FLORE

Repository istituzionale dell'Università degli Studi

 di Firenze
Plane R-curves and their steepest descent properties I

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:
Plane R-curves and their steepest descent properties I / M. Longinetti, P. Manselli, A. Venturi. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - ELETTRONICO. - (2019), pp. 1-14.
[10.1080/00036811.2018.1466278]

Availability:
This version is available at: 2158/1128036 since: 2021-03-29T13:58:37Z

Published version:
DOI: 10.1080/00036811.2018.1466278

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

Plane R-curves and their steepest descent properties I

M. Longinetti ${ }^{\mathrm{a} *}$ P. Manselli ${ }^{\mathrm{a}}$ and A. Venturi ${ }^{\text {b }}$
${ }^{a}$ DIMAI, Università di Firenze, V.le Morgagni 67, 50134 Firenze-Italy
${ }^{b}$ GESAAF, Università di Firenze, P.le delle Cascine 15, 50144 Firenze-Italy

(v3.0 released)

AMS Subject Classifications: Primary: 49Q15, 52A30; Secondary: 34A26, 34A60
Keywords: steepest descent curves, sets with positive reach, length of curves, detour

Let Γ_{R} be the class of plane, oriented, rectifiable curves γ, such that for almost every $x \in \gamma$, the part of γ preceding x is outside of the open circle of radius R, centered in $x+R \mathbf{t}_{x}$, where \mathbf{t}_{x} is the unit tangent vector at x. Geometrical properties of the curves $\gamma \in \Gamma_{R}$ are proved; it is shown also that the length of a regular curve $\gamma \in \Gamma_{R}$ is bounded by a constant depending upon R and the diameter of γ only. The curves $\gamma \in \Gamma_{R}$ turn out to be steepest descent curves for real valued functions with sublevel sets of reach greater than R.

1. Introduction

Let $R>0$. Let Γ_{R} be the class of the plane oriented rectifiable curves γ, starting at a point x_{0} and such that for every $x \in \gamma$, for which there exists the unit tangent vector \mathbf{t}_{x}, the arc $\gamma_{x_{0}, x}$ (joining x_{0} to x) is not contained in the open circle centered at $x+R \mathbf{t}_{x}$ and of radius R. In the present work the curves $\gamma \in \Gamma_{R}$ will be called R-curves, for short.

The family Γ_{R} is a generalization of the family Γ of plane curves studied in [1, 2]. Γ is the class of curves γ for which $\gamma_{x_{0}, x}$ is contained in the half-plane bounded by the line through x, orthogonal to \mathbf{t}_{x}. The class Γ has also been studied starting from equivalent definitions, in [3-5]. The curves of Γ are steepest descent curves for a suitable family of nested convex sets [6]. Similarly it can be observed (Theorem 6.2) that a function with sublevel sets of reach greater than R has steepest descent curves in Γ_{R}. Obviously for every $R>0, \Gamma \subset \Gamma_{R}$.

Many natural questions arise for the curves of Γ_{R}.
(A) Let x a point of $\gamma, x \neq x_{0}$. Let us consider the following number naturally associated to $\gamma_{x_{0}, x}$:

$$
\frac{\operatorname{length}\left(\gamma_{x_{0}, x}\right)}{\operatorname{dist}\left(x_{0}, x\right)}
$$

called the detour of the curve $\gamma_{x_{0}, x}$, see e.g. [2, 7]. It has been proved in [1-3] that if $\gamma \in \Gamma$ then, the detour of $\gamma_{x_{0}, x}$ has an a priori bound. Could a similar result be proved for the curves in Γ_{R} ?
(B) Let $\gamma \in \Gamma_{R}$ and let's assume that γ is contained in a circle of radius $\tau>0$; is it possible to bound the length and the detour of γ with a number depending on R, τ only?
(C) Let $\gamma \in \Gamma_{R}$. Are there functions that have steepest descent curves in Γ_{R} ?

Let us outline the content of our work.
In $\$ 2$ introductory definitions are given and results on sets of positive reach, needed later, are recalled.

In 3 the definition of R-curves in \mathbb{R}^{n} is given and several properties are proved.
In 4 properties of plane R-curves in small circles are stated and proved; the main one is a sharp bound of the measure of the tangent angle to the hull of $\gamma_{x_{0}, x}$ at x, Theorems 4.3 and 4.4 In these theorems, it has been assumed an additional regularity hypothesis: that is γ has a C^{1} parametric representation. This assumption will be removed in a paper in

[^0]progress [8]. Theorem 4.4 proves that plane regular R-curves, in a small circle, are ϕ-self approaching curves (with opposite orientation), for a suitable $\phi<\pi$, see (7].

A bound, depending on R only, for the length and the detour of a plane R-curve γ in a small circle is obtained, Theorem 4.5 Theorem 4.7
In $5 R$-curves contained in a circle of fixed arbitrary radius τ are studied. A bound of their length and their detour depending only on R, τ is proved, Theorem 5.2 Theorem 5.3 In Proposition 5.4 an example shows that if a curve of Γ_{R} is not contained in a circle of fixed radius τ then the detour can be arbitrarily large.

In $\sqrt{6}$ functions defined in bounded sets of \mathbb{R}^{2}, with the property that their steepest descent curves are R-curves, are considered; by Theorem 5.2 it follows that these steepest descent curves have length bounded by a constant depending on R and their diameter.

A first example of functions with the above property is the class of the regular functions whose sublevel sets satisfy the property of R-exterior ball (Definition 2), Theorem 6.1 The family of regular functions whose sublevel sets are of reach greater than R also satisfies the same property, Theorem 6.2

A differential property for regular functions, in order to satisfy this property, is that these functions must have as domain a closed bounded connected subset of a circle of radius R and level lines with curvature greater or equal than $-1 / R$, Theorem 6.7

2. Definitions and preliminaries

Let

$$
B(z, \rho)=\left\{x \in \mathbb{R}^{n}:|x-z|<\rho\right\}, \quad S^{n-1}=\partial B(0,1) \quad n \geq 2
$$

and let $D(z, \rho)$ be the closure of $B(z, \rho)$. The notations B_{ρ}, D_{ρ} will also be used for balls of radius ρ, if no ambiguity arises for their center. If a ball is written with a center only, then the radius will be R. The usual scalar product between vectors $u, v \in \mathbb{R}^{n}$ will be denoted by $\langle u, v\rangle$.

Let $K \subset \mathbb{R}^{n} ; \operatorname{Int}(K)$ will be the interior of $K, \partial K$ the boundary of $K, \operatorname{cl}(K)$ the closure of $K, K^{c}=\mathbb{R}^{n} \backslash K$.

For every set $S \subset \mathbb{R}^{n}, c o(S)$ is the convex hull of S.
Let K be a non empty closed set. Let $q \in K$; the tangent cone of K at q is defined as
$\operatorname{Tan}_{K}(q)=\left\{v \in \mathbb{R}^{n}: \forall \varepsilon>0, \exists x \in K, r>0 \quad\right.$ with $\left.\quad|x-q|<\varepsilon,|r(x-q)-v|<\varepsilon\right\}$.
Let us recall that

$$
S^{n-1} \cap \operatorname{Tan}_{K}(q)=\bigcap_{\varepsilon>0} \operatorname{cl}\left(\left\{\frac{x-q}{|x-q|}, q \neq x \in K \cap B(q, \varepsilon)\right\}\right)
$$

The normal cone at q to K is the non empty closed convex cone, given by:

$$
\operatorname{Nor}_{K}(q)=\left\{u \in \mathbb{R}^{n}:\langle u, v\rangle \leq 0 \quad \forall v \in \operatorname{Tan}_{K}(q)\right\} .
$$

When $q \in \operatorname{Int}(K)$, then $\operatorname{Tan}_{K}(q)=\mathbb{R}^{n}$ and Nor ${ }_{K}(q)$ reduces to zero. In two dimensions cones will be called angles with vertex 0 .

The dual cone K^{*} of a set K is $K^{*}=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \geq 0 \quad \forall x \in K\right\}$.
For A, B non empty sets of $\mathbb{R}^{n}, x \in \mathbb{R}^{n}$, let us denote

$$
\operatorname{dist}(x, A)=\inf _{y \in A}\{|x-y|\} ; \quad A^{(\varepsilon)}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, A) \leq \varepsilon\right\}
$$

Let $b \in \mathbb{R}^{n} \backslash A$; then b has a unique projection point onto A if there exists a unique point $a \in A$ satisfying $|b-a|=\operatorname{dist}(b, A)$.

Let A be a closed set. If $a \in A$, then $\operatorname{reach}(A, a)$ is the supremum of all numbers ρ for which every $x \in B(a, \rho)$ has a unique projection point onto A. Also, see [9]:

$$
\operatorname{reach}(A):=\inf \{\operatorname{reach}(A, a): a \in A\}
$$

Proposition 2.1 [g, Theorem 4.8, (12)] If $a \in A$ and $\operatorname{reach}(A, a)>0$ then

$$
\operatorname{Tan}_{A}(a)=-\left(\operatorname{Nor}_{A}(a)\right)^{*}
$$

Definition 1 Let us say that a ball $B_{R} R$-supports A at x, if

$$
B_{R} \cap A=\emptyset, \quad x \in A \cap \partial B_{R}
$$

If $B_{R} R$-supports A at x, then the point x is necessarily a boundary point of $A . B_{R}$ will be called an R-support ball to A at x.

Let us consider a closed set A such that for each point $y \in \partial A$ the normal cone $\operatorname{Nor}_{A}(y)$ is not reduced to zero.

Definition 2 Let $R>0$. A closed set A, satisfying the above property, has the property of the R-exterior ball if $\forall y \in \partial A, \forall n_{A}(y) \in \operatorname{Nor}_{A}(y) \cap S^{1}$, the following fact holds

$$
\begin{equation*}
\forall x \in A \Longrightarrow\left|x-\left(y+R n_{A}(y)\right)\right| \geq R \tag{1}
\end{equation*}
$$

The previous definition implies that for every point $y \in \partial A$ there is at least an R-support ball to A at y.

Proposition 2.2 [G, Theorem 4.8, (7)] If a closed set A has reach greater than R, then it satisfies the property of R-exterior ball.

