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Abstract

We introduce a new kind of convolution, which is a sort of parabolic version of the
classical supremal convolution of convex analysis. This operation allow us to compare
solutions of di↵erent parabolic problems in di↵erent domains. As examples of applications
of our main result, we study the parabolic concavity of solutions to parabolic boundary
value problems, analyzing in particular the case of heat equation with an inhomogeneous
term and with a nonlinear reaction term. We also apply our technique to the study of
the dead core problem obtaining new results about necessary conditions for the existence
of a dead core and estimates of the dead core time, proving some optimality of the ball.
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1 Introduction

We are interested in comparing the solutions of di↵erent parabolic equations in di↵erent
cylinders. Let {⌦i}mi=1 be bounded smooth domains in Rn, where n � 1 and m � 2. For any

� 2 ⇤m :=

(
(�1, . . . ,�m) 2 (0, 1)m :

mX

i=1

�i = 1

)
,

we denote by ⌦� the Minkowski combination (with coe�cient �) of {⌦i}mi=1, that is

⌦� :=
mX

i=1

�i⌦i =

(
mX

i=1

�ixi : xi 2 ⌦i, i = 1, . . . ,m

)
. (1.1)

Let uµ (µ = 1, . . . ,m,�) be a solution of the parabolic boundary value problem

@tu = �u+ fµ(x, t, u,ru) in Dµ, u(x, t) = 0 on @Dµ, (1.2)

where Dµ := ⌦µ ⇥ (0,1). The purpose of this paper is to find a relationship between the
solutions u1, . . . , um in D1, . . . , Dm and the solution u� in D� by introducing the parabolic
Minkowski convolution of {ui}mi=1. For instance, we obtain the following result as a corollary
of the main result of this paper.

Theorem 1.1 Let {⌦i}mi=1 be bounded smooth domains in Rn and ⌦� the domain defined by
(1.1), where n � 1, m � 2 and � 2 ⇤m. Let uµ 2 C2,1(Dµ) \ C(Dµ) satisfy

@tuµ = �uµ + 1 in Dµ, uµ(x, t) = 0 on @Dµ, (1.3)

where Dµ := ⌦µ ⇥ (0,1) and µ = 1, . . . ,m,�. Then, for any ↵ � 1/2,

u�

✓ mX

i=1

�ixi, t

◆1/2

�
mX

i=1

�iui(xi, ti)
1/2 (1.4)

holds for all (xi, ti) 2 Di (i = 1, . . . ,m) and t �
✓ mX

i=1

�it
↵
i

◆1/↵

.

Inequalities such as (1.4) imply interesting qualitative properties of the solutions {uµ}. Here
we just give a result on the level sets of the solutions {uµ}. For this and further use, we
introduce first the following notation: we set

L (uµ(t) ; `) := {x 2 ⌦µ : uµ(x, t) > `}, µ = 1, . . . ,m,�,

for ` � 0.

Corollary 1.1 Assume the same conditions as in Theorem 1.1. Then

mX

i=1

�iL (ui(ti) ; `i) ✓ L
✓
u�(t) ;

✓ mX

i=1

�i`
1/2
i

◆2◆
(1.5)
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holds for all `i > 0, ti > 0 (i = 1, . . . ,m) and t �
✓ mX

i=1

�it
↵
i

◆1/↵

. In particular,

mX

i=1

�iL(ui(t); `) ✓ L(u�(t); `)

for all ` > 0 and t > 0.

For further examples and applications, see Corollary 5.2 and Remark 5.1.

We are also interested in the parabolic concavity properties of solutions to parabolic
boundary value problems. Let us recall the notion of ↵ -parabolic p -concavity for nonnegative
functions, which was introduced in [21] and [22]. For a, b > 0, � 2 (0, 1) and p 2 [�1,1],
we define

Mp(a, b;�) :=

8
>><

>>:

[(1� �)ap + �bp]1/p if p 62 {�1, 0,1},
a1��b� if p = 0,
max{a, b} if p = 1,
min{a, b} if p = �1,

which is the (�-weighted) p -mean of a and b. Furthermore, for a, b � 0, we define Mp(a, b;�)
as above if p � 0 and Mp(a, b;�) = 0 if p < 0 and a · b = 0.

Definition 1.1 Let K be a convex set in Rn, Q := K ⇥ (0,1) and ↵, p 2 [�1,1]. A non-
negative function v defined in Q is said ↵ -parabolically p -concave if

v
�
(1� �)x1 + �x2,M↵(t1, t2;�)

�
� Mp

�
v(x1, t1), v(x2, t2);�

�
(1.6)

for all (x1, t1), (x2, t2) 2 Q and � 2 (0, 1). If v is (1/2) -parabolically p -concave in Q, then it
is simply said parabolically p -concave in Q.

Roughly speaking, for ↵ 2 R \ {0}, v is ↵ -parabolically p -concave in Q if

• v is a constant function in Q for p = 1;

• v(x, t1/↵)p is concave in Q for p > 0;

• log v(x, t1/↵) is concave in Q for p = 0;

• v(x, t1/↵)p is convex in Q for p < 0;

• the level sets {(x, t) 2 Q : v(x, t1/↵) > µ} are convex for every µ � 0 for p = �1.

The study of geometric properties (in particular concavity properties) of solutions to partial
di↵erential equations is a classical subject and it has been largely investigated in the frame-
work of elliptic equations. Also the literature treating parabolic problems is now quite large,
most of the results however concern concavity properties with respect to the spatial variable
only (see for instance [1], [3], [4], [19], [20], [25], [30], [13], [31]–[33] and references therein),
while the concavity properties involving the space and time variables jointly were studied for
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instance in [7], [18], [21]–[24] and [28]. Among others, the authors of this paper considered
in [23] the parabolic boundary value problem

@tu = �u+ f(x, t, u,ru) in D, u(x, t) = 0 on @D, (1.7)

where ⌦ is a bounded convex domain in Rn and D := ⌦ ⇥ (0,1), and they studied the
↵ -parabolic p -concavity of the solution u, where 1/2  ↵  1 and 0 < p < 1, under the
following structure condition:

the function g↵,p,✓(x, t, v) := v3�1/pf(x, t1/↵, v1/p, v1/p�1✓) is concave

with respect to (x, t, v) 2 D ⇥ (0,1) for any fixed ✓ 2 Rn.
(1.8)

In this paper we weaken the above structure condition and study more delicate parabolic
concavity properties of the solutions of (1.7) (see Section 4). This enables us to study the
parabolic concavity of the solution of

@tu = �u� u�+ in D, u(x, t) = 0 on @D, (1.9)

where 0 < � < 1 and u+ := max{u, 0}. If ⌦ is su�ciently large, then the solution u of (1.9)
reaches zero in finite time, and a dead-core

Z(t) := {x 2 ⌦ : u(x, t) = 0}

appears at a time T⌦ = inf{t : Z⌦(t) 6= ;}, called the dead core time of ⌦. In Section 7, as
an application of the main result of this paper, we study qualitative properties of the level
sets of u, in particular the convexity of the dead-core with respect to the space and the time
variables, and we find new necessary conditions of the onset of a dead core. We also prove
some optimality of the ball with respect to the dead core time; in particular, in the plane we
prove that the disk has the smallest dead core time among sets with given perimeter.

This paper is motivated by [23, 35] and the results are based on a refinement of the tech-
nique developed there. We introduce the notion of the ↵ -parabolic Minkowski convolution
U↵,� of {ui}mi=1, which can be regarded as a generalization of the parabolic concave enve-
lope defined in [23]. We prove that U↵,� is a viscosity subsolution of (1.2) with µ = � by
modifying the arguments in [23], and this is the main result of this paper (see Theorem 3.1).
Then we can compare the solution u� and U↵,� with the aid of the comparison principle, and
obtain inequalities such as (1.4). This also enables us to study the parabolic concavity of the
solutions of parabolic boundary value problems, see Section 4.

The rest of this paper is organized as follows. In Section 2 we introduce some notation
and recall basic properties of ↵ -parabolically p -concave functions. Furthermore, we recall the
notion of viscosity solutions. In Section 3 we define the ↵ -parabolic Minkowski convolution
U↵,� of the solutions {ui}mi=1 (�1  ↵  1), and prove Theorem 3.1. In Section 4 we apply
the results of Section 3 to study the parabolic concavity properties of (1.7). In Sections 5 and
6 we apply the results in Sections 3 and 4 to the heat equation with an inhomogeneous term
and to the heat equation with a nonlinear reaction term, respectively. In Section 7 we focus
on problem (1.9) and study qualitative properties of the dead-core, giving also estimates of
the dead-core time, that is the time of onset of the dead core.

