\tau)\}$ is a dense set in (s, L); let $\{\tau_k\} \subset G$ having s has an adherence point; by possibly passing to a subsequence, $\{x'(\tau_k)\}$ has limit $u \in S^{n-1} \in U_x^+$. Then U_x^+ and similarly U_x^- are non empty. Moreover as the sets $\gamma_{x(\tau_k)}$ have an R-support ball at $x(\tau_k)$, centered at $x(\tau_k) + Rx'(\tau_k)$, then (10) is obtained from (5) with $s = \tau_k$ passing to the limit. To prove (11), let us notice that the assumption $B^0 \cap \gamma = \emptyset$ implies (4) (thus (6)) with *u* instead of $\mathbf{t}(s)$

and $s - \frac{1}{k}$ in place of s_1 ; therefore

$$\int_{s-\frac{1}{k}}^{s} \langle x'(t), u \rangle dt = \langle x(s) - x(s-\frac{1}{k}), u \rangle \ge -\frac{|x(s-\frac{1}{k}) - x(s)|^2}{2R} \quad \text{for} \quad s - \frac{1}{k} \in (0, L).$$
(13)

Then, for all k, sufficiently large, there exists $\sigma_k \in (s - \frac{1}{k}, s)$ with

$$\langle x'(\sigma_k), u \rangle \ge -k \frac{|x(s-\frac{1}{k})-x(s)|^2}{R}.$$

Since by definition of arc length $|x(s-\frac{1}{k})-x(s)| \leq \frac{1}{k}$, it follows that

$$\langle x'(\sigma_k), u \rangle \ge -\frac{|x(s-\frac{1}{k})-x(s)|}{R}.$$

By possibly passing to a subsequence, $x'(\sigma_k) \to u^- \in U_x^-$; then the second inequality in (11) is proved as $|x(s-\frac{1}{k})-x(s)| \to 0$. To prove first inequality in (11) let us notice that assumption $B^0 \cap \gamma = \emptyset$ implies (4) (thus (6)) with u instead of $\mathbf{t}(s)$ and $s_1 = s + \frac{1}{k} > s$, k large enough. Then

$$\int_{s}^{s+\frac{1}{k}} \langle x'(t), u \rangle dt = \langle x(s+\frac{1}{k}) - x(s), u \rangle \leq \frac{|x(s+\frac{1}{k}) - x(s)|^2}{2R} \quad \text{for} \quad s+\frac{1}{k} \in (0,L).$$

Arguing as above the first inequality in (11) is obtained.

To prove (iv), since $x(s_k) \in \partial B^k$, then equality holds in (13) with s_k in place of $s - \frac{1}{k}$ and u_k in place of u. Thus

$$\int_{s_k}^{s} \langle x'(t), u_k \rangle dt = -\frac{|x(s_k) - x(s)|^2}{2R} < 0$$

Therefore there exists $\sigma_k \in (s_k, s)$ so that $\langle x'(\sigma_k), u_k \rangle \leq 0$ and $x'(\sigma_k) \to u_1^- \in U_x^-$. Then (12) is obtained by passing to the limit. \blacksquare

R-curves in disks of radius R4.

In this section let us assume that γ is a plane *R*-curve of length $L = |\gamma|$ contained in a closed circle of radius less than R. Let $x(\cdot)$ be the parametric representation of γ with respect to the arc length and let $0 \le s \le L$, $x = x(s) \in \gamma$. According to Proposition 2.4, γ_x has *R*-hull $co_R(\gamma_x)$.

For a plane convex body K let us denote per(K) the perimeter of the boundary ∂K . Let p be a point not in K. The simple cap body K^p is the convex hull of $K \cup \{p\}$, see [12]. For a vector u = (a, b), let $u^{\perp} = (-b, a)$.

THEOREM 4.1 Let $x \in \gamma \in \Gamma_R$, $\gamma \subset B_R$. Let

$$W_x = \{ u \in S^1 : (B(x + Ru))^c \supset \gamma_x \}.$$

$$(14)$$

Then

$$U_x^+ \cup U_x^- \subset W_x; \tag{15}$$

moreover

$$W_x = \operatorname{Nor}_{co_R(\gamma_x)}(x) \cap S^1.$$
(16)

Proof. Let $u \in U_x^+ \cup U_x^-$, then inequality (10) holds, which means that $(B(x + Ru))^c \supset \gamma_x$, and (15) is proved. Let $w \in W_x$ and let B = B(x + Rw). As $\gamma_x \subset B^c$ and $reach(B^c) = R$, then by (ii) of Definition 3, $co_R(\gamma_x) \subset B^c$. This fact implies that

Nor
$$_{co_B(\gamma_x)}(x) \supseteq$$
 Nor $_{B^c}(x) = \{\lambda w, \lambda \ge 0\}.$

Then

$$\operatorname{Nor}_{co_R(\gamma_x)}(x) \cap S^1 \supseteq W_x. \tag{17}$$

Let us prove now the opposite inclusion. Let $u \notin W_x$, $u \in S^1$. Then in B(x + Ru) there are points of γ_x , thus there exists a point $y \in co_R(\gamma_x) \cap B(x+Ru), y \neq x$. Then, by Proposition 2.3, $\mathfrak{h}(x, y, R) \cap co_R(\gamma_x)$ has a connected component F joining x and y, $F \subset (B(x+Ru) \cup \{x\})$. Therefore, as $\mathfrak{h}(x, y, R) \subset B(x+Ru) \cup \{x\}$, in the tangent cone of F at x there is a vector making an acute angle with u; so in the tangent cone to $co_R(\gamma_x)$ there is a vector making an acute angle with u. Then $u \notin Nor_{co_R(\gamma_x)}(x)$, the opposite inclusion of (17) holds and (16) is proved. \Box

Definition 5 Let b and c two distinct points in the plane with |b-c| < 2R. Let us consider the following geometric construction. Let B(b) and B(c) two open circles, of radius R and center b, c respectively. Let $x \in \partial B(b) \cap \partial B(c)$. Let l be the line through b and c, let H be the half plane with boundary l containing x.

The unbounded region $a\check{n}g(bxc) :\equiv B(b)^c \cap B(c)^c \cap H$ will be called a *curved angle*. Moreover

$$\operatorname{meas}(a\check{n}g(bxc)) := \operatorname{meas}(\operatorname{Tan}_{a\check{n}g(bxc)}(x) \cap S^1)$$

is the measure of the angle between the half tangent lines at x to the boundary of $a\check{n}g(bxc)$.

