LISTING MAXIMAL SUBGRAPHS SATISFYING STRONGLY
ACCESSIBLE PROPERTIES*
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Abstract. Algorithms for listing the subgraphs satisfying a given property (e.g., being a clique,
a cut, a cycle, etc.) fall within the general framework of set systems. A set system (U, F) consists of
a ground set U (e.g., a network’s nodes) and a family F C 2¥ of subsets of U that have the required
property. For the problem of listing all sets in F maximal under inclusion, the ambitious goal is
to cover a large class of set systems, preserving at the same time the efficiency of the enumeration.
Among the existing algorithms, the best-known ones list the maximal subsets in time proportional
to their number but may require exponential space. In this paper we improve the state of the art in
two directions by introducing an algorithmic framework based on reverse search that, under standard
suitable conditions, simultaneously (i) extends the class of problems that can be solved efficiently to
strongly accessible set systems, and (ii) reduces the additional space usage from exponential in |U|
to stateless, i.e., with no additional memory usage other than that proportional to the solution size,
thus accounting for just polynomial space.
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1. Introduction. Enumerating the solutions that satisfy certain conditions,
such as subgraphs with desired combinatorial properties, is a common task in several
areas such as network analysis [1, 19, 33, 37, 38, 48], bioinformatics [13, 27, 31, 36, 46]
and graph databases [3, 15, 55]. Algorithms for subgraph enumeration have a long
history: introduced in the 70s in the context of enumerative combinatorics and com-
putational complexity [24, 32, 41, 44, 53], their interest has quickly broadened to a
variety of other communities.

In this scenario graph enumeration has left the purely combinatorial border to
meet the strict requirements of algorithm design [54]: not only a given listing problem
must fit a given class of complexity, but its algorithms must be efficient in real-world
applications too. Many papers address how to eliminate redundancy by listing only
solutions which respect properties of closure [8] or maximality [14]. Other papers
make a considerable effort to generalize the graph properties to be enumerated and
unify the corresponding approaches [5, 12, 14, 32, 49]. These generalizations allow
the same algorithm to solve many different problems without rediscovering the wheel
each time.

The contribution of this paper goes in the above direction: efficient listing al-
gorithms for inclusion-maximal solutions in large networks are within a framework
proposed here, which models and solves several problems at the same time, leaving
the algorithm designer in charge of few core tasks depending on the specific applica-
tion. In particular, we focus on set systems [14, 32], defined in Section 1.1, as they
can model interesting graph properties such as containing a clique, a cut, a cycle, a
matching, and so on.

A main obstacle to the above goal is the trade-off between generality and efficiency,
as a general output-sensitive algorithm for listing maximal solutions is impossible even
for independence systems (unless P=NP) [32]. For this reason, Lawler et al. [32] and
later Cohen et al. [14] have shown that the hardness of a listing problem can be
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linked to that of solving an easier core task, called input-restricted problem in [14].
We proceed in this direction, so that our framework can deal with a wide class of
problems and, at the same time, improve from the currently known exponential space
usage to polynomial (which means just a poly-logarithm of the output size [22]).

1.1. Set systems. Given a ground set of elements U, called universe, a set
system (U, F) is pair where F C 2% is a family of sets of elements that meet a given
property, satisfied by the empty set (i.e. @ € F) [32]. A solution X for (U, F) is any
set of elements X C U such that X € F; moreover, it is mazimal (short term for
inclusion-maximal) if there exists no Y € F such that X C Y. This is of interest for
many applications in the literature (e.g. [12, 49, 26, 29]) where instances can have a
number of maximal solutions that is much smaller than |F| < 2/4l.

We will use the concept of property as a synonym for set system, when appro-
priate. As an example, consider the problem of listing maximal cliques in a graph
G = (V, E) (i.e., maximal sets of nodes verifying the property of forming a clique). It
can be formulated as a set system with &/ = V, where a node set X belongs to F if
and only if the induced subgraph G[X] is a clique.

In the rest of the paper we fix an arbitrary apriori order on the elements in U,
hereafter called natural order, and label each element 1,...|U| according to its rank
in this order. We also assume that the membership test for F is provided as an
algorithm, i.e., we can check membership of X in F in time My = poly(|U|) and
space Mg = poly(|U|) (e.g., we can check whether a set of nodes X is a clique in
Mr = O(]X|?) time, using Mg = O(m) space to store ). Moreover, we will denote
by ¢ the maximum size of a solution.

We focus on set systems which fulfill the following condition: X,Y € F and
X CY implies that there exists z € Y\ X such that X U {z} € F.

This class of set systems is called strongly accessible [4, 8], and was originally
proposed to guarantee efficient enumeration of solutions respecting closure properties.
However, it is also of particular interest when dealing with maximality because it
allows a polynomial time procedure to check maximality or finding a maximal solution
as long as M is polynomial: indeed a solution S of a strongly accessible set system
(U, F) is maximal if and only if there is no z € U \ S such that SU {z} € F. When
this property is not satisfied, it may be hard to even recognize the maximality of a
solution. For example, the more general class of accessible set systems [8] only requires
that a solution X € F has an element z € X such that X \ {z} € F. Here a solution
may be non-extensible, i.e., no element can be added to it, but it may still be a subset
of a larger solution. Subgraphs with lower bounded density are a member of this class,
as we may always remove the lowest degree node from a graph without decreasing its
density, but finding out whether X is maximal or a larger solution including X exists
is shown to be NP-complete by Uno [52].

Furthermore, strongly accessible set systems include many known classes of set
systems/properties, such as the following ones.

e Hereditary properties [32], i.e., properties that are still satisfied by any subset
of a solution. These are also known as independence systems and include
matroids.

e Connected-hereditary graph properties [14], i.e., graph properties that are
still satisfied by connected subgraphs of a solution.

e Greedoids [30], as the exchange property implies the strongly accessible one.!

1Since X C Y implies |Y] > | X]|.
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e Confluent properties [8], i.e., set systems where the union of two solutions is
itself a solution whenever their intersection contains a nonempty solution.
As we mentioned, a key concept related to enumeration in set systems is the
input-restricted problem, found in Lawler et al. [32] and formally named by Cohen et
al. [14]:

DEFINITION 1.1 (Input-restricted problem [32, 14]). Given a set system (U, F),
a mazimal solution S € F and an element u € U \ S, the input-restricted problem
RESTR(S, u) asks to list all the mazimal solutions of the set system (S'U{u}, F).

In this paper, we assume that we can enumerate the solutions of any input-
restricted problem RESTR(P,w) in Rr time, using Rg space; moreover, Ry denotes
an upper bound on the number of solutions of the input-restricted problem. For
example, for a maximal clique X and a node z not in that clique, an algorithm for
RESTR(X, z) lists all the maximal cliques in G[X U {z}|. Thus Ry = O(|X|) = O(g),
Rs = O0(]X]) = O(q), and Ry = 2 for clique X and the clique obtained by taking z
and its neighbors in X.

Finally, to analyze the complexity of enumeration algorithms, we will make use
of the concepts of delay, an upper bound for the time required to output the i-th
solution after the output of the (i — 1)-th one (or since the start of the computation
when i = 1), and polynomial total time, which refers to algorithms whose running
time is polynomial in the size of both the input and the output [26, 24].
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Fic. 1. Relationships between some classes of set systems.

