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A B S T R A C T   

Each pile in an offshore wind farm may be designed solely on the results of a single cone penetration test (CPT) 
positioned at its center or based on sample statistics calculated from multiple investigated locations in the same 
geotechnical unit. This study investigates quantitatively the effects of spatial variability of soil on the efficacy of 
the two approaches to achieve a reliable design. Random field theory is used to generate sets of cone tip 
resistance profiles with different characteristics to represent different seabed conditions and piles are ‘designed’ 
using the above two approaches and the partial factor method to withstand a given vertical drained design load 
distribution. The effects of the inaccuracies in prediction of pile capacity from the CPT data are quantified in 
terms of the scatter in calculated reliability (or probability of failure). Outputs of the parametric statistical 
analysis demonstrate that the ability of the two CPT-based approaches to produce a reliable foundation design is 
dependent on the ratio between the horizontal scale of fluctuation and the pile diameter, and the overall vari
ability (coefficient of variation) of the seabed properties. Modifications to deterministic, partial factor design 
approaches are suggested to account for these uncertainties to ensure target reliabilities are achieved.   

1. Introduction 

Piles are utilized increasingly for bottom supported and floating 
offshore infrastructure for both renewables and oil and gas applications 
(Salgado and Lee, 1999; ISO, 2020; API, 2014; Wu et al., 2019). 
Although there are still some level of uncertainties in quantifying piles’ 
axial (e.g. Lehane et al., 2017) and lateral response (e.g. Klinkvort, 2012; 
Byrne et al., 2015; Thieken et al., 2015) for a given site condition, it is 
likely that larger cost savings can be achieved by considering more 
carefully the derivation of site-specific inputs into design methodologies 
(Phoon and Kulhawy, 1999; Kallehave et al., 2015; Cai et al., 2019; Li 
et al., 2019). 

Site-specific pile design is based on information from geotechnical 
and geophysical surveys, and seabed parameters are conventionally 
selected assuming spatially homogeneous soil at each pile location (i.e. 
without consideration of spatial variation in properties within each pile 
‘footprint’). This means that if a pile-specific cone penetration test (CPT) 
is conducted in the planned pile location, then the pile response is 
normally calculated deterministically using the location-specific CPT 
data (and supporting sample testing results) without considering further 

how soil properties may vary laterally in the zone of influence of the pile 
(or pile group). Alternatively, if the pile is to be constructed away from 
investigated locations, then the pile response is likely to be determined 
based on the statistics of the obtained geotechnical data in the same 
geotechnical unit (as identified by collating and comparing geotechnical 
data and using geophysical data to confirm similarity of geological 
conditions). This may be done by selecting a characteristic (or design) 
line based on a specified quantile of the data for the limit state of interest 
(Phoon and Kulhawy, 1999; Uzielli et al., 2007; 2019;; Uzielli and 
Mayne, 2019) and using this in standard deterministic (partial factor or 
global factor of safety) design. 

At present, large diameter piles are being installed to support 
increasingly large offshore infrastructure (e.g. 7.8 m diameter monopiles 
for the Veja Mate offshore wind facilities (Negro et al., 2017)) and, 
although normally smaller, anchor piles may be as large as 5.5 m in 
diameter (e.g. Erbrich et al., 2017; Dechiron et al., 2020). Consequently, 
the distribution of soil strength within the pile footprint (which will 
govern pile response) may be different to that derived from the pile- 
specific CPT data (e.g. Fig. 1) or the statistics of the collated unit- 
specific data. Current studies about evaluating the effect of this 
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uncertainty on pile design are scarce, and large factors of safety or large 
partial factors and/or conservative characteristic lines are often used to 
ensure safe design. It is uncertain currently whether this may result in 

over-engineered and thereby less economic piles. 
In light of the above uncertainty, the paper investigates how the 

reliability (and designed size) of large diameter piles in sand are affected 
by the method of selection of the characteristic design profile, how this 
reliability depends on the variability of the soil properties and conse
quently how, more generally adopted, deterministic design approaches 
(e.g. using partial factors) can be modified to ensure target reliabilities 
are achieved. In order to identify trends in data and to suggest a design 
framework this process is implemented for a limited sub-set of param
eters in design space (and only for drained uplift loading as relevant for 
an anchor pile for wave energy converter for instance). The paper in
vestigates two common design scenarios ((i) when the designer has data 
from a single CPT at the pile location, and (ii) when unitized CPT data is 
available) providing recommendations for each. 