It is not difficult to see that

$$\operatorname{meas}(a\check{n}g(bxc)) = \pi - 2 \operatorname{arcsin} \frac{|b-c|}{2R}.$$
(18)

When x, y are points on a circumference ∂B , let us denote with arc(x, y) the shorter arc on ∂B from x to y.

LEMMA 4.2 Let $x, x_2 \in \mathbb{R}^2$, $|x - x_2| < R$. Let $B^2 = B(b, R)$ with $\partial B^2 \supset \{x, x_2\}$. Let $B^* = B(c_*)$ the ball of radius R, with ∂B^* orthogonal at x_2 to ∂B^2 and $x \in B^*$. Let us assume that there exists $x_1 \in (B^* \cup B^2)^c$ with the properties:

(i) $|x_1 - x| < R, |x_2 - x_1| < R;$

(ii) x_1 lies in the half plane with boundary the line through x and x_2 not containing b; (iii) there exists $B^1 = B(c_1, R)$ with $\{x_1, x\} \subset \partial B^1$, with $\operatorname{arc}(x, x_1) \subset (B^2)^c$, such that the line through $x \text{ and } x_1 \text{ separates } c_1 \text{ and } x_2.$

Then the measure of the curved angle $a\check{n}g(bxc_1)$ is less than $\pi/2$.

Proof. Let $\{w\} = arc(x, x_1) \cap \partial B^*$ (possibly it can be $w = x_1$). As |x - w| < R, |x - b| = R, then

$$|w - b| < |x - w| + |x - b| < R + R = 2R.$$

Let us remark that the circles B^* and B^1 both have w on the boundary (see Fig.1).

It is not difficult to see that the convex angle $b\hat{w}c_1$ contains the convex angle $b\hat{w}c_*$. The two triangles bwc_1 and bwc_* have one side in common and the sides wc_* , wc_1 have the same length R. Then $|b-c_*| < |b-c_1|$. Thus by (18)

$$\pi/2 = \max(a\check{n}g(bx_2c_*)) > \max(a\check{n}g(bxc_1))$$
(19)

and the thesis is proved. \square

THEOREM 4.3 Let N > 1. Let γ be a C^1 plane R-curve. Assume that for every $x \in \gamma$, γ_x is contained in the disk D(x, R/N). Then, the measure of Nor $_{co_R(\gamma_x)}(x) \cap S^1$ is equal or greater than $\pi/2$.

Proof. Let $H_i = (B(x + Ru_i))^c$, i = 1, 2, where u_i are the two vectors bounding $W_x = S^1 \cap \operatorname{Nor}_{co_R(\gamma_x)}(x)$ (may be $u_1 = u_2$ then $H_1 = H_2$). Then

$$co_R(\gamma_x) \subset H_1 \cap H_2 \cap D(x, R/N).$$

If $u_1 = -u_2$ then the measure of Nor $_{co_R(\gamma_x)}(x)$ is equal π and the thesis holds. Let $u_1 \neq -u_2$.

Figure 1. Curved angles

There are two possible cases:

- (a) at least one of the two sets $\gamma_x \cap \partial H_i \setminus \{x\}$, i=1,2, is empty; (b) there exist at least two points $x_i \in \gamma_x \cap \partial H_i$, $x_i \neq x$ (i=1,2).

Case (a): with no loss of generality one can assume that

$$\gamma_x \cap \partial H_1 \setminus \{x\} = \emptyset.$$

Let $u_1 = (\cos \alpha_1, \sin \alpha_1), 0 \le \alpha_1 < 2\pi$ and let

$$u^{\delta} := (\cos(\alpha_1 - \delta), \sin(\alpha_1 - \delta)).$$

By definition of the vectors u_1, u_2 , bounding Nor $co_R(\gamma_x)(x) \cap S^1$, for $\delta > 0$ sufficiently small, one has

$$\gamma_x \cap B(x + Ru^{\delta}) \neq \emptyset.$$

This means that, for $\delta = \frac{1}{k} > 0$ and k sufficiently large, there exists a sequence $s_k \to s$, $s_k < s$ such that

$$x(s_k) \in \partial B(x + Ru^{\frac{1}{k}}) \setminus D(x + Ru_1, R).$$

Then, by (iv) of Theorem 3.3, there exists $u_1^- \in U_x^- \subset \operatorname{Nor}_{co_R(\gamma_x)}(x)$ so that $\langle u_1^-, u_1 \rangle \leq 0$. The thesis follows.

Case (b): with no restriction one can assume $x_i = x(s_i)$ (i=1,2), with $s_1 < s_2 < s$ and that the triangle x_1x_2x is clockwise oriented, see Fig.1.

Let us consider the point $x_2 \in \partial B(x + Ru_2)$. Let $\tilde{u_2}$ so that $x + Ru_2 = x_2 + R\tilde{u_2}$ and let

$$B^2 := B(x + Ru_2) = B(x_2 + R\tilde{u_2}), \quad B^1 := B(x + Ru_1).$$

Let us notice that, by Theorem 4.1, $\tilde{u_2} \in W_{x_2} = S^1 \cap \operatorname{Nor}_{co_R(\gamma_{x_1,x_2})}(x_2)$. As $\gamma_{x_2,x} \subset (B^2)^c$ the tangent vector $x'(s_2)$ is tangent to ∂B^2 at $x_2 = x(s_2)$. That is $\langle x'(s_2), \tilde{u_2} \rangle = 0$.

Vector $x'(s_2)$ is tangent to ∂B^2 at $x_2 = x(s_2)$. That is $\langle x'(s_2), u_2 \rangle = 0$. Let us consider the closed region Q bounded by $arc(x_2, x)$ on ∂B^2 , $arc(x, x_1)$ on ∂B^1 and γ_{x_1, x_2} . Let us show that as $\gamma_x \subset H_1 \cap H_2 \cap D(x, R/N)$, then $\gamma_{x_2, x} \subset Q$. Otherwise, $\gamma_{x_2, x}$ would have a point $y \neq x_2$ outside Q and it would be $\gamma_{x_1, x_2} \cap \gamma_{y, x} \neq \emptyset$, in contradiction with Corollary 3.2. Then $x'(s_2)$ is tangent to $arc(x_2, x)$ at x_2 and $\langle x'(s_2), -\tilde{u_2}^{\perp} \rangle = 1$. Let $B^* := B(x_2 + Rx'(s_2))$. As $x'(s_2) \in U_{x_2}^+ \cup U_{x_2}^-$, by (15) the following inclusion holds

$$\gamma_{x_1,x_2} \subset (B^*)^c.$$

Then the point $x_1 \notin B^*$ and, as $|x_2 - x| < R$, the ball B^* contains x. Let $c_1 = x + Ru_1$, $b = x_2 + R\tilde{u_2}$, c_* the center of B^* .