Acknowledgements. The second author was partially supported by INdAM - GNAMPA.
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2 Preliminaries

For x 2 Rn and r > 0, let B(x, r) := {z 2 Rn : |z � x| < r}.
For a = (a1, . . . , am) 2 (0,1)m, � 2 ⇤m and p 2 [�1, +1], we set

Mp(a;�) :=

8
>>>>><

>>>>>:

[�1a
p
1 + �2a

p
2 + · · ·+ �mapm]1/p if p 6= �1, 0, +1,

max{a1, . . . , am} if p = +1,

a�1
1 · · · a�m

m if p = 0,

min{a1, a2, . . . , am} if p = �1,

(2.1)

which is the (�-weighted) p -mean of a. For a = (a1, . . . , am) 2 [0,1)m, we define Mp(a;�)
as above if p � 0 and Mp(a;�) = 0 if p < 0 and

Qm
i=1 ai = 0. Notice that Mp(a;�) is

a generalization of Mp(a, b;�) defined in Section 1 and it is a continuous function of the
argument a. Due to the Jensen inequality, we have

Mp(a;�)  Mq(a;�) if �1  p  q  1, (2.2)

for any a 2 [0,1)m and � 2 ⇤m. Moreover, it easily follows that

lim
p!+1

Mp(a;�) = max{a1, . . . , am}, lim
p!�1

Mp(a;�) = min{a1, . . . , am}.

For further details, see e.g. [17].

Next we recall some properties of ↵ -parabolically p -concave functions. Let K be a convex
set in Rn , Q := K ⇥ (0,1), �1  p  1 and ↵ 2 R. Due to Definition 1.1 and (2.2), if v
is ↵ -parabolically p -concave in Q, then the following holds:

(a) v is ↵ -parabolically q -concave in Q for any �1  q  p ;

(b) v is � -parabolically p -concave in Q for any � � ↵ provided that v is non-decreasing
with respect to the time variable t.

In addition, similarly to [27, Section 2], we have:

(c) Let {vj} be nonnegative functions in Q such that, for every j 2 N, vj is ↵j -parabolically
pj -concave in Q for some ↵j 2 R and pj 2 [�1,1]. Let v be the pointwise limit of
a sequence {vj} in Q, limj!1 ↵j = ↵ 2 R and limj!1 pj = p 2 [�1,1]. If v is
continuos with respect to the time variable, then v is ↵ -parabolically p -concave in Q;

(d) Let ↵ 2 R and p, q 2 [0,1]. If v and w are ↵ -parabolically p -concave and q -concave
in Q, respectively, then v · w is ↵ -parabolically r -concave in Q, where

1

r
=

1

p
+

1

q
.

We recall the notion of viscosity subsolutions, supersolutions and solutions of (3.1). Let ⌦
be a domain in Rn, D = ⌦⇥(0,1), and f = f(x, t, v, ✓) a continuous function on D⇥R⇥Rn.
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An upper semicontinuous function u in D is said to be a viscosity subsolution of (3.1) if, for
any (x0, t0) 2 D, the inequality

@t�(x0, t0)  ��(x0, t0) + f(x0, t0,�(x0, t0),r�(x0, t0)) (2.3)

holds for every C2,1(D) test function � touching u from above at (x0, t0), i.e. satisfying

�(x0, t0) = u(x0, t0) and �(x, t) � u(x, t) in a neighborhood of (x0, t0).

Analogously, a lower semicontinuous function u in D is said to be a viscosity supersolution
of (3.1) if, for any (x0, t0) 2 D, the inequality

@t�(x0, t0) � ��(x0, t0) + f(x0, t0,�(x0, t0),r�(x0, t0))

holds for every C2,1 test function � touching u from below at (x0, t0), i.e. satisfying

�(x0, t0) = u(x0, t0) and �(x, t)  u(x, t) in a neighborhood of (x0, t0).

A continuous function u in D is said to be a viscosity solution of (3.1) if u is a viscosity
subsolution and a viscosity supersolution of (3.1) at the same time.

The technique proposed in this paper uses the following (weak) comparison principle for
viscosity solutions:

8
><

>:

Let u 2 C(D) \ C2,1(D) and v 2 C(D) be a classical solution

and a viscosity subsolution of (3.1), respectively,

such that u � v on @D. Then u � v in D.

(WCP)

For su�cient conditions for (WCP), see e.g., [10, Section 8].
Also the following easy lemma will be fundamental in the sequel.

Lemma 2.1 Let ⌦ be a domain in Rn, D = ⌦ ⇥ (0,1), f = f(x, t, v, ✓) a continuous
function on D ⇥ R ⇥ Rn and u an upper semicontinuous function in D. Assume that for
every (x0, t0) 2 D, there exists a C2,1 test function ' touching u from below at (x0, t0) such
that

@t'(x0, t0)  �'(x0, t0) + f(x0, t0,'(x0, t0),r'(x0, t0)) (2.4)

holds. Then u is a viscosity subsolution of (3.1).

Proof. Let � be any C2,1(D) test function touching u from above at (x0, t0). Then � touches
also ' from above at (x0, t0), whence

@t�(x0, t0) = @t'(x0, t0) , r�(x0, t0) = r'(x0, t0) , ��(x0, t0) � �'(x0, t0) .

Then (2.3) follows from (2.4). 2
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3 Main theorem

Let us fix � 2 ⇤m and let {⌦i}mi=1 be bounded smooth domains in Rn, where n � 1 and
m � 2. Define the Minkowski combination ⌦� of {⌦i}mi=1 as in (1.1). For µ 2 {1, . . . ,m,�},
set Dµ := ⌦µ ⇥ (0,1) (µ = 1, . . . ,m,�) and let uµ 2 C2,1(Di) \ C(Di) satisfy

(
@tui = �ui + fi(x, t, ui,rui) � 0 in Dµ,

ui = 0 on @Dµ,
(3.1)

where fµ is a nonnegative continuous function in Dµ ⇥ [0,1)⇥Rn.

For any ↵ 2 [�1,1] and p 2 [�1,1], we define the ↵ -parabolic Minkowski p -convolution
U↵,p,� of {ui}mi=1 as follows:

U↵,p,�(x, t) := sup

⇢
Mp(u(y1, ⌧1), . . . , um(ym, ⌧m);�)

: (yi, ⌧i) 2 Di (i = 1, . . . ,m) with x =
mX

i=1

�iyi, t = M↵(⌧1, . . . , ⌧m;�)

� (3.2)

for (x, t) 2 D�. In the case p = 1, we write U↵,� = U↵,p,�; moreover, in the case p = 1 and
↵ = 1/2, we simply write U� = U↵,p,�.

Notice that, from ui 2 C(Di) and the fact that ui > 0 in Di and vanishes on @Di for
i = 1, . . . ,m, it follows that

U↵,� 2 C(D�), U↵,� > 0 in D� and U↵,� = 0 on @D�. (3.3)

In this section we prove the main result of this paper, which gives a su�cient condition
for U↵,� to be a viscosity subsolution of

⇢
@tu = �u+ f�(x, t, u,ru) in D�,
u = 0 on @D�,

(3.4)

where f� 2 C(D� ⇥ [0,1)⇥Rn).
For further use, we denote by ⌫i = ⌫i(x) (i = 1, . . . ,m) the inner unit normal vector to

@⌦i at x 2 @⌦i and set

⌫̃i(x) :=

(
⌫i(x) if x 2 @⌦i,

0 if x 2 ⌦i,
and µ(t) :=

(
1 if t = 0,

0 if t > 0.
(3.5)

Theorem 3.1 Let 1/2  ↵  1. Assume the following conditions:

(i) for any (x, t) 2 @Di (i = 1, . . . ,m),

lim
⇢!0+

⇢�1ui
⇣
x+ ⌫̃i(x)⇢, t+ µ(t)⇢1/↵

⌘
= 1; (3.6)
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(ii) for any fixed ✓ 2 Rn,

f�

 
mX

i=1

�iyi,M↵(⌧1, . . . , tm;�),
mX

i=1

�ivi, ✓

!

� M�1 (f1(y1, ⌧1, v1, ✓), . . . , fm(ym, ⌧m, vm, ✓) : �)

(3.7)

holds for every

(yi, ⌧i, vi) 2 Ri := {(x, t, ui(x, t)) : (x, t) 2 Di} , i = 1, . . . ,m.

Then U↵,� is a viscosity subsolution of (3.4) such that U↵,� = 0 on @D�.

As a straightforward corollary of the above theorem, we obtain the following.

Corollary 3.1 In the same conditions as in Theorem 3.1, if the comparison principle (WCP)
holds for (3.1) with µ = �, then

u�

 
mX

i=1

�xi, t

!
�

mX

i=1

�iui(xi, ti) (3.8)

for (xi, ti) 2 Di, i = 1, . . . ,m, and t � M↵(t1, . . . , tm;�).

We prepare the following lemma for the proof of Theorem 3.1.

