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Abstract: Terricolous lichen communities in lowlands occur especially in open dry habitats. Such 
communities are often dominated by species of the genus Cladonia, which are very variable in 
morphology, reproduction strategies, and secondary metabolites. In this work, we investigated 
traits-environment relationships considering vegetation dynamics, substrate pH, disturbance, and 
climate. A total of 122 plots were surveyed in 41 acidic dry grasslands in the western Po Plain 
(Northern Italy). Relationships between Cladonia traits and environmental variables were investi-
gated by means of a model-based Fourth Corner Analysis. Thallus morphology and metabolites 
responded to vegetation dynamics, substrate pH, disturbance, and climate, whereas reproduction 
strategies responded only to vegetation dynamics. Traits’ correlations with vegetation dynamics 
elucidate their colonization patterns in open dry habitats or suggest biotic interactions with bryo-
phytes and vascular plants. In addition, correlations between metabolites and environmental fac-
tors support interpretations of their ecological roles. Our results also stress the importance of 
studying traits’ relationships with climatic factors as an alert towards lichen reactions to climate 
change. 

Keywords: lichens; open dry habitats; reproduction strategy; secondary metabolites; species traits; 
thallus growth forms; vegetation dynamics 
 

1. Introduction 
The analysis of functional traits to explore species’ responses to environmental fac-

tors is increasingly applied also to lichens [1,2]. However, most studies have addressed 
epiphytes (e.g., [3–5]), whereas terricolous lichens are relatively less investigated (e.g., 
[6–8]) despite their ecological importance (e.g., [9]) and conservation concern [6,10]. It is 
therefore of utmost importance to understand the relationships driving terricolous spe-
cies’ responses to environmental stresses, particularly in the current context of global 
change [2,5,6] 

Terricolous lichen communities are often dominated by species of the genus 
Cladonia. In this genus, the thallus is composed of two parts: a basal primary thallus and a 
secondary thallus with a very variable morphology across species [11–13]. This high 
variability leads to a range of possible morphological combinations that have been al-
most overlooked in previous literature (e.g., [6,7,14,15]). Additionally, reproduction, 
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which is a relevant trait in species life history [5,6], is achieved in variable ways, not only 
sexually (by means of ascospores), but also with different types of vegetative propagules 
[11,12], as well as by dispersion of thallus fragments [16]. The position of pycnidia may 
also vary, developing either on the primary or secondary thallus [12,13]. Cladonia lichens 
produce several secondary metabolites, some of them being widely studied due to their 
potential cytotoxic activity [17–19]. However, their relationships with environmental 
factors have been little explored [20–22]. 

In lowland landscapes of central-southern Europe, Cladonia-dominated communities 
occur especially in open dry habitats on acidic substrates [10,14,23–26]. Open dry habitats 
are among the most threatened by human activities – land-use change, land consump-
tion, pollution – and climate change [27], but also by abandonment in less productive 
regions [28], especially in densely inhabited lowland areas, such as the Po Plain [29,30]. 
Among them, there is a relevant role for terricolous lichen diversity in acidic dry grass-
lands [6,7,10,24–26,31], which develop on acidic, mineral, shallow, and oligotrophic soils 
[32]. In this habitat, terricolous lichen communities are influenced by small-scale dis-
turbance, e.g., by trampling or invasive species, and by climate features [8,10]. 

This study aims at exploring the relationships between Cladonia functional traits and 
environmental factors that drive community composition in lowland acidic dry grass-
lands. We hypothesized that (i) the abundance of different functional traits, such as 
growth forms, reproductive strategies, and secondary metabolites, can be shaped by the 
main environmental factors, i.e., vegetation dynamics, disturbance, substrate pH, and 
climatic features (temperature and precipitation); and that (ii) discriminating traits like 
growth forms and reproduction strategy in detail could give better insights on the re-
sponses of these lichens to environmental factors. 

2. Materials and Methods 
2.1. Study Area 

The study was carried out in the central-western Po Plain (northern Italy), in an area 
located on the two sides of the boundary between the regions of Lombardy and Pied-
mont (Figure 1). The mean annual temperature ranges between 13.3 and 14.2 °C. Annual 
rainfall ranges between 788 and 1104 mm. The altitude varies between 61 and 189 m a.s.l. 