Let us consider the curved angles $ang(bxc_1)$ and $ang(bx_2c_*)$. As ∂B^2 and ∂B^* are orthogonal at x_2 , the hypotheses of Lemma 4.2 for x, x_2, b, c_1, x_1 are satisfied. Thus

 $\operatorname{meas}(a\check{n}g(bxc_1)) < \pi/2.$

Since

 $\operatorname{meas}(\operatorname{Nor}_{co_B(\gamma_x)}(x) \cap S^1) = \pi - \operatorname{meas}(a\check{n}g(bxc_1))$

the thesis follows. \square

Remark 2 The assumption on the regularity of γ in Theorem 4.3 will be removed in a work in progress. Previous theorem provides a bound for the measure of Nor $_{co_R(\gamma_x)}(x)$ for *R*-curves γ in a small circle. This bound implies, Theorem 4.4, a bound on the measure of the tangent angle Tan $_{co(\gamma_x)}(x)$.

Definition 6 Let γ be an oriented curve, $x \in \gamma$, N > 1; γ satisfies the property $P_N(\gamma_x)$ if

$$\operatorname{meas}(\operatorname{Tan}_{co(\gamma_x)}(x)) \le \pi/2 + 2 \arcsin \frac{1}{2N}$$
(20)

holds.

THEOREM 4.4 Let γ be a C^1 plane R-curve. Assume that for every $x \in \gamma$, γ_x is contained in D(x, R/N), N > 1. Then γ_x satisfies $P_N(\gamma_x)$ for every $x \in \gamma$.

Proof. Let u_1, u_2 be, as in the previous theorem, the unit vectors bounding $S^1 \cap \operatorname{Nor}_{co_R(\gamma_x)}(x)$. If $u_1 = -u_2$, then γ_x is contained in an equilateral triangle with vertex x, then $\operatorname{Tan}_{co(\gamma_x)}(x)$ is acute and the thesis holds. If $u_1 \neq -u_2$ let A_1 the connected component of

$$(B(x + Ru_1))^c \cap (B(x + Ru_2))^c \cap D(x, R/N),$$

containing x. Let us notice that $reach(A_1, x) \ge R$ and Nor $_{co_R(\gamma_x)}(x) = \text{Nor }_{A_1}(x)$. Then, by Proposition 2.1, the sets $\text{Tan}_{A_1}(x)$ and $\text{Tan}_{co_R(\gamma_x)}(x)$ coincide. Then, by Theorem 4.3,

$$\operatorname{meas}(\operatorname{Tan}_{A_1}(x)) \le \pi/2$$

It is an easy exercise to show that

$$\operatorname{meas}(\operatorname{Tan}_{co(A_1)}(x)) = \operatorname{meas}(\operatorname{Tan}_{A_1}(x)) + 2 \operatorname{arcsin} \frac{1}{2N}.$$

As $co(\gamma_x) \subset co(A_1)$,

$$\operatorname{meas}(\operatorname{Tan}_{co(\gamma_x)}(x)) \le \operatorname{meas}(\operatorname{Tan}_{co(A_1)}(x)),$$

from the previous equality and inequalities, the property $P_N(\gamma_x)$ follows.

Remark 3 This theorem proves that the *R*-curves, satisfying the assumptions of Theorem 4.3, are ϕ -self-approaching curves with $\phi = \pi/2 + 2 \arcsin \frac{1}{2N}$, opposite oriented, according to Definition 1 in [7].

In what follows, bounds for the curves' length and detour are proved with a simple extension of the techniques in [1] and in a different way than [7]. Let, for simplicity, $|\gamma|$ be the length of γ , $\gamma(s) = \gamma_{x(s)}$ and $p(s) := per(co(\gamma(s)))$.

THEOREM 4.5 Let R be a positive number and let N > 1. Let z_0 be a fixed point in the plane. If γ is a plane R-curve, $\gamma \subset D(z_0, R/(2N))$ and the property $P_N(\gamma_x)$ holds for every $x \in \gamma$, then

$$p'(s) \ge 1 - \frac{1}{N}$$
 a.e. $s \in [0, |\gamma|];$ (21)

$$|\gamma| \le \frac{\pi}{N-1}R.$$
(22)

LEMMA 4.6 Let K be a plane convex body. Let $p_0 \in \partial K$, $u = (\cos \alpha, \sin \alpha) \in -\operatorname{Tan}_K(p_0)$. Let $0 \le \omega < \pi$ the amplitude of $\operatorname{Tan}_K(p_0)$. Let $\varepsilon > 0$, $p_{\varepsilon} = p_0 + \varepsilon u$, $K^{p_{\varepsilon}}$ the simple cap body of K at p_{ε} , then

$$per(K^{p_{\varepsilon}}) - per(K) \ge \varepsilon(1 + \cos \omega).$$
 (23)

Proof. Let $T := \operatorname{Tan}_{K}(p_{0})$ and $N := \operatorname{Nor}_{K}(p_{0})$ the normal cone of K at p_{0} . Since the amplitude of T is less than π , $u \notin T$. The assumptions of [6, Theorem 3.1] hold and formula [6, (19)] implies that

$$per(K^{p_{\varepsilon}}) - per(K) \ge \varepsilon \int_{N \cap S^1 \cap \{u\}^*} \langle \Theta, u \rangle d\Theta,$$

where $\Theta = (\cos \theta, \sin \theta)$. Since $u \in -T$, then $N = (-T)^* \subset \{u\}^*$ and the amplitude of N is $\pi - \omega$. Let $N \cap S^1 = \{(\cos \theta, \sin \theta), 0 \le \theta \le \pi - \omega\}$. The previous integral is equal to

$$\int_{0}^{\pi-\omega} \cos(\theta-\alpha)d\theta = \sin(\omega+\alpha) + \sin\alpha := f(\alpha).$$

Since $u \in -T$ the constraint $\frac{\pi}{2} - \omega \leq \alpha \leq \frac{\pi}{2}$ holds and in that interval $f(\alpha)$ is bounded below by $1 + \cos \omega$.