Lemma 3.1 Assume the same conditions as in Theorem 3.1. Then for every (x⇤, t⇤) 2 D�,
there exist (x1, t1) 2 D1 , . . . , (xm, tm) 2 Dm such that

x⇤ =
mX

i=1

�ixi, t↵⇤ =
mX

i=1

�it
↵
i , U↵,�(x⇤, t⇤) =

mX

i=1

�iui(xi, ti), (3.9)

ru1(x1, t1) = · · · = rum(xm, tm), (3.10)

t1�↵
1 @tu1(x1, t1) = · · · = t1�↵

m @tum(xm, tm). (3.11)

Proof. The proof is similar to the proof of [23, Lemma 3.2]. We give it for completeness.
Let i = 1, . . . ,m. It follows from the strong maximum principle that ui ⌘ 0 in Di or

ui > 0 in Di; then by assumption (i) we have

ui(x, t) > 0 in Di. (3.12)

Let (x⇤, t⇤) 2 D�. It follows from (3.2) and (3.12) that

U↵,�(x⇤, t⇤) > 0 in D�. (3.13)

Since

⇢
(y1, s1, y2, s2, . . . , ym, sm) 2 D1 ⇥ · · ·⇥Dm : x⇤ =

mX

i=1

�iyi, t↵⇤ =
mX

i=1

�is
↵
i

�

8



is closed and bounded in Rmn, thanks to the continuity of Mp and of the u0is, we can find
(xi, ti) 2 Di (i = 1, . . . ,m) realizing the maximum in (3.2) and then satisfying (3.9). Since
the Lagrange multiplier theorem implies (3.10) and (3.11) provided that (xi, ti) 2 Di for
i = 1, . . . ,m, it su�ces to prove the latter.

The proof is by contradiction. Assume that (xk, tk) 2 @Dk for some k 2 {1, . . . ,m}. It
follows from (3.13) that u`(x`, t`) > 0 for some ` 2 {1, . . . ,m} with k 6= `. Here we can
assume, without loss of generality, that k = 1 and ` = 2, that is

(x1, t1) 2 @D1, (x2, t2) 2 D2. (3.14)

Set vi(x, ⌧) := ui(x, ⌧1/↵), ⌧⇤ = t↵⇤ and ⌧i = t↵i . Then (3.9) reads

U↵,�(x⇤, t⇤) =
mX

i=1

�iv(xi, ⌧i), x⇤ =
mX

i=1

�ixi, ⌧⇤ =
mX

i=1

�i⌧i , (3.15)

and, jointly with the definition of u↵,�, it yields

U↵,�(x⇤, t⇤) �
mX

i=1

�iv(yi, ⌘i) (3.16)

for every (yi, ⌘i) 2 Di, i = 1, . . . ,m, such that x⇤ =
mX

i=1

�iyi and ⌧⇤ =
mX

i=1

�i⌘i.

For any ⇢ 2 (0, 1), set

x̃1 := x1 + ⌫1(x1)
⇢

�1
, x̃2 := x2 � ⌫1(x1)

⇢

�2
, x̃i = xi (i = 3, . . . ,m),

⌧̃1 := ⌧1 + µ(t1)
⇢

�1
, ⌧̃2 := ⌧2 � µ(t1)

⇢

�2
, ⌧̃i := ⌧i (i = 3, . . . ,m).

(3.17)

Thanks to (3.5), (3.14) and (3.15), we can take a su�ciently small ⇢ > 0 such that

x̃i 2 ⌦i (i = 1, . . . ,m), ⌧̃1 > 0, ⌧̃2 > 0 , (3.18)

and notice that

mX

i=1

�ix̃i =
mX

i=1

�ixi = x⇤,
mX

i=1

�i⌧̃i =
mX

i=1

�i⌧i = ⌧⇤. (3.19)

By (3.12) and (3.18) we see that v(x̃2, ⌧̃2) > 0. Moreover we can find positive constants M
and R such that

|(rv)(x, ⌧)|+ |(@tv)(x, ⌧)|  M in B(x2, R)⇥ (⌧2 �R, ⌧2 +R) ⇢ D2.

Applying the mean value theorem, we obtain

�2[v(x̃2, ⌧̃2)� v(x2, ⌧2)] � ��2M |(x̃2, ⌧̃2)� (x2, ⌧2)| � �2M⇢. (3.20)
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On the other hand, by (3.6) and (3.17), we see that

�1[v(x̃1, ⌧̃1)� v(x1, t1)] = �1v(x̃1, ⌧̃1) > 2M⇢ (3.21)

for a su�ciently small ⇢. Combining (3.20) with (3.21), we obtain

mX

i=1

�iv(x̃i, ⌧̃i) > �1v(x1, ⌧1) + 2M⇢+ �2v(x2, ⌧2)� 2M⇢+
mX

i=3

�iv(xi, ⌧i)

=
mX

i=1

�iv(xi, ⌧i) = U↵,�(x⇤, t⇤).

This together with (3.19) contradicts (3.16) and the proof is complete. 2

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Fix any (x⇤, t⇤) 2 D and let {ai}mi=1 ✓ [0,1) be such that

mX

i=1

�iai = 1. (3.22)

By (3.6) we apply Lemma 3.1 to find (xi, ti) 2 Di (i = 1, . . . ,m) satisfying (3.9)–(3.11). Set

U⇤ := U↵,�(x⇤, t⇤), Ui := ui(xi, ti),

yi(x) = xi + ai(x� x⇤), ⌧i(t) = [t↵i + ai(t↵ � t↵⇤ )]
1/↵ .

(3.23)

It follows that

U⇤ =
mX

i=1

�iUi, x =
mX

i=1

�iyi(x), t↵ =
mX

i=1

�i⌧i(t)
↵. (3.24)

Define

'(x, t) :=
mX

i=1

�iui(yi(x), ⌧i(t)), (3.25)

and notice that it is a C2,1-function in a neighborhood of (x⇤, t⇤) 2 D and satisfies

'(x⇤, t⇤) =
mX

i=1

�iUi = U⇤. (3.26)

Moreover, we deduce from the definition of U↵,� and (3.24) that

U↵,�(x, t) � '(x, t) (3.27)

in a neighborhood of (x⇤, t⇤).
Next we prove

@t'(x⇤, t⇤)  �'(x⇤, t⇤) + f(x⇤, t⇤,'(x⇤, t⇤),r'(x⇤, t⇤)). (3.28)
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By (3.23) and (3.25) we calculate

r'(x, t) =
mX

i=1

�iairui(yi(x), ⌧i(t)), (3.29)

r2'(x, t) =
mX

i=1

�ia
2
i r2ui(yi(x), ⌧i(t)), (3.30)

in a neighborhood of (x⇤, t⇤). Since yi(x⇤) = xi and ⌧i(t⇤) = ti, by (3.10), (3.22) and (3.29)
we have

r'(x⇤, t⇤) =
mX

j=1

�jajruj(xj , tj) = rui(xi, ti) (3.31)

for i = 1, . . . ,m. Similarly, it follows from (3.1), (3.22) and (3.11) that

@t'(x⇤, t⇤) =
mX

j=1

�jaj

✓
tj
t⇤

◆1�↵

@tuj(xj , tj) =

✓
t↵i
t↵⇤

◆ 1
↵�1

@tui(xi, ti) � 0 (3.32)

for i = 1, . . . ,m. Then, by (3.1), (3.23), (3.30), (3.31) and (3.32) we obtain

@t'(x⇤, t⇤)��'(x⇤, t⇤)

= @t'(x⇤, t⇤)�
mX

i=1

�ia
2
i�ui(xi, ti)

= @t'(x⇤, t⇤)�
mX

i=1

�ia
2
i


@tui(xi, ti)� fi(xi, ti, ui(xi, ti),rui(xi, ti))

�

= @t'(x⇤, t⇤)


1�

mX

i=1

�ia
2
i

✓
t↵i
t↵⇤

◆1� 1
↵
�
+

mX

i=1

�ia
2
i fi(xi, ti, Ui, ✓),

(3.33)

where ✓ := r'(x⇤, t⇤). On the other hand, since 1/2  ↵  1, h(⌘, ⌧) := ⌘2⌧1�1/↵ is a convex
function in R⇥ (0,1). Then, by (3.9) and (3.22) we have

mX

i=1

�ia
2
i

✓
t↵i
t↵⇤

◆1�1/↵

=
mX

i=1

�ih

✓
ai,

t↵i
t↵⇤

◆

� h

✓ mX

i=1

�iai,
mX

i=1

�i
t↵i
t↵⇤

◆
= h(1, 1) = 1.