The investigation was conducted using numerical analyses and 
random field theory, with the use of Monte Carlo simulation. Three- 
dimensional (3D) random fields of net cone tip resistance (qc) were 
generated for different scenarios of spatial variability, each designed to 
represent one possible seabed condition. Subsequently, piles were 
‘designed’ using virtual CPT results typical of each site investigation (SI) 
strategy for each realization of the random field. Design used the ISO 
partial factor approach (LRFD) to fulfil in-place capacity requirements 
for a specified load distribution function. The probability of failure (pf) 
of the pile designed using this method was then calculated (using 

Fig. 1. A horizontal soil profile with variability of soil strength.  

Fig. 2. Summary of pile design procedures.  
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knowledge of the full 3D seabed property field) and the results of mul
tiple realizations were assembled to assess the suitability (or reliability) 
of the approach. This allowed recommendations to be made to modify 
standard deterministic partial factor design to incorporate explicitly the 
uncertainty in ground conditions. 

2. Quantifying reliability of uplift capacity estimation in 
spatially variable soils 

In this study, two design approaches for an open-end pile undergoing 
drained uplift loading are investigated. In the first case, the uplift ca
pacity was calculated solely using a (virtual) single CPT tip resistance 
profile located at the center of the proposed pile. In the other approach, 
the uplift capacity of a pile positioned at an untested location was 
calculated using the aggregate data set from multiple (virtual) CPTs by 
selecting a characteristic design profile based on a given sample statistic 
(Phoon and Kulhawy, 1999; Uzielli et al., 2007; 2019;; Uzielli and 

Mayne, 2019). For each scenario of spatial variability, Monte Carlo 
simulations were performed for n realizations (the determination of n is 
discussed in Section 2.5) of the random field and the subsequent 
computation of the statistical distributions of pile uplift capacity and 
pile length, from which the reliability and probability of failure of the 
designed pile were evaluated. 

2.1. Pile design procedures 

The pile sizing procedure was conducted using the ISO (2020) partial 
factor (or LRFD) approach as follows:  

(1) Obtain the unfactored load that the foundation must resist. In this 
study, a lognormal annual uplift load (S) distribution with a mean 
of 12 MN and a coefficient of variation (i.e. the ratio between 
standard deviation and mean value) of 0.3 was used. This was 
selected to ensure that the majority of this distribution falls 
within the typical uplift load range for offshore wind turbines, i.e. 
0 to 40 MN (Spagnoli et al., 2018). The deterministic design was 
assumed to have to withstand the P97.7 value of the load, i.e. S 
(97.7%), which is the load value corresponding to 97.7% (a 
typical design quantile, equivalent to the mean plus two standard 
deviations for a normal distribution) cumulative probability of 
the load distribution (20.65 MN in this case). The selected 
magnitude and distribution will affect the results of this exercise 
quantitatively, but not qualitatively (i.e. the general trends are 
expected to be unaffected).  

(2) Multiply the unfactored load by a load factor, γL, to obtain the 
factored load, which the pile must withstand. The load factor γL 
= 1.35 corresponds to a ‘live’ environmental load (ISO, 2020). 
Consequently, the factored load for the example calculations is 
27.88 MN.  

(3) Calculate the required pile size for the given CPT design line so 
that the factored capacity (R(qc/γm), γm is the material factor) 
equals (or exceeds) the factored load (so R(qc/γm) ≥ 27.88 MN). 
Note that the soil property (qc in this case) was divided by a 
material factor, γm = 1.25, before performing the calculation so 
that the output is the factored capacity. 

The above can be summarized as: 

R
(

qc

γm

)

⩾γLS(97.7%) (1) 

For the final set of calculations (i.e. step 3), the UWA-05 method 
(Lehane et al., 2005) was used to calculate the drained capacity of an 
open-ended pile based on the constant volume interface friction angle 
(δf), and the cone penetrometer resistance (qc) data. The UWA-05 design 
equations (Lehane et al., 2005) are expressed as follows: 
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(2b)  

where τf is the local shaft friction; z is the depth below the seabed; Di is 

Fig. 3. Site geometries for: (a) the single-investigated location case; and (b) the 
multiple-investigated location case. 

Table 1 
Summary of cone tip resistance profile properties for random field generation.  

Soil property Symbol Property value Unit 

Trend μqc See Eq. (3) MPa 
Mean relative density Dr 80% – 
Coefficient of variation (COV) COV(qc) 0, 0.15, 0.3, 0.45 – 
Horizontal scale of fluctuation θh 0, 0.1D, 1D, 10D, 100D, ∞ m 
Vertical scale of fluctuation θv 1 m  
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the inner diameter of the pile; and, h is the height above the pile tip. 
Although model uncertainty is present in all axial pile capacity 

calculation methods including the UWA-05 method (Lehane et al., 
2017), this uncertainty has not been included directly here in order to 
isolate uncertainty associated with selection of the characteristic 
(design) line. 