Proof. The proof is strongly similar to the proof of Theorem IV in [1]. First let us observe that p(s), the perimeter of $co(\gamma(s))$, is increasing since $\gamma(s)$ is increasing by inclusion; thus p(s) and x(s) are derivable a.e in $[0, |\gamma|]$. Let us consider a point x on the curve γ , let us observe that as $\gamma \subset D(z_0, R/(2N))$, then for all $x \in \gamma, \gamma_x \subset D(x, R/N)$. By (20) the measure ω of $T := \operatorname{Tan}_{co(\gamma_x)}(x)$ satisfies

$$\omega \le \frac{\pi}{2} + 2\arcsin\frac{1}{2N} < \pi. \tag{24}$$

By assumption $co(\gamma_x) \subset T \cap D(x, R/N)$ and for h > 0 the point $\overline{x} = x(s) + hx'(s)$ is in the angle opposite to T. Since ω is less than π , then $\overline{x} \notin T$. Let $co(\gamma(s))^{\overline{x}} := co(co(\gamma(s)) \cup \{\overline{x}\})$ the simple cap body of $co(\gamma(s))$ at \overline{x} . Let per(K) be the perimeter of a plane convex body K. The hypothesis of Lemma 4.6 are satisfied with $K = co(\gamma(s)), p_0 = x(s) \in \partial K, u = x'(s), \varepsilon = h$. Thus

$$per(co(\gamma(s))^{\overline{x}}) - per(co(\gamma(s)) \ge (1 + \cos \omega)h.$$
 (25)

Let w := x(s+h) and let us consider $co(\gamma(s))^w$ the simple cap body of $co(\gamma(s))$ at w. Arguing as in the proof of [1, Theorem VII, p. 222, line 11], the following asymptotic inequality holds:

$$per(co(\gamma(s))^{\overline{x}}) \ge per(co(\gamma(s))^w) + o(h), \quad \text{for} \quad h \to 0^+.$$
 (26)

Since

$$co(\gamma(s)) \subset co(\gamma(s))^w \subset co(\gamma(s+h)),$$

then

$$p(s) \le per(co(\gamma(s))^w) \le p(s+h).$$

From (26):

$$p(s+h) - p(s) \ge per(co(\gamma(s))^w) - per(co(\gamma(s))) \ge per(co(\gamma(s))^{\overline{x}}) - per(co(\gamma(s))) + o(h)$$

and from (25)

$$p(s+h) - p(s) \ge (1 + \cos \omega)h + o(h)$$
 for $h \to 0^+$.

Thus, from (24),

$$p'(s) \ge 1 + \cos \omega \ge 1 - \frac{1}{N}$$
, a.e. $s \in [0, |\gamma|]$.

This proves (21). As p(s) is a not decreasing functions, by integrating (21) in $[0, |\gamma|]$, the following inequality

$$p(|\gamma|) - p(0) \ge (1 - \frac{1}{N})|\gamma|$$
 (27)

holds. As $co(\gamma)$ is contained in a circle of radius $\frac{R}{2N}$ then $p(|\gamma|) \leq \pi \frac{R}{N}$ and (22) is proved.

THEOREM 4.7 Let γ be a plane R-curve, contained in a circle of radius less than R/M and centered at z_0 , with M > 2. Let $P_M(\gamma_x)$ holds for every $x \in \gamma$. Then the detour of $\gamma_{x_1,x}$ is bounded by a constant c(M). Moreover if $M \geq 3$, $c(M) \leq 6\pi e^{\pi}$.

Proof. From (8) of Lemma 3.1, for $0 \le s_1 \le s_2 \le s \le L$

$$|x(s) - x(s_1)|e^{\frac{|\gamma|}{2R}} \ge |x(s_2) - x(s_1)|.$$

Therefore the circle of radius $|x(s) - x(s_1)|e^{\frac{|\gamma|}{2R}}$ centered in $x(s_1)$ contains $\gamma_{x(s_1),x(s)}$. It follows that

$$per(co(\gamma_{x(s_1),x(s)})) \le 2\pi |x(s) - x(s_1)| e^{\frac{|\gamma|}{2R}}.$$
(28)

Let $x_1 = x(s_1), x = x(s)$; by assumption $\gamma_{x_1,x} \subset D(x_0, R/M)$; then, from (27) of Theorem 4.5 with N = M/2, it follows that

$$\frac{|\gamma_{x_1,x}|}{per(co(\gamma_{x_1,x}))} \le \frac{1}{1-\frac{2}{M}} = \frac{M}{M-2};$$

then, from (28)

$$\frac{|\gamma_{x_1,x}|}{|x-x_1|} = \frac{|\gamma_{x_1,x}|}{per(co(\gamma_{x_1,x}))} \frac{per(co(\gamma_{x_1,x}))}{|x_1-x|} \le \frac{M}{M-2} 2\pi e^{\frac{|\gamma|}{2R}}.$$

From (22), it follows that

$$\frac{|\gamma_{x_1,x}|}{|x-x_1|} \le 2\pi \frac{M}{M-2} e^{\frac{\pi}{(M-2)}}.$$

Then $c(M) \leq 2\pi \frac{M}{M-2} e^{\frac{\pi}{(M-2)}}$. If $M \geq 3$, then $c(M) \leq 6\pi e^{\pi}$.

Remark 4 The bound for c(M) in the previous theorem is not sharp. A better bound can be obtained using [7, Theorem 7].

5. Bounds for the length and the detour of plane R-curves

LEMMA 5.1 Let $0 < r_1 < \tau$ and let x_0, \ldots, x_m be points in the closed ball $D(w_0, \tau)$ of \mathbb{R}^n , satisfying

$$|x_i - x_j| \ge r_1$$
, for $0 \le i \ne j \le m$.

Then

$$m \le (\frac{4\sqrt{n}\tau}{r_1})^n.$$
⁽²⁹⁾

Proof. The cubes Q_j centered in x_j with sides r_1/\sqrt{n} do not have internal points in common; moreover each cube Q_j is contained in the cube Q centered in x_0 with side 4τ . Since

$$\sum_{j} \operatorname{meas}(Q_j) \le \operatorname{meas}(Q)$$

the bound (29) is obtained. \square

The following theorem gives an answer to question (B) of the introduction.