Let $x, y \in \mathbb{R}^{n},|x-y|<2 R$. Let us define

$$
\begin{equation*}
\mathfrak{h}(x, y, R)=\cap\left\{D_{R}(z), z \in \mathbb{R}^{n}: D_{R}(z) \supset\{x, y\}\right\} \tag{2}
\end{equation*}
$$

Proposition 2.3 [10], [11, Theorem 3.8] A closed set A has reach equal or greater than R if and only if $\forall x, y \in A$ with $|x-y|<2 R$ the set $A \cap \mathfrak{h}(x, y, R)$ is connected.

Definition 3 Given A a closed set in \mathbb{R}^{n}, let us define $\cos _{R}(A)$, the R-hull of A, as the closed set containing A, such that
(i) $\operatorname{co}_{R}(A)$ has reach greater or equal than R;
(ii) if a set $B \supseteq A$ and $\operatorname{reach}(B) \geq R$, then $B \supseteq \operatorname{co}_{R}(A)$.

See [11, pp.105-107] for the properties of R-hull. It can be shown that

$$
\operatorname{co}_{R}(A)=\cap\left\{B_{R}^{c}: B_{R} \cap A=\emptyset\right\} .
$$

The R-hull of a closed set A may not exist, see [11, Remark 4.9]. However
Proposition 2.4 [11, Theorem 4.8] If A is a plane closed connected subset of an open circle of radius R, then A has R-hull.

3. Properties of R-curves

In this section the definition and some properties of R-curves in \mathbb{R}^{n} are introduced and proved.

Let $\gamma \subset \mathbb{R}^{n}$ be an oriented rectifiable curve and let $x(\cdot)$ be its parametric representation with respect to the arc length parameter $s \in[0, L]$. If $x_{1}=x\left(s_{1}\right), x_{2}=x\left(s_{2}\right) \in \gamma$ with $s_{1} \leq s_{2}$, the notation $x_{1} \preceq x_{2}$ will be used. Let us denote $x(s)=x$,

$$
\begin{equation*}
\gamma_{x}=\{y \in \gamma: y \preceq x\} ; \quad \gamma_{x_{1}, x_{2}}=\left\{y \in \gamma: x_{1} \preceq y \preceq x_{2}\right\} ; \quad\left|\gamma_{x}\right|=\operatorname{length}\left(\gamma_{x}\right) \tag{3}
\end{equation*}
$$

In this paper a curve in \mathbb{R}^{n} is also the image of a continuous function on an interval, valued into \mathbb{R}^{n}.

Definition 4 Let R be a fixed positive number. An R-curve $\gamma \subset \mathbb{R}^{n}$ is a rectifiable oriented curve with arc length parameter $s \in[0, L]$, tangent vector $\mathbf{t}(s)=x^{\prime}(s)$ such that the inequality

$$
\begin{equation*}
\left|x\left(s_{1}\right)-x(s)-R \mathbf{t}(s)\right| \geq R \tag{4}
\end{equation*}
$$

holds for almost all s and for $0 \leq s_{1} \leq s \leq L$.
Γ_{R} will denote the class of R-curves in \mathbb{R}^{n}.
The geometric meaning of (4) is that for every point $x=x(s) \in \gamma$, with tangent vector $\mathbf{t}(s)$, the set γ_{x} is outside of the open ball of radius R through x centered at $x+R \mathbf{t}(s)$.

Let us notice the following equivalent formulations of (4) for $0 \leq s_{1}<s \leq L$:

$$
\begin{array}{r}
\left.\left|x\left(s_{1}\right)-x(s)\right|^{2}-2 R\left\langle x\left(s_{1}\right)-x(s)\right), \mathbf{t}(s)\right\rangle \geq 0 ; \\
\left\langle x(s)-x\left(s_{1}\right), \mathbf{t}(s)\right\rangle \geq-\frac{\left|x\left(s_{1}\right)-x(s)\right|^{2}}{2 R} ; \\
\left\langle\frac{x\left(s_{1}\right)-x(s)}{\left|x\left(s_{1}\right)-x(s)\right|}, \mathbf{t}(s)\right\rangle \leq \frac{\left|x\left(s_{1}\right)-x(s)\right|}{2 R}, \quad \text { if } \quad x\left(s_{1}\right) \neq x(s) . \tag{7}
\end{array}
$$

Lemma 3.1 Let γ be a rectifiable curve with arc length parametrization $x(s)$. Then, the inequality (4) is equivalent to

$$
\begin{equation*}
\left|x(s)-x\left(s_{1}\right)\right| \geq\left|x\left(s_{2}\right)-x\left(s_{1}\right)\right| e^{\left(s_{2}-s\right) /(2 R)} \quad \text { for } \quad 0 \leq s_{1} \leq s_{2} \leq s \leq L \tag{8}
\end{equation*}
$$

Proof. Inequality (6) can be written as

$$
\begin{gathered}
\frac{d}{d s}\left|x(s)-x\left(s_{1}\right)\right|^{2} \geq-\frac{\left|x\left(s_{1}\right)-x(s)\right|^{2}}{R}, \\
\frac{d}{d s} \log \left|x(s)-x\left(s_{1}\right)\right|^{2} \geq-\frac{1}{R}, \\
\frac{d}{d s}\left(\log \left|x(s)-x\left(s_{1}\right)\right|^{2}+\frac{1}{R}\left(s-s_{1}\right)\right) \geq 0 . \\
\log \left|x(s)-x\left(s_{1}\right)\right|^{2}+\frac{1}{R}\left(s-s_{1}\right) \geq \log \left|x\left(s_{2}\right)-x\left(s_{1}\right)\right|^{2}+\frac{1}{R}\left(s_{2}-s_{1}\right), \\
\left|x(s)-x\left(s_{1}\right)\right| e^{\frac{s-s_{1}}{2 R}} \geq\left|x\left(s_{2}\right)-x\left(s_{1}\right)\right| e^{\frac{s_{2}-s_{1}}{2 R}} .
\end{gathered}
$$

Therefore (8) follows. Conversely, if γ satisfies (8), then inequality (6) is obtained, by using the previous inequalities in ascending order. \quad]

Corollary 3.2 An R-curve does not intersect itself.
Proof. By contradiction, let us assume that $x(s)=x\left(s_{1}\right), s_{1}<s$. Then (8) implies that $x\left(s_{2}\right)=x(s)=$ $x\left(s_{1}\right)$ for all s_{2} between s_{1} and s; so the curve $x(\cdot)$ is constant in $\left[s_{1}, s\right]$. This is impossible as s is the arc length. \mathbf{D}

Remark 1 Let us notice that $\Gamma \subset \Gamma_{R}$, where Γ is the class of rectifiable curves γ for which for almost every $x \in \gamma$ with tangent vector \mathbf{t}_{x} the set γ_{x} is contained in the half-plane bounded by the line through x, orthogonal to \mathbf{t}_{x}. Therefore if $\gamma \in \Gamma$, then (8) holds for every $R>0$, namely

$$
\begin{equation*}
\left|x(s)-x\left(s_{1}\right)\right| \geq\left|x\left(s_{2}\right)-x\left(s_{1}\right)\right| \quad \text { for } \quad 0 \leq s_{1} \leq s_{2} \leq s \leq L \tag{9}
\end{equation*}
$$

This property is a "key" property of the curves of Γ (called self expanding property, see [3], [6]). Let us notice that the property (8), which seems an expanding property, makes the arc length of the R-curve appear, in striking difference from (9).

Theorem 3.3 Let $\gamma \in \Gamma_{R}$. For every $s \in(0, L), x=x(s), \gamma_{x} \subsetneq \gamma$, the following two subsets of S^{n-1} :

$$
U_{x}^{+}=\left\{u \in S^{n-1}: \exists s_{k} \geq s, \lim _{s_{k} \rightarrow s} x^{\prime}\left(s_{k}\right)=u\right\}, \quad U_{x}^{-}=\left\{u \in S^{n-1}: \exists s_{k} \leq s, \lim _{s_{k} \rightarrow s} x^{\prime}\left(s_{k}\right)=u\right\}
$$

are non empty.
Moreover the following properties hold.
(i) if $x(\cdot)$ is differentiable at s, then $x^{\prime}(s) \in U_{x}^{+} \cup U_{x}^{-}$;
(ii) if $u \in U_{x}^{+} \cup U_{x}^{-}$then

$$
\begin{equation*}
\left|x\left(s_{1}\right)-x(s)\right|^{2}-2 R\left\langle x\left(s_{1}\right)-x(s), u\right\rangle \geq 0 \quad \text { for } \quad 0 \leq s_{1}<s<L \tag{10}
\end{equation*}
$$

(iii) let $B^{0}=B(x+R u), u \in S^{1}$ so that $B^{0} \cap \gamma=\emptyset$, then

$$
\begin{equation*}
\exists u^{+} \in U_{x}^{+}:\left\langle u^{+}, u\right\rangle \leq 0, \quad \exists u^{-} \in U_{x}^{-}:\left\langle u^{-}, u\right\rangle \geq 0 \tag{11}
\end{equation*}
$$

(iv) if there exist $S^{1} \ni u_{k} \rightarrow u, s_{k} \rightarrow s, s_{k}<s$, with $x\left(s_{k}\right) \in \partial B^{k}:=\partial B\left(x+R u_{k}\right)$, then

$$
\begin{equation*}
\exists u_{1}^{-} \in U_{x}^{-}:\left\langle u_{1}^{-}, u\right\rangle \leq 0 . \tag{12}
\end{equation*}
$$

Proof. The set $G=\left\{\tau: \tau \geq s: \exists x^{\prime}(\tau)\right\}$ is a dense set in (s, L); let $\left\{\tau_{k}\right\} \subset G$ having s has an adherence point; by possibly passing to a subsequence, $\left\{x^{\prime}\left(\tau_{k}\right)\right\}$ has limit $u \in S^{n-1} \in U_{x}^{+}$. Then U_{x}^{+}and similarly U_{x}^{-} are non empty. Moreover as the sets $\gamma_{x\left(\tau_{k}\right)}$ have an R-support ball at $x\left(\tau_{k}\right)$, centered at $x\left(\tau_{k}\right)+R x^{\prime}\left(\tau_{k}\right)$, then (10) is obtained from (5) with $s=\tau_{k}$ passing to the limit.