Cone profile inputs are discussed below. A single deterministic value 
of δf = 29 degrees was used in this study. This is because the interface 
friction angle is not expected to strongly correlate with cone tip resis
tance. The value of 29 degrees was selected based on recommendations 
for offshore steel pile design (Liu et al., 2019) based on a database of ring 
shear steel interface tests on sandy-silty soils which show a relatively 
low sensitivity of δf to fines contents, mineralogy, and normal stress level 
variations (though the correlation with qc is believed to be unexplored). 

In order to simplify the pile sizing process, the outer pile diameter, D 
= 8 m and the pile wall thickness t = 100 mm were fixed so that only the 
pile length, L, was varied to fulfil capacity requirements. The afore
mentioned value of the pile diameter was selected because a monopile 
with an outer diameter around 8 m has been installed in some European 
offshore wind facilities, e.g. Veja Mate offshore wind facilities (Negro 
et al., 2017). In addition, the ratio, D/t = 80 is commonly used in 
installed wind turbines (Arany et al., 2017). Although the above pile 

dimensions are typical of recent monopiles, the results of this study are 
presented normalized by pile diameter later so are equally applicable to 
smaller diameter anchor piles. As also demonstrated later the ratio of the 
pile diameter to the horizontal scale of fluctuation θh is more relevant to 
the problem investigated here than the pile diameter itself. 

The pile sizing method is also summarized in Fig. 2. 

2.2. Site geometry 

This study investigates the reliability of two CPT-based pile design 
approaches (e.g. Fig. 2), corresponding to two distinct CPT sounding 
location geometries:  

(1) In the single-investigated location geometry, a single CPT is 
‘conducted’ at the center of the planned pile (Fig. 3a). The design 
line (and consequent pile length) was determined using this CPT 
data.  

(2) In the multiple-investigated location approach, 36 CPTs are 
‘conducted’ in a regular 6 by 6 grid with a 50 by 50 m spacing 
between grid points (Fig. 3b) with the anchor pile located at the 
center. Design relies on the data from the 36 CPTs to select the 
design qc profile. 

Fig. 4. Cone tip resistance profiles generated for: (a) COV(qc) = 0.15, θh = 1D; (b) COV(qc) = 0.3, θh = 1D; (c) COV(qc) = 0.45, θh = 1D; (d) COV(qc) = 0.15, θh =

100D; (e) COV(qc) = 0.3, θh = 100D; (f) COV(qc) = 0.45, θh = 100D (50 m CPT spacing). 
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For both site geometries, the depth-wise sampling interval was 0.02 
m (coinciding with a 2 cm/s cone penetration rate and minimum 1 Hz 
data logging specified in ISO (2014)). 

2.3. As-designed capacity 

For both site geometries, the as-designed pile capacity, R(qca), for 
each designed pile was calculated using the field data at pile wall 
location. This was done by ‘revealing’ 36 cone tip resistance profiles, qca, 
evenly distributed circumferentially around the pile wall at each depth 
(Fig. 3a and b). Thirty-six profiles were used because sensitivity analysis 
showed that increasing the mesh nodes from 36 to 360 only made a 
slight change (within 1%) to the computed R(qca). 

Note that the recorded tip resistance of a cone penetrometer reflects 
an average across an influence zone around the cone tip. The influence 
zone usually extends from 2 CPT diameters in soft materials to up to 20 
CPT diameters in stiff materials (e.g. 71.4 to 714 mm) (Ahmadi and 
Robertson, 2005; Rogers, 2006), which, for a typical CPT with a 

diameter of 35.7 mm is significantly smaller than the design pile 
diameter adopted herein. Hence, the CPT is assumed to give a point 
measurement of qc in this study, although a significant spatial averaging 
effect may exist when the horizontal scale of fluctuation is smaller than 
the size of the cone influence zone (e.g. Zhang et al., 2020). 

2.4. Modelling of spatial variability 

The numerical work presented herein is limited to investigating a 
pile in a seabed with a single (sandy) soil unit which behaves in a 
drained manner during pile loading. This simplification has been made 
in order to isolate the already-complex statistics of the problem in order 
to examine design frameworks. Clearly, real seabed often have multiple 
soil layers or spatially trending changes in density or grading (e.g. Wang 
et al., 2018; 2019;; Montoya-Noguera et al., 2019; Zhao and Wang, 
2020; Zhao et al., 2020) and the effect of these properties will worth 
studying in a second stage. 