1.2. Results. We define a new class of set systems called commutable set sys-
tems, that is a well populated subclass of strongly accessible set system, as it contains
for example all the set systems induced by hereditary, connected-hereditary and con-
fluent properties. We define the commutable set systems as strongly accessible set
systems which also verify the commutable property given below.

DEFINITION 1.2 (Commutable property). A strongly accessible set system (U, F)
is called commutable when the following holds for any nonempty X,Y € F and
a,belU: XU{a} e F, XU{b} € F and X U{a,b} CY implies X U{a,b} € F.

We consider the commutable property only in combination with the strongly ac-
cessible one due to the fundamental implications that these latter has on testing maxi-
mality and finding a maximal solution. Furthermore, it is easy to see how commutable
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properties include hereditary, connected-hereditary, and confluent properties.? Fig-
ure 1 summarizes the inclusion relationships discussed so far.

We prove that any commutable set system admits polynomial delay and polyno-
mial space enumeration of its maximal sets, based on the reverse search [5], provided

that its input-restricted problem can be solved in polynomial time.?

THEOREM 1.3. The mazximal solutions of any commutable set system (U, F) can
be listed with O(q*|{U|? MrRx +Rr|U|) delay, using O(|U|+ Ms+Rs) space, where
q s the maximum size of a solution, Rt and Rg are the time and space required to
solve the input-restricted problem, Ry is the number of solutions it can yield, and
Mrp and Mg are the time and space required to check membership in F.

For example, with cliques, Theorem 1.3 gives O(q*n?q?2 + qn) = O(¢°n?) delay
and O(n + g + q) = O(n) space usage.

As the commutable property is satisfied by connected-hereditary properties, our
framework gives polynomial space output-sensitive algorithms for connected-hereditary
properties. This is the first polynomial space output-sensitive framework for this
class of systems, and in particular solves the open problem in Cohen et al. [14]. As
an application, our result implies the first output-sensitive polynomial space listing
algorithm for maximal isomorphisms corresponding to maximal common connected
induced subgraphs, using just O(g) memory, as described in Section 3.

Our results improve the space usage of the algorithm in Berlowitz et al. [7] to
enumerate connected k-plexes, making it polynomial space while increasing the delay
by only a polynomial factor. We also give new polynomial total time, polynomial
space algorithms for listing connected bipartite (induced) subgraphs and feedback
vertex (arc) set on undirected (directed) graphs. See Section 4 for details.

Our approach also extends to strongly accessible set systems independently from
the input-restricted problem (but still assuming Mt = poly(|U|)), with delay param-
eterized by the maximum solution size and arguably close to optimal, as formalized
in Theorem 1.4.

THEOREM 1.4. The mazximal solutions of any strongly accessible set system (U, F)
can be listed with O(Zq) delay, where O ignores factors polynomial in U and q is the
mazimum size of a solution. Moreover, there is no general listing algorithm for the
problem with less than Q(2Q/2) delay unless the Strong Exponential Time Hypothe-
sis [25] is false.

1.3. Related work. Many papers in the literature focus their attention on list-
ing maximal solutions of specific set systems, solving them with problem-specific tech-
niques. For example, they focus on cliques [9, 21, 47, 35, 2], independent sets [26, 49],
acyclic subgraphs [57, 42], matchings [23, 50], k-plexes [7, 56] which all correspond to
hereditary properties (also known as independence systems [14]).

It is well known that a general output-sensitive algorithm for these kinds of prob-
lems would imply P=NP [32]. On the other hand, output-sensitive time and poly-
nomial space general frameworks [14, 32] that require little problem-specific insights
(such as being able to solve the input-restricted problem) have been developed in the

2To see the latter one, i.e., how the confluent property implies the commutable one, it suffices to
observe that the two solutions X’ = X U {a} and X" = X U {b} have a nonempty solution (X) in
their intersection, thus by the confluent property X U {a,b} € F.

3For completeness, this also proves that if the input-restricted problem is solvable in polynomial
total time and polynomial space, the problem is solvable in polynomial total time and polynomial
space, as an instance of the input-restricted problem cannot have more solutions than the original
problem.
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past. However, as shown in Section 3.2, a direct adaptation of these frameworks to
commutable set systems is not possible unless P = NP.

These frameworks have been generalized to connected-hereditary properties in
Cohen et al. [14] while still maintaining the same problem-specific requirements.
This generalization achieves its goal by sacrificing space efficiency and obtaining an
exponential-space algorithm.

On the other hand, enumeration for set systems has been studied in the very
general setting of strongly accessible set system, but under different requirements on
the sets. In particular, the frameworks by Boley et al. [8] and Arimura et al. [4] are
able to list all the closed sets in a strongly accessible set system, for some closure op-
erator that satisfies extensivity, monotonicity, and idempotence properties. However,
maximality is not defined by a closure operator, so a different approach is needed.

Finally, low memory enumeration approaches have been proposed in the past to
deal with huge data sets. In this setting, we require the enumeration algorithm to use
a small amount of space on top of the input data. As an example, previous work is
able to achieve efficient enumeration algorithms using polynomial space for hereditary
properties [14], or even space proportional to the size of the largest solution produced
on specific problems [5, 17, 16].

These techniques, unfortunately, cannot be applied outside of hereditary set sys-
tems. For example, [14, 17, 16] require the key operation of finding lezicographically
minimum solution containing a given set of elements according to the natural order.
This problem is solvable in polynomial time for hereditary properties, but we show
that it is NpP-hard for at least one connected-hereditary property (see Section 3.2).

Our proposed framework is based on reverse search [5] and circumvents this issue
by relaxing this requirement to weaker ones, and fulfills these weaker requirements by
means of a more sophisticated order, on more general set systems than just hereditary
ones. This allows us to obtain algorithms with polynomial delay and space usage for
set systems which are not hereditary, such as the one described in Section 3.

2. Algorithmic Framework. This section will explain how our algorithmic
framework works, for both strongly accessible set systems and (the more specific case
of) commutable set systems.

First, in Section 2.1 we will define a new order, called prefix-closed order, that
facilitates the design of an efficient function to obtain a maximal solution, called
COMPLETE. Using these notions, we will describe an implicit arborescence forest
among all the maximal solution, through the PARENT function, which defines the main
structure of the enumeration. Section 2.2 will then prove the fundamental properties
of the PARENT function that make our algorithm work, and Section 2.3 will provide
the exponential-delay algorithm for any strongly accessible set system.

After that, Sections 2.4 and 2.5 will explain how to modify the above algorithm to
get a polynomial delay one on commutable set systems. Finally, Sections 2.6 and 2.7
will give our main algorithm and its time complexity analysis, and Section 2.8 will
explain the modifications needed to achieve polynomial space.

2.1. Beyond the natural order. Our goal is to define a parent-child structure
among maximal solutions, as common to reverse search-based approaches. We do so
by means of a total order among maximal solutions, and given a maximal solution .5,
a function which allows us to find another maximal solution T that precedes it in this
order.