In this area, 41 sites with lichen-rich acidic dry grasslands were searched for and 
located (Figure 1). They were clustered along the course of two main rivers, i.e., the Sesia 
(7 sites) and the Ticino (26 sites), in a stretch of the Po river where the substrate is acidic (3 
sites) and in a small area in Lomellina in which residual inland sand dunes still occur (5 
sites). These grasslands are attributed to the Natura 2000 Habitat 2330 (‘‘Inland dunes 
with open Corynephorus and Agrostis grasslands’’) or to a pioneer and acidic facies of 
Habitat 6210 (‘‘Seminatural dry grasslands and scrubland facies on calcareous sub-
strates’’). Acidic dry grasslands are severely threatened in Europe [27,32], and therefore 
these grasslands have a relevant conservation value. Habitat 2330 has also a biogeo-
graphical value in this area since it is at the southernmost edge of its distribution range 
[30]. 

In the study area, these grasslands are often fragmented and located in marginal and 
unproductive areas that are not actively managed and are sometimes degraded due to 
human disturbance – typically uncontrolled grazing and motorbike riders – with the 
colonization of invasive species [29,33]. Nevertheless, they frequently host terricolous 
lichen communities, and though species-poorer than in similar habitats in central Europe, 
they include some species with a more Mediterranean distribution pattern 
[10,25,26,34,35]. 
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Figure 1. Study area and study sites. 

2.2. Sampling 
At each site, a linear transect connecting the two furthest vertices of the grassland 

was laid out. Along each transect, from 1 to 7 circular plots with a 3 m radius were placed 
at regular intervals proportionally to the site area. This resulted in a total of 122 plots. 

Vegetation was recorded in each plot between April and June 2016. We recorded the 
cover (%) and the mean height (cm) of the five vegetation layers – cryptogamic, herba-
ceous, lower-shrubby (shrubs up to 1.5 m), higher-shrubby (shrubs between 1.5 and 3 m), 
arboreal (woody species over 3 m high) – and the cover (%) of each vascular plant, lichen 
and bryophyte species. Easily recognizable species were identified in the field, whereas 
difficult specimens were collected and identified in the laboratory. All the specimens are 
retained in the first author’s personal herbarium. 

In each plot, we also recorded the occurrence of disturbance that could impact li-
chens. Human trampling was estimated according to a categorical scale: 0 (no trampling), 
1 (<5 m2 showing evidence of trampling on vegetation), 2 (5–10 m2), 3 (10–15 m2), 4 (>15 
m2). The impact by lagomorphs was estimated using the abundance of fecal pellets as a 
proxy [33], according to a categorical scale: 0 (no pellet), 1 (<2 pellet/m2), 2 (3–5 pellet/m2), 
3 (>5 pellet/m2). Additionally, soil pH was recorded on the field by means of a portable 
kit. 

2.3. The Genus Cladonia 
Cladonia (Hill.) P. Browne (Cladoniaceae, Lecanorales, Ascomycetes) is a cosmopol-

itan and megadiverse genus with a wide altitudinal and ecological range, most species 
being terricolous and ranging from mineral to humus-rich soils [11,12]. Cladonia species 
are characterized by a thallus composed of two parts: a squamulose or crustose primary 
thallus and a fruticose secondary thallus with a very variable morphology that can in-
clude stick-shaped, club-shaped, cup-shaped, sparingly branched or richly branched 
structures called podetia [11–13]. The primary thallus can be ephemeral or persistent, 
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and, in this case, even dominant; on the other hand, the secondary thallus, which is often 
dominant, in some species can be inconspicuous or even absent [11–13]. 

Reproduction can be sexual or asexual. Cladonia has biatorine apothecia which 
produce simple ascospores; apothecia develop at the tips of capitiform, bacillary and 
branched podetia, on the edges of scyphipherous podetia or, in few species, directly on 
primary squamules [11–13]. Vegetative propagules can include soredia, schizidia, blas-
tidia, and microsquamules [11,12], but also thallus fragments can act efficiently as prop-
agules [16,36]. Vegetative reproduction involving only the mycobiont is carried out by 
conidia; conidia are produced in pycnidia, which in Cladonia can be located either on the 
primary squamules or on podetia [11–13]. 