The vertical and horizontal spatial variability of qc for a single silty 
sand layer can be expressed in terms of the superposition of a depth-wise 
trend (μqc) and a residual variation (reflecting the variability about the 
trend). The depth-wise trend of μqc is defined assuming that the average 
soil condition has a single relative density, Dr = 80%, with depth. The 
particular form of the trend is generated using the following equations 
(Lunne et al., 1997): 

Dr =
1

2.61
ln

[
μqc

181
(
σ’

m

)0.55

]

=
1

2.61
ln

[
μqc

181[(γsat − γw)z ]
0.55

]

(3)  

where σ′
m is the mean effective stress, γsat and γw (=10 kN/m3) are the 

unit weight of saturated sand and water, respectively, and z is the depth 
below the seabed. For generating the depth-trend of qc, a value of γsat =

22 kN/m3 for silty sand with 80% of relative density was applied. 
The spatial variability of qc can be conveniently represented as a 

lognormal random field (e.g. Vanmarcke, 1984; Fenton and Griffiths, 
2008; Cai et al., 2019) described by an autocorrelation function, a trend 
function (e.g. μqc in Eq. (3)), a coefficient of variation (COV(qc)), and 
horizontal and vertical scales of fluctuation (θh and θv, respectively). The 
lognormal distribution prevents negative values and has been shown to 
be effective in simulating the spatial variability of cone tip resistance 
(Phoon and Kulhawy, 1999; Uzielli et al., 2007). The random fields were 
generated using the Karhunen-Loeve (KL) expansion method (Schwab 
and Todor, 2006). As the KL expansion needs to be truncated to a finite 
number of terms, a significant concern is that the simulated variance will 
be reduced. In order to control this reduction, the eigenvalues are sorted 

Fig. 6. Comparison of histogram and the probability density function of pile capacity, R(qca), with different θh when COV(qc) = 0.45.  

Fig. 5. Coefficient of variation of pile length designed with a single, 
centered CPT. 
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in descending order and the number of terms decided when the last 
eigenvalue is at least ten thousand times smaller than the first eigen
value. In addition, although the KL method only simulates Gaussian 
random fields, a lognormal random field can be easily obtained by 
substituting a Gaussian random field with a prescribed mean and stan
dard deviation into the natural exponential function. 

The scale of fluctuation is a measure of distance within which values 
of qc can be considered strongly correlated. The autocorrelation function 
describes the correlation between values of residuals at locations j and k. 
An exponential autocorrelation function was chosen to characterize the 
spatial correlation (e.g. Zhu and Zhang, 2013; Li et al., 2015) 

ρjk = exp
[

− 2
(

τjk,h

θh
+

τjk,v

θv

)]

(4)  

where τjk,h and τjk,v are the distance between spatial points j and k in the 

horizontal and vertical directions, respectively. The other statistical 
properties of the qc random field are presented in Table 1. Note that the 
typical range of vertical scale of fluctuation is between 0.1 and 2.2 m 
(Phoon and Kulhawy, 1999), which is usually much smaller than the pile 
length. Hence, the vertical scale of fluctuation was fixed at an inter
mediate value of 1 m in this study. A set of 24 site spatial variability 
scenarios for qc were thus defined by combining values of the ratio of the 
horizontal scale of fluctuation of qc to pile diameter (θh/D = 0, 0.1, 1, 10, 
100, ∞) with values of the coefficient of variation of the lognormal 
distribution of cone resistance (COV(qc) = 0, 0.15, 0.3, 0.45). For 
example, Fig. 4a–f show artificially generated qc profiles (for site ge
ometry shown in Fig. 3b) for combinations: (a) COV(qc) = 0.15, θh = 1D; 
(b) COV(qc) = 0.3, θh = 1D; (c) COV(qc) = 0.45, θh = 1D; (d) COV(qc) =
0.15, θh = 100D; (e) COV(qc) = 0.3, θh = 100D; (f) COV(qc) = 0.45, θh =

100D. 

2.5. Monte Carlo simulation 

For each spatial variability scenario as described above, 500 re
alizations of the qc random field were generated. For each realization, 
the pile length was calculated to fulfil the partial factor requirements for 
uplift capacity as discussed above, and the as-designed pile capacity, R 
(qca), was calculated for that pile length. The results of all realizations 
was collated, and the sample statistics of calculated pile length and of 
the as-designed pile capacity were calculated. 