THEOREM 5.2 Let $w_0 \in \mathbb{R}^2$, R > 0. Let γ be a C^1 plane R-curve, $\gamma \subset D(w_0, \tau)$. Then there exists a positive constant $c(R, \tau)$, depending on R and τ only so that

$$|\gamma| \le c(R, \tau),\tag{30}$$

where (i) if $\tau \leq \frac{R}{4}$, then $c(R, \tau) \leq 4\pi\tau \leq \pi R$; (ii) if $\tau > \frac{R}{4}$ then

$$c(R,\tau) \le (1 + (16\sqrt{2}e^{\pi/2})^2(\frac{\tau}{R})^2)\pi R.$$
 (31)

Proof. Case (i): let $N = \frac{R}{2\tau} \ge 2$. Then

$$\gamma \subset D(w_0, \tau) = D(w_0, \frac{R}{2N}).$$

Then, by Theorem 4.5,

$$|\gamma| \le \frac{\pi}{N-1}R = \frac{\pi}{\frac{R}{2\tau} - 1}R = 2\pi(1 + \frac{2\tau}{R-2\tau})\tau.$$

As $R \ge 4\tau$, $|\gamma| \le 4\pi\tau$ and in case (i) inequality (30) holds. Case (ii): let γ_0 be the closed connected component of $\gamma \cap D(x(0), R/4)$ starting at x(0), then Theorem 4.5 applies to γ_0 with $z_0 = x(0)$, N = 2; by (22), it follows that $|\gamma_0| \leq \pi R$. If $\gamma_0 \cap \partial B(x(0), R/4) = \emptyset$, thus $\gamma = \gamma_0$ and by previous inequality $|\gamma| \leq \pi R$. Thus (30) is proved with the constant given in (31). In case $E_0 := \gamma_0 \cap \partial B(x(0), R/4) \neq \emptyset$. Let x_1 be the end point of γ_0 . Let γ_1 be the closed connected component of $(\{x_1\} \cup (\gamma \setminus \gamma_{x_1})) \cap D(x_1, R/4)$. Then, by Theorem 4.5

 $|\gamma_1| \le \pi R.$

Let $\gamma_1 \cap \partial B(x_1, R/4) = \emptyset$, thus $\gamma = \gamma_0 \cup \gamma_1$; then

$$|\gamma| = |\gamma_0| + |\gamma_1| \le 2\pi R$$

and (30) is proved with the constant given in (31).

Let us assume that $E_1 := \gamma_1 \cap \partial B(x_1, R/4) \neq \emptyset$. An iterative procedure can be constructed. Let us assume that $\gamma_0, \gamma_1, \ldots, \gamma_m$ are connected subsets of γ already defined; let x_j and x_{j+1} be the starting and the end points of each γ_j $(j = 0, \dots, m-1)$; γ_j is the closed connected component of $(\{x_j\} \cup (\gamma \setminus \gamma_{x_j})) \cap D(x_j, R/4)$ starting at x_j ; moreover $\gamma_j \cap \partial B(x_j, R/4) \neq \emptyset$ $(j = 0, \dots, m-1)$ and

$$|\gamma_j| \le \pi R. \tag{32}$$

Let us consider

$$E_m := (\{x_m\} \cup (\gamma \setminus \gamma_{x_m})) \cap \partial(B(x_m, R/4)).$$

There are two possibilities: either $E_m = \emptyset$ or $E_m \neq \emptyset$. If $E_m = \emptyset$ then the procedure stops and $\gamma = \bigcup_{i=0}^m \gamma_i$. Otherwise, if $E_m \neq \emptyset$, let x_{m+1} be the end point of γ_m and let γ_{m+1} be the closed connected component of $(\{x_{m+1}\} \cup (\gamma \setminus \gamma_{x_{m+1}})) \cap D(x_{m+1}, R/4)$. If γ_{m+1} reduces to the point x_{m+1} the procedure stops. Otherwise the procedure continues.

Claim : $|x_i - x_j| \ge \frac{R}{4}e^{-\frac{\pi}{2}}$ for $0 \le i \ne j \le m$. The claim will be proved later. From Lemma 5.1 with $r_1 := \frac{R}{4}e^{-\frac{\pi}{2}}$, since $\{x_0, \ldots, x_m\} \subset \gamma \subset D(w_0, \tau)$, the iterative procedure stops with $m \leq (\frac{4\sqrt{2\tau}}{r_1})^2$. Then $\gamma = \bigcup_{i=0}^m \gamma_i$; from (32) and the previous bound on m it follows that

$$|\gamma| = \sum_{i=0}^{m} |\gamma_i| \le (m+1)\pi R \le \left(1 + \left(\frac{4\sqrt{2}}{r_1}\right)^2 \tau^2\right) \pi R.$$

Inequality (30) follows with $c(R, \tau)$ given by (31).

Proof of the claim: Let $x_i = x(s_i), x_j = x(s_j), s_i < s_j$. The claim holds true if $x_j \notin B(x_i, R/4)$. Assume that $x_j \in B(x_i, R/4)$. Let us recall that $\gamma \setminus \gamma_{x_j}$ has points outside of $B(x_i, R/4)$. Thus the connected

component $\overline{\gamma}$ of $\gamma \cap D(x_i, R/4)$ that contains x_j reenters in $D(x_i, R/4)$ in a point $x(\overline{s}) \in \partial B(x_i, R/4)$, $s_i < \overline{s} < s_j$. By Theorem 4.5

$$s_j - \overline{s} \le |\overline{\gamma}| < \pi R.$$

By Lemma 3.1, as $0 \leq s_i < \overline{s} < s_j$ then

$$|x(s_j) - x(s_i)| \ge |x(\overline{s}) - x(s_i)|e^{-\frac{s_j - \overline{s}}{2R}} \ge \frac{R}{4}e^{-|\overline{\gamma}|/2R} \ge \frac{R}{4}e^{-\pi/2}$$

holds. The claim is proved. \square

The bound for the constant $c(R, \tau)$ obtained above is not the best one, but the exponent of the factor τ^2 in (31) cannot be lowered. As an example, let us consider the square of sides $(p+1)R, p \in \mathbb{N}, p$ pair, with vertices O = (0,0), (pR,0), (pR,pR), (0,pR). Let γ the piecewise linear line joining the points

$$\begin{array}{l} (0,0), (pR,0), (pR,R), (0,R), \\ \dots \\ (0,2kR), (pR,2kR), (pR,(2k+1)R), (0,(2k+1)R), \\ \dots \\ (0,(p-2)R), (pR,(p-2)R), (pR,(p-1)R), (0,(p-1)R), \\ (0,pR), (pR,pR), (pR,(p+1)R). \end{array}$$

 γ is a piecewise linear R-curve with length $(p+1)(pR) + pR + R = (1+p)^2R$. Let $(p+1)\sqrt{2}R = \tau$. Then $\gamma \subset B(O,\tau)$ and $|\gamma| = \tau^2/2R$. With a standard smoothing technique the previous example can be extended to a C^1 plane *R*-curve.

THEOREM 5.3 Let $z_0 \in \mathbb{R}^2$, R > 0. Let γ be a C^1 plane R-curve, $\gamma \subset D(z_0, \tau)$. Then the detour of $\gamma_{x_1,x}$ is bounded for all $x_1, x \in \gamma$ by a constant depending on R and τ only.