(3.34)

If fi(xi, ti, Ui, ✓) 6= 0 for all i = 1, . . . ,m, then, setting

ai :=
1

fi(xi, ti, Ui, ✓)

� mX

i=1

�i

fi(xi, ti, Ui, ✓)
, i = 1, . . . ,m,
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we have (3.22). Furthermore, it follows from (3.7) and (3.9) that

mX

i=1

�ia
2
i fi(xi, ti, Ui, ✓)

=
mX

i=1

�i

fi(xi, ti, Ui, ✓)

�✓ mX

i=1

�i

fi(xi, ti, Ui, ✓)

◆2

=

 mX

i=1

�i

fi(xi, ti, Ui, ✓)

��1

= M�1 (f1(x1, t1, U1, ✓), . . . , f1(xm, tm, Um, ✓);�)

 f�

 
mX

i=1

�xi,M↵(t1, . . . , tm;�),
mX

i=1

�Ui, ✓

!
= f�(x⇤, t⇤, U⇤, ✓)

= f�(x⇤, t⇤,'(x⇤, t⇤),r'(x⇤, t⇤)).

(3.35)

If fj(xj , tj , Uj , ✓) = 0 for some j 2 {1, . . . ,m}, then, setting

ai = 1/�i if i = j and ai = 0 if i 6= j,

we have

0 =
mX

i=1

�ia
2
i fi(xi, ti, Ui, ✓)  f�(x⇤, t⇤,'(x⇤, t⇤),r'(x⇤, t⇤)). (3.36)

Since @t'(x⇤, t⇤) � 0 (see (3.32)), by (3.33)–(3.36) we obtain (3.28). Since (x⇤, t⇤) is arbitrary,
by (3.3) and Lemma 2.1 we see that U↵,� is a viscosity subsolution of (3.1), and the proof is
complete. 2

Similarly to Theorem 3.1, we give a su�cient condition for U↵,p,� to be a viscosity subso-
lution of (3.4) in the case p 6= 1.

Theorem 3.2 Let 1/2  ↵  1 and 0 < p < 1. Define

gµ(x, t, v, ✓) := v3�1/pfµ(x, t
1/↵, v1/p, v1/p�1✓)

for (x, t, v, ✓) 2 Dµ ⇥ (0,1)⇥Rn, where µ = 1, . . . ,m,�. Assume the following conditions:

(i) for any x 2 ⌦i and i = 1, . . . ,m,

lim
⇢!0+

⇢�1ui
⇣
x+ ⌫̃(x)⇢, ⇢1/↵

⌘p
= 1; (3.37)

(ii) for any fixed ✓ 2 Rn,

g�

 
mX

i=1

�iyi,
mX

i=1

�iti,
mX

i=1

�ivi, ✓

!
�

mX

i=1

�igi(xi, ti, vi, ✓) (3.38)

holds for all

(yi, ⌧i, vi) 2 R̃i := {(x, t↵, ui(x, t↵)p) : (x, t) 2 Di} , i = 1, . . . ,m.

Then the ↵ -parabolic Minkowski p -convolution U↵,q,� of {ui}mi=1 is a viscosity subsolution of
(3.4) such that U↵,q,� = 0 on @D�.

12



Proof. Let i = 1, . . . ,m. Set vi := upi . It follows from (3.1) and (3.37) that ui � 0 and
ui 6⌘ 0 in Di. Since ui = 0 on @Di, we deduce from the Hopf lemma that

lim
⇢!0

⇢�1ui(x+ ⌫̃i(x)⇢, t) > 0 (3.39)

for all x 2 @⌦i and t > 0. Since @tui � 0 in Di and 0 < p < 1, by (3.39) we have

lim
⇢!0

⇢�1vi(x+ ⌫̃i(x)⇢, t+ µs,t⇢
1/↵) � lim

⇢!0
⇢�1ui(x+ ⌫̃i(x)⇢, t)

p = 1 (3.40)

for all (x, t) 2 @⌦i ⇥ (0,1). Combining (3.40) with (3.37), we see that vi satisfies assump-
tion (i) of Theorem 3.1 with ui replaced by vi. Furthermore, by (3.1) we see that vi satisfies

@tvi = �vi + Fi(x, t, vi,rvi) in Di, vi = 0 on @Di, (3.41)

where

Fi(x, t, v, ✓) := pv1�1/pfi(x, t, v
1/p, v1/p�1✓/p) +

(1� p)

p
v�1|✓|2

for (x, t, v, ✓) 2 Di ⇥ [0,1)⇥Rn.
Fix ✓ 2 Rn. Since

H✓(v, w) := pw +
(1� p)

p
v|✓|2 (3.42)

is concave with respect to (v, w) 2 (0,1)2, it follows from [27, Lemma A2] that

v�2H✓(v, w)

is (�1)-concave with respect to (v, w) 2 (0,1)2. This implies that

V �2
� H✓(V�,W�) � M�1

�
v�2
1 H✓(v1, w1), . . . , v

�2
m H✓(vm, wm);�

�
(3.43)

for all (vi, wi) 2 (0,1)2 (i = 1, . . . ,m), where

V� :=
mX

i=1

�ivi, W� :=
mX

i=1

�iwi.

Setting

wi := v3�1/p
i fi

⇣
xi, ti, v

1/p
i , v1/p�1

i ✓/p
⌘
= gi(xi, t

↵
i , vi, ✓/p),

by (3.38) we have

W� =
mX

i=1

�igi(xi, t
↵
i , vi, ✓/p)  g�

 
mX

i=1

�ixi,
mX

i=1

�it
↵
i , V�, ✓/p

!
,
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which together with (3.42) and (3.43) implies that

M�1 (F1(x1, t1, v1, ✓), . . . , Fm(xm, tm, vm, ✓);�)

= M�1
�
v�2
1 H✓(v1, w1), . . . , v

�2
m H✓(vm, wm);�

�

 V �2
� H✓(V�,W�) = V �2

�


pW� +

1� p

p
V�|✓|2

�

 V �2
�

"
p g�

 
mX

i=1

�ixi,
mX

i=1

�it
↵
i , V�, ✓/p

!
+

1� p

p
V�|✓|2

#

= pV 1�1/p
� f�

 
mX

i=1

�ixi,

✓ mX

i=1

�it
↵
i

◆1/↵

, V 1/p
� , V 1/p�1

� ✓/p

!
+

1� p

p
V �1
� |✓|2

= F�

 
mX

i=1

�ixi,M↵(t1, . . . , tm;�), V�, ✓

!
,

where

F�(x, t, v, ✓) := pv1�1/pf�(x, t, v
1/p, v1/p�1✓/p) +

1� p

p
v�1|✓|2

This means that assumption (ii) of Theorem 3.1 holds with fµ replaced by Fµ. Therefore,
by Theorem 3.1 we see that the ↵ -parabolic Minkowski 1-convolution U↵,� of {vi}mi=1 is a
viscosity subsolution of

@tv = �v + F�(x, t, v,rv) in D� (3.44)

such that U↵,� = 0 on @D�. This implies that the ↵ -parabolic Minkowski p -convolution
U↵,p,� of {ui}mi=1 is a viscosity subsolution of (3.4) such that U↵,p,� = 0 on @D�. Thus
Theorem 3.2 follows. 2

Similarly to Corollary 3.1 after Theorem 3.1, as a straightforward corollary of Theorem
3.2 we obtain the following.

Corollary 3.2 In the same conditions as in Theorem 3.2, if the comparison principle (WCP)
holds for equation (3.1) with µ = �, then

u�

 
mX

i=1

�xi,M↵(t1, . . . , tm);�)

!
� Mp(u1(x1, t1), . . . , um(xm, tm);�) (3.45)

for all (xi, ti) 2 Di and i = 1, . . . ,m.

In the rest of this section we collect some results deduced from inequalities such as (3.8)
and (3.45). Let wµ (µ = 1, . . . ,m,�) be nonnegative continuous function in Dµ. Assume the
following conditions:

• wµ (µ = 1, . . . ,m,�) is non-decreasing with respect to the time variable t for any fixed
x 2 ⌦µ;

• for some p 2 [�1,1] and ↵ � [�1,1],

w�

 
mX

i=1

�xi,M↵(t1, . . . , tm);�)

!
� Mp(w1(x1, t1), . . . , wm(xm, tm);�) (3.46)

holds for all (xi, ti) 2 Di and i = 1, . . . ,m.
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These imply

kw�(·, t)kL1(⌦�) � Mp(kw1(·, t1)kL1(⌦1), . . . , kwm(·, tm)kL1(⌦m);�)

and
mX

i=1

�iL (wi(ti) ; `i) ✓ L
✓
w�(t) ; Mp(`1, . . . , `m;�)

◆
(3.47)

for all `i > 0, ti > 0 (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�). Furthermore, it follows from
(3.46) that

w�

 
mX

i=1

�xi, t

!r

� Mq/r(w1(x1, t1)
r, . . . , wm(xm, tm)r;�) (3.48)

holds for all (xi, ti) 2 Di (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�), where r > 0. Then, if
�r/n  p  1, the inequality

kw�(·, t)kLr(⌦�) � Mp⇤(kw1(·, t1)kLr(⌦1), . . . , kwm(·, tm)kLr(⌦m);�) (3.49)

holds for all ti > 0 (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�), where

p⇤ =

8
><

>:

r/n if p = +1,

pr/(np+ r) if p 2 (�r/n,+1),

�1 if p = �r/n.