The number of realizations for the Monte Carlo analyses was selected 
theoretically and checked empirically. The error, err, with confidence 
(1-α) in the estimate of the mean and COV of a random field from the n 
realizations can be calculated by (Fenton and Griffiths, 2008): 

err ≈
zα/2COV(qc)

̅̅̅
n

√ (5)  

where zα/2 is the value of the standard normal variate with a cumulative 
probability level (1- α/2). When the number of simulations is 500, the 
maximum error err is less than 0.1 times the COV(qc) (3.95% for COV of 
0.45) with a confidence of 95%. An empirical check showed that when n 
= 500, the variation ranges between 2.5% and 97.5% quantiles of the 
mean values of L (μL) and of R(qca) (μR(qca)), and the coefficients of 
variation of L (COV(L)) and of R(qca) (COV(R(qca))) are − 0.6%~0.7%, 
− 0.1%~0.1%, − 3.3%~3.8%, and − 2.8%~3.1% compared to the me
dian, respectively. These ranges of variation are smaller than the 
maximum error, err (=3.95%), calculated by Eq. (5). 

Fig. 8. Probability of failure of the designed pile evaluated from g(R(qca)) and 
f(S). 

Fig. 7. Coefficient of pile capacity, COV(R(qca)), for different soil conditions: 
(a) variation of COV(R(qca)) with θh; (b) variation of COV(R(qca)) with COV(qc). 
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2.6. Probability of failure calculation 

Once the annual probability distribution of the uplift loading, f(S), 
and the as-designed pile capacity, g(R(qca)), are obtained, the annual 
probability of failure, pf, for the designed pile can be evaluated as: 

pf =

∫∫

R(qca)⩽S
f (S)g(R(qca))dR(qca)dS (6) 

In this study, g(R(qca)) was estimated by fitting the histogram of 
Monte Carlo-calculated R(qca) values with a suitable distribution (dis
cussed in Section 3). The uplift loading distribution (f(S)) was assumed 
to be lognormal with a mean of 12 MN and a COV of 0.3 (as described 
earlier). 

3. Results of numerical analyses 

3.1. Single-CPT case 

3.1.1. Calculated pile length statistics 
For all sets of soil conditions, the mean calculated pile length, μL, for 

the single-CPT case and standard ISO partial factors is 23.2 m, which is 
equivalent to the calculated pile length from the deterministic, mean- 
strength case (i.e., when COV(qc) = 0). This result is to be expected, 
because the mean of the pile lengths will depend on the deterministic 
mean of the soil property. 

Fig. 5 presents the relationship between the resulting COV of the 
calculated pile length (COV(L)) and the input COV of the soil (COV(qc)). 
The relationship is approximately linear, i.e., COV(L)/COV(qc) ≈ 0.137. 
The fact that the gradient is much smaller than unity indicates that the 
variability of the pile length is much smaller than the variability of the 
soil properties (because of the non-linearity of the pile length to capacity 
relationship), but there is still a significant variability of the calculated 
pile length (e.g. the variation ranges for cases with COV(qc) of 0.15, 0.3, 
and 0.45 are around 21 ~ 25 m, 20 ~ 27 m, and 18 ~ 29 m, respec
tively). Furthermore, the relationship is essentially independent of the 
horizontal scale of fluctuation. This follows from the fact that because 
only one CPT is used in this design approach there is no comparison data 
in the horizontal direction to reveal the horizontal correlation of the soil 
properties and therefore this is not considered in the estimation of pile 
length, L. 

3.1.2. Statistics of pile capacity 
It is of interest to assess the suitability of this design approach (i.e. of 

assuming no horizontal variability and designing based only on the data 
from a single centered CPT). This is pursued by comparing the unfac
tored design capacity, R(qc) (= 34.89 MN), and the calculated as- 
designed capacity, R(qca), of the pile considering the entire random 
field around the pile perimeter, and calculating the probability of failure 
of the designed pile based on the distribution of R(qca) and the specified 
distribution of the design load. 

The probability distribution of R(qca) was evaluated by fitting the 
Monte Carlo-produced histogram of R(qca) with a lognormal density 
function. For example, the statistics of R(qca) for the cases where COV 
(qc) = 0.45 are illustrated in Fig. 6 by showing the histograms of R(qca) 
for designed piles for different θh/D ratios. Each histogram was fitted by 
a lognormal probability density function, g(R(qca)), with a mean, μR(qca), 
and a standard deviation, σR(qca) (with values provided in Fig. 6). A 
lognormal distribution appears to adequately represent the capacity 
distribution as the coefficient of determination, R2, for these fittings are 
all larger than 0.90 (as illustrated in Fig. 6). 