Proof. Let $x_1, x \in \gamma$, $x_1 \prec x$. If $\gamma_{x_1,x} \subset D(x_1, R/3) \subset D(z_0, \tau)$ then the result follows from Theorem 4.7. Otherwise $per(co(\gamma_{x_1,x})) \ge 2|x - x_1| > \frac{2}{3}R$. Then

$$\frac{1}{|x-x_1|} < \frac{3}{R}$$

Then from (30) and the previous inequality

$$\frac{|\gamma_{x_1,x}|}{|x-x_1|} < 3\frac{c(R,\tau)}{R}$$

follows.

Let us conclude this section by showing that in the previous theorem the dependence on τ is needed.

PROPOSITION 5.4 Let x_0, \overline{x} be two given points with distance 2R. For every K > 0 there exists $\gamma \in \Gamma_R$, with first point x_0 and last point \overline{x} such that the detour

$$\frac{|\gamma_{x_0,\overline{x}}|}{|x_0-\overline{x}|} > K.$$

Proof. Let $m \geq 3$ be a real number. Let C a circumference of radius $\rho = mR$ through x_0, \overline{x} . Let γ be obtained from C by deleting the shorter arc joining x_0, \overline{x} . The curve γ is an R-curve, it satisfies (4) for every $x(s) \in \gamma$. The arc $\gamma_{x_0, \overline{x}}$ has detour

$$\frac{(2\pi - 2\arcsin\frac{R}{\rho})\rho}{2R} = (2\pi - 2\arcsin\frac{1}{m})\frac{m}{2} = (\pi - \arcsin\frac{1}{m})m.$$

This number can be made arbitrarily large, by choosing m suitably.

6. R-curves as steepest descent curves

In this section the *R*-curves are seen as steepest descent curves of classes of functions. The bound on their length proved in previous sections, generalizes the results of [1], [2], [3], [4], [5], [6], for quasi convex functions.

Let $\Omega \subset \mathbb{R}^2$ be an open bounded connected set. Ω will be called regular if for every $y \in \partial \Omega$ there exists a neighborhood U of y so that $\partial \Omega \cap cl(U)$ is a regular curve. Let Ω be regular, $u \in C^2(cl(\Omega))$, $Du(x) \neq 0$ for $u(x) > \min_{cl(\Omega)} u$. Let us consider the sublevel sets of u in $cl(\Omega)$: $\Omega_l = \{x \in cl(\Omega) : u(x) \leq l\}$, for $l > \min_{cl(\Omega)} u$ and let assume that $\partial \Omega = \Omega_{\max u}$. Let $\operatorname{argminu} := \{x : u(x) = \min_{cl(\Omega)} u\}$.

A simple rectifiable curve γ will be called regular if its parametric representation $x(\cdot)$ with respect to its arc length is C^2 . Let us recall that γ (with ascent parameter s) is called a steepest descent curve for the function u in Ω if it is a solution of the differential equation

$$x' = \frac{Du(x)}{|Du(x)|}$$
 $x \in \Omega \setminus \operatorname{argmin} u.$

THEOREM 6.1 Let Ω, u be satisfying the above assumptions. Let R > 0. If all sublevel sets Ω_l of u have the property of the R-exterior ball, then

(i) the steepest descent curves of u are R-curves,

(ii) their lengths are uniformly bounded by a constant depending only on R and the diameter of Ω .

Proof. The set Ω_l has the property of the *R*-exterior ball (Definition 2); then $\forall y \in \partial \Omega_l, \forall x \in \Omega$, such that $u(x) \leq u(y)$,

$$|x - (y + R\frac{Du(y)}{|Du(y)|})| \ge R$$
(33)

holds.

Let $x(\cdot)$ a steepest descent curve for u; let y = x(s), x = x(s - h) with h > 0, then u(x) < u(y) and from (33), it follows that

$$|x(s-h) - (x(s) + R \frac{Du(x(s))}{|Du(x(s))|})| \ge R.$$

As Du(x(s))/|Du(x(s))| is the tangent vector $\mathbf{t}(s)$ at x(s), the inequality (4) holds and (i) is proved. The assert (ii) follows from Theorem 5.2. \square

THEOREM 6.2 Let Ω and u be satisfying the assumptions of the previous theorem. Let R > 0 and let all the sublevel sets of u have reach greater than R; then

(a) the steepest descent curves of u are R-curves;

(b) the steepest descent curves of u have length bounded by $c(R, \operatorname{diam} \Omega)$.

Proof. Let $y \in \Omega \setminus \operatorname{argmin} u$. The sets Ω_l have reach greater than R; then, by Proposition 2.2, Ω_l have the property of R exterior ball. Therefore, by (ii) of Theorem (6.1), the thesis holds with $c(R, \operatorname{diam}(\Omega))$ given by (31). \square

Next Theorem 6.6 provides a simple way to check when a "small" connected compact plane set A has the property of R-exterior ball. The goal of what follows is to prove that if $A \subset B_R$ and ∂A has the curvature equal or greater than -1/R in each point, then A has the R-exterior ball property (Theorem 6.6).

Let η be the support of a plane oriented regular simple curve parametrized by $s \to x(s)$, s arc length. The signed curvature k_{η} at a point x(s) is defined by the Frenet formula:

$$\frac{d}{ds}\mathbf{t}(s) = k_{\eta}\mathbf{n}(s),$$

where $\mathbf{t}(s)$ and $\mathbf{n}(s)$ are the tangent and the normal vector to η at x(s); it is assumed that a counterclockwise rotation of $\pi/2$ maps $\mathbf{t}(s)$ on $\mathbf{n}(s)$. When η is the graph of a function $y = f(x), f \in C^2(-L, L)$, oriented according to the x-axis orientation, the curvature of η at a point (x, f(x)) is

$$k_{\eta} = \frac{f''}{(1 + (f')^2)^{3/2}}(x).$$

LEMMA 6.3 Let I = [0, l] ([-l, 0]), with 0 < l < R. Let $f : I \to \mathbb{R}$ a C^2 real function. Let

$$g(x) = \sqrt{R^2 - x^2} - R, \quad x \in I.$$

Let f satisfy the conditions:

$$f(0) = 0, \quad f'(0) = 0, \tag{34}$$

$$\frac{f''}{(1+(f')^2)^{3/2}}(x) \ge -\frac{1}{R}, \quad x \in I,$$
(35)

$$f(l) \le g(l) \quad (f(-l) \le g(-l)).$$
 (36)

Then

$$f(x) \equiv g(x), \quad x \in I.$$

Proof. Let I = [0, l]. Since

$$\frac{g''}{(1+(g')^2)^{3/2}} = -\frac{1}{R}$$

inequality (35) implies that

$$\frac{d}{dx}\frac{f'}{(1+(f')^2)^{1/2}} \ge \frac{d}{dx}\frac{g'}{(1+(g')^2)^{1/2}}.$$

Thus, as f'(0) = g'(0), integrating the previous inequality between 0 and x we obtain

$$\frac{f'}{(1+(f')^2)^{1/2}} \ge \frac{g'}{(1+(g')^2)^{1/2}}, \quad 0 \le x \le l,$$

As the function $\frac{t}{(1+t^2)^{1/2}}$ is strictly increasing in $t \in \mathbb{R}$, the inequality

$$f'(x) \ge g'(x), \quad 0 \le x \le l,$$

holds in [0, l]. As

$$0 \ge f(l) - g(l) = \int_0^l (f'(x) - g'(x)) dx \ge 0,$$

then $f' \equiv g'$ in [0, l]. As f(0) = g(0) then, $f \equiv g$ in [0, l].