To prove (11), let us notice that the assumption $B^{0} \cap \gamma=\emptyset$ implies (4) (thus (6)) with u instead of $\mathbf{t}(s)$ and $s-\frac{1}{k}$ in place of s_{1}; therefore

$$
\begin{equation*}
\int_{s-\frac{1}{k}}^{s}\left\langle x^{\prime}(t), u\right\rangle d t=\left\langle x(s)-x\left(s-\frac{1}{k}\right), u\right\rangle \geq-\frac{\left|x\left(s-\frac{1}{k}\right)-x(s)\right|^{2}}{2 R} \quad \text { for } \quad s-\frac{1}{k} \in(0, L) . \tag{13}
\end{equation*}
$$

Then, for all k, sufficiently large, there exists $\sigma_{k} \in\left(s-\frac{1}{k}, s\right)$ with

$$
\left\langle x^{\prime}\left(\sigma_{k}\right), u\right\rangle \geq-k \frac{\left|x\left(s-\frac{1}{k}\right)-x(s)\right|^{2}}{R}
$$

Since by definition of arc length $\left|x\left(s-\frac{1}{k}\right)-x(s)\right| \leq \frac{1}{k}$, it follows that

$$
\left\langle x^{\prime}\left(\sigma_{k}\right), u\right\rangle \geq-\frac{\left|x\left(s-\frac{1}{k}\right)-x(s)\right|}{R} .
$$

By possibly passing to a subsequence, $x^{\prime}\left(\sigma_{k}\right) \rightarrow u^{-} \in U_{x}^{-}$; then the second inequality in (11) is proved as $\left|x\left(s-\frac{1}{k}\right)-x(s)\right| \rightarrow 0$. To prove first inequality in (11) let us notice that assumption $B^{0} \cap \gamma=\emptyset$ implies (4) (thus (6)) with u instead of $\mathbf{t}(s)$ and $s_{1}=s+\frac{1}{k}>s, k$ large enough. Then

$$
\int_{s}^{s+\frac{1}{k}}\left\langle x^{\prime}(t), u\right\rangle d t=\left\langle x\left(s+\frac{1}{k}\right)-x(s), u\right\rangle \leq \frac{\left|x\left(s+\frac{1}{k}\right)-x(s)\right|^{2}}{2 R} \quad \text { for } \quad s+\frac{1}{k} \in(0, L)
$$

Arguing as above the first inequality in (11) is obtained.
To prove (iv), since $x\left(s_{k}\right) \in \partial B^{k}$, then equality holds in (13) with s_{k} in place of $s-\frac{1}{k}$ and u_{k} in place of u. Thus

$$
\int_{s_{k}}^{s}\left\langle x^{\prime}(t), u_{k}\right\rangle d t=-\frac{\left|x\left(s_{k}\right)-x(s)\right|^{2}}{2 R}<0
$$

Therefore there exists $\sigma_{k} \in\left(s_{k}, s\right)$ so that $\left\langle x^{\prime}\left(\sigma_{k}\right), u_{k}\right\rangle \leq 0$ and $x^{\prime}\left(\sigma_{k}\right) \rightarrow u_{1}^{-} \in U_{x}^{-}$. Then 12) is obtained by passing to the limit. \square

4. R-curves in disks of radius R

In this section let us assume that γ is a plane R-curve of length $L=|\gamma|$ contained in a closed circle of radius less than R. Let $x(\cdot)$ be the parametric representation of γ with respect to the arc length and let $0 \leq s \leq L, x=x(s) \in \gamma$. According to Proposition 2.4] γ_{x} has R-hull $c o_{R}\left(\gamma_{x}\right)$.

For a plane convex body K let us denote $\operatorname{per}(K)$ the perimeter of the boundary ∂K. Let p be a point not in K. The simple cap body K^{p} is the convex hull of $K \cup\{p\}$, see [12].

For a vector $u=(a, b)$, let $u^{\perp}=(-b, a)$.
Theorem 4.1 Let $x \in \gamma \in \Gamma_{R}, \gamma \subset B_{R}$. Let

$$
\begin{equation*}
W_{x}=\left\{u \in S^{1}:(B(x+R u))^{c} \supset \gamma_{x}\right\} . \tag{14}
\end{equation*}
$$

Then

$$
\begin{equation*}
U_{x}^{+} \cup U_{x}^{-} \subset W_{x} \tag{15}
\end{equation*}
$$

moreover

$$
\begin{equation*}
W_{x}=\operatorname{Nor}_{c o}^{R}\left(\gamma_{x}\right)(x) \cap S^{1} \tag{16}
\end{equation*}
$$

Proof. Let $u \in U_{x}^{+} \cup U_{x}^{-}$, then inequality (10) holds, which means that $(B(x+R u))^{c} \supset \gamma_{x}$, and (15) is proved. Let $w \in W_{x}$ and let $B=B(x+R w)$. As $\gamma_{x} \subset B^{c}$ and $\operatorname{reach}\left(B^{c}\right)=R$, then by (ii) of Definition 3 $c_{R}\left(\gamma_{x}\right) \subset B^{c}$. This fact implies that

$$
\operatorname{Nor}_{c_{0}\left(\gamma_{x}\right)}(x) \supseteq \text { Nor }_{B^{c}}(x)=\{\lambda w, \lambda \geq 0\} .
$$

Then

$$
\begin{equation*}
\operatorname{Nor}_{c o_{R}\left(\gamma_{x}\right)}(x) \cap S^{1} \supseteq W_{x} . \tag{17}
\end{equation*}
$$

Let us prove now the opposite inclusion. Let $u \notin W_{x}, u \in S^{1}$. Then in $B(x+R u)$ there are points of γ_{x}, thus there exists a point $y \in \operatorname{co}_{R}\left(\gamma_{x}\right) \cap B(x+R u), y \neq x$. Then, by Proposition 2.3 $\mathfrak{h}(x, y, R) \cap c o_{R}\left(\gamma_{x}\right)$ has a connected component F joining x and $y, F \subset(B(x+R u) \cup\{x\})$. Therefore, as $\mathfrak{h}(x, y, R) \subset B(x+R u) \cup\{x\}$, in the tangent cone of F at x there is a vector making an acute angle with u; so in the tangent cone to $c o_{R}\left(\gamma_{x}\right)$ there is a vector making an acute angle with u. Then $u \notin \operatorname{Nor}_{c o o_{R}\left(\gamma_{x}\right)}(x)$, the opposite inclusion of (17) holds and (16) is proved. \square

Definition 5 Let b and c two distinct points in the plane with $|b-c|<2 R$. Let us consider the following geometric construction. Let $B(b)$ and $B(c)$ two open circles, of radius R and center b, c respectively. Let $x \in \partial B(b) \cap \partial B(c)$. Let l be the line through b and c, let H be the half plane with boundary l containing x.

The unbounded region $a \check{n} g(b x c): \equiv B(b)^{c} \cap B(c)^{c} \cap H$ will be called a curved angle. Moreover

$$
\operatorname{meas}(a \check{n} g(b x c)):=\operatorname{meas}\left(\operatorname{Tan}_{a \check{n} g(b x c)}(x) \cap S^{1}\right)
$$

is the measure of the angle between the half tangent lines at x to the boundary of $a \check{n} g(b x c)$.
It is not difficult to see that

$$
\begin{equation*}
\operatorname{meas}(a \check{n} g(b x c))=\pi-2 \arcsin \frac{|b-c|}{2 R} . \tag{18}
\end{equation*}
$$

When x, y are points on a circumference ∂B, let us denote with $\operatorname{arc}(x, y)$ the shorter arc on ∂B from x to y.

Lemma 4.2 Let $x, x_{2} \in \mathbb{R}^{2},\left|x-x_{2}\right|<R$. Let $B^{2}=B(b, R)$ with $\partial B^{2} \supset\left\{x, x_{2}\right\}$. Let $B^{*}=B\left(c_{*}\right)$ the ball of radius R, with ∂B^{*} orthogonal at x_{2} to ∂B^{2} and $x \in B^{*}$. Let us assume that there exists $x_{1} \in\left(B^{*} \cup B^{2}\right)^{c}$ with the properties:
(i) $\left|x_{1}-x\right|<R,\left|x_{2}-x_{1}\right|<R$;
(ii) x_{1} lies in the half plane with boundary the line through x and x_{2} not containing b;
(iii) there exists $B^{1}=B\left(c_{1}, R\right)$ with $\left\{x_{1}, x\right\} \subset \partial B^{1}$, with $\operatorname{arc}\left(x, x_{1}\right) \subset\left(B^{2}\right)^{c}$, such that the line through x and x_{1} separates c_{1} and x_{2}.

Then the measure of the curved angle an̆ $g\left(b x c_{1}\right)$ is less than $\pi / 2$.
Proof. Let $\{w\}=\operatorname{arc}\left(x, x_{1}\right) \cap \partial B^{*}$ (possibly it can be $\left.w=x_{1}\right)$. As $|x-w|<R,|x-b|=R$, then

$$
|w-b|<|x-w|+|x-b|<R+R=2 R .
$$

Let us remark that the circles B^{*} and B^{1} both have w on the boundary (see Fig.1).
It is not difficult to see that the convex angle $b \hat{w} c_{1}$ contains the convex angle $b \hat{w} c_{*}$. The two triangles $b w c_{1}$ and $b w c_{*}$ have one side in common and the sides $w c_{*}, w c_{1}$ have the same length R. Then $\left|b-c_{*}\right|<\left|b-c_{1}\right|$. Thus by (18)

$$
\begin{equation*}
\pi / 2=\operatorname{meas}\left(a \check{n} g\left(b x_{2} c_{*}\right)>\operatorname{meas}\left(a \check{n} g\left(b x c_{1}\right)\right.\right. \tag{19}
\end{equation*}
$$

and the thesis is proved. \square
Theorem 4.3 Let $N>1$. Let γ be a C^{1} plane R-curve. Assume that for every $x \in \gamma, \gamma_{x}$ is contained in the disk $D(x, R / N)$. Then, the measure of $\operatorname{Nor}_{c o s_{R}\left(\gamma_{x}\right)}(x) \cap S^{1}$ is equal or greater than $\pi / 2$.

Proof. Let $H_{i}=\left(B\left(x+R u_{i}\right)\right)^{c}, i=1,2$, where u_{i} are the two vectors bounding $W_{x}=S^{1} \cap \operatorname{Nor}_{c o o_{R}\left(\gamma_{x}\right)}(x)$ (may be $u_{1}=u_{2}$ then $H_{1}=H_{2}$). Then

$$
c o_{R}\left(\gamma_{x}\right) \subset H_{1} \cap H_{2} \cap D(x, R / N)
$$

If $u_{1}=-u_{2}$ then the measure of $\operatorname{Nor}_{\operatorname{co}_{R}\left(\gamma_{x}\right)}(x)$ is equal π and the thesis holds.
Let $u_{1} \neq-u_{2}$.