For all sets of soil conditions, the mean capacity μR(qca) (e.g. Fig. 6) is 
close to the required unfactored design capacity (i.e., 34.89 MN) from 
the deterministic, mean-strength case (i.e., when COV(qc) = 0), because, 
as discussed above, μL is not influenced by the spatial variability of the 
soil properties. However, the CPT-measured qc becomes less represen
tative of the spatially averaged qca around the pile wall as the horizontal 
scale of fluctuation decreases, resulting in a wider distribution of R(qca) 
(e.g. Fig. 6). This variation of g(R(qca)) is quantified as the COV of the 
capacity (COV(R(qca))) (calculated from the fitted lognormal distribu
tion) and is plotted against the horizontal scale of fluctuation for 
different COV(qc) conditions in Fig. 7a (where the (highest) grey line 
represents the conditions shown in Fig. 6). COV(R(qca)) increases line
arly with the overall variability of the soil properties (i.e. as COV(qc) 
increases) as shown on Fig. 7b and reduces non-linearly with the hori
zontal scale of fluctuation (see Fig. 7a). 

The form of the relationships shown in Fig. 7(a) can be understood by 
considering comparatively the cases with θh/D →∞ and θh/D → 0. When 
the horizontal spatial correlation scale is very large (θh/D →∞), at any 
given depth, the soil in the whole zone of influence of the pile (including 
the CPT location) has the same qc value for any given realization. 
Consequently, the CPT accurately reflects the spatially averaged qc in the 
influence zone of the pile and so COV(R(qca)) → 0. In contrast, when the 
horizontal spatial correlation scale is very small (i.e. as θh/D → 0), 
spatial averaging around the pile results in the pile capacity reflecting 
the mean qc value with no variability in R(qca) (i.e. COV(R(qca)) = 0) for 
a given pile length. However, the pile length for each design realization 

Fig. 9. Probability of failure computed from g(R(qca)) after using different γr 
values for different combinations of COV(qc) and θh/D: (a) COV(qc) = 0.15; (b) 
COV(qc) = 0.3; and (c) COV(qc) = 0.45. 

Y. Cai et al.                                                                                                                                                                                                                                      



Computers and Geotechnics 134 (2021) 104140

8

is selected based on the CPT data (which represents the strength at a 
point location and has a COV equal to that of the general COV popula
tion) and so there is an increased COV of the designed pile capacity. 

A larger COV(R(qca)) indicates a larger variation of the capacity of 
the designed piles among different realizations generated from the same 
combination of soil variability parameters. This variation is significant 
when the normalized horizontal scale of fluctuation θh/D < 10 for the 
conditions investigated herein. A typical range of horizontal scales of 
fluctuation of qc in natural seabed of 3 to 80 m (Phoon and Kulhawy, 
1999) implies a range of 0.3 < θh/D < 8 for a 10 m diameter (mono) pile 
and 1.5 < θh/D < 40 for a 2 m diameter (anchor) pile and so this effect 
may be significant. This significance is quantified in Section 3.1.3 by 
examining how the design reliability (annual probability of failure) of a 
pile is affected by this phenomenon for the example load distribution. 

3.1.3. Reliability of the designed piles 
Based on Eq. (6), the expected pf of the designed pile evaluated from 

the unfactored design capacity (34.89 MN) and the probability density 
function of the specified load, f(S), was 0.79 × 10− 4, which is close to the 
highest allowable annual probability of failure (10− 4) specified in the 
Norwegian standard (Norsok, 2004) for the reliability of manned in
stallations. However, the pf evaluated using R(qca) and f(S) varies with 
soil conditions, because of the variation of ‘designed’ pile capacity dis
tribution g(R(qca)) as discussed earlier. For example, Fig. 8 presents the 
relationship between pf of the designed piles and θh/D for COV(qc) = 0, 
0.15, 0.3, and 0.45. Decreasing COV(qc) or increasing θh results in pf 
approaching the expected value (=0.79 × 10-4). However, for cases 
where θh is smaller than approximately 10D, the probability of failure is 
higher than targeted, i.e., the designed piles have a lower reliability than 
expected. This indicates that for a typical range of θh from 3 to 80 m and 
a pile diameter of 8 m (so θh/D = 0.375 to 10; shown shaded in Fig. 8), 
the calculated pf of a pile considering horizontal variability of qc is larger 
than the expected value. Consequently, simply using the qc profile from 
a single CPT to design a large pile appears to result in unconservative 
design even when code-recommended resistance and material partial 
factors are used. 