Let I = [-l, 0]. For the functions $\tilde{f} = f(-(\cdot))$ and $\tilde{g} = g$ the previous procedure applies in [0, l], then the thesis follows.

LEMMA 6.4 Let G, H be plane, open, bounded, simply connected sets with $G \subset H$. Let ∂G , ∂H have the same orientation. Assume that there exists $\overline{y} \in \partial G \cap \partial H$ and that in a neighborhood U of \overline{y} the set $U \cap \partial G$ $(U \cap \partial H)$ is support of a regular curve α (β) with orientation induced by ∂G (∂H). At \overline{y} the sets G and H have the same exterior normal vector. Thus α and β have the same tangent vector at \overline{y} , accordingly to their orientation.

LEMMA 6.5 Let B^i , the open disk of radius R, centered at $w^i \in \mathbb{R}^2, i = 0, 1, 0 < |w^1 - w^2| < 2R$. Let η be an oriented regular plane curve joining two different points $y_0, y_1 \in \partial B^1$ such that

$$\eta \subset cl(B^0) \setminus B^1.$$

Let's assume that one of the points y_0, y_1 is in B^0 . Let y_1 follow y_0 according to the clockwise orientation of ∂B^1 and $y_0 \prec y_1$ on η . If the curvature of η satisfies the inequality

$$k_{\eta} \ge \frac{-1}{R},\tag{37}$$

then

$$\eta \subset \partial B^1. \tag{38}$$

Proof. Let

$$B^{t} = B(tw_{1} + (1 - t)w_{0}, R), \quad 0 \le t \le 1$$

the family of plane balls connecting B^0 with B^1 . Let $E = \{t : \eta \subset cl(B^t)\}$. By assumption, $0 \in E$. Let $t^* = \sup E$. If $t^* = 1$, the lemma is proved. Otherwise, since $\eta \subset cl(B^{t^*})$, there exists $\overline{y} \in \eta \cap \partial B^{t^*}$, $\overline{y} \neq y_0, y_1$. Thus $\eta \cap \partial B^{t^*}$ is a non empty set and of course it is closed. Let us prove that it is also open. At each point $\overline{y} \in \eta \cap \partial B^{t^*}$ let us consider a Cartesian coordinate system with origin \overline{y} and x-axis oriented as the tangent to ∂B^{t^*} clockwise oriented. As $\eta \subset B^{t^*}$ and it is a regular curve, then η is tangent to ∂B^{t^*} at \overline{y} . In a neighborhood of \overline{y} the support of η is the graph of a function y = f(x) in the coordinate system (x, y). Let us prove that η is oriented accordingly to the graph of f, to say according to the x-axis orientation at \overline{y} . Let $H :\equiv B^{t^*} \setminus cl(B^1)$, G the open set bounded by η and $arc(y_0, y_1)$ on ∂B^1 clockwise oriented. Then \overline{y} satisfies the assumptions of Remark 6.4 and the curves η and $\partial B^{t^*} \setminus B^1$ have the same tangent vector. Then the assumptions of Lemma 6.3 are satisfied in a suitable neighborhood of \overline{y} since the bound (37) implies (35). Lemma 6.3 implies that $\eta \cap \partial B^{t^*}$ is also open. Then $\eta \cap \partial B^{t^*} = \eta$. Then $y_0, y_1 \in \partial B^{t^*} \cap \partial B^1$. As $\eta \subset cl(B^0)$ it follows that $t^* \in \{0, 1\}$. Since one of the points y_0, y_1 is in B^0 , then $t^* = 1$. Contradiction.

THEOREM 6.6 Let $A \subset cl(B_R)$ be a regular plane compact set such that ∂A is connected and the counterpart of the counterpart of the set of the counterpart of th terclockwise oriented curve η with support ∂A has curvature greater or equal than -1/R. Then A has the property of the R-exterior ball.

Proof. Let $z_0 \in \partial A$ and $n_A(z_0)$ be the exterior normal to A at z_0 . Let

$$B^1 = B(z_0 + Rn_A(z_0)), \quad B^0 = B_R$$

In what follows ∂B^1 will be clockwise oriented and arc(a,b) will be the shorter arc on ∂B^1 from a to b, a, b are points on ∂B^1 .

If $z_0 \in \partial B^0$, then $\eta \subset cl(B^0)$ is tangent to ∂B^0 ; as A and $cl(B^0)$ have the same outer normal vector, then $B^1 \cap A = \emptyset$ and B^1 R-supports A at z_0 .

Let $z_0 \in B^0$. Let us notice that if $z \in cl(B^0) \cap cl(B^1)$, then $|z - z_0| < 2R$. If $A \subset (B^1)^c$, then A has the property of the exterior ball at z_0 . To prove this fact it will be shown that there exist two points $z_0^+, z_0^- \in \eta \cap \partial B^1$ $(z_0^+, z_0^- \text{ possibly coinciding with } z_0)$, such that η is the union of $arc(z_0^-, z_0^+)$ and a regular curve $\tilde{\eta}$, with end points z_0^+, z_0^- , where

$$\tilde{\eta} \setminus \{z_0^-, z_0^+\} \subset (cl(B^1))^c.$$

Let (x, y) be a Cartesian coordinate system centered at z_0 , with y-axis in the opposite direction of $n_A(z_0)$ and the x axis in the direction of the tangent vector to η at z_0 . Let U be a neighborhood of z_0 such that

 $\eta \cap U$ is the graph of a function of the tangent vector to η at z_0 . Let U be a neighborhood of z_0 such that $\eta \cap U$ is the graph of a function y = f(x) and $\partial B^1 \cap U$ is the graph of y = g(x). If $\eta \cap U$ contains a point $z \in cl(B^1) \cap cl(B^0) \setminus \{z_0\}$ then, for a suitable 0 < l < R, either z = (l, f(l)) or z = (-l, f(-l)). Then f, g satisfy the assumptions of Lemma 6.3. Therefore $\eta_{z,z_0} \cap U \subset \partial B^1$ $(\eta_{z_0,z} \cap U \subset \partial B^1)$.