(3.50)

This is deduced from the following lemma on the Borell-Brascamp-Lieb inequality, which is
a generalization of the Prékopa-Leindler inequality (see [12, Theorem 10.1] for references).

Lemma 3.2 Let � 2 (0, 1), f, g, h nonnegative functions in L1(Rn), and �1/n  q  1.
Assume that

h
�
(1� �)x+ �y

�
� Mq(f(x), g(y);�)

for all x 2 sprt(f), y 2 sprt(g). Then

Z

Rn
h dx � Mq⇤

✓Z

Rn
f dx,

Z

Rn
g dx ;�

◆
,

where

q⇤ =

8
><

>:

1/n if q = +1,

q/(nq + 1) if q 2 (�1/n,+1),

�1 if q = �1/n.

The Prékopa-Leindler inequality corresponds to the case p = 0.
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4 Parabolic concavity

In this section, as an application of Theorems 3.1 and 3.2, we study the parabolic concavity
properties of the solutions to parabolic boundary value problems.

Let ⌦ be a bounded convex domain in Rn and D := ⌦⇥ (0,1). Let u 2 C2,1(D)\C(D)
satisfy (

@tu = �u+ f(x, t, u,ru) � 0 in D,

u = 0 on @D,
(4.1)

where f is a nonnegative continuous function in D ⇥ [0,1) ⇥ Rn. Let ↵ 2 [�1,1], p 2
[�1,1] and � 2 ⇤n+1. Following [21] and [22], we set

u↵,p,�(x, t) := sup

⇢
Mp(u1(y1, ⌧1), . . . , um(ym, tm);�)

: (yi, ⌧i) 2 Di (i = 1, . . . ,m) with x =
mX

i=1

�iyi, t = M↵(⌧1, . . . , ⌧m;�)

� (4.2)

for (x, t) 2 D. Furthermore, we define the ↵ -parabolically p -concave envelope u↵,p of u by

u↵,p(x, t) := sup
�2⇤n+1

u↵,p,�(x, t). (4.3)

Similarly to Section 3, we write u↵,� for u↵,1,� and u↵ for u↵,1 for simplicity.
It follows from (4.2) that u↵,p(x, t) � u(x, t) in D, and we see that u↵,p is the smallest

↵ -parabolically p -concave function greater than or equal to u. Therefore u is ↵ -parabolically
p -concave in D if and only if

u(x, t) � u↵,p(x, t) in D. (4.4)

On the other hand, u↵,p,� coincides with the ↵ -parabolic Minkowski p -convolution U↵,p,�

of {ui}mi=1 in the case where m = n + 1, ⌦i = ⌦ and ui = u for i = 1, . . . , n + 1 since ⌦
is convex. Then we have the following results on the parabolic concavity properties for the
solution of (4.1). Let ⌫ be the inner unit normal vector to @⌦ and set

⌫̃(x) = ⌫(x) if x 2 @⌦, ⌫̃(x) = 0 if x 2 ⌦. (4.5)

Theorem 4.1 Let ⌦ be a bounded convex smooth domain in Rn, D := ⌦ ⇥ (0,1), 1/2 
↵  1 and f = f(x, t, v, ✓) a nonnegative continuous function in D ⇥ R ⇥ Rn. Let u 2
C2,1(D) \ C(D) satisfy (4.1). Assume the following conditions:

(i) lim
⇢!0+

⇢�1u
⇣
x+ ⌫̃(x)⇢, t+ µ(t)⇢1/↵

⌘
= 1 for (x, t) 2 @D;

(ii) the function
g↵,✓(x, t, v) := f(x, t1/↵, v, ✓)

is (�1)-concave with respect to

(x, t, v) 2 R↵ := {(x, t↵, u(x, t↵)) : (x, t) 2 D}

for any fixed ✓ 2 Rn.
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Then, for any � 2 ⇤n+1, u↵,� is a viscosity subsolution of (4.1) such that u↵,� = 0 on
@D. Furthermore, if the comparison principle (WCP) holds for equation (4.1), then u is
↵ -parabolically concave in D.

Proof. It follows from Theorem 3.1 that u↵,� is a viscosity subsolution of (4.1) such that
u↵,� = 0 on @D. Furthermore, if the comparison principle (WCP) holds for equation (4.1),
then

u(x, t) � u↵,p,�(x, t) in D

for any � 2 ⇤n+1. This implies (4.4), which means that u is ↵ -parabolically p -concave in D.
Thus Theorem 4.1 follows. 2

Similarly, by Theorem 3.2 we have:

Theorem 4.2 Let ⌦ be a bounded convex smooth domain in Rn, D := ⌦⇥(0,1), 0 < p < 1,
1/2  ↵  1 and f = f(x, t, v, ✓) a nonnegative continuous function in D ⇥ R ⇥ Rn. Let
u 2 C2,1(D) \ C(D) satisfy (4.1). Assume the following conditions:

(i) lim
⇢!0+

⇢�1u
⇣
x+ ⌫̃(x)⇢, ⇢1/↵

⌘p
= 1 for x 2 ⌦;

(iii) the function
g↵,p,✓(x, t, v) := v3�1/pf(x, t1/↵, v1/p, v1/p�1✓)

is concave with respect to (x, t, v) 2 D ⇥ (0,1) for any fixed ✓ 2 Rn.

Then, for any � 2 ⇤n+1, u↵,p,� is a viscosity subsolution of (1.2) such that u↵,p,� = 0 on @D.
Furthermore, if the comparison principle (WCP) holds for equation (1.2), u is ↵ -parabolically
p -concave in D.

5 Heat equation with an inhomogeneous term

In this section we apply the results of the previous sections to the heat equation with an
inhomogeneous term, and prove the following theorem.

Theorem 5.1 Let n � 1, m � 2 and � 2 ⇤m. Let {⌦i}mi=1 be bounded smooth domains in Rn

and ⌦� the domain defined by (1.1). For any µ 2 {1, . . . ,m,�}, let uµ 2 C2,1(Dµ) \ C(Dµ)
satisfy

@tuµ = �uµ + fµ(x, t) in Dµ, uµ = 0 on @Dµ, (5.1)

where fµ is a positive continuous function in Dµ. Assume the following conditions:

(1) for any µ 2 {1, . . . ,m,�}, fµ = fµ(x, t) is nondecreasing with resect to t > 0 for every
fixed x 2 ⌦i;

(2) there exist q 2 [1,1] and ↵ 2 [1/2, 1] such that

f�

 
mX

i=1

�ixi,M↵(t1, . . . , tm;�)

!
� Mq

✓
f1 (x1, t1) , . . . , fm (xm, tm) ;�

◆

holds for all (xi, ti) 2 ⌦i and i = 1, . . . ,m.
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Then

u�

 
mX

i=1

�ixi, t

!
� Mp(u1(x1, t1), . . . , um(xm, tm);�) (5.2)

holds for all (xi, ti) 2 ⌦i i = 1, . . . ,m, t � M�(t1, . . . , tm;�) and � � ↵, where p := q/(1+2q)
if 1  q < 1 and p := 1/2 if q = 1.

We prepare the following lemma, which follows from [34, Theorem 5].

Lemma 5.1 Let ⌦ be a bounded convex smooth domain in Rn and D := ⌦ ⇥ (0,1). Let
w 2 C2(D) \ C(D) satisfy

@tw = �w + 1 in D, w = 0 on @D. (5.3)

Let x 2 ⌦ and y 2 ⌦. Then

lim
⇢!0

⇢�1w(x+ ⇢⌫̃(x), ⇢1/↵)1/2 = 1 if ↵ > 1/2,

lim inf
⇢!0

⇢�1w(x+ ⇢⌫̃(x), ⇢1/↵)1/2 > 0 if ↵ = 1/2,
(5.4)

where ⌫̃ is as in (4.5).