Cladonia lichens produce several compounds, chiefly aliphatic acids (e.g., rangifor-
mic and bourgeanic acids), dibenzofurans (e.g., usnic acid), depsides (e.g., homosekikaic 
and perlatolic acids, atranorin), and depsidones (e.g., fumarprotocetraric, norstictic, and 
psoromic acids) [37–43]. Some of them show cytotoxic activity and are much studied for 
their pharmacological potential [17–19], but their ecological roles have been addressed 
more rarely. More investigated are allelopathic [44–46] and anti-herbivorous [47–49] ef-
fects, rarer are ecological studies that investigated their roles in photoprotection [50–52] 
and in regulating species’ preferences for substrate pH [20–22,53]. 

2.4. Functional Traits 
Three groups of functional traits were considered: growth form, reproductive 

strategy, and secondary metabolites. 
Previous literature that considered the growth forms of Cladonia in the analysis of 

functional traits used a weak differentiation just between foliose/squamulose (for species 
without secondary thallus) and fruticose thalli, or between foliose/squamulose, fruticose 
with simple podetia, and fruticose with branched podetia [6,7,14,15]. The huge diversity 
occurring within Cladonia, not only in morphology but also in size, deserves a sharper 
and more precise distinction since different shapes and sizes can potentially give differ-
ent benefits or disadvantages under different environmental conditions, at a microhabitat 
scale. On the basis of morphological data reported in the main literature sources 
[11–13,54] and many personal observations on the specimens collected for this work, we 
considered six different growth forms (Table 1). 

Table 1. Growth forms of genus Cladonia considered in this study. 

Abbreviation Description 

Small squamules 
Squamulose thallus with small squamules: species usually 
without podetia and with squamules usually shorter than 5 

mm; e.g., Cladonia strepsilis. 

Big squamules 
Squamulose thallus with big squamules: species usually 

without podetia and with squamules usually longer than 5 
mm; e.g., Cladonia foliacea. 

Small simple podetia 
Thallus with small simple podetia: species with persistent 
primary thallus and usually with bacillar or capitiform po-

detia shorter than 10 mm; e.g., Cladonia peziziformis. 

Big simple podetia 

Thallus with big simple podetia: species with persistent or 
ephemeral primary thallus and usually with bacillar of scy-

phipherous podetia taller than 10 mm; e.g., Cladonia pyxidata, 
Cladonia rei. 

Branched podetia 
Thallus with branched podetia: species with ephemeral pri-

mary thallus and with sparingly branched podetia; e.g., 
Cladonia furcata. 

Richly branched podetia Thallus with richly branched podetia: species with ephemeral 
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primary thallus and with richly branched, bush-shaped po-
detia; e.g., Cladonia rangiformis and species belonging to sub-

genus Cladina. 

The reproduction strategy was described by means of the main reproduction type 
and the position of pycnidia on thallus. The main reproduction type of each species was 
retrieved from the database ITALIC [55]. Two types were considered: sexual reproduc-
tion by ascospores or asexual reproduction by soredia. The position of pycnidia was as-
sessed consulting the main literature sources [11–13,54] and also through personal ob-
servations on the specimens collected for this work. Two cases were considered: pycnidia 
on the primary squamules or pycnidia on the podetia. Species with pycnidia on the pri-
mary thallus could be expected to have a faster development, being earlier colonizers of 
pioneer situations, whereas species with pycnidia on podetia could be expected to have 
slower development and to occur later in the succession since podetia develop after 
primary thallus. 

The occurrence of secondary metabolites was assessed by means of thin-layer 
chromatography (TLC) performed with the solvents A, B’, and C [56]. The eight most 
frequent metabolites were atranorin, fumarprotocetraric acid, homosekikaic acid, 
norstictic acid, perlatolic acid, rangiformic acid, usnic acid, and zeorin. In addition, 
baeomycesic acid, squamatic acid, and strepsilin occurred only in one rarely recorded 
species, Cladonia strepsilis, and therefore they were not considered in the analysis. 