Let ξ be the maximal closed connected component of $\eta \cap cl(B^1)$ containing z_0 . As $\xi \subset cl(B^1) \cap cl(B^0)$ then diam $(\xi) < 2R$; then ξ is an arc on ∂B^1 shorter than πR , with end points z_0^-, z_0^+ , where $z_0^- \prec z_0 \prec z_0^+$ on $\partial B^1 \cap cl(B^0)$; it can be $z_0 = z_0^-$, $z_0 = z_0^+$, moreover by the regularity of η both $z_0^+, z_0^- \notin \partial B^0$. Let $\tilde{\eta} = \eta \setminus \xi$ oriented accordingly to the counterclockwise orientation of ∂A . Let

$$W^{+} = \{ w \in \tilde{\eta} : z_{0}^{+} \prec w, \tilde{\eta}_{z_{-}^{+}, w} \setminus \{ z_{0}^{+}, w \} \subset (cl(B^{1}))^{c} \};$$
(39)

$$W^{-} = \{ w \in \tilde{\eta} : w \prec z_{0}^{-}, \tilde{\eta}_{w, z_{0}^{-}} \setminus \{ z_{0}^{-}, w \} \subset (cl(B^{1}))^{c} \}.$$

$$(40)$$

The above argument shows that W^+, W^- are non empty sets. Let w^+ the supremum of W^+ (w^- the infimum of W^-) accordingly to the ordering of $\tilde{\eta}$. Then $\{w^+, w^-\} \subset \partial B^1$ and $\tilde{\eta}_{z_0^+, w^+}, \tilde{\eta}_{w^-, z_0^-}$ are subsets of $\tilde{\eta}$. If $w^+ = z_0^-$ then also $w^- = z_0^+$ and vice versa, moreover in this case

$$\tilde{\eta} \setminus \{z_0^-, z_0^+\} \subset (cl(B^1))^c$$

and the thesis holds.

Let us show first that $w^+ \neq z_0^-, w^- \neq z_0^+$ cannot hold. Let $\partial B^1 \cap \partial B^0 = \{u^-, u^+\}$, with $u^- \prec z_0^- \prec z_0^- \neq z_0^+$ $z_0^+ \prec u^+$ on $\partial B^1 \cap cl(B^0)$.

Let us show that $w^+ \in arc(z_0^+, u^+)$ ($w^- \in arc(u^-, z_0^-)$) cannot hold. As B^0, B^1 and $\eta_{z_0^+, w^+}$ satisfy the hypothesis of Lemma 6.5 with $y_0 = z_0^+, y_1 = w^+$, that would imply $\eta_{z_0^+, w^+} \subset \partial B^1$. This fact would contradict the maximality property of z_0^+ (similar procedure for w^-). The remaining case would be $w^+ \in arc(u^-, z_0^-)$ and $w^- \in arc(z_0^+, u^+)$. This would imply that $\tilde{\eta}_{z_0^+, w^+}$ and $\tilde{\eta}_{w^-, z_0^-}$ should cross and that η is not a simple curve. This is impossible.

The *R*-exterior ball property cannot hold for a set *A* without suitable topological assumptions. As example let us consider two concentric disks D(O, R), D(O, 2R) centered at the origin *O*. Let *V* a convex angle of vertex *O* with amplitude $\varepsilon > 0$. Let $U = D(O, 2R) \setminus (D(O, R) \cup V)$. *U* is a regular domain (excepted four points) which can be modified in a neighborhood of this four points into a smooth domain *A* such that ∂A has the curvature greater or equal than -1/R at each point. It easy to see that each B_R ball with boundary through a point on $\partial A \cap \partial V$ meets the interior of *A* for ε small enough. The assumption that ∂A is connected is necessary too. Let us consider as *A* the union of

two disjoint small circles contained in B_R . The counterclockwise oriented boundary of the circles have positive curvature but the *R*-exterior ball property does not hold.

In a forthcoming work [8] it will be shown that Theorem 6.6 is sharp. If $A \subset cl(B_{R+\varepsilon})$, with $\varepsilon > 0$ the result may not hold.

THEOREM 6.7 Let $\Omega \subset D_R$. Let the curvature of the level lines $\{x \in \Omega : u(x) = l\}$ (counterclockwise oriented), with $l > \min_{\Omega} u$, greater or equal than $-\frac{1}{R}$. Then the level sets of u have the property of the R-exterior ball and its steepest descent curves are R-curves.

Proof. From the previous theorem, applied to each set $A = \Omega_l$, it follows that the level sets of u have the property of the *R*-exterior ball; then, by Theorem 6.1 the steepest descent curves of u are *R*-curves. \square

Acknowledgement

This work has been partially supported by INDAM-GNAMPA(2016).

References

- Manselli P, Pucci C. Maximum length of Steepest descent curves for Quasi-convex Functions. Geometriae Dedicata 1991;38:211-227.
- [2] Mainik I F. An estimate of the length of the curves of descent. Sibirsk Mat Zh. 1992;33:215-218.
- [3] Icking C, Klein R, Langetepe E. Self-approaching curves. Math Proceedings Cambridge Philos Soc. 1999;125:441-453.
- [4] Daniilidis A, Ley O, Sabourau S. Asymptotic behaviour of self-contracting planar curves and gradient orbits of convex functions. J Math Pures Appl. 2010;94:183-199.
- [5] Daniilidis A, David G, Durand-Cartagena E, Lemenant A. Rectifiability of selfcontracted curves in the euclidean space and applications. J Geom Anal. 2015;25:1211-1239.
- [6] Longinetti M, Manselli P, Venturi A. On steepest descent curves for quasi convex families in Rⁿ. Math Nachr. 2015;288:420-442.
- [7] Aichholzer O, Aurenhammer F, Icking C, Klein R, Langetepe E, Rote G. Generalized self-approaching curves. Discr Appl Math. 2001;109:3-24.
- [8] Longinetti M, Manselli P, Venturi A. Plane *R*-curves and their steepest descent properties II. in preparation.
- [9] Federer H. Curvature measure. Trans Amer Math Soc. 1959;93:418-481.
- [10] Rataj J. Determination of spherical area measures by means of dilatation volumes. Math Nachr 2002;235:143-162.
- [11] Colesanti A, Manselli P. Geometric and Isoperimetric Properties of sets of Positive Reach in E^d. Atti Semin Mat Fis Univ Modena Reggio Emilia. 2010;57:97-113.
- [12] Bonnesen T, Fenchel W. Theory of Convex Bodies. BCS Associates; 1987.