Figure 1. Curved angles

There are two possible cases:
(a) at least one of the two sets $\gamma_{x} \cap \partial H_{i} \backslash\{x\}, \mathrm{i}=1,2$, is empty;
(b) there exist at least two points $x_{i} \in \gamma_{x} \cap \partial H_{i}, x_{i} \neq x(\mathrm{i}=1,2)$.

Case (a): with no loss of generality one can assume that

$$
\gamma_{x} \cap \partial H_{1} \backslash\{x\}=\emptyset
$$

Let $u_{1}=\left(\cos \alpha_{1}, \sin \alpha_{1}\right), 0 \leq \alpha_{1}<2 \pi$ and let

$$
u^{\delta}:=\left(\cos \left(\alpha_{1}-\delta\right), \sin \left(\alpha_{1}-\delta\right)\right)
$$

By definition of the vectors u_{1}, u_{2}, bounding $\operatorname{Nor}_{c o s_{R}\left(\gamma_{x}\right)}(x) \cap S^{1}$, for $\delta>0$ sufficiently small, one has

$$
\gamma_{x} \cap B\left(x+R u^{\delta}\right) \neq \emptyset
$$

This means that, for $\delta=\frac{1}{k}>0$ and k sufficiently large, there exists a sequence $s_{k} \rightarrow s, s_{k}<s$ such that

$$
x\left(s_{k}\right) \in \partial B\left(x+R u^{\frac{1}{k}}\right) \backslash D\left(x+R u_{1}, R\right)
$$

Then, by (iv) of Theorem 3.3 there exists $u_{1}^{-} \in U_{x}^{-} \subset \operatorname{Nor}_{c o s_{R}\left(\gamma_{x}\right)}(x)$ so that $\left\langle u_{1}^{-}, u_{1}\right\rangle \leq 0$. The thesis follows.

Case (b): with no restriction one can assume $x_{i}=x\left(s_{i}\right)(\mathrm{i}=1,2)$, with $s_{1}<s_{2}<s$ and that the triangle $x_{1} x_{2} x$ is clockwise oriented, see Fig.1.
Let us consider the point $x_{2} \in \partial B\left(x+R u_{2}\right)$. Let $\tilde{u_{2}}$ so that $x+R u_{2}=x_{2}+R \tilde{u_{2}}$ and let

$$
B^{2}:=B\left(x+R u_{2}\right)=B\left(x_{2}+R \tilde{u_{2}}\right), \quad B^{1}:=B\left(x+R u_{1}\right)
$$

Let us notice that, by Theorem 4.1] $\tilde{u_{2}} \in W_{x_{2}}=S^{1} \cap \operatorname{Nor}_{c o s_{R}\left(\gamma_{x_{1}, x_{2}}\right)}\left(x_{2}\right)$. As $\gamma_{x_{2}, x} \subset\left(B^{2}\right)^{c}$ the tangent vector $x^{\prime}\left(s_{2}\right)$ is tangent to ∂B^{2} at $x_{2}=x\left(s_{2}\right)$. That is $\left\langle x^{\prime}\left(s_{2}\right), \tilde{u_{2}}\right\rangle=0$.

Let us consider the closed region Q bounded by $\operatorname{arc}\left(x_{2}, x\right)$ on $\partial B^{2}, \operatorname{arc}\left(x, x_{1}\right)$ on ∂B^{1} and $\gamma_{x_{1}, x_{2}}$. Let us show that as $\gamma_{x} \subset H_{1} \cap H_{2} \cap D(x, R / N)$, then $\gamma_{x_{2}, x} \subset Q$. Otherwise, $\gamma_{x_{2}, x}$ would have a point $y \neq x_{2}$ outside Q and it would be $\gamma_{x_{1}, x_{2}} \cap \gamma_{y, x} \neq \emptyset$, in contradiction with Corollary 3.2 Then $x^{\prime}\left(s_{2}\right)$ is tangent to $\operatorname{arc}\left(x_{2}, x\right)$ at x_{2} and $\left\langle x^{\prime}\left(s_{2}\right),-\tilde{u_{2}}{ }^{\perp}\right\rangle=1$.

Let $B^{*}:=B\left(x_{2}+R x^{\prime}\left(s_{2}\right)\right)$. As $x^{\prime}\left(s_{2}\right) \in U_{x_{2}}^{+} \cup U_{x_{2}}^{-}$, by (15) the following inclusion holds

$$
\gamma_{x_{1}, x_{2}} \subset\left(B^{*}\right)^{c} .
$$

Then the point $x_{1} \notin B^{*}$ and, as $\left|x_{2}-x\right|<R$, the ball B^{*} contains x. Let $c_{1}=x+R u_{1}, b=x_{2}+R \tilde{u_{2}}, c_{*}$ the center of B^{*}.

Let us consider the curved angles $a \check{n} g\left(b x c_{1}\right)$ and $a \check{n} g\left(b x_{2} c_{*}\right)$. As ∂B^{2} and ∂B^{*} are orthogonal at x_{2}, the hypotheses of Lemma 4.2 for $x, x_{2}, b, c_{1}, x_{1}$ are satisfied. Thus

$$
\operatorname{meas}\left(a \check{n} g\left(b x c_{1}\right)\right)<\pi / 2 .
$$

Since

$$
\operatorname{meas}\left(\operatorname{Nor}_{c o}^{R}\left(\gamma_{x}\right)(x) \cap S^{1}\right)=\pi-\operatorname{meas}\left(a \check{n} g\left(b x c_{1}\right)\right)
$$

the thesis follows. \quad I
Remark 2 The assumption on the regularity of γ in Theorem 4.3 will be removed in a work in progress. Previous theorem provides a bound for the measure of Nor $\operatorname{co}_{R}\left(\gamma_{x}\right)(x)$ for R-curves γ in a small circle. This bound implies, Theorem4.4 a bound on the measure of the tangent angle Tan $\operatorname{cog}_{\left(\gamma_{x}\right)}(x)$.

Definition 6 Let γ be an oriented curve, $x \in \gamma, N>1 ; \gamma$ satisfies the property $P_{N}\left(\gamma_{x}\right)$ if

$$
\begin{equation*}
\operatorname{meas}\left(\operatorname{Tan}_{\operatorname{co}\left(\gamma_{x}\right)}(x)\right) \leq \pi / 2+2 \arcsin \frac{1}{2 N} \tag{20}
\end{equation*}
$$

holds.
Theorem 4.4 Let γ be a C^{1} plane R-curve. Assume that for every $x \in \gamma, \gamma_{x}$ is contained in $D(x, R / N)$, $N>1$. Then γ_{x} satisfies $P_{N}\left(\gamma_{x}\right)$ for every $x \in \gamma$.

Proof. Let u_{1}, u_{2} be, as in the previous theorem, the unit vectors bounding $S^{1} \cap \operatorname{Nor} \cos _{R}\left(\gamma_{x}\right)(x)$. If $u_{1}=$ $-u_{2}$, then γ_{x} is contained in an equilateral triangle with vertex x, then $\operatorname{Tan}_{c o\left(\gamma_{x}\right)}(x)$ is acute and the thesis holds. If $u_{1} \neq-u_{2}$ let A_{1} the connected component of

$$
\left(B\left(x+R u_{1}\right)\right)^{c} \cap\left(B\left(x+R u_{2}\right)\right)^{c} \cap D(x, R / N)
$$

containing x. Let us notice that reach $\left(A_{1}, x\right) \geq R$ and $\operatorname{Nor}_{c o s_{R}\left(\gamma_{x}\right)}(x)=\operatorname{Nor}_{A_{1}}(x)$. Then, by Proposition 2.1 the sets $\operatorname{Tan}_{A_{1}}(x)$ and $\operatorname{Tan}_{\operatorname{co}_{R}\left(\gamma_{x}\right)}(x)$ coincide. Then, by Theorem 4.3

$$
\operatorname{meas}\left(\operatorname{Tan}_{A_{1}}(x)\right) \leq \pi / 2
$$

It is an easy exercise to show that

$$
\operatorname{meas}\left(\operatorname{Tan}_{\operatorname{co}\left(A_{1}\right)}(x)\right)=\operatorname{meas}\left(\operatorname{Tan}_{A_{1}}(x)\right)+2 \arcsin \frac{1}{2 N}
$$

As $\operatorname{co}\left(\gamma_{x}\right) \subset \operatorname{co}\left(A_{1}\right)$,

$$
\operatorname{meas}\left(\operatorname{Tan}_{c o\left(\gamma_{x}\right)}(x)\right) \leq \operatorname{meas}\left(\operatorname{Tan}_{c o\left(A_{1}\right)}(x)\right)
$$

from the previous equality and inequalities, the property $P_{N}\left(\gamma_{x}\right)$ follows. \square
Remark 3 This theorem proves that the R-curves, satisfying the assumptions of Theorem 4.3 are ϕ-selfapproaching curves with $\phi=\pi / 2+2 \arcsin \frac{1}{2 N}$, opposite oriented, according to Definition 1 in [7].

In what follows, bounds for the curves' length and detour are proved with a simple extension of the techniques in [1] and in a different way than (7].