Proof of Theorem 5.1. We consider the case where 1  q < 1 and 1/2 < ↵  1. For any
✏ > 0 and � > 0, it follows from assumption (2) of Theorem 5.1 that

mX

i=1

�i[fi(xi, ti) + ✏]q 
mX

i=1

�i(1 + �)fi(xi, ti)
q + C� ✏

q

 (1 + �)f�

 
mX

i=1

�ixi,M↵(t1, . . . , tm);�

!q

+ C� ✏
q


"
(1 + �)1/qf�

 
mX

i=1

�ixi,M↵(t1, . . . , tm);�

!
+ C1/q

� ✏

#q

(5.5)

for all (xi, ti) 2 ⌦i and i = 1, . . . ,m, where C� is a constant depending only on �. Let
�✏ 2 (0, 1) be such that

�✏ ! 0 and C1/q
�✏

✏ ! 0 as ✏ ! 0. (5.6)

Set
f ✏
i (x, t) := fi(x, t) + ✏ and f ✏

�(x, t) := (1 + �✏)
1/qf�(x, t) + C1/q

�✏
✏. (5.7)

This together with (5.5) implies that

f ✏
�

 
mX

i=1

�ixi,M↵(t1, . . . , tm);�

!
� Mq(f

✏
1(x1, t1), . . . , f

✏
m(xm, tm);�) (5.8)

for all (xi, ti) 2 ⌦i and i = 1, . . . ,m.
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Let u✏µ be a solution of

@tuµ = �uµ + f ✏
µ(x, t) in Dµ, uµ = 0 on @Dµ. (5.9)

By (5.6) and (5.7) we apply the standard arguments for parabolic equations to see that

lim
✏!0

u✏µ(x, t) = uµ(x, t) in Dµ. (5.10)

Furthermore, for any i = 1, . . . ,m, by (5.7) and (5.9), we apply the comparison principle to
obtain

u✏i(x, t) � ✏w(x, t) in Di,

where w is a solution of (5.3). This together with Lemma 5.1 implies that

lim
⇢!0

⇢�1u✏i(x+ ⇢⌫̃(x), ⇢1/↵)p = 1 (5.11)

for every x 2 ⌦i and for every ✏ > 0. This means that assumption (i) of Theorem 3.2 is
satisfied by u✏i , i = 1, . . . ,m. Furthermore, for any h > 0, by (5.9) we see that the function

wµ(x, t) :=
1

h
(u✏i(x, t+ h)� u✏i(x, t))

satisfies

@twµ = �wµ +
1

h
(f ✏

µ(x, t+ h)� f ✏
µ(x, t)) � �wi in Dµ, wµ � 0 on @Dµ.

It follows from the comparison principle that

wµ(x, t) =
1

h
(u✏i(x, t+ h)� u✏i(x, t)) � 0 in Dµ.

Passing the limit as h ! 0, we obtain

@tu
✏
µ � 0 in Dµ. (5.12)

Set
h(v, w) := v3�1/pw1/q, gµ(x, t, v) := v3�1/pfµ(x, t

1/↵).

It follows from property (d) in the Preliminaries and p = q/(1 + 2q) that h(v, w) is concave
with respect to (v, w) 2 (0,1)⇥ [0,1). This together with (5.8) implies that

mX

i=1

�igi(xi, ti, vi) =
mX

i=1

�ih
⇣
vi, (f

✏
i (xi, t

1/↵
i ))q

⌘
 h

 
mX

i=1

�ivi,
mX

i=1

�i(f
✏
i (xi, t

1/↵
i ))q

!

=

 
mX

i=1

�ivi

!3�1/p

Mq(f
✏
1(x1, t

1/↵
1 ), . . . , f ✏

m(xm, t1/↵m );�)


 

mX

i=1

�ivi

!3�1/p

f ✏
�

 
mX

i=1

�ixi,

✓ mX

i=1

�iti

◆1/↵
!

= g�

 
mX

i=1

�ixi,
mX

i=1

�iti,
mX

i=1

�ivi

!

(5.13)
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for all (xi, ti) 2 ⌦i and i = 1, . . . ,m. This means that assumption (ii) of Theorem 3.2 is
satisfied. Furthermore, the comparison principle (WCP ) holds for (5.9). Therefore, thanks
to (5.11) and (5.12), we apply Theorem 3.2 to problem (5.9) to obtain

u✏�

 
mX

i=1

�ixi,M↵(t1, . . . , tm;�)

!
� Mp (u

✏
1(x1, t1), . . . , u

✏
m(xm, tm);�)

for all xi 2 ⌦i (i = 1, . . . ,m). This together with (2.2) and (5.12) implies that

u✏�

 
mX

i=1

�ixi, t

!
� Mp (u

✏
1(x1, t1), . . . , u

✏
m(xm, tm);�) (5.14)

for all xi 2 ⌦i (i = 1, . . . ,m), t � M�(t1, . . . , tm;�) and � � ↵. Passing the limit as ✏ ! 0,
by (5.10) and (5.14) we obtain (5.2) in the case where 1  p < 1 and 1/2 < ↵  1. Then we
deduce that (5.2) holds in the case 1  p  1 and 1/2  ↵  1, and Theorem 5.1 follows. 2

Combining Theorem 5.1 with (3.47) and (3.49), we have:

Corollary 5.1 Assume the same conditions as in Theorem 5.1. Let p := q/(1 + 2q) if
1 < q < 1 and p := 1/2 if q = 1. Then

mX

i=1

�iL (ui(ti) ; `i) ✓ L
✓
u�(t) ; Mp(`1, . . . , `m;�)

◆
(5.15)

for all `i > 0, ti > 0 (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�). Furthermore,

ku�(·, t)kLr(⌦�) � Mp⇤(ku1(·, t1)kLr(⌦1), . . . , kum(·, tm)kLr(⌦m);�) (5.16)

for all ti > 0 (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�), where r > 0 and

p⇤ =

8
><

>:

qr

(n+ 2r)q + 1
if 1 < q < 1,

r

n+ 2r
if q = 1.

Furthermore, applying Theorem 5.1 and Corollary 5.1 with q = 1 to problem (1.3), we have:

Corollary 5.2 Assume the same conditions as in Theorem 1.1. Then inequalities (1.4) and
(1.5) hold. Furthermore, the inequality

ku�(·, t)kLr(⌦�) � Mr/(n+2r)(ku1(·, t1)kLr(⌦1), . . . , kum(·, tm)kLr(⌦m);�) (5.17)

holds for all ti > 0 (i = 1, . . . ,m) and t � M↵(t1, . . . , tm;�), where r > 0.

Theorem 1.1 and Corollary 1.1 follow from Corollary 5.2.
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Remark 5.1 Assume the same conditions as in Theorem 1.1. Let ⌧µ be the torsional rigidity
of ⌦µ, that is

1

⌧µ
:= inf

⇢Z

⌦µ

|rv|2 dx
� Z

⌦µ

|v| dx
!2

: v 2 W 1,2(⌦µ) \ {0}
�
.

Let vµ (µ = 1, . . . ,m,�) be a unique solution of

�v + 1 = 0 in ⌦µ, v = 0 on @⌦µ.

Then

⌧µ = 4

Z

⌦
|rvµ|2 dx = 4

Z

⌦
vµ dx. (5.18)

On the other hand, the solution uµ of (1.3) converges to vµ uniformly on ⌦µ. Therefore it
follows from (5.17) with r = 1 and (5.18) that

⌧1/(n+2)
µ �

mX

i=1

�i⌧
1/(n+2)
i ,

which coincides with the inequality obtained by [5]. See also [9].

In addition, as another application of Theorem 5.1, we use a similar argument as in
Section 4 to obtain the following results.

Theorem 5.2 Let ⌦ be a bounded convex smooth domain in Rn and D := ⌦ ⇥ (0,1). Let
u 2 C2,1(D) \ C(D) satisfy

@tu = �u+ f(x, t) in D, u = 0 on @D,

where f is a nonnegative continuous function in D. Assume the following conditions:

• f = f(x, t) is nondecreasing with respect to t > 0 for any fixed x 2 ⌦;

• f is ↵ -parabolically q -concave in D for some 1/2  ↵  1 and 1  q  1.

Then u is � -parabolically p -concave in D for any � � ↵, where p = q/(1 + 2q) if q < 1 and
p = 1/2 if q = 1.

Theorem 5.3 Let ⌦ be a bounded convex smooth domain in Rn and D := ⌦ ⇥ (0,1). Let
u 2 C2,1(D) \ C(D) satisfy

@tu = �u+ t�h(x) in D, u = 0 on @D,

where 0  �  1 and h is a nonnegative continuous function in ⌦. Let ↵ 2 [�, 1] be such that
↵ � 1/2. Assume that h is q -concave in ⌦ with

↵

↵� �
 q  1 if ↵ > � and q = 1 if ↵ = �. (5.19)

Then u is � -parabolically p -concave in D for any � � ↵, where

p =
↵q

(� + 2↵)q + ↵
if q < 1 and p =

↵

� + 2↵
if q = 1.

21



Proof. Set f(x, t) := t�h(x). Since f(x, t1/↵) = t�/↵h(x), f is ↵ -parabolically r -concave in
D, where 1/r = �/↵+ 1/q, that is

r =
↵q

�q + ↵
if q < 1 and r =

↵

�
if q = 1.

Then it follows from �  ↵ and (5.19) that r � 1. Furthermore, we have

r

1 + 2r
=

↵q

(� + 2↵)q + ↵
.