The attribution of the considered functional traits to the 14 Cladonia species recorded 
in the 122 plots is shown in Table 2. 

For each trait, the abundance in each plot was calculated as the sum of the abun-
dances of the species with that trait in the plot. The abundances, originally recorded in 
the field in percent values, were converted in a scale ranging from 1 to 10, as follows: 
1–10% = 1; 11–20% = 2; 21–30% = 3; 31–40% = 4; 41–50% = 5; 51–60% = 6; 61–70% = 7; 
71–80% = 8; 81–90% = 9; 91–100% = 10. 

Table 2. Functional traits of the 14 Cladonia species recorded in the 122 plots. Nomenclature follows 
Nimis and Martellos (2020). 

Species Growth Form 
Position of 
Pycnidia 

Reproduction Metabolites 

Cladonia cariosa  
(Ach.) Spreng. 

Small simple 
podetia 

Squamules Spores 
Atranorin, rangiformic 

acid 
Cladonia chlorophaea  
(Sommerf.) Spreng. 

Big simple podetia Podetia Soredia Fumarprotocetraric acid 

Cladonia coccifera  
(L.) Willd. 

Big simple podetia Podetia Spores Usnic acid, zeorin 

Cladonia fimbriata  
(L.) Fr. 

Big simple podetia Podetia Soredia Fumarprotocetraric acid 

Cladonia foliacea  
(Huds.) Willd. 

Big squamules Squamules Spores 
Fumarprotocetraric acid, 

usnic acid 
Cladonia furcata  
(Huds.) Schrad. 

Branched podetia Podetia Spores 
Atranorin, 

fumarprotocetraric acid 
Cladonia peziziformis  
(With.) J.R.Laundon 

Small simple 
podetia 

Squamules Spores Fumarprotocetraric acid 

Cladonia polycarpoides  
Nyl. Big squamules Squamules Spores Norstictic acid 

Cladonia portentosa  
(Dufour) Coem. 

Richly branched 
podetia 

Podetia Spores Perlatolic acid, usnic acid 

Cladonia pyxidata  
(L.) Hoffm. 

Big simple podetia Podetia Spores Fumarprotocetraric acid 

Cladonia rangiformis  
Hoffm. 

Richly branched 
podetia 

Podetia Spores 
Atranorin, rangiformic 

acid 
Cladonia rei  

Schaer. 
Big simple podetia Podetia Soredia 

Fumarprotocetraric acid, 
homosekikaic acid 



Microorganisms 2021, 9, 453 6 of 12 
 

 

Cladonia strepsilis  
(Ach.) Grognot 

Small squamules Squamules Spores 
Baeomycesic acid, squa-

matic acid, strepsilin 
Cladonia uncialis  
(L.) F.H.Wigg. 

Branched podetia Podetia Spores Usnic acid 

2.5. Environmental Variables 
The cover values (%) of the vascular plant biological forms [57] were calculated for 

each plot based on the floristic composition recorded. Therophytes (annual/biennial 
herbs), hemicryptophytes, and geophytes (perennial herbs) are part of the herbaceous 
layer, chamephytes are generally found in the lower-shrubby layer and phanerophytes, 
typical of higher-shrubby and arboreal layers, can be found in the lower-shrubby layer 
when young. Biological forms were considered in the analysis as a proxy of vegetation 
dynamics since it is known that therophytes dominate pioneer stages, also indicating 
ongoing vegetation dynamics due to disturbance in some cases; hemicryptophytes and 
geophytes dominate intermediate stages, indicating less active but still ongoing vegeta-
tion dynamics; chamephytes and phanerophytes dominate more mature stages, i.e., 
scrub and forest, indicating the passage from grassland to more developed vegetation 
types [58]. 

Climatic variables, i.e., mean annual temperature and annual precipitation (consid-
ered as a proxy of humidity), were retrieved for each sampling plot from CHELSA [59]. 