Known reverse search-based approaches such as [14, 17, 16] use the natural order,
and implement this task by taking subsets S’ C S, then finding the lexicographically
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smallest solution T containing S’. Unfortunately this can be NpP-hard in strongly
accessible set systems (see again Section 3.2). We thus use a more sophisticated order
among solutions, based on a prefiz-closed internal order of the elements.

In the following we consider a strongly accessible set system (U, F), and use
Z ={zx € U : {z} € F} to denote the set of singleton solutions. By definition
of strongly accessible set systems, each nonempty solution S € F contains at least
one element of Z, as ) € F and clearly § C S. Given a solution S € F, we use
St ={aeU\S:SU{a} € F} to denote which elements of U can be added to S
while preserving membership in F.

We do not define a total order on U but rather a family of orders, which we call
prefiz-closed, using a function II that yields an order of a subset of U/ depending on
some given parameters. More formally:

DEFINITION 2.1 (Prefix-closed orders). Let II(X,v) be a family of orders pa-
rameterized by X € F and v € X N Z such that II(X,v) yields a permutation of
XUXT. For X € F andv € X N Z, let us denote by x¥,...,x} the elements of X
ordered according to TI(X,v).* We call the family 11 prefix-closed if for all X € F
andv € XNZ, andi € {1,....,k — 1}, the following properties hold
(first) The minimal element is u, i.e., £} = u.

(prefix) The i-th prefic X; = {z¥,...,2%} of X is a solution, i.e., X; € F.
(greedy) The element x;11 is the minimal element of Xj N X with respect to the
order TI(X;, v).

The rationale of the above properties is based upon the fact that each subset X
of a maximal solution S does not necessarily belong to F (as the set system is not
hereditary). When discovering S, the first property indicates that we can start from
an element v € S N Z, whereas the greedy property indicates that we can iteratively
expand X = {v} by considering the elements of X U X in a prefix-closed order, so
that any prefix {x1,...,z;} thus found is in F for the prefiz property.

We will discuss two prefix-closed orders, specifically in Section 2.3 (for strongly
accessible properties) and Section 2.5 (for just commutable properties).

In the rest of the paper, for a given prefix-closed order, we use the shorthand
notation <g for convenience:

for any two elements a,b € U we say a <% b to say that a occurs before b in
I1(S,t). We thus remark that II(S,¢) and <% correspond to two equivalent ways of
referring to the same permutation. We will frequently use the latter as its notation is
more convenient in our proofs.

Given a solution S € F we define its seed, denoted SEED(S), as the minimum
element (in natural order) in the nonempty intersection SN Z. For simplicity’s sake,
we will omit the superscript ¢ when ¢ = SEED(S), giving us the simplified notations
<g (as this will frequently be the case). Moreover, observe that ST = () when S is
maximal, thus <g defines an order on the elements of S U ST = S. In this case, we
will call solution order of the maximal solution S the permutation s, ..., s|g induced
by <g.

For completeness, we show that the natural order is not sufficient as it is not
prefix-closed for at least one connected-hereditary property.

Natural order is not prefiz-closed for paths in a cycle. Consider the toy problem
of listing all the subgraphs of a cycle C = {co,...,cn—1}, with n > 3, that are

4Note that 1 = v and that Zi,zi+1 € X are not necessarily consecutive in II(X,v) as some
elements from X can be interleaved with them.
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paths. The problem is connected-hereditary since any connected subgraph of a path
is a path. Furthermore, for any possible labelling of the nodes of C' we must have
a contiguous triplet ¢;, ¢;41,¢it2 (indices taken modulo n) such that ¢;41 is largest
according to the natural order, i.e., ¢; < ¢;41 and ¢;41 > ¢;42. Then the prefix of
the path {c¢;, ¢i1+1,¢i42} containing its two smallest elements is {¢;, ¢;42}, that is not
connected.

The prefix-closed order in Definition 2.1 allows us to define a greedy function,
called COMPLETE, that deterministically produces a maximal solution containing X,
for any given X € F.

COMPLETE(X): iteratively add to X the smallest element in X (according to <x),
as long as X is nonempty; the resulting solution is maximal by definition of
strongly accessible set systems.

It should be noted that since X is expanded by COMPLETE, order <x is implicitly
changed at each step of its computation (in particular, SEED(X) may also change).
However, we can observe that as long as SEED(X) is not changed, COMPLETE(X)
will tend to add elements coherently with the solution order of the resulting maximal
solution, due to the greedy property of the prefix-closed order.

To close this section, we give two final notions. Firstly, given a maximal solution
S, we denote by S[j] the prefiz s1,...,s; of its solution order (by <g). Secondly, using
the solution order, we can finally define our order < among maximal solutions in F:
given any two maximal solutions S # T, consider their solution orders si,...,s|g
and t1,...,t 7|, respectively. When s; # t;, we say that S <T'if and only if s; < ;.
Otherwise, let ¢ > 1 be the smallest index for which s; # ¢; (which exists as S and T
are maximal and distinct). Then, we say that S < T if and only if s; <y, t;, where
L = S[i — 1] = T[i — 1] is the longest common prefix of the two orders.”

2.2. Arborescence forest on the maximal solutions. We now use COM-
PLETE to define the PARENT of a maximal solution: this induces a parent-child rela-
tionship on the set of all maximal solutions, which defines an arborescence forest (i.e.,
a union of arborescences). Thus, being able to generate the children of a solution will
be enough to do a traversal on this arborescence forest, giving us all solutions. To
this end, let us define the following concepts.

DEFINITION 2.2 (Parent, parent index, core, root). Given a maximal solution
S, let s1,...,8)5 be the solution order of S.
If coMPLETE(S[j]) = S for all 1 < j < |S|, we say that S is a root.
Otherwise, let j > 1 be the smallest index such that COMPLETE(S[j]) = S
e PI(S) = s; is the parent index,
e CORE(S) = S[j — 1] is called core prefiz,
® PARENT(S) = COMPLETE(CORE(S)) is the mazimal solution that is the parent
of S.

Furthermore, if P = PARENT(S), we say that S is a child of P. The following
key property is at the heart of our reverse search approach to obtain the desired
arborescence forest.

LEMMA 2.3. PARENT(S) < S for every non-root mazimal solution S.

5It is straightforward to see that both s; and t; belong to LT and thus to the permutation
II(L,seeD(L)), and SEED(L) = SEED(S) = SEED(T), so this is equivalent to saying s; <g[;—1] ti or
si <7[i-1) ti-
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Proof. We show that COMPLETE(S[j]) < S for any 1 < j < |S|. Then, the lemma
immediately follows by the definition of PARENT.

If coMPLETE(S[j]) = S, we have nothing to prove. Otherwise, let the solution
orders of S and T" = COMPLETE(S[j]) be s1,...,5g and t1,...,tp|, respectively.
Since s; € S[j] C T, if t; # s1 then it must be that ¢; is smaller than s; in natural
order (by definition of SEED(T)), thus T' < S.