Therefore, by Theorem 5.2 we obtain the desired conclusion, and the proof is complete. 2

6 Heat equation with a nonlinear reaction term

In this section we apply the results in Sections 3 and 4 to the heat equation with a nonlinear
reaction term. For µ = 1, . . . ,m,�, let ⌦µ and Dµ be as in Section 3 and let uµ 2 C2,1(Dµ)\
C(Dµ) satisfy 8

><

>:

@tuµ = �uµ + f(uµ) � 0 in Dµ,

uµ > 0 in Dµ,

uµ = 0 on @Dµ,

(6.1)

where f = f(s) is a nonnegative continuous function in [0,1). Put

M := max
µ

kuµkL1(Dµ) and F (s) :=

Z s

0
f(⌧)d⌧.

Inspired by [26], we assume the following conditions on the nonlinear term f :

f(s) > 0 for s 2 (0,M), (6.2)

f 2 C2((0,M)); (6.3)

2(f 0(s))2 � f(s)f 00(s)� (f(s))2f 0(s)

F (s)
� 0 for s 2 (0,M). (6.4)

Furthermore, we assume

h(s) := [F (s)]�1/2f(s) ! 1 as s ! +0. (6.5)

Then we have the following result as an application of Theorem 3.1.

Theorem 6.1 Let n � 1, m � 2 and � 2 ⇤m. Let {⌦i}mi=1 be bounded smooth domains in Rn

and ⌦� the domain defined by (1.1). For any µ 2 {1, . . . ,m,�}, let uµ 2 C2,1(Dµ) \ C(Dµ)
satisfy (6.1). Assume (6.2)–(6.4) and the following condition:

(A) if ũ is a viscosity subsolution of

@tu = �u+ f(u) in D�

such that ũ = 0 on @D�, then u� � ũ in D�.
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Define the function vµ (µ = 1, . . . ,m,�) by

vµ(x, t) := g(uµ(x, t)), where g(⇠) :=

Z ⇠

0
[F (s)]�1/2ds . (6.6)

Assume
lim
⇢!0

⇢�1vi
⇣
x+ ⌫̃(x)⇢, ⇢1/↵

⌘
= 1 (6.7)

for all x 2 ⌦i and i = 1, . . . ,m. Then

v�

 
mX

i=1

�xi, t

!
�

mX

i=1

�ivi(xi, ti) (6.8)

holds for all (xi, ti) 2 Di (i = 1, . . . ,m), t � M↵(t1, . . . , tm;�) and ↵ � 1/2. Moreover,

u�

 
mX

i=1

�xi, t

!
� min{u1(x1, t1), . . . , um(xm, tm)} (6.9)

and
mX

i=1

�iL (ui(ti) ; `i) ✓ L
�
u�(t) ;min{`1, . . . , `m; }

�
(6.10)

hold for all (xi, ti) 2 Di, `i > 0 (i = 1, . . . ,m), t � M↵(t1, . . . , tm;�) and ↵ � 1/2.

Proof. By (6.1) and (6.6) we see that vµ satisfies

8
<

:
@tvµ = �vµ +

1

2
h(vµ)(2 + |rvµ|2)) � 0 in Dµ,

vµ = 0 on @Dµ,
(6.11)

where h(vµ) is implicitly defined by the relation h(vµ) = [F (uµ)]�1/2f(uµ). By the Hopf
lemma we have (3.39), that is

lim
⇢!+0

⇢�1ui(x+ ⌫̃(x)⇢, t) > 0 (6.12)

for all x 2 @⌦i and t > 0. On the other hand, it follows from (6.6) that

g(⇠) � C⇠1/2, s > 0,

for some constant C > 0. This together with (6.12) yields

lim inf
⇢!+0

⇢�1vi(x+ ⇢⌫̃(x), t+ µ(t)⇢2) � C lim inf
⇢!+0

⇢�1ui(x+ ⇢⌫̃(x), t)1/2 = 1 (6.13)

for all (x, t) 2 @⌦ ⇥ (0,1). Therefore we deduce from (6.7) and (6.13) that assumption (i)
of Theorem 4.1 is satisfied with ↵ = 1/2 and u replaced by vµ. Furthermore, it follows from
(6.4) that

@2

@v2
1

h(v)
� 0 for v 2 (0, g(M)), (6.14)
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which implies that h(v) is (�1)-concave with respect to v 2 [0, g(M)]. Therefore, by Theo-
rem 4.1 we obtain (6.8) with ↵ = 1/2, which together with (3.46) and (3.47) implies (6.8) for
all ↵ � 1/2.

Now observe that g is strictly increasing, hence it is invertible and its inverse g�1 is also
strictly increasing. Then (6.8) yields

u�

 
mX

i=1

�xi, t

!
= g�1

 
v�
� mX

i=1

�xi, t
�
!

� g�1

 
mX

i=1

�ivi(xi, ti)

!

� g�1(min{v1(x1, t1), . . . , vm(xm, tm)})
= min{g�1(v1(x1, t1)), . . . , g

�1(vm(xm, tm))}
= min{u1(x1, t1), . . . , um(xm, tm)}

for all (xi, ti) 2 Di (i = 1, . . . ,m), t � M↵(t1, . . . , tm;�) and ↵ � 1/2, that is (6.9), which in
turn implies (6.10). Thus Theorem 6.1 is proved. 2

Similarly to Section 4, by Theorem 6.1 we have:

Theorem 6.2 Let ⌦ be a bounded smooth convex domain in Rn and D := ⌦⇥ (0,1), where
n � 1. Let u 2 C2,1(D) \ C(D) satisfy (6.1) with Dµ replaced by D. Assume (6.2)–(6.4)
with M replaced by kukL1(D) and condition (A) with Dµ replaced by D. Define the function
v defined by

v(x, t) := g(u(x, t)), where g(⇠) :=

Z ⇠

0
[F (s)]�1/2ds.

Assume
lim
⇢!0

⇢�1vi
⇣
x+ ⌫̃(x)⇢, ⇢1/↵

⌘
= 1 (6.15)

for all x 2 ⌦i. Then v is ↵ -parabolic concave in D for any ↵ � 1/2. In particular, u is
↵ -parabolic quasiconcave in D for any ↵ � 1/2.

Remark 6.1 Assume the same conditions as in Theorem 6.1 and f(0) > 0. Let i 2
{1, . . . ,m} and x 2 ⌦i. By (6.1) we can find a smooth domain Ei in ⌦i and T > 0 such that
x 2 Ei and

f(ui(y, s)) �
f(0)

2
, (y, s) 2 Ei ⇥ (0, T ).

Then it follows from the comparison principle that

ui �
f(0)

2
w(x, t) in Ei ⇥ (0, T ),

where w be a solution of (5.3) in D replaced by Ei ⇥ (0,1). We remark that, if x 2 @⌦i,
then x 2 @Ei and the inner unit normal vector to @⌦i at x coincides with that of Ei at x.
Then, by Lemma 5.1 we have

lim inf
⇢!0

⇢�1ui(x+ ⇢⌫̃(x), ⇢2)
1
2 � f(0)

2
lim inf
⇢!+0

⇢�1w(x+ ⇢⌫̃(x), ⇢2)1/2 > 0, (6.16)

which means that vi satisfies condition (6.7). Similarly, in the same conditions as in Theo-
rem 6.2 and f(0) > 0, v satisfies (6.15).
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As a corollary of Theorem 6.1 we have:

Corollary 6.1 Let n � 1, m � 2 and � 2 ⇤m. Let {⌦i}mi=1 be bounded smooth domains in
Rn and ⌦� the domain defined by (1.1). Let uµ 2 C2,1(Dµ) \ C(Dµ) be a solution of

@tu = �u+ u� in Dµ, u > 0 in Dµ, u = 0 on @Dµ, (6.17)

where 0 < � < 1. Then the same conclusion as in Theorem 6.1 hold with g(s) = s(1��)/2.

Proof. In the case f(s) = s� with 0 < � < 1, f satisfies conditions (6.2)–(6.5). It follows
from [11, Lemma 3.1] that uµ is a unique solution of (6.17). By (6.6) we set

vµ =
2(1 + �)1/2

1� �
u

1��
2

µ .

By the same argument as in the proof of [23, Theorem 6], we see that conditions (A) and
(6.7) are satisfied. Therefore Corollary 6.1 follows Theorem 6.1. 2

Similarly, by Theorem 6.2 we have a result on the parabolic (1 � �)/2 -concavity properties
of the solution of (6.17). We omit to state this result here since it is the same result as in
[23, Theorem 6].