Let, for simplicity, $|\gamma|$ be the length of $\gamma, \gamma(s)=\gamma_{x(s)}$ and $p(s):=\operatorname{per}(\operatorname{co}(\gamma(s)))$.
Theorem 4.5 Let R be a positive number and let $N>1$. Let z_{0} be a fixed point in the plane. If γ is a plane R-curve, $\gamma \subset D\left(z_{0}, R /(2 N)\right)$ and the property $P_{N}\left(\gamma_{x}\right)$ holds for every $x \in \gamma$, then

$$
\begin{gather*}
p^{\prime}(s) \geq 1-\frac{1}{N} \quad \text { a.e. } \quad s \in[0,|\gamma|] \tag{21}\\
|\gamma| \leq \frac{\pi}{N-1} R . \tag{22}
\end{gather*}
$$

Lemma 4.6 Let K be a plane convex body. Let $p_{0} \in \partial K, u=(\cos \alpha, \sin \alpha) \in-\operatorname{Tan}_{K}\left(p_{0}\right)$. Let $0 \leq \omega<\pi$ the amplitude of $\operatorname{Tan}_{K}\left(p_{0}\right)$. Let $\varepsilon>0, p_{\varepsilon}=p_{0}+\varepsilon u, K^{p_{\varepsilon}}$ the simple cap body of K at p_{ε}, then

$$
\begin{equation*}
\operatorname{per}\left(K^{p_{\varepsilon}}\right)-\operatorname{per}(K) \geq \varepsilon(1+\cos \omega) \tag{23}
\end{equation*}
$$

Proof. Let $T:=\operatorname{Tan}_{K}\left(p_{0}\right)$ and $N:=$ Nor $_{K}\left(p_{0}\right)$ the normal cone of K at p_{0}. Since the amplitude of T is less than $\pi, u \notin T$. The assumptions of [6, Theorem 3.1] hold and formula [6, (19)] implies that

$$
\operatorname{per}\left(K^{p_{\varepsilon}}\right)-\operatorname{per}(K) \geq \varepsilon \int_{N \cap S^{1} \cap\{u\}^{*}}\langle\Theta, u\rangle d \Theta
$$

where $\Theta=(\cos \theta, \sin \theta)$. Since $u \in-T$, then $N=(-T)^{*} \subset\{u\}^{*}$ and the amplitude of N is $\pi-\omega$. Let $N \cap S^{1}=\{(\cos \theta, \sin \theta), 0 \leq \theta \leq \pi-\omega\}$. The previous integral is equal to

$$
\int_{0}^{\pi-\omega} \cos (\theta-\alpha) d \theta=\sin (\omega+\alpha)+\sin \alpha:=f(\alpha)
$$

Since $u \in-T$ the constraint $\frac{\pi}{2}-\omega \leq \alpha \leq \frac{\pi}{2}$ holds and in that interval $f(\alpha)$ is bounded below by $1+\cos \omega$. \square

Proof. The proof is strongly similar to the proof of Theorem IV in [1]. First let us observe that $p(s)$, the perimeter of $\operatorname{co}(\gamma(s))$, is increasing since $\gamma(s)$ is increasing by inclusion; thus $p(s)$ and $x(s)$ are derivable a.e in $[0,|\gamma|]$. Let us consider a point x on the curve γ, let us observe that as $\gamma \subset D\left(z_{0}, R /(2 N)\right)$, then for all $x \in \gamma, \gamma_{x} \subset D(x, R / N)$. By (20) the measure ω of $T:=\operatorname{Tan}_{\operatorname{co}\left(\gamma_{x}\right)}(x)$ satisfies

$$
\begin{equation*}
\omega \leq \frac{\pi}{2}+2 \arcsin \frac{1}{2 N}<\pi \tag{24}
\end{equation*}
$$

By assumption $\operatorname{co}\left(\gamma_{x}\right) \subset T \cap D(x, R / N)$ and for $h>0$ the point $\bar{x}=x(s)+h x^{\prime}(s)$ is in the angle opposite to T. Since ω is less than π, then $\bar{x} \notin T$. Let $\operatorname{co}(\gamma(s))^{\bar{x}}: \equiv \operatorname{co}(\operatorname{co}(\gamma(s)) \cup\{\bar{x}\})$ the simple cap body of $\operatorname{co}(\gamma(s))$ at \bar{x}. Let $\operatorname{per}(K)$ be the perimeter of a plane convex body K. The hypothesis of Lemma 4.6 are satisfied with $K=\operatorname{co}(\gamma(s)), p_{0}=x(s) \in \partial K, u=x^{\prime}(s), \varepsilon=h$. Thus

$$
\begin{equation*}
\operatorname{per}\left(\operatorname{co}(\gamma(s))^{\bar{x}}\right)-\operatorname{per}(\operatorname{co}(\gamma(s)) \geq(1+\cos \omega) h . \tag{25}
\end{equation*}
$$

Let $w:=x(s+h)$ and let us consider $\operatorname{co}(\gamma(s))^{w}$ the simple cap body of $\operatorname{co}(\gamma(s))$ at w. Arguing as in the proof of [1, Theorem VII, p. 222, line 11], the following asymptotic inequality holds:

$$
\begin{equation*}
\operatorname{per}\left(\operatorname{co}(\gamma(s))^{\bar{x}}\right) \geq \operatorname{per}\left(\operatorname{co}(\gamma(s))^{w}\right)+o(h), \quad \text { for } \quad h \rightarrow 0^{+} . \tag{26}
\end{equation*}
$$

Since

$$
\operatorname{co}(\gamma(s)) \subset \operatorname{co}(\gamma(s))^{w} \subset \operatorname{co}(\gamma(s+h))
$$

then

$$
p(s) \leq \operatorname{per}\left(\operatorname{co}(\gamma(s))^{w}\right) \leq p(s+h)
$$

From (26):

$$
p(s+h)-p(s) \geq \operatorname{per}\left(\operatorname{co}(\gamma(s))^{w}\right)-\operatorname{per}(\operatorname{co}(\gamma(s))) \geq \operatorname{per}\left(\operatorname{co}(\gamma(s))^{\bar{x}}\right)-\operatorname{per}(\operatorname{co}(\gamma(s)))+o(h)
$$

and from (25)

$$
p(s+h)-p(s) \geq(1+\cos \omega) h+o(h) \quad \text { for } \quad h \rightarrow 0^{+} .
$$

Thus, from (24),

$$
p^{\prime}(s) \geq 1+\cos \omega \geq 1-\frac{1}{N}, \quad \text { a.e. } \quad s \in[0,|\gamma|] .
$$

This proves (21). As $p(s)$ is a not decreasing functions, by integrating (21) in $[0,|\gamma|]$, the following inequality

$$
\begin{equation*}
p(|\gamma|)-p(0) \geq\left(1-\frac{1}{N}\right)|\gamma| \tag{27}
\end{equation*}
$$

holds. As $\operatorname{co}(\gamma)$ is contained in a circle of radius $\frac{R}{2 N}$ then $p(|\gamma|) \leq \pi \frac{R}{N}$ and (22) is proved. प
Theorem 4.7 Let γ be a plane R-curve, contained in a circle of radius less than R / M and centered at z_{0}, with $M>2$. Let $P_{M}\left(\gamma_{x}\right)$ holds for every $x \in \gamma$. Then the detour of $\gamma_{x_{1}, x}$ is bounded by a constant $c(M)$. Moreover if $M \geq 3, c(M) \leq 6 \pi e^{\pi}$.

Proof. From (8) of Lemma 3.1 for $0 \leq s_{1} \leq s_{2} \leq s \leq L$

$$
\left|x(s)-x\left(s_{1}\right)\right| e^{\frac{|\gamma|}{2 R}} \geq\left|x\left(s_{2}\right)-x\left(s_{1}\right)\right| .
$$

Therefore the circle of radius $\left|x(s)-x\left(s_{1}\right)\right| e^{\frac{|\gamma|}{2 R}}$ centered in $x\left(s_{1}\right)$ contains $\gamma_{x\left(s_{1}\right), x(s)}$. It follows that

$$
\begin{equation*}
\operatorname{per}\left(\operatorname{co}\left(\gamma_{x\left(s_{1}\right), x(s)}\right)\right) \leq 2 \pi\left|x(s)-x\left(s_{1}\right)\right| e^{\frac{|\gamma|}{2 R}} \tag{28}
\end{equation*}
$$

Let $x_{1}=x\left(s_{1}\right), x=x(s)$; by assumption $\gamma_{x_{1}, x} \subset D\left(x_{0}, R / M\right)$; then, from (27) of Theorem 4.5 with $N=M / 2$, it follows that

$$
\frac{\left|\gamma_{x_{1}, x}\right|}{\operatorname{per}\left(\operatorname{co}\left(\gamma_{x_{1}, x}\right)\right)} \leq \frac{1}{1-\frac{2}{M}}=\frac{M}{M-2}
$$

then, from

$$
\frac{\left|\gamma_{x_{1}, x}\right|}{\left|x-x_{1}\right|}=\frac{\left|\gamma_{x_{1}, x}\right|}{\operatorname{per}\left(\operatorname{co}\left(\gamma_{x_{1}, x}\right)\right)} \frac{\operatorname{per}\left(\operatorname{co}\left(\gamma_{x_{1}, x}\right)\right)}{\left|x_{1}-x\right|} \leq \frac{M}{M-2} 2 \pi e^{\frac{|\gamma|}{2 R}}
$$

From (22), it follows that

$$
\frac{\left|\gamma_{x_{1}, x}\right|}{\left|x-x_{1}\right|} \leq 2 \pi \frac{M}{M-2} e^{\frac{\pi}{(M-2)}} .
$$

Then $c(M) \leq 2 \pi \frac{M}{M-2} e^{\frac{\pi}{(M-2)}}$. If $M \geq 3$, then $c(M) \leq 6 \pi e^{\pi}$. \square
Remark 4 The bound for $c(M)$ in the previous theorem is not sharp. A better bound can be obtained using [7, Theorem 7].

5. Bounds for the length and the detour of plane R-curves

Lemma 5.1 Let $0<r_{1}<\tau$ and let x_{0}, \ldots, x_{m} be points in the closed ball $D\left(w_{0}, \tau\right)$ of \mathbb{R}^{n}, satisfying

$$
\left|x_{i}-x_{j}\right| \geq r_{1}, \quad \text { for } \quad 0 \leq i \neq j \leq m
$$

Then

$$
\begin{equation*}
m \leq\left(\frac{4 \sqrt{n} \tau}{r_{1}}\right)^{n} \tag{29}
\end{equation*}
$$

Proof. The cubes Q_{j} centered in x_{j} with sides r_{1} / \sqrt{n} do not have internal points in common; moreover each cube Q_{j} is contained in the cube Q centered in x_{0} with side 4τ. Since

$$
\sum_{j} \operatorname{meas}\left(Q_{j}\right) \leq \operatorname{meas}(Q)
$$

the bound (29) is obtained. \quad -
The following theorem gives an answer to question (B) of the introduction.