2.6. Data Analysis 
To explore the relationships between functional traits and environmental variables, 

a model-based fourth corner analysis was used. This method is aimed at solving the 
“fourth corner problem”, by analyzing the relationships between the three matrices (i) 
species x sites, (ii) species x traits, and (iii) sites x environmental variables, to estimate a 
matrix with environment-trait associations [60]. In particular, we followed the frame-
work proposed by [61] and implemented it in the R package “mvabund” [62]. This ap-
proach proceeds by fitting a GLM with species abundances as a function of species’ traits, 
environmental variables, and their interactions. The model was fitted using a Poisson 
distribution with LASSO penalty to enhance prediction accuracy; this latter sets to zero 
all the coefficient terms that do not explain any variation [61]. In the end, the model was 
evaluated through diagnostic plots. 

3. Results 
Significant relationships were found between morphological traits and vegetation 

dynamics, substrate features, disturbance, and climate (Figure 2). Small squamules, small 
simple podetia, branched, and richly branched podetia correlated with variables de-
scribing vegetation dynamics. Big squamules, small and big simple podetia, branched 
podetia correlated with climatic variables. Small simple podetia, branched and richly 
branched podetia correlated with substrate pH, and richly branched podetia correlated 
with trampling. 

Reproduction traits were less responsive to environmental factors (Figure 2). Only 
sexual reproduction and pycnidia located on primary squamules correlated with few 
variables describing vegetation dynamics. 

Significant relationships were found also between secondary metabolites and vari-
ous predictors associated with vegetation dynamics, substrate, disturbance, and climate 
(Figure 2). Atranorin, homosekikaic, norstictic, perlatolic, rangiformic, and usnic acids 
correlated with variables describing vegetation dynamics. Atranorin, fumarprotocetraric 
acid, and zeorin correlated with climatic variables. Fumarprotocetraric acid and zeorin 
correlated with substrate pH, while fumarprotocetraric acid correlated with fecal pellets 
and rangiformic acid with trampling. 
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Figure 2. Results of the Fourth Corner Analysis. Statistically significant correlations between traits 
and environmental variables are represented by colored squares. Darker colors express stronger 
correlations. 

4. Discussion 
In accordance with our hypothesis, morphological, reproduction, and chemical traits 

of terricolous Cladonia species in acid dry grasslands were involved in the responses of 
these organisms mainly to vegetation dynamics and climate, but also, to a lesser extent, to 
disturbance and substrate pH. 

Some relationships with vegetation dynamics were particularly evident, e.g., species 
with small simple podetia and species with pycnidia on primary squamules were more 
frequent in stages dominated by therophytes (pioneer grasslands), decreasing in stages 
dominated by other biological forms (intermediate-mature grasslands). An opposite 
pattern was found for species with branched and richly branched podetia and species 
with perlatolic acid, related to intermediate-mature stages. An allelopathic activity 
against vascular plants was demonstrated for perlatolic acid [45], but if this was the case, 
an evident correlation should have been observed for other biological forms considered, 
not only with therophytes; this negative correlation could better be seen as a link with 
mature stages of dry grasslands. 

Research has suggested photoprotection activity for usnic acid [52] and facilitation 
in exploiting low light intensities for atranorin [63]. This can explain their correlations 
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with vascular plants which produce a thicker canopy than herbs and forbs, i.e., chame-
phytes and phanerophytes, which occur in mature stages of dry grasslands. These two 
metabolites showed opposite patterns in relation to the canopy, i.e., usnic acid correlated 
negatively and atranorin correlated positively. Considering the 83 Cladonia taxa reported 
in Italy so far [55], none of them contain both these metabolites at the same time [11,12]. 
This could suggest that the production of one compound instead of another can help 
these lichens to cope with site-specific light conditions–and, consequently, with a dif-
ferent stage of vegetation succession. 

Species with homosekikaic and rangiformic acid correlated positively with the cover 
of therophytes, and the species which produce at least one of these two metabolites – C. 
cariosa, C. rangiformis, C. rei, which have different growth forms and reproductive strate-
gies – are widely recognized as early colonizers of prohibitive substrates which often 
dominate the communities where they develop [13,64–66]. However, they also occur, and 
often dominate in intermediate-mature stages [25,26,64], as backed by the positive cor-
relations with other biological forms of vascular plants. The role of these two compounds 
in fostering colonization of primitive substrates and long-lasting dominance could be 
hypothesized. 