If s; = t; = SEED(S), let ¢ > 1 be the smallest index such that s; # ;. Two cases
are possible:

o If { < j, then s, € S[j] C T, and thus s; € T. Moreover, T'[i — 1] = S[i — 1],
soas s; € S[i — 1T =T[i — 1]T, we have s; € T[i — 1]T NT. By the greedy
property (Definition 2.1) ¢; is the minimal element of T'[i — 1]* NT according
to <§3[i_1]: Since s; is in the scope of <§}[i_1] (that is Ti — 1JUT[i — 1]T), it
follows that t; <r s; with L=S[i —1]=T[i—1],1e. T < S.

e If i > j, then T[j] = S[j]. Consider t;1: by the greedy property t;;1
is the minimal element of T'\ T[j] according to <tT1[j], and by the prefix
property t;41 € T[j]T. Since the first step of COMPLETE(T'[j]) adds to T'[j]
the minimal element of T'[j]* according to —<tT1[j], and the element added must
be an element of T (as T = COMPLETE(T'[j])), it follows that this element
must be precisely t;11. The same applies to the following elements, meaning
that COMPLETE(T[j]) adds the elements of {t;1,...,# 7} exactly in the order
given by <% (i.e., TI(T,t;)). This holds in particular for i > j + 1, as t; is
the element added to T'[i — 1] by COMPLETE(T[i — 1]), meaning that it is the
minimal element of T[i — 1]* according to <tTl[i_1]. AsT[i —1] = S[i — 1], we
have s; € T'[i — 1], and thus ¢; <, s; with L = S[i — 1] = T'[i — 1], meaning
that T' < S. |

Lemma 2.3 has a powerful implication, as indeed it allows us to find, for any non-
root solution S, another one which is smaller according to < for maximal solutions,
without relying on the Np-hard problem of finding the lexicographically minimum
solution containing a set of elements (used by some known approaches on the easier
case of hereditary properties).

Furthermore, the following lemma allows us to identify all the solutions corre-
sponding to the roots of the arborescences.

LEMMA 2.4. S is a root (i.e., COMPLETE(S[j]) = S for all 1 < j < |S]) iff
COMPLETE(S[1]) = S.

Proof. Let S be a maximal solution. If COMPLETE(S[1]) # S then S is not a
root by definition. Otherwise, assume COMPLETE(S[1]) = S. By the definition of
COMPLETE, COMPLETE(S[j]) adds each time the minimum possible element of S[j]*
according to <g(;}, which by the greedy property of the solution order of .S corresponds
to sj41. This means that COMPLETE(S[1]) will add the elements in the solution order
of S, and thus will consider all its prefixes S[j], adding each time the (j + 1)-th
element. In turn, this means that COMPLETE(S[j]) = S for all 1 < j < |S]. O

Finally, we can state the following result.

THEOREM 2.5. The directed graph whose nodes are the maximal solutions of F,
and whose edges are (PARENT(S),S) for each non-root mazimal solution S, is an
arborescence forest where each root S satisfies COMPLETE({SEED(S)}) = S.

Proof. Since all edges are directed from the PARENT of a solution to its child,
and since PARENT(S) < S by Lemma 2.3, the solution graph cannot contain cycles.
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Moreover, since the indegree of each node is at most 1, it must be an arborescence
forest. Finally, Lemma 2.4 gives a complete characterization of the roots of this graph,
i.e. the nodes that have no parent. ]

It is now clear that defining a family of prefix-closed orders II is enough to define
an arborescence forest among the maximal solutions of the given problem, whose roots
can be identified in polynomial time. To finalize an enumeration algorithm for the
maximal solution we just need to find the set CHILDREN(P) = {S : P = PARENT(S)},
for a maximal solution P.

2.3. Listing maximal solutions in strongly accessible set systems. At
this point it is interesting to make a quick detour on what can be achieved on strongly
accessible set systems, not necessarily satisfying the commutable property, proving
Theorem 1.4 (the reader interested only in the final algorithm may skip directly to
Section 2.4 as remainder of the paper does not use the concepts defined in this section).
By definition, we have that CORE(S) C PARENT(S). Thus, one way to generate all
children of solution P is checking which sets X C P are actually CORE(S) for some
child S of P. Specifically, setting S = COMPLETE(X U {v}), for each of the 2!”!
possible subsets X C P and each v € U \ X, we have to check whether the conditions
P = PARENT(S), X = CORE(S) and v = PI(S) simultaneously hold.

We define a prefix-closed order 11 that satisfies Definition 2.1. Given {z1,..., 2},
let COMPLETE*({z1,...,z;,}, X) be a variation of COMPLETE that chooses x ;41 simply
as the minimum element (in natural order) in {z1,...,2;}TNX. Setting initially z; =
v gives 11 (X,v) and, consequently, the relation —*< % and an enumeration algorithm
for strongly accessible set systems.

DEFINITION 2.6 (prefix-closed order for strongly accessible set systems). Given
X e Fandve XNZ, the order 11 (X,v) is defined as: v first; then the remaining
elements of X in the order in which they are added by COMPLETE*({v}, X); then all
the elements in X+ (if any) in increasing natural order.

We observe that 11 is a prefix-closed order, as it takes X € F and v € X N Z,
and yields a permutation of X U X satisfying all the conditions of Definition 2.1:
the first property is trivially satisfied by definition; the prefix property is satisfied
by definition of COMPLETE*(), which only selects elements addible to the prev10us
ones; finally, let 21,...,2 x| be the order of the elements of X given by IT (X,v),
and X[j] = {@1,...,2;} a prefix: the earliest element in X[j]" N X according to
II (X[j],v) is the minimum (in natural order) in X [j]* N X, which is precisely the one
chosen for addition by COMPLETE* (X [j], X). Thus the greedy property is satisfied.

Within the scope of this paragraph, we set COMPLETE(S) := COMPLETE*(S, U).
As we can compute COMPLETE" in polynomial time, we obtain an algorithm that
takes O(29) time per solution, where O ignores polynomial factors in ||, and ¢ is
the maximum size of a solution: indeed, we can identify all roots in polynomial time
by Lemma 2.4, then recursively find all children of each solution in time O(29), as
the number of possible CORE(S) of a child S of P is bounded by 2/l < 2¢. For
each tentative child C, we can try all |U| possibilities for parent index p, and check
whether the given S = COMPLETE(CU{p}) has C = CORE(S) and p = P1(S). While an
algorithm with this running time may not be practical, it has interesting implications
from a theoretical point of view: firstly, it follows that we can obtain polynomial space
and delay listing algorithms for all strongly accessible set systems whose maximal
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solutions have size constant or logarithmic in ||, i.e., such that 29 is polynomial.®
Furthermore, we can prove this algorithm to be almost optimal in the general case,
unless the popular Strong Exponential Time Hypothesis [25] (SETH hereafter) is
false.” We do so exploiting a reduction by Lawler et al. [32].

LEMMA 2.7. An algorithm that gemerates all the a mazimal solutions of any
strongly accessible set system has a worst case time complexity of Q(a2q/2), unless

SETH is false.