Theorem 5.2 Let $w_{0} \in \mathbb{R}^{2}, R>0$. Let γ be a C^{1} plane R-curve, $\gamma \subset D\left(w_{0}, \tau\right)$. Then there exists a positive constant $c(R, \tau)$, depending on R and τ only so that

$$
\begin{equation*}
|\gamma| \leq c(R, \tau) \tag{30}
\end{equation*}
$$

where
(i) if $\tau \leq \frac{R}{4}$, then $c(R, \tau) \leq 4 \pi \tau \leq \pi R$;
(ii) if $\tau>\frac{R}{4}$ then

$$
\begin{equation*}
c(R, \tau) \leq\left(1+\left(16 \sqrt{2} e^{\pi / 2}\right)^{2}\left(\frac{\tau}{R}\right)^{2}\right) \pi R \tag{31}
\end{equation*}
$$

Proof. Case (i): let $N=\frac{R}{2 \tau} \geq 2$. Then

$$
\gamma \subset D\left(w_{0}, \tau\right)=D\left(w_{0}, \frac{R}{2 N}\right)
$$

Then, by Theorem 4.5

$$
|\gamma| \leq \frac{\pi}{N-1} R=\frac{\pi}{\frac{R}{2 \tau}-1} R=2 \pi\left(1+\frac{2 \tau}{R-2 \tau}\right) \tau
$$

As $R>4 \tau,|\gamma| \leq 4 \pi \tau$ and in case (i) inequality (30) holds.
Case (ii): let γ_{0} be the closed connected component of $\gamma \cap D(x(0), R / 4)$ starting at $x(0)$, then Theorem 4.5 applies to γ_{0} with $z_{0}=x(0), N=2$; by (22), it follows that $\left|\gamma_{0}\right| \leq \pi R$. If $\gamma_{0} \cap \partial B(x(0), R / 4)=\emptyset$, thus $\gamma=\gamma_{0}$ and by previous inequality $|\gamma| \leq \pi R$. Thus (30) is proved with the constant given in (31).

In case $E_{0}:=\gamma_{0} \cap \partial B(x(0), R / 4) \neq \emptyset$. Let x_{1} be the end point of γ_{0}. Let γ_{1} be the closed connected component of $\left(\left\{x_{1}\right\} \cup\left(\gamma \backslash \gamma_{x_{1}}\right)\right) \cap D\left(x_{1}, R / 4\right)$. Then, by Theorem4.5

$$
\left|\gamma_{1}\right| \leq \pi R .
$$

Let $\gamma_{1} \cap \partial B\left(x_{1}, R / 4\right)=\emptyset$, thus $\gamma=\gamma_{0} \cup \gamma_{1}$; then

$$
|\gamma|=\left|\gamma_{0}\right|+\left|\gamma_{1}\right| \leq 2 \pi R
$$

and (30) is proved with the constant given in (31).
Let us assume that $E_{1}:=\gamma_{1} \cap \partial B\left(x_{1}, R / 4\right) \neq \emptyset$. An iterative procedure can be constructed. Let us assume that $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}$ are connected subsets of γ already defined; let x_{j} and x_{j+1} be the starting and the end points of each $\gamma_{j}(j=0, \ldots, m-1) ; \gamma_{j}$ is the closed connected component of $\left(\left\{x_{j}\right\} \cup\left(\gamma \backslash \gamma_{x_{j}}\right)\right) \cap D\left(x_{j}, R / 4\right)$ starting at x_{j}; moreover $\gamma_{j} \cap \partial B\left(x_{j}, R / 4\right) \neq \emptyset(j=0, \ldots, m-1)$ and

$$
\begin{equation*}
\left|\gamma_{j}\right| \leq \pi R \tag{32}
\end{equation*}
$$

Let us consider

$$
E_{m}:=\left(\left\{x_{m}\right\} \cup\left(\gamma \backslash \gamma_{x_{m}}\right)\right) \cap \partial\left(B\left(x_{m}, R / 4\right)\right)
$$

There are two possibilities: either $E_{m}=\emptyset$ or $E_{m} \neq \emptyset$. If $E_{m}=\emptyset$ then the procedure stops and $\gamma=\cup_{i=0}^{m} \gamma_{i}$ Otherwise, if $E_{m} \neq \emptyset$, let x_{m+1} be the end point of γ_{m} and let γ_{m+1} be the closed connected component of $\left(\left\{x_{m+1}\right\} \cup\left(\gamma \backslash \gamma_{x_{m+1}}\right)\right) \cap D\left(x_{m+1}, R / 4\right)$. If γ_{m+1} reduces to the point x_{m+1} the procedure stops. Otherwise the procedure continues.
Claim : $\left|x_{i}-x_{j}\right| \geq \frac{R}{4} e^{-\frac{\pi}{2}}$ for $0 \leq i \neq j \leq m$.
The claim will be proved later.
From Lemma 5.1 with $r_{1}:=\frac{R}{4} e^{-\frac{\pi}{2}}$, since $\left\{x_{0}, \ldots, x_{m}\right\} \subset \gamma \subset D\left(w_{0}, \tau\right)$, the iterative procedure stops with $m \leq\left(\frac{4 \sqrt{2} \tau}{r_{1}}\right)^{2}$. Then $\gamma=\cup_{i=0}^{m} \gamma_{i}$; from (32) and the previous bound on m it follows that

$$
|\gamma|=\sum_{i=0}^{m}\left|\gamma_{i}\right| \leq(m+1) \pi R \leq\left(1+\left(\frac{4 \sqrt{2}}{r_{1}}\right)^{2} \tau^{2}\right) \pi R
$$

Inequality (30) follows with $c(R, \tau)$ given by (31).
Proof of the claim: Let $x_{i}=x\left(s_{i}\right), x_{j}=x\left(s_{j}\right), s_{i}<s_{j}$. The claim holds true if $x_{j} \notin B\left(x_{i}, R / 4\right)$. Assume that $x_{j} \in B\left(x_{i}, R / 4\right)$. Let us recall that $\gamma \backslash \gamma_{x_{j}}$ has points outside of $B\left(x_{i}, R / 4\right)$. Thus the connected
component $\bar{\gamma}$ of $\gamma \cap D\left(x_{i}, R / 4\right)$ that contains x_{j} reenters in $D\left(x_{i}, R / 4\right)$ in a point $x(\bar{s}) \in \partial B\left(x_{i}, R / 4\right)$, $s_{i}<\bar{s}<s_{j}$. By Theorem 4.5

$$
s_{j}-\bar{s} \leq|\bar{\gamma}|<\pi R .
$$

By Lemma 3.1 as $0 \leq s_{i}<\bar{s}<s_{j}$ then

$$
\left|x\left(s_{j}\right)-x\left(s_{i}\right)\right| \geq\left|x(\bar{s})-x\left(s_{i}\right)\right| e^{-\frac{s_{j}-\bar{s}}{2 R}} \geq \frac{R}{4} e^{-|\bar{\gamma}| / 2 R} \geq \frac{R}{4} e^{-\pi / 2}
$$

holds. The claim is proved. \quad I

The bound for the constant $c(R, \tau)$ obtained above is not the best one, but the exponent of the factor τ^{2} in (31) cannot be lowered. As an example, let us consider the square of sides $(p+1) R, p \in \mathbb{N}, p$ pair, with vertices $O=(0,0),(p R, 0),(p R, p R),(0, p R)$. Let γ the piecewise linear line joining the points

$$
\begin{aligned}
& (0,0),(p R, 0),(p R, R),(0, R), \\
& \ldots \\
& (0,2 k R),(p R, 2 k R),(p R,(2 k+1) R),(0,(2 k+1) R), \\
& (0,(p-2) R),(p R,(p-2) R),(p R,(p-1) R),(0,(p-1) R), \\
& (0, p R),(p R, p R),(p R,(p+1) R) .
\end{aligned}
$$

γ is a piecewise linear R-curve with length $(p+1)(p R)+p R+R=(1+p)^{2} R$. Let $(p+1) \sqrt{2} R=\tau$. Then $\gamma \subset B(O, \tau)$ and $|\gamma|=\tau^{2} / 2 R$. With a standard smoothing technique the previous example can be extended to a C^{1} plane R-curve.

TheOREM 5.3 Let $z_{0} \in \mathbb{R}^{2}, R>0$. Let γ be a C^{1} plane R-curve, $\gamma \subset D\left(z_{0}, \tau\right)$. Then the detour of $\gamma_{x_{1}, x}$ is bounded for all $x_{1}, x \in \gamma$ by a constant depending on R and τ only.

Proof. Let $x_{1}, x \in \gamma, x_{1} \prec x$. If $\gamma_{x_{1}, x} \subset D\left(x_{1}, R / 3\right) \subset D\left(z_{0}, \tau\right)$ then the result follows from Theorem 4.7 Otherwise $\operatorname{per}\left(\operatorname{co}\left(\gamma_{x_{1}, x}\right)\right) \geq 2\left|x-x_{1}\right|>\frac{2}{3} R$. Then

$$
\frac{1}{\left|x-x_{1}\right|}<\frac{3}{R}
$$

Then from (30) and the previous inequality

$$
\frac{\left|\gamma_{x_{1}, x}\right|}{\left|x-x_{1}\right|}<3 \frac{c(R, \tau)}{R}
$$

follows. \quad I

Let us conclude this section by showing that in the previous theorem the dependence on τ is needed.

Proposition 5.4 Let x_{0}, \bar{x} be two given points with distance $2 R$. For every $K>0$ there exists $\gamma \in \Gamma_{R}$, with first point x_{0} and last point \bar{x} such that the detour

$$
\frac{\left|\gamma_{x_{0}, \bar{x}}\right|}{\left|x_{0}-\bar{x}\right|}>K
$$

Proof. Let $m \geq 3$ be a real number. Let C a circumference of radius $\rho=m R$ through x_{0}, \bar{x}. Let γ be obtained from \bar{C} by deleting the shorter arc joining x_{0}, \bar{x}. The curve γ is an R-curve, it satisfies (4) for every $x(s) \in \gamma$. The arc $\gamma_{x_{0}, \bar{x}}$ has detour

$$
\frac{\left(2 \pi-2 \arcsin \frac{R}{\rho}\right) \rho}{2 R}=\left(2 \pi-2 \arcsin \frac{1}{m}\right) \frac{m}{2}=\left(\pi-\arcsin \frac{1}{m}\right) m
$$

This number can be made arbitrarily large, by choosing m suitably.

6. R-curves as steepest descent curves

In this section the R-curves are seen as steepest descent curves of classes of functions. The bound on their length proved in previous sections, generalizes the results of [1], [2], [3], [4], [5], [6], for quasi convex functions.

Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded connected set. Ω will be called regular if for every $y \in \partial \Omega$ there exists a neighborhood U of y so that $\partial \Omega \cap c l(U)$ is a regular curve. Let Ω be regular, $u \in C^{2}(c l(\Omega)), D u(x) \neq 0$ for $u(x)>\min _{c l(\Omega)} u$. Let us consider the sublevel sets of u in $c l(\Omega): \Omega_{l}=\{x \in \operatorname{cl}(\Omega): u(x) \leq l\}$, for $l>\min _{c l(\Omega)} u$ and let assume that $\partial \Omega=\Omega_{\max u}$. Let $\operatorname{argmin} u:=\left\{x: u(x)=\min _{c l(\Omega)} u\right\}$.

A simple rectifiable curve γ will be called regular if its parametric representation $x(\cdot)$ with respect to its arc length is C^{2}. Let us recall that γ (with ascent parameter s) is called a steepest descent curve for the function u in Ω if it is a solution of the differential equation

$$
x^{\prime}=\frac{D u(x)}{|D u(x)|} \quad x \in \Omega \backslash \operatorname{argmin} u
$$

ThEOREM 6.1 Let Ω, u be satisfying the above assumptions. Let $R>0$. If all sublevel sets Ω_{l} of u have the property of the R-exterior ball, then
(i) the steepest descent curves of u are R-curves,
(ii) their lengths are uniformly bounded by a constant depending only on R and the diameter of Ω.

Proof. The set Ω_{l} has the property of the R-exterior ball (Definition 2); then $\forall y \in \partial \Omega_{l}, \forall x \in \Omega$, such that $u(x) \leq u(y)$,

$$
\begin{equation*}
\left|x-\left(y+R \frac{D u(y)}{|D u(y)|}\right)\right| \geq R \tag{33}
\end{equation*}
$$

holds.
Let $x(\cdot)$ a steepest descent curve for u; let $y=x(s), x=x(s-h)$ with $h>0$, then $u(x)<u(y)$ and from (33), it follows that

$$
\left|x(s-h)-\left(x(s)+R \frac{D u(x(s))}{|D u(x(s))|}\right)\right| \geq R .
$$

As $D u(x(s)) /|D u(x(s))|$ is the tangent vector $\mathbf{t}(s)$ at $x(s)$, the inequality (4) holds and (i) is proved. The assert (ii) follows from Theorem 5.2 प

Theorem 6.2 Let Ω and u be satisfying the assumptions of the previous theorem. Let $R>0$ and let all the sublevel sets of u have reach greater than R; then
(a) the steepest descent curves of u are R-curves;
(b) the steepest descent curves of u have length bounded by $c(R, \operatorname{diam} \Omega)$.

Proof. Let $y \in \Omega \backslash \operatorname{argmin} u$. The sets Ω_{l} have reach greater than R; then, by Proposition $2.2 \Omega_{l}$ have the property of R exterior ball. Therefore, by (ii) of Theorem (6.1), the thesis holds with $c(R, \operatorname{diam}(\Omega))$ given by (31). \quad -

Next Theorem 6.6 provides a simple way to check when a "small" connected compact plane set A has the property of R-exterior ball. The goal of what follows is to prove that if $A \subset B_{R}$ and ∂A has the curvature equal or greater than $-1 / R$ in each point, then A has the R-exterior ball property (Theorem 6.6).

Let η be the support of a plane oriented regular simple curve parametrized by $s \rightarrow x(s), s$ arc length. The signed curvature k_{η} at a point $x(s)$ is defined by the Frenet formula:

$$
\frac{d}{d s} \mathbf{t}(s)=k_{\eta} \mathbf{n}(s),
$$

where $\mathbf{t}(s)$ and $\mathbf{n}(s)$ are the tangent and the normal vector to η at $x(s)$; it is assumed that a counterclockwise rotation of $\pi / 2$ maps $\mathbf{t}(s)$ on $\mathbf{n}(s)$. When η is the graph of a function $y=f(x), f \in C^{2}(-L, L)$, oriented according to the x-axis orientation, the curvature of η at a point $(x, f(x))$ is

$$
k_{\eta}=\frac{f^{\prime \prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}}(x)
$$

Lemma 6.3 Let $I=[0, l]([-l, 0])$, with $0<l<R$. Let $f: I \rightarrow \mathbb{R}$ a C^{2} real function. Let

$$
g(x)=\sqrt{R^{2}-x^{2}}-R, \quad x \in I
$$

Let f satisfy the conditions:

$$
\begin{array}{r}
f(0)=0, \quad f^{\prime}(0)=0, \\
\frac{f^{\prime \prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}}(x) \geq-\frac{1}{R}, \quad x \in I, \\
f(l) \leq g(l) \quad(f(-l) \leq g(-l)) . \tag{36}
\end{array}
$$

Then

$$
f(x) \equiv g(x), \quad x \in I
$$

Proof. Let $I=[0, l]$. Since

$$
\frac{g^{\prime \prime}}{\left(1+\left(g^{\prime}\right)^{2}\right)^{3 / 2}}=-\frac{1}{R}
$$

inequality (35) implies that

$$
\frac{d}{d x} \frac{f^{\prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{1 / 2}} \geq \frac{d}{d x} \frac{g^{\prime}}{\left(1+\left(g^{\prime}\right)^{2}\right)^{1 / 2}}
$$

Thus, as $f^{\prime}(0)=g^{\prime}(0)$, integrating the previous inequality between 0 and x we obtain

$$
\frac{f^{\prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{1 / 2}} \geq \frac{g^{\prime}}{\left(1+\left(g^{\prime}\right)^{2}\right)^{1 / 2}}, \quad 0 \leq x \leq l
$$

As the function $\frac{t}{\left(1+t^{2}\right)^{1 / 2}}$ is strictly increasing in $t \in \mathbb{R}$, the inequality

$$
f^{\prime}(x) \geq g^{\prime}(x), \quad 0 \leq x \leq l
$$

holds in $[0, l]$. As

$$
0 \geq f(l)-g(l)=\int_{0}^{l}\left(f^{\prime}(x)-g^{\prime}(x)\right) d x \geq 0
$$

then $f^{\prime} \equiv g^{\prime}$ in $[0, l]$. As $f(0)=g(0)$ then, $f \equiv g$ in $[0, l]$.
Let $I=[-l, 0]$. For the functions $\tilde{f}=f(-(\cdot))$ and $\tilde{g}=g$ the previous procedure applies in $[0, l]$, then the thesis follows. \square

Lemma 6.4 Let G, H be plane, open, bounded, simply connected sets with $G \subset H$. Let $\partial G, \partial H$ have the same orientation. Assume that there exists $\bar{y} \in \partial G \cap \partial H$ and that in a neighborhood U of \bar{y} the set $U \cap \partial G$ $(U \cap \partial H)$ is support of a regular curve $\alpha(\beta)$ with orientation induced by $\partial G(\partial H)$. At \bar{y} the sets G and H have the same exterior normal vector. Thus α and β have the same tangent vector at \bar{y}, accordingly to their orientation.

Lemma 6.5 Let B^{i}, the open disk of radius R, centered at $w^{i} \in \mathbb{R}^{2}, i=0,1,0<\left|w^{1}-w^{2}\right|<2 R$. Let η be an oriented regular plane curve joining two different points $y_{0}, y_{1} \in \partial B^{1}$ such that

$$
\eta \subset c l\left(B^{0}\right) \backslash B^{1}
$$

Let's assume that one of the points y_{0}, y_{1} is in B^{0}. Let y_{1} follow y_{0} according to the clockwise orientation of ∂B^{1} and $y_{0} \prec y_{1}$ on η. If the curvature of η satisfies the inequality

$$
\begin{equation*}
k_{\eta} \geq \frac{-1}{R} \tag{37}
\end{equation*}
$$

then

$$
\begin{equation*}
\eta \subset \partial B^{1} \tag{38}
\end{equation*}
$$

Proof. Let

$$
B^{t}=B\left(t w_{1}+(1-t) w_{0}, R\right), \quad 0 \leq t \leq 1
$$

the family of plane balls connecting B^{0} with B^{1}. Let $E=\left\{t: \eta \subset \operatorname{cl}\left(B^{t}\right)\right\}$. By assumption, $0 \in E$. Let $t^{*}=\sup E$. If $t^{*}=1$, the lemma is proved. Otherwise, since $\eta \subset \operatorname{cl}\left(B^{t^{*}}\right)$, there exists $\bar{y} \in \eta \cap \partial B^{t^{*}}$, $\bar{y} \neq y_{0}, y_{1}$. Thus $\eta \cap \partial B^{t^{*}}$ is a non empty set and of course it is closed. Let us prove that it is also open. At each point $\bar{y} \in \eta \cap \partial B^{t^{*}}$ let us consider a Cartesian coordinate system with origin \bar{y} and x-axis oriented as the tangent to $\partial B^{t^{*}}$ clockwise oriented. As $\eta \subset B^{t^{*}}$ and it is a regular curve, then η is tangent to $\partial B^{t^{*}}$ at \bar{y}. In a neighborhood of \bar{y} the support of η is the graph of a function $y=f(x)$ in the coordinate system (x, y). Let us prove that η is oriented accordingly to the graph of f, to say according to the x-axis orientation at \bar{y}. Let $H: \equiv B^{t^{*}} \backslash \operatorname{cl}\left(B^{1}\right), G$ the open set bounded by η and $\operatorname{arc}\left(y_{0}, y_{1}\right)$ on ∂B^{1} clockwise oriented. Then \bar{y} satisfies the assumptions of Remark 6.4 and the curves η and $\partial B^{t^{*}} \backslash B^{1}$ have the same tangent vector. Then the assumptions of Lemma 6.3 are satisfied in a suitable neighborhood of \bar{y} since the bound (37) implies (35). Lemma 6.3 implies that $\eta \cap \partial B^{t^{*}}$ is also open. Then $\eta \cap \partial B^{t^{*}}=\eta$. Then $y_{0}, y_{1} \in \partial B^{t^{*}} \cap \partial B^{1}$. As $\eta \subset \operatorname{cl}\left(B^{0}\right)$ it follows that $t^{*} \in\{0,1\}$. Since one of the points y_{0}, y_{1} is in B^{0}, then $t^{*}=1$. Contradiction. $\mathbf{\square}$

Theorem 6.6 Let $A \subset \operatorname{cl}\left(B_{R}\right)$ be a regular plane compact set such that ∂A is connected and the counterclockwise oriented curve η with support ∂A has curvature greater or equal than $-1 / R$. Then A has the property of the R-exterior ball.