3.1.4. Calibration of partial factor for qc profile 
One way of avoiding the overestimation in reliability is to apply an 

additional partial factor (γr) to the qc profile (i.e. to scale down the CPT 

resistance curve) to allow for the fact that the spatially averaged qc value 
around the pile may be lower than measured because of horizontal 
spatial variability. Use of this additional partial factor would then result 
in the following overall design requirement: 

R
(

qc

γmγr

)

⩾γLS(97⋅7%) (7) 

In order to select a partial factor γr to achieve the expected reliability, 
the probability of failure computed from g(R(qca)) after using different γr 
values is plotted in Fig. 9 for different combinations of COV(qc) and θh/ 
D. From these relationships the recommended partial factors to achieve 
pf = 0.78 × 10− 4 were selected with the values summarized in Fig. 9 and 
shown on Fig. 10. As expected, the required partial factors increase with 
reducing horizontal θh/D and increasing COV(qc). For example, as the 
COV(qc) varies from 0.15 to 0.45, the calibrated partial factor for the 
case with θh = 8 m and D = 8 m (i.e. θh/D = 1) varies from 1.06 to 1.27. 
Therefore, even if the pile is constructed at a tested location, it may be 
necessary to account for the spatial variability of soil properties. The 
approach used here allows the conditions when such a scaling is 
required to be identified, although more work is required to use this 
framework to generalize the findings to a wider range of conditions. 

3.2. Multiple-CPT case 

When a pile is designed using data from multiple locations, the 
characteristic profile (the design line) may be established by considering 
a specific sample statistic, depending on the limit state being examined 
and the foundation type (Marques et al., 2011; Pohl, 2011; Lacasse et al., 
2013). Typical sample statistics adopted include the 5% sample quantile 
(qc,05), sample mean minus half sample standard deviation (qc,(μ-0.5σ)), 
sample mean (qc,μ), and sample median (qc,50) (EN, 2004; 2007;; Mar
ques et al., 2011). This section quantifies the reliability of piles designed 
using different sample statistic quantiles and discusses the optimal 
sample statistic for the design case examined here. 

3.2.1. Calculated pile length statistics 
Fig. 11 shows how the mean and COV of the ‘designed’ pile length 

vary with the horizontal scale of fluctuation for different COV(qc) con
ditions using different sample statistics to select the characteristic design 
line. Although the 90% quantile (qc,90) is rarely used in pile design, this 

Fig. 10. Required partial factor to achieve target pile reliability for the single-CPT design approach.  
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is included here for the purpose of demonstration. Obviously, the 
designed pile length becomes more conservative (i.e. has a higher mean 
length, μL, as shown in Fig. 11a) as the sample quantile decreases (e.g., 
from 90% to 5%). However, the difference between μL designed by qc,05, 
qc,50, qc,μ, and qc,90 becomes smaller and closer to 23.2 m (the designed 
pile length for the case where COV(qc) = 0) as COV(qc) decreases or as θh 
increases. This is because the range of values in the qc profiles at each 
depth for any given realization decreases with increasing θh (because the 
site becomes horizontally uniform) or decreasing COV(qc) (because the 
overall variability reduces). This is shown in Fig. 4, where qc,05, qc,50, 
qc,μ, and qc,90 converge for the θh/D = 100 condition (Fig. 4d–f). 
Consequently, this results in smaller differences between the mean pile 

lengths designed using the four statistical values qc,05, qc,50, qc,μ, and 
qc,90 as θh/D →∞. 

The variability of the designed pile length (COV(L)) increases non- 
linearly with increasing COV(qc) and θh as shown in Fig. 11b. Essen
tially, a larger COV of the designed pile length (COV(L)) is a result of a 
larger variation of selected design lines between different realizations 
for any soil condition. As mentioned above, when θh is very large each 
‘site’ (realization) is effectively horizontally uniform and so the COV of 
the design values at any depth is equal to the COV of the point statistics. 
In addition, a larger COV(qc) results in a wider distribution of the seabed 
strengths, which leads to a more significant variation of the sample 
quartiles between different realizations (e.g. Fig. 4). 

Both μL and the COV(L) are independent of θh when θh/D < 1. This is 

Fig. 11. Variation of: (a) μL; and (b) COV(L) with θh/D.  
Fig. 12. Variation of (a) μR(qca) and (b) COV(R(qca)) with θh/D.  
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attributed to the relative magnitude of θh and the horizontal CPT 
spacing. When θh is much smaller than the CPT spacing, the 36 qc pro
files are independent of each other and their values are no longer 
influenced by the exact value of θh. 