Proof. Suppose by contradiction that an algorithm A exists to list all the maximal
solutions in an independence system, which is a particular case of strongly accessi-
ble set systems, in O(a2%) time for some k > 2. This implies the existence of an
algorithm B for SAT that runs in O(n22T") time, where n is the number of variables:
Indeed, using the reduction in Lawler et al. [32], B first transforms a formula of SAT
in a hereditary (thus also strongly accessible) set system, which has exactly n max-
imal solutions plus one maximal solution for each satisfying assignment of the input
formula (i.e., exactly n maximal solutions iff the formula is not satisfiable). Note that
the largest maximal solution in this set system has size ¢ = 2n. At this point, B
can execute A waiting O(n2%") time: the formula is not satisfiable iff A finds n so-
lutions and terminates within this upper bound. However, SETH implies that k& < 2,
contradicting the hypothesis that k > 2. ]

This completes the proof of Theorem 1.4.

2.4. Generating children in subexponential time. As the exponential time
complexity discussed in Section 2.3 holds for the general case, we will now proceed
in the same direction as Lawler et al. [32] and Cohen et al. [14], studying which
conditions permit to achieve subexponential time per solution. Thus we introduce
additional techniques to link the running time of the algorithm to the input-restricted
problem. This will result in polynomial time per solution algorithms for some classes
of enumeration problems.

From now on, we will require a prefix-closed order to satisfy a further property,
which we call core property. We introduce the shorthand 7°[j] to indicate the first j
elements of T according to the order II(7T), s). We will use T°[j] interchangeably as a
sequence or the set of elements it contains.

DEFINITION 2.8 (Core property). A family of prefiz-closed orders I1 satisfies the
core property if, given a mazimal solution S, its seed s = SEED(S), and a solution
T with cORE(S) U {P1(S)} C T (which implies s € T), then T*[|CORE(S)| + 1] =
CORE(S) U P1(5)

In other words, CORE(S) U {P1(S)} is a prefix of T according to II(T, s). While
possibly not intuitive, this property will be crucial to the correctness of our algorithm,
as it will guarantee that we can find all children solutions from the solution of the
input-restricted problem [32, 14] (see Definition 1.1).

We now show how to use Definitions 2.8 and 1.1. Consider a maximal solution
S, with P = PARENT(S) and u = PI(S). Among the solutions of the input-restricted
problem RESTR(P, u), surely there is a solution R such that CORE(S)U{u} C R, since

6Note that maximal solutions may also trivially be generated in O(n?) total time by trying all
subsets of size at most g, but this does not guarantee output sensitivity since, e.g., when ¢ = O(logn)
with a constant number of solutions.

"The hypothesis essentially states that there is no algorithm for SAT which runs in O(2°") time
for any ¢ < 1, where n is the number of variables.
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CORE(S) U {u} € F and CORE(S) U {u} C P U {u}. We can use the core property to
find core(S)U{u} given R, since it will be a prefix of R according to the prefix-closed
order II(R,SEED(S)).

Since S = COMPLETE(CORE(S) U {u}), this yields an algorithm for finding the
set CHILDREN(P) in time proportional to that required to solve the input-restricted
problem, times polynomial factors in |U/|. The only missing piece is defining a suitable
prefix-closed order that satisfies the core property.

2.5. Layer order in commutable systems. For the improved version of our
framework, we restrict our attention to commutable set systems, i.e., strongly acces-
sible set systems which satisfy the commutable property (Definition 1.2). Recall that
in a commutable set system X U{a} € F, X U{b} € F and XU{a,b} CY € F imply
X U{a,b} € F for any X,Y € F and a,b € U. We introduce the notion of layer.

DEFINITION 2.9 (layer). Given X € F and a starting element v € X NZ, define
inductively B;:®
[ ] BO = {U}
(] Bl:Bz_lu(Bj__l ﬂX),fori >0
Then, for any y € X U X, its layer is defined as LAY (y) = 0 if y = v, and
LAYY (y) = min{i : y € B |} otherwise.

Again, we omit the superscript v when v = SEED(X), and X when it is clear from
the context, resulting in simplified notation such as LAY x (y) or just LAY(y). We can
now define our prefix-closed order II for commutable set systems, or equivalently its
corresponding binary relation <.

DEFINITION 2.10 (prefix-closed order for commutable systems). Given a solution
S, and elements t € SN Z and a,b € SU ST, we say that a<4b iff (LAYY(a),a) <
(LAY%(b),b), where elements a and b in the second components of the pairs are com-
pared according to the natural order.

We remark that this induces a permutation of the elements of S U St which we
denote as II(S, t). We have now to prove that II satisfies the required properties of a
prefix-closed order family, as well as the core property.

LEMMA 2.11. 11 is a family of prefiz-closed orders (Definition 2.1).

Proof. Firstly, note that <% is indeed an ordering on the elements of S U ST, for
S e Fandte SNZ, asis required by the definition. The first property is satisfied
as t is the only element with layer 0.

Moreover, let s1,...,s)s| be the order of the elements of S according to <L.
It follows from Definition 2.9 that for any = in S[j]*, LAYg};(2) = LAYg(z). By
definition of COMPLETE(), s;41 is the element which minimizes (LAYg(s;+1), $j+1) in
S[j]T NS, so it also minimizes (LAY g(j(s;41),8;4+1). Thus we have that the greedy
property is satisfied. Finally the prefiz property is satisfied by induction: S[1] € F
since s1 =t € Z, and S[j] € F implies S[j + 1] € F since s;+1 € S[j]*. O

LEMMA 2.12. II satisfies the core property (Definition 2.8).

Proof. We will prove this by contradiction. Let T be a solution which contains
S" = core(S)U{PI(S)}, and let s = SEED(S). The core property implies T°[|.S"|] = S’
(recalling that T°[|S’|] corresponds to the first |S’| elements in II(7, s)). Thus suppose

by contradiction T°[|S’|] # S’. Let T*[i] be the smallest prefix of 7" which is not a
prefix of S” (note that ¢ < [S’|), and let s1,...,s|g/ be the order of the elements of

8Note that B; is made only of elements from X whereas Bj is made of elements from X U XT.
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Algorithm 1: Listing Maximal Solutions in Commutable Set Systems

Input : Commutable set system (U, F) Function sPAWN(X)
Output: All maximal X € F /* Output X if depth is odd */
foreach w € U do
f h S such that co S S))=S5d
trZ?)iWN(?)C at COMPLETE(SEED(S)) © goreach S € CHILDREN(X, w)
o
Function CHILDREN(P, w) | sPAwN(S)

fori‘iil;a]jhengs(?%P,Zi;)\ ({:1;)}} do | /* Output X if depth is even */
prefix < {z € R: x <% w} Function COMPLETE(X)
S < COMPLETE(prefir) while Xt # () do
if (PARENT(S), P1(S), R(S), SEED(S)) = L x < argmin(LAY x (), y)
(P,w, R, s) then yield S yex+
| X + X U{x}
L return X

S’ as they appear in ﬁ(S’, s), and ty,...,tp| the order of the elements of T" as they
appear in II(7T, s). Observe that s; =t; = s = SEED(.S).

By the greedy property, and as T*[i — 1] = S’[i — 1], we have t; = min(T*[i —
1" NT) = min(S’[i — 1J* N T). However, since s; € S C T we have s; € S'[i —
1]7 NT, and since s; # t;, this implies ¢; QTs[i_l] s;. As LAYST[i—u (t;) = LAYS.(t;)
and LAYST[i_l](si) = LAY (s;), it follows that t; <5 s;, meaning that ¢; immediately
follows s;_1 in II(T, s) because t; = min(T*[i — 1]+ N T) (by the greedy property). In
turn, since P1(S) ¢ S[i — 1] this means that t; <5 pP1(S).