Proof. Let $z_{0} \in \partial A$ and $n_{A}\left(z_{0}\right)$ be the exterior normal to A at z_{0}. Let

$$
B^{1}=B\left(z_{0}+R n_{A}\left(z_{0}\right)\right), \quad B^{0}=B_{R}
$$

In what follows ∂B^{1} will be clockwise oriented and $\operatorname{arc}(a, b)$ will be the shorter arc on ∂B^{1} from a to b, a, b are points on ∂B^{1}.

If $z_{0} \in \partial B^{0}$, then $\eta \subset \operatorname{cl}\left(B^{0}\right)$ is tangent to ∂B^{0}; as A and $\operatorname{cl}\left(B^{0}\right)$ have the same outer normal vector, then $B^{1} \cap A=\emptyset$ and $B^{1} R$-supports A at z_{0}.

Let $z_{0} \in B^{0}$. Let us notice that if $z \in \operatorname{cl}\left(B^{0}\right) \cap \operatorname{cl}\left(B^{1}\right)$, then $\left|z-z_{0}\right|<2 R$. If $A \subset\left(B^{1}\right)^{c}$, then A has the property of the exterior ball at z_{0}. To prove this fact it will be shown that there exist two points $z_{0}^{+}, z_{0}^{-} \in \eta \cap \partial B^{1}\left(z_{0}^{+}, z_{0}^{-}\right.$possibly coinciding with $\left.z_{0}\right)$, such that η is the union of $\operatorname{arc}\left(z_{0}^{-}, z_{0}^{+}\right)$and a regular curve $\tilde{\eta}$, with end points z_{0}^{+}, z_{0}^{-}, where

$$
\tilde{\eta} \backslash\left\{z_{0}^{-}, z_{0}^{+}\right\} \subset\left(c l\left(B^{1}\right)\right)^{c} .
$$

Let (x, y) be a Cartesian coordinate system centered at z_{0}, with y-axis in the opposite direction of $n_{A}\left(z_{0}\right)$ and the x axis in the direction of the tangent vector to η at z_{0}. Let U be a neighborhood of z_{0} such that $\eta \cap U$ is the graph of a function $y=f(x)$ and $\partial B^{1} \cap U$ is the graph of $y=g(x)$.

If $\eta \cap U$ contains a point $z \in \operatorname{cl}\left(B^{1}\right) \cap \operatorname{cl}\left(B^{0}\right) \backslash\left\{z_{0}\right\}$ then, for a suitable $0<l<R$, either $z=(l, f(l))$ or $z=(-l, f(-l))$. Then f, g satisfy the assumptions of Lemma 6.3. Therefore $\eta_{z, z_{0}}^{\cap} \cap U \subset \partial B^{1}\left(\eta_{z_{0}, z} \cap U \subset\right.$ $\left.\partial B^{1}\right)$.

Let ξ be the maximal closed connected component of $\eta \cap \operatorname{cl}\left(B^{1}\right)$ containing z_{0}. As $\xi \subset \operatorname{cl}\left(B^{1}\right) \cap \operatorname{cl}\left(B^{0}\right)$ then $\operatorname{diam}(\xi)<2 R$; then ξ is an arc on ∂B^{1} shorter than πR, with end points z_{0}^{-}, z_{0}^{+}, where $z_{0}^{-} \prec z_{0} \prec z_{0}^{+}$ on $\partial B^{1} \cap \operatorname{cl}\left(B^{0}\right)$; it can be $z_{0}=z_{0}^{-}, z_{0}=z_{0}^{+}$, moreover by the regularity of η both $z_{0}^{+}, z_{0}^{-} \notin \partial B^{0}$.

Let $\tilde{\eta}=\eta \backslash \xi$ oriented accordingly to the counterclockwise orientation of ∂A. Let

$$
\begin{align*}
& W^{+}=\left\{w \in \tilde{\eta}: z_{0}^{+} \prec w, \tilde{\eta}_{z_{0}^{+}, w} \backslash\left\{z_{0}^{+}, w\right\} \subset\left(c l\left(B^{1}\right)\right)^{c}\right\} \tag{39}\\
& W^{-}=\left\{w \in \tilde{\eta}: w \prec z_{0}^{-}, \tilde{\eta}_{w, z_{0}^{-}} \backslash\left\{z_{0}^{-}, w\right\} \subset\left(c l\left(B^{1}\right)\right)^{c}\right\} \tag{40}
\end{align*}
$$

The above argument shows that W^{+}, W^{-}are non empty sets. Let w^{+}the supremum of $W^{+}\left(w^{-}\right.$the infimum of W^{-}) accordingly to the ordering of $\tilde{\eta}$. Then $\left\{w^{+}, w^{-}\right\} \subset \partial B^{1}$ and $\tilde{\eta}_{z_{0}^{+}, w^{+}}, \tilde{\eta}_{w^{-}, z_{0}^{-}}$are subsets of $\tilde{\eta}$. If $w^{+}=z_{0}^{-}$then also $w^{-}=z_{0}^{+}$and vice versa, moreover in this case

$$
\tilde{\eta} \backslash\left\{z_{0}^{-}, z_{0}^{+}\right\} \subset\left(c l\left(B^{1}\right)\right)^{c}
$$

and the thesis holds.
Let us show first that $w^{+} \neq z_{0}^{-}, w^{-} \neq z_{0}^{+}$cannot hold. Let $\partial B^{1} \cap \partial B^{0}=\left\{u^{-}, u^{+}\right\}$, with $u^{-} \prec z_{0}^{-} \prec$ $z_{0}^{+} \prec u^{+}$on $\partial B^{1} \cap \operatorname{cl}\left(B^{0}\right)$.

Let us show that $w^{+} \in \operatorname{arc}\left(z_{0}^{+}, u^{+}\right)\left(w^{-} \in \operatorname{arc}\left(u^{-}, z_{0}^{-}\right)\right)$cannot hold. As B^{0}, B^{1} and $\eta_{z_{0}^{+}, w^{+}}$satisfy the hypothesis of Lemma 6.5 with $y_{0}=z_{0}^{+}, y_{1}=w^{+}$, that would imply $\eta_{z_{0}^{+}, w^{+}} \subset \partial B^{1}$. This fact would contradict the maximality property of z_{0}^{+}(similar procedure for w^{-}). The remaining case would be
$w^{+} \in \operatorname{arc}\left(u^{-}, z_{0}^{-}\right)$and $w^{-} \in \operatorname{arc}\left(z_{0}^{+}, u^{+}\right)$. This would imply that $\tilde{\eta}_{z_{0}^{+}, w^{+}}$and $\tilde{\eta}_{w^{-}, z_{0}^{-}}$should cross and that η is not a simple curve. This is impossible. प

The R-exterior ball property cannot hold for a set A without suitable topological assumptions. As example let us consider two concentric disks $D(O, R), D(O, 2 R)$ centered at the origin O. Let V a convex angle of vertex O with amplitude $\varepsilon>0$. Let $U=D(O, 2 R) \backslash(D(O, R) \cup V) . U$ is a regular domain (excepted four points) which can be modified in a neighborhood of this four points into a smooth domain A such that ∂A has the curvature greater or equal than $-1 / R$ at each point. It easy to see that each B_{R} ball with boundary through a point on $\partial A \cap \partial V$ meets the interior of A for ε small enough.
The assumption that ∂A is connected is necessary too. Let us consider as A the union of two disjoint small circles contained in B_{R}. The counterclockwise oriented boundary of the circles have positive curvature but the R-exterior ball property does not hold.

In a forthcoming work [8] it will be shown that Theorem 6.6 is sharp. If $A \subset c l\left(B_{R+\varepsilon}\right)$, with $\varepsilon>0$ the result may not hold.

Theorem 6.7 Let $\Omega \subset D_{R}$. Let the curvature of the level lines $\{x \in \Omega: u(x)=l\}$ (counterclockwise oriented), with $l>\min _{\Omega} u$, greater or equal than $-\frac{1}{R}$. Then the level sets of u have the property of the R-exterior ball and its steepest descent curves are R-curves.

Proof. From the previous theorem, applied to each set $A=\Omega_{l}$, it follows that the level sets of u have the property of the R-exterior ball; then, by Theorem 6.1 the steepest descent curves of u are R-curves. \square

Acknowledgement

This work has been partially supported by INDAM-GNAMPA(2016).

References

[1] Manselli P, Pucci C. Maximum length of Steepest descent curves for Quasi-convex Functions. Geometriae Dedicata 1991;38:211-227.
[2] Mainik I F. An estimate of the length of the curves of descent. Sibirsk Mat Zh. 1992;33:215-218.
[3] Icking C, Klein R, Langetepe E. Self-approaching curves. Math Proceedings Cambridge Philos Soc. 1999;125:441-453.
[4] Daniilidis A, Ley O, Sabourau S. Asymptotic behaviour of self-contracting planar curves and gradient orbits of convex functions. J Math Pures Appl. 2010;94:183-199.
[5] Daniilidis A, David G, Durand-Cartagena E, Lemenant A. Rectifiability of selfcontracted curves in the euclidean space and applications. J Geom Anal. 2015;25:12111239.
[6] Longinetti M, Manselli P, Venturi A. On steepest descent curves for quasi convex families in \mathbb{R}^{n}. Math Nachr. 2015;288:420-442.
[7] Aichholzer O, Aurenhammer F, Icking C, Klein R, Langetepe E, Rote G. Generalized self-approaching curves. Discr Appl Math. 2001;109:3-24.
[8] Longinetti M, Manselli P, Venturi A. Plane R-curves and their steepest descent properties II. in preparation.
[9] Federer H. Curvature measure. Trans Amer Math Soc. 1959;93:418-481.
[10] Rataj J. Determination of spherical area measures by means of dilatation volumes. Math Nachr 2002;235:143-162.
[11] Colesanti A, Manselli P. Geometric and Isoperimetric Properties of sets of Positive Reach in \mathbb{E}^{d}. Atti Semin Mat Fis Univ Modena Reggio Emilia. 2010;57:97-113.
[12] Bonnesen T, Fenchel W. Theory of Convex Bodies. BCS Associates; 1987.

[^0]: *Corresponding author. Email: marco.longinetti@unifi.it