At a smaller scale, the dynamics of cryptogam communities in dry grasslands are 
linked also to bryophytes, which are more abundant in intermediate-mature stages 
[25,26]. However, correlations with bryophyte cover could also suggest facilita-
tion/competition dynamics. The positive relationship with small squamules could be re-
lated to water provisioning [67]: for example, inconspicuous Cladonia with small 
squamules could be easier to fit within higher covers of mosses and profit from the water 
they retain. In contrast, negative correlations with richly branched podetia and repro-
duction by apothecia suggest competition between mosses and lichens. Richly branched 
Cladonia are typical of intermediate-mature stages of vegetation succession, in which 
bryophytes also reach high cover values. A high bryophyte cover can make it more dif-
ficult for spores to encounter a photobiont for the regeneration of a new lichen thallus. 

Competition with bryophytes and vascular plants is not the only stressful factor for 
lichens in dry grasslands, however, we found only a few correlations between traits and 
disturbance factors. Trampling is regarded as the main threat to Cladonia lichens [68], but 
the positive correlation with richly branched podetia suggests that a moderate trampling 
could be a positive factor in open habitats, e.g., as a major driver of dispersal [16,36,69]. 
Trampling has the positive effect of producing and dispersing thallus fragments and, 
therefore, it could be particularly beneficial for lichens with large and fragile thalli. Ad-
ditionally, the abundance of fecal pellets by lagomorphs can have different effects on li-
chens [33]. In our case, their positive correlation with fumarprotocetraric acid could 
suggest that this metabolite allows lichens to deal with a nitrified substrate since it is al-
ready known that this compound helps in tolerating substrates containing heavy metals 
[70] and has an antimicrobial activity [71]. 

Substrate pH is a limiting factor also. Small simple podetia, branched podetial, and 
fumarprotocetraric acid correlated positively with pH, suggesting that these traits are 
fostered by subneutral soils; contrariwise, richly branched podetia and zeorin occurred in 
very acidic substrates. These growth forms include species ranging from acidic to cal-
careous substrates, e.g., C. cariosa, C. furcata, C. rangiformis, which is the case also for some 
species with fumarprotocetraric acid; therefore, these correlations could be spurious and 
due to the incomplete pH range included in our data, limited to acidic substrates. The 
correlation with zeorin is backed by [21], who suggested that this metabolite could play a 
role in the interaction with strongly acidic substrates. 

Our results indicate that climatic factors may also contribute to the selection of spe-
cies traits in local communities, determining species dynamics and community composi-
tion in a climate change scenario [8,72,73]. An outstanding example is that of species with 
atranorin, which may be fostered by increasing temperatures and decreasing precipita-
tion. The size of simple podetia increased with increasing precipitation, with small sim-
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ple podetia correlating negatively and large simple podetia correlating positively, which 
could be related to a better water exploitation capacity by larger podetia [74]; however, 
small simple podetia can also be expected to decrease at increasing temperatures. Partial 
responses were found also for species with big squamules and fumarprotocetraric acid, 
expected to increase respectively at increasing temperatures and decreasing precipita-
tions, and by species with big simple podetia and zeorin, expected to decrease with de-
creasing precipitation. 

5. Conclusions 
Cladonia shows a wide variety of thallus growth forms, reproductive strategies, and 

chemotypes [11,12], being, therefore, a suitable model genus to assess the relationships 
between environmental factors and species traits of terricolous communities. Therefore, 
our results can have broader applicability for a better understanding of these communi-
ties from a functional standpoint, also considering that Cladonia-dominated communities 
often have a similar composition across different biogeographical contexts (cf. [11,12,55]). 

The relationships between species traits and vegetation dynamics can help elucidate 
their colonization patterns in open dry habitats, also reflecting the effect of biotic inter-
actions between lichens and bryophytes or vascular plants. Furthermore, the correlations 
of some metabolites with certain environmental factors could help in addressing future 
research aimed at understanding their ecological roles, which are still largely unexplored. 

From a conservation standpoint, the contrasting relationships between some traits 
and vegetation dynamics support the view that management of acidic dry grasslands 
should aim at maintaining patches at different dynamics stages (pioneer, intermediate, 
mature) to maximize taxonomic and functional diversity of lichen communities [10]. 
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