We also have that S’ U {t;} € F: indeed T?[i — 1] = S[i — 1] is a subset of
both T*[i] and S’ so we can see that both ¢; and s; belong to S[i — 1]*, and as
(Sl —1Ju{s;} U{t;}) € U {t;} € T € F, the commutable property gives us
(S[i—1]U{s;}U{t;}) € F. By induction on j = i...|S’|, again using the commutable
property, we can see that S’[j] U {t;} € F. Thus, t; € S'*.

By definition of layers, the layer of ¢; in CORE(S) is the same as the layer of t;
in T (as elements with lower layer than ¢; in T all belong to S’). On the other hand,
the layer of p1(S) in S’ cannot be smaller than its layer in T (as S’ C T). Since
t; <5 P1(.9), it follows that ¢; <%, P1(.S).

Since COMPLETE(S’) = COMPLETE(CORE(S) U {P1(S)}) = S, the first node se-
lected by the COMPLETE(S’) is the minimum element in S+ according to <%,, and
it will be an element of S since S = COMPLETE(S’). By the greedy property this
is $|5/|41, i.e., the element of S following sg/| in the solution order of S. We also
recall that sg/| = PI(S) as S = CORE(S) UPI(S), thus 5|5/ (s, for short hereafter)
is the element following the parent index in the solution order of S, meaning that
PI(S) —QS/U{Sm}sI. i

By the definition of COMPLETE, it must be that s, <g' t; since t; € ST, but since
t;<s/PI(S) then s, <g P1(S). We also know that PI(S) <g/ufs,} Sz by the definition
of solution order. As adding s, to S’ cannot change either its layer or that of P1(5),
this also means PI1(S) <s s;, which contradicts s, <g P1(S). ]

2.6. Listing maximal solutions in commutable set systems. We are finally
ready to discuss the resulting algorithm for efficiently listing maximal solutions in
commutable set systems.

The pseudocode is shown in Algorithm 1, where RESTR (P, w) denotes the set of
solutions of the input-restricted problem on P and w (see Definition 1.1), and R(S)
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must return an arbitrary but deterministic solution of said input-restricted problem
which contains CORE(S)U{w}, given S, P, and w. Here we define R(.S) as the solution
obtained by computing a variant of COMPLETE(CORE(S) U{w}) which is only allowed
to add nodes in P U {w}. Note that a suitable R(S) always exists when w = PI(S),
since CORE(S) U PI(S) € F.

As shown in Section 2.7, the algorithm first identifies the roots of the arbores-
cence forest structure defined among solutions, corresponding to all solutions S such
that COMPLETE(SEED(S)) = S. For each of these, the algorithm traverses the corre-
sponding arborescence with the SPAWN() function. As we will show, CHILDREN(P, w)
identifies all solutions S such that PARENT(S) = P and P1(S) = w, by iterating over
the choices of R € RESTR(P,w) and s € (RN Z). It trivially follows that SPAWN(X)
finds all children of X, and thus this recursive traversal starting on all roots of the
arborescence forest will output all maximal solutions.

Let us prove the correctness of Algorithm 1.

LEMMA 2.13. Function CHILDREN(P, w) in Algorithm 1 yields the mazimal solu-
tions, without duplication, in {S : PARENT(S) = P and PI(S) = w}.

Proof. Let S be any maximal solution with PARENT(S) = P and P1(S) = w.
We show that S is yielded. Consider the iteration of the outer foreach in which
R = R(S): since CORE(S) U {P1(S)} € F, there must exist a (maximal) solution of
RESTR(P, w) which contains CORE(S) U {P1(S)}, thus R(S) € RESTR(P,w), and this
iteration is executed. Furthermore, consider the iteration of the inner foreach in which
s = SEED(S), which is also executed since SEED(S) € (CORE(S) N Z) C (r(S) N Z),
and SEED(S) # P1(S) by definition of root, as S is not a root.

When these conditions are met, by the fact that the layer-based order < satisfies
the core property (Lemma 2.12) we have that R*[|CORE(S)| + 1] = CORE(S) U PI(S).
Moreover, as this means R*[|[CORE(S)|+1] = S[|CORE(S)|+1], we have that P1(S) = w
will be the last element of this prefix. We thus have that prefir = {r € R: x 5?% w} =
coRrE(S)U{w}, i.e., the elements in R that come earlier than w in II(R, s) are all and
only those in CORE(S).

By Definition 2.2, it follows that COMPLETE(prefix) = COMPLETE(CORE(S) U
PI(S)) = S. At this point we have by assumption PARENT(S) = P, PI1(S) = w,
R(S) = R and SEED(S) = s, thus the condition of the if is satisfied meaning that S
is indeed yielded by the function.

Furthermore, on any other iteration of the outer/inner loops, we must have that
either R # R(S) or s # SEED(S), meaning that if S is computed again the if check
would fail, thus S is only yielded once. Finally, the if check also fails whenever
PARENT(S) # S or PI(S) # w, thus the solutions yielded will be all and only those
claimed in the statement, which completes the proof. 0

LEMMA 2.14. Given a commutable set system (U, F), Algorithm 1 outputs all the
mazimal solutions in F without duplication.

Proof. By Theorem 2.5, Algorithm 1 correctly identifies all roots of the arbores-
cence forest structure among solutions, and recurs on them using SPAWN().

Furthermore, Lemma 2.13 implies |J,,c,, CHILDREN(P, w) = CHILDREN(P), thus
the algorithm will recursively visit all children, and thus all descendants of the solu-
tions found in the arborescence forest structure. In other words, Algorithm 1 will find
all solutions.

Finally, still by Lemma 2.13, CHILDREN(P,w) is free from duplication, and as
each solution S has only one parent index it may appear in only one CHILDREN(P, w)
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(i.e., when w = PI1(S)). Thus each solution that is a root is found exactly once in the
beginning of the algorithm, and each solution that is not a root is found exactly once
when calling the function SPAWN() on its parent. |

2.7. Running time. We here give complexity bounds for the running time of
our algorithm, with the goal of showing that the algorithm runs with polynomial
delay when My and R are polynomial (the space analysis will be completed in the
next section). As previously mentioned in Section 1.1, M7 and Mg refer to the time
and space required for checking membership in F, Ry and Rg to the time and space
required for computing all solutions of an input-restricted problem, and Ry to the
maximum number of its solutions, noting that Ry < Ry as we need at least O(1)
time to return each solution.

LEMMA 2.15. COMPLETE(S) takes O(q*|U| M) time and O(|U| + M) space.

Proof. Given a solution X, we can compute X' in O(|JU| M) time by using the
definition of X . Thus, by computing S[i]* for any i = 1...|S|, we can compute the
levels of all the elements in S* in O(|S| - |U|Mr) = O(q|U|M7) time (note that S[1]
is always known, and by the greedy property we can identify s;11, and thus S[i + 1]
from T1(S[i], s1)).