3.2.2. Statistics of pile capacities 
The capacity of the piles R(qca) ‘designed’ using each qc quantile (e.g. 

qc,05, qc,50, qc,μ, and qc,90) are shown in Fig. 12. The mean capacity, 
μR(qca), shows a variation pattern similar to that of μL, while the variation 
of the COV of R(qca) is not monotonic with regards to θh. For all cases in 
this study, the COV(R(qca)) always reaches a peak value when θh ≈ 10D 
(or θh ≈ CPT spacing, i.e. 50 m) and reduces with increasing or 
decreasing θh (Fig. 12b). This is because when the horizontal scale of 
fluctuation is very large (i.e. θh/D →∞), the values of qc,05, qc,50, qc,μ, and 
qc,90 approach the (same) qc profile everywhere around the pile. 
Consequently, the pile capacity for each realization should be close to 
the required design resistance (and so COV(R(qca)) → 0). In contrast, 
when the horizontal scale of fluctuation is small (i.e. θh is smaller than 
the CPT spacing), the variations in qc are averaged around the perimeter 
of the large diameter pile and so with decreasing horizontal scale of 
fluctuation, the averaged qc falls closer to the mean qc of the site. Hence, 
the variation of the pile capacity becomes smaller. Finally, as expected, 
COV(R(qca)) increases approximately linearly with COV(qc) for any 
given value of θh/D and strength quantile. 

3.2.3. Reliability of the designed piles 
Once the μR(qca) and COV(R(qca)) are obtained, the probability of 

failure considering soil variability around the pile can be evaluated using 
Eq. (6). As shown in Fig. 13, only when θh is infinite does the estimated pf 
matches the target probability of failure perfectly. When the pile is 
designed using qc,05 or qc,50, pf decreases as the scale of fluctuation θh 
reduces (i.e. the pile becomes increasingly over-designed). In contrast, pf 
increases (i.e. the pile becomes ‘unsafe’) when piles are designed using a 
characteristic line based on qc,μ or qc,90. This indicates that when θh/B ≤

10, it is overly cautious to design using a characteristic line based on qc,05 
and unsafe to design based on qc,μ or qc,90. For the lognormal soil distri
bution used here, using a characteristic line based on the median of the qc 
population (i.e. qc,50) appears to yield an acceptable result as the 

probability of failure remains appropriately positioned on the ‘safe’ side 
of the target value even for small θh/D values. 

4. Summary and conclusions 

This paper explores the accuracy of CPT-based design methods for 
large diameter piles in spatially variable soil by quantifying the resulting 
annual probability of failure for piles in axial tension sized using partial 
factor (ISO LRFD) approaches using two different form of CPT inputs. 

The following conclusions are drawn:  

(1) When a pile is designed solely using a single CPT at its center, the 
accuracy of the pile capacity estimation is highly dependent on 
the ratio between the horizontal scale of fluctuation and the 
diameter of the pile, and the COV of the soil property. When the 
scale of fluctuation is large compared to the pile diameter, using 
only a single CPT to quantify capacity will result in achieving 
targeted reliabilities. However, when the scale of fluctuation is 
small compared to the pile diameter, using only a single CPT to 
quantify capacity may result in lower than code-tolerated foun
dation reliabilities. This can be corrected by applying a suitable 
partial factor (γr) to scale down the CPT resistance profile to ac
count for potential spatial variability. An approach to calculate 
the required value of γr depending on the spatial variability (i.e. 
θh/D) and overall COV of the seabed properties is proposed, with 
values evaluated for one combination of site and pile conditions. 
Additional work is required to investigate the specific values of 
partial factors to encompass a broader range of load distributions, 
soil conditions, and target probabilities of failure, but the 
framework presented here is expected to be equally relevant.  

(2) When selecting a design line using a fixed sample statistic of a 
large population of geotechnical data in a single soil unit to 
design a large diameter pile subject to axial tension, the reliability 
of the pile capacity estimation decreases as the coefficient of 
variation of cone resistance (i.e. COV(qc)) increases as expected, 
but also appears to be most unreliable when the horizontal scale 
of fluctuation is approximately ten times the pile diameter (i.e. 
θh/D ≈ 10) or the minimum CPT spacing (i.e. 50 m in the example 
shown). In addition, the reliability of this design method is 
significantly influenced by the selected sample statistic with the 
use of low quartiles (e.g. qc,05) leading to excessively high reli
ability (i.e. low values of pf). In this study, the optimal sample 
statistic for design is around qc,50, for a pile which is long 
compared to the vertical scale of fluctuation for the lognormal 
soil property distribution used. 

Finally, some aspects of system response were ignored in order to 
isolate the difference in design outcomes for different CPT-based design 
approaches. For example, pile design reliability will also be influenced 
by other factors such as the uncertainty of the capacity calculation 
model and measurement uncertainty. In addition, a seabed condition 
with only a single soil layer was considered and the paper focuses on 
axial tensile capacity for simplicity. However, it is believed that the 
design framework explored has general applicability for broader seabed 
conditions, pile loadings and pile geometry combinations. 
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