7 Dead-core problem

Consider the following parabolic boundary value problem for the heat equation with strong
absorption

@tu = �u� u�+ in D, u = 1 on @D, (7.1)

where ⌦ is a bounded smooth domain inRn, D := ⌦⇥(0,1), 0 < � < 1 and u+ := max{u, 0}.
Problem (7.1) arises in the modeling of an isothermal reaction-di↵usion process (see [2] and
[37]) and it has been studied intensively for past years (see e.g., [8], [14]–[16] [26], [28], [38]
and references therein). If the domain ⌦ is su�ciently large, then the solution u reaches zero
in finite time and the set

Z⌦(t) := {x 2 ⌦ : u(x, t) = 0}

is called the dead-core at time t in the literature. We denote by T⌦ the dead-core time of u,
that is the first time when u reaches zero, i.e.

T⌦ = inf{t : Z⌦(t) 6= ;} .

It follows from the maximum principle that

0  u(x, t) < 1 and @tu  0 in D, (7.2)

which implies
Z⌦(t) ✓ Z⌦(t

0) if 0 < t  t0. (7.3)

Notice also that the dead core is monotone increasing with respect to inclusion, that is

Z⌦(t) ✓ Z⌦0(t) if ⌦ ✓ ⌦0 ,
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whence we get the reverse monotonicity property for the dead core time:

T⌦ � T⌦0 if ⌦ ✓ ⌦0 . (7.4)

It was shown in [28] that the dead-core Z(t) is convex for all t > 0 if ⌦ is convex (see also
[26]).

Set v = 1� u. By (7.1) and (7.2) we see that v satisfies

@tv = �v + (1� v)� � 0 in D, v = 0 on @D. (7.5)

On the other hand, f(s) = (1�s)� with M = 1 satisfies (6.2)–(6.4) and the comparison prin-
ciple holds for problem (7.5). Therefore, applying Theorems 6.1 and 6.2 (see also Remark 6.1)
to the solution v of (7.5), we have:

Theorem 7.1 Let n � 1, m � 2 and � 2 ⇤m. Let {⌦i}mi=1 be bounded smooth domains in
Rn and ⌦� the domain defined by (1.1). For any µ 2 {1, . . . ,m,�}, let uµ be a solution of
(7.1) with D replaced by Dµ := ⌦µ ⇥ (0,1). Then

mX

i=1

�i{x 2 ⌦i : ui(x, ti)  `} ✓ {x 2 ⌦� : u�(x, t)  `}

for all ti > 0 (i = 1, . . . ,m), ` > 0 and t � M1/2(t1, . . . , tm;�). In particular,

mX

i=1

�iZ⌦i(ti) ✓ Z⌦�(t)

holds for all ti > 0 (i = 1, . . . ,m), ` > 0 and t � M1/2(t1, . . . , tm;�), and

T 1/2
⌦�


mX

i=1

�iT
1/2
⌦i

.

Theorem 7.2 Let ⌦ be a bounded convex domain in Rn, where n � 1. Then

Z := {(x, t) 2 D : u(x, t) = 0}

is parabolically convex, that is
✓
(1� ⌘)x+ ⌘y,

⇣
(1� ⌘)t1/2 + ⌘s1/2

⌘2◆
2 Z if (x, t), (y, s) 2 Z,

for any ⌘ 2 (0, 1). In particular, Z(t) is convex for any t > 0.

Next we study the dead-core in view of the mean width of bounded convex domains. For
any bounded convex domain ⌦, we define

h⌦(x) := max
y2⌦

(x, y), x 2 Rn,

which is called the support function of ⌦ and has the following properties for convex domains
⌦ and ⌦0:
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• h`⌦(x) = `h⌦(x) for x 2 Rn and ` � 0;

• h⌦+⌦0(x) = h⌦(x) + h⌦0(x) for x 2 Rn.

Then for every direction ⇠ we define the width of ⌦ in direction ⇠ as

w(⌦, ⇠) = h⌦(⇠) + h⌦(�⇠) ,

and we notice that the minimal width d(⌦) = min{w(⌦, ⇠) : ⇠ 2 Sn�1} is the thickness of
the thinnest slab containing ⌦, while the maximal width D(⌦) = max{w(⌦, ⇠) : ⇠ 2 Sn�1}
coincides with the diameter of ⌦.

Furthermore, we denote by w(⌦) the mean width of ⌦, that is

w(⌦) :=
1

n!n

Z

Sn�1
w(⌦, ⇠) d⇠ =

2

n!n

Z

Sn�1
h⌦(⇠) d⇠.

In the case where ⌦ is a ball, w(⌦) coincides with the diameter of ⌦. In R2 the mean width
of a convex set coincides with the perimeter up to a factor ⇡, i.e. |@⌦| = ⇡w(⌦).

The function h⌦ and the mean width w(⌦) can be in fact defined also for non-convex sets,
precisely in the same way. In this case they respectively coincide with the support function
and the mean width of the convex hull conv(⌦) of the set ⌦. Notice that, without convexity,
in the plane the mean width is no more proportional to the perimeter, but still we have

⇡w(⌦)  |@⌦| ,

since the perimeter of conv(⌦) is shorter than the perimeter ⌦.
For any bounded convex domain ⌦ and any ⇥ = {✓i}mi=1 2 SO(n) (m 2 N), we define

⌦](⇥) :=
1

m
(✓1⌦+ · · ·+ ✓m⌦),

which is called a rotation mean of ⌦. Since

T✓⌦ = T⌦

for any ✓ 2 SO(n), by Theorem 7.1 we see that

T 1/2
⌦](⇥)

 1

m

⇣
T 1/2
✓1⌦

+ · · ·+ T 1/2
✓m⌦

⌘
= T 1/2

⌦ . (7.6)

We recall the following lemma on rotation means of bounded convex domains (see [36, The-
orem 3.3.5]).

Lemma 7.1 Let ⌦ be a bounded convex domain in Rn. Then there exists a sequence of
rotation means of ⌦ converging in Hausdro↵ metric to a ball ⌦] with the same mean width
of ⌦.

Notice that, possibly up to a translation, ⌦] is the ball centered at the origin with radius
w(⌦)/2, i.e.

⌦] = B(0,w(⌦)/2) .
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Let ⌦ be a bounded convex domain in Rn and let {⌦]
m}1m=1 be a sequence of rotation means

associated to ⌦ by Lemma 7.1 such that ⌦]
m converges to ⌦] as m ! 1. Then it follows

from (7.6) that
T⌦]  T⌦. (7.7)

The latter in fact holds also for non-convex sets, when ⌦] is regarded as the ball associated
to the convex hull conv(⌦) of ⌦ by Lemma 7.1. Then, thanks to (7.4) and in view of the
considerations made few lines above about the mean width of non-convex sets, (7.7) can be
rephrased in the following intriguing way.

Theorem 7.3 Among sets with given mean width, the ball has the smallest dead core time.
In the plane: among sets with given perimeter, the disk has the smallest dead core time.

Consider the elliptic boundary value problem,

�U � U�
+ = 0 in ⌦, U = 1 on @⌦. (7.8)

Then problem (7.8) has a unique solution satisfying 0  U < 1 in ⌦ and the solution u of
(7.1) decreases monotonically in time to the solution U of (7.8). Then, if U has a dead core
Z1 then Z⌦(t) ✓ Z1 for every t > 0 and if U has not a dead core, then Z⌦(t) = ; for every
t > 0. Furthermore, the following holds (see [37]).

(i) If ⌦ = B(0, r), then the solution U of (7.8) has a dead-core if and only if

r2 � P :=
2n(1� �) + 4�

(1� �)2
. (7.9)

In particular, in the case r2 = P , the dead-core of w consists of the origin.

(ii) For any interior point x0 of the dead core Z1 of U , x0 belongs to the dead-core Z⌦(t)
of u after a finite time. On the other hand, the points on the boundary of Z1 do not
belong to Z⌦(t) for any finite time.

(iii) The solution U does not have a dead core if d(⌦) < 2
p
2(1 + �)/(1� �)2.

(iv) The solution u does not have a dead-core if r⇤(⌦) < P 1/2, where r⇤(⌦) is the radius of

the ball whose volume coincides with that of ⌦, i.e. r⇤(⌦) = (|⌦|/!n)
1/n. Furthermore,

the solution u of (7.1) does not reach zero in finite time if r⇤(⌦)  P 1/2, i.e. if
|⌦|  !nPn/2.

Let us recall that w(⌦) = 2r if ⌦ = B(0, r). Then, by (7.7) and properties (i) and (ii) we
have the following result.

Theorem 7.4 Let ⌦ be a bounded smooth domain in Rn. Then the solution u of (7.1) does
not reach zero in finite time if

w(⌦)  2P 1/2.

Furthermore, the solution w of (7.8) does not have a dead-core if

w(⌦) < 2P 1/2.
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It follows from the Brunn-Minkowski inequality that

|⌦](⇥)|1/n � 1

m

⇣
|✓1⌦|1/n + · · ·+ |✓m⌦|1/n

⌘
= |⌦|1/n,

which implies that |⌦]| � |⌦|, that is w(⌦)/2 > r⇤(⌦). Therefore Theorem 7.4 improves
property (iv).
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