As we have all the levels of ST, determining the next element to add to S is
trivial. Moreover, if SEED(S) remains unchanged, we may again update the levels and
compute the next St in O(|U|Mr) time. If, on the other hand, SEED(S) is changed
by selecting an element smaller than the current SEED in natural order, we need to
compute again the layers of all ST from scratch, starting from S[1], in O(q|U| M)
time.

Since the total number of elements added to S is at most ¢ and thus there are at
most ¢ seed changes, we get the claimed running time as a worst case bound. As for
the space, we only need to store the element of S and S at any time, plus Mg for
checking membership in F, thus the cost follows. ]

LEMMA 2.16. Function CHILDREN(P,w) in Algorithm 1 takes O(q®|U|Ry M1 +
Rr) time and O(JU| + Rgs + Mg) space.

Proof. Firstly, the function takes time R to compute RESTR (P, w), and generates
R iterations of the outer for loop, and for each the inner for loop generates at most
q — 1 iterations.

In every iteration of the inner loop, computing prefir requires computing the
solution order of R, which takes the time of a COMPLETE() call, i.e., O(q|U|MT) by
Lemma 2.15. The same is true for the following line of the pseudo code. Finally, we
need to compute PARENT(.S), PI(S), R(S) and SEED(.S), all of which also take the time
needed for a COMPLETE() call.

The total time taken by CHILDREN(P,w) will thus be O(¢?|U|RyMr + R7).

The space used is that required by RESTR(P, w), COMPLETE() and checking mem-
bership to F, i.e., O(|JU| + Rs + Mg). O

We remark that for every solution we run CHILDREN() a total of |U| times, so this
will be the cost per solution of the algorithm. By using alternative output [51], i.e.,
output solutions at the beginning or end of a recursive call depending on the parity
of the recursion depth, the delay becomes the same as the cost per solution.’

90ther strategies exist to suitably bound the delay of output-sensitive algorithms. E.g., [24]
remarks that any cumulative polynomial delay algorithm (meaning the amortized cost per solution
found is polynomial at any time during the execution) can be turned into a polynomial delay one.
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We also should take into account the time required to find the root solutions: By
Lemma 2.4, it is sufficient to identify all « € U such that 2 = SEED(COMPLETE({z})),
which can be done in O(|U| - ¢*|U| M) time using Lemma 2.15. This is negligible as
it is dominated by the delay of the algorithm. Furthermore, it requires just O(|U|)
space if we simply store the set of all suitable z, recomputing COMPLETE({x}) when
STATELESS-SPAWN(COMPLETE({z}) is executed (a cost that is already accounted for
by the complexity analysis). We thus obtain the main complexity result.

THEOREM 2.17. Algorithm 1 lists all mazimal solutions of a commutable set sys-
tem with O(¢*|\ U MrRN + Rr|U|) delay.

We thus have that the algorithm has polynomial delay whenever M and Ry are
polynomial (note that Ry < Rr).

Furthermore, it follows from Cohen et al. [14] that if R and R’ are two maximal
solutions of RESTR(S,x) (for some maximal solution S and some x € U \ S), then
COMPLETE(R) # COMPLETE(R’). The number of solutions of RESTR(S, ) can thus
be at most «, that of the general problem. This implies that a polynomial total
time algorithm for the input-restricted problem also yields a polynomial total time
algorithm for the general problem.

We also remark that problem-specific fine tuning is likely to yield better run-
ning times than the bound given by Theorem 2.17 (by, e.g., lowering the cost of
COMPLETE(), or proving that only a limited set of elements may be the parent index
of a child solution). An example of this is the example problem studied in Section 3.

Finally, in the following section, we make some modifications to the algorithm in
order to guarantee that the space usage is polynomial.

2.8. Polynomial space via stateless visit. The recursive version of our algo-
rithms do not yet guarantee polynomial space: indeed, there is no guarantee that the
depth of the recursion will be polynomial, and a recursive implementation needs at
least O(1) memory for each nesting level. Moreover, Algorithm 1 stores the solutions
of the input-restricted problem, which may be non-polynomial in number.

We address the first of these problems by removing the explicit recursion. The
state of the computation inside a certain recursive call is fully determined by the
variables P, w, R, s in Algorithm 1. Moreover, when a recursive call is made, the
conditions written in the code imply that we can easily (and cheaply) compute the
state variables using only information about the child. It is thus easy to modify these
two algorithms to simulate the recursion avoiding an explicit stack.

With regard to the input-restricted problem, note that we can iterate over the
solutions of the input-restricted problem using R time and Rg space: we can restart
the iteration whenever we backtrack in the (simulated) recursion tree, as this does
not impact the delay.

As the only other space requirements are O(|U| + Mg) due to COMPLETE, and
O(|U]) to store all 2 € U such that = SEED(COMPLETE({z})) (which correspond to
the root solutions, as remarked before), we can state the following bounds.

THEOREM 2.18. Algorithm 2, the stateless version of Algorithm 1, achieves the
same delay O(¢*|U* MRy + Rr|U|) and takes O(|U| + Mg + Rs) space.

Our main result, Theorem 1.3, as well as Theorem 1.4, are the union of the
statements of the theorems proved so far in Sections 2.8-2.2.

3. Maximal Common Connected Induced Subgraphs (MCCIS). The
following problem is an example showing how to obtain an output-sensitive and poly-
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Algorithm 2: Stateless framework with minimal memory

foreach S such that COMPLETE(SEED(S)) = S do
| STATELESS-SPAWN(S)
Function STATELESS-SPAWN(X)
P+ X
S ¢+ null
W < NEXT-NODE(null)
R <+ NEXT-R(P,w,null)
do
do
do
if S < NEXT-CHILD(P,w, R, S) # null then
(P, S,w, R) + (S,null,null,null) /* recur in child */
L break
while R < NEXT-R(P,w, R) # null
while w < NEXT-NODE(w) # null
if 1s-ROOT(P) then return
else (P, S,w, R) < (PARENT(P), P, P1(P),R(P)) /* backtrack */
while true

Function 1S-ROOT(X)
| return COMPLETE(SEED(X)) = X
Function NEXT-NODE(w)
| return min{ve U :v>w}
Function NEXT-R(P, w, R)
| return the solution succeeding R in RESTR(P,w) (or null if R is the last)
Function NEXT-CHILD(P, w, R, S)
foreach y € R : y > sgeD(S) do
prefic < {z € R: x <% w}
D <+ COMPLETE(prefiz)
if (PARENT(D),P1(D),R(D),SEED(D)) = (P, w, R, z) then
L return D

return null

nomial space algorithm, using our framework with some extra optimization that is
problem-dependent.'® For any two given input graphs H and F, a subgraph S of H
is in common with F' if S is isomorphic to a subgraph of F: it is maximal if there is
no other common subgraph that strictly contains it, and maximum if it is the largest.
The mazimum common subgraph problem asks for the maximum ones, or simply for
their size.!! The mazimal common subgraph (McS) problem further requires discov-
ering all the mcs’s of H and F. The MCs problem can be constrained to connected
and induced subgraphs (Mmccis) [11, 10, 28, 29], where the latter means that all the
edges of H between nodes in the MCS are mapped to edges of F', and vice versa. The
connectivity constraint is important to remove redundant solutions corresponding to

10We presented the ideas described in this section in the conference [18].

11 As it is clear, maximal and maximum subgraphs are inherently different problems: listing all
maximal ones can potentially find an exponential number of solutions, while finding the maximum
connected ones corresponds to just the single largest one, and is in practice much faster (e.g. [45]).
As pointed out in Koch et al. [28, 29], however, a maximum common subgraph does not always
contain all the relevant/large common structures, which motivates the Mccis problem.
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Fic. 2. An example of Mmccis ({a,b,c} to {4,3,2}, in this order), with the corresponding BC-
cliqgue {a4,b3,c2}. White edges are represented as dashed lines.

compatible combinations of disjoint connected subgraphs [28, 29], and the induced
constraint is used to reduce the search space while still preserving the significance of
the result [10, 11].

The problem of listing common subgraphs is the following: given any two graphs
H and F, list all (isomorphisms corresponding to) maximal common connected in-
duced subgraphs (Mcciss) between H and F' in polynomial time per solution and
total polynomial space. It has been introduced and investigated in the practical set-
ting of proteins [29], e.g. for protein function annotation [40], and can be employed
to mine significant information in many domains, for example identifying compound
similarity and structural relationships among biological molecules [20].

This problem is at least as hard as the graph isomorphism problem [6]. For
this reason a weaker form is considered, where the individual isomorphisms are listed
(noting that several isomorphisms can correspond to the same MCCIS). Surprisingly,
no output-sensitive listing algorithm with polynomial space is known for even this
version, while several papers [10, 28, 29] adapt existing techniques for maximal clique
enumeration without any guarantee.

3.1. Converting the MCCIS problem to a maximal clique problem.
Clique-based methods are widely employed to transform common subgraphs of H
and F into maximal cliques in a compatibility graph [34]. As in [28], we define the
product graph G between H and F as follows. (i) Any pair of nodes (z,i) € H x F is
a node of G iff they have the same label; (ii) there is a black edge between (x,i) and
(y,7) iff (z,y) € E(H) and (i,7) € E(F); (iii) there is a white edge between (x,i) and
(y,5)iff x £y, i # 7, (xv,y) € E(H) and (i,5) € E(F), where E(-) is the edge set.

The key property is that MCCISs between H and F' correspond to maximal cliques
in G spanned by black edges [28], which we will call BC-cligues. An example is shown
in Fig. 2. Let Gp be the edge subgraph of G containing only black edges. For each
isomorphism corresponding to Mcciss of H and F, there is a maximal clique in G
connected by black edges in Gp (i.e. a BC-clique), and vice versa. Hence, in general,
given a graph G whose edges are either black or white, we will show how to list all
the maximal BC-cliques in G in an output-sensitive fashion without storing all the
solutions (see Figure 3).

3.2. Obstacles with BC-cliques. A number of obstacles appear along the
road to list Bc-cliques. Cao et al. [11] observe that materializing the product graph
G can be expensive memory-wise, so we do not want to materialize G: we navigate
the huge solution space of the BC-cliques by navigating G implicitly using H and F,
just requiring O(q) additional space. However, directly adapting the state-of-the-art
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F1G. 3. A graph with black and white edges, and its BC-cliques

(& Cy Ck

F1a. 4. A graph with black and white edges. The dashed red edges between T1-F1, T2-Fa> and so
on symbolize that there is no white edge among those nodes, all other pairs of nodes (except the ones
already connected by a black edge) are connected by a white edge. Computing the lexicographically
minimum BC-cliqgue containing X = {Y1} is NP-hard.

approach [14] for low-memory enumeration of maximal sets satisfying hereditary prop-
erties also requires us to have a COMPLETE function returning the lexicographically
smallest solution containing a given BC-clique, which we show below to be NP-hard.
We are able to circumvent this problem by using our algorithmic framework, in which
the COMPLETE function does not require the lexicographically smallest solution.

LEMMA 3.1. Given a graph G whose edges are either black or white and any BC-
cligue X of G, it is NP-hard to find the lexicographically minimum among the maximal
BC-cliques containing X .

Proof. We prove that returning the lexicographically minimum BC-clique contain-
ing X can be used to solve SAT problems in polynomial time, by building a graph
with nodes linear in the amount of the clauses and variables in the formula.

Given a SAT formula with n variables 1 ...z, and k clauses d; ...d, we build
the graph in Figure 4, whose nodes are Cy...Cy, Ty ... Ty, F1...F, and Y7 ...Y,,
labelled increasingly in this order (i.e., C; < Cy < ... < Cj, with all other nodes
having larger label than Cy). Each Y; is connected with a black edge to T; and Fj,
and also with T;_; and F;_; (except for Y7). The nodes T; and F; correspond to the
“literal gadgets”, with T; corresponding to the literal x; and F; to —x;, respectively.

The nodes of the form C; correspond instead to the “clause gadgets”, with each
C; representing the clause d;. In particular, C; is connected with a black edge to Tj iff
d; contains x;, and to Fj iff d; contains —x;. Hence, nodes in C; ... C} are connected
with black edge to an arbitrary amount of 7; and F; nodes, but not to any Y; node.
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1 3\ B:) 2 / X 2 / ;
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B3 3 )(Jr 3
(a) (b) (c)

F1G. 5. (a) A mazimal BC-cligue S1 (from the graph in Figure 3) and (b) its solution order
1,2,5,6,3 (from Section 2.5), where B; denotes the layer i. (¢) A non-mazimal BC-cligue X C S1
and its set XT.

All pairs of nodes which are not already connected with a black edge, are connected
with a white edge, except for the pairs (7;,F;) (illustrated by the dashed red edge in
Figure 4). Tt is straightforward to see that any maximal BC-clique in this graph will
contain exactly one between any 7;,F;, and that any maximal BC-clique containing
all nodes C ... Cy will be lexicographically smaller than any other one that does not
contain all of them (as these have the smallest labels).

Consider X = {Y7}, and observe that any BC-clique containing Y; and all C;
nodes represents a satisfying assignment for the formula at hand: Indeed, in order
for each C; node to be reachable from Y; with black edges, at least one of the T}
or F; nodes connected to C; must be in the BC-clique. As the nodes connected to
C; correspond to the literal that satisfy it, and as we cannot have the pair Tj-F; in
the same BC-clique since they are not connected by any edge, the set of T; and F;
nodes in the Bc-clique will thus give us a set of literals x; /—x; which satisfy the input
formula. Hence, the lexicographically minimum BC-clique containing Y7 contains all
C; nodes if and only if the input formula is satisfiable. This means that we can
check satisfiability by computing the lexicographically minimum BC-clique containing
X = {Y1}, and checking whether this contains all C; nodes. O

3.3. Applying the framework to BC-cliques. First, we remark that the
input-restricted problem RESTR (P, w) for BC-cliques is easy. Indeed, the only solution
other than P is the black connected component of {w} U (P N N(w)) containing w:
any solution other than P not containing w would not be maximal, and any solution
containing w is contained in the one stated above.

To ease the understanding of our approach, we will now give examples of the
concepts defined in Section 2 for commutable set systems on BC-cliques. Consider
the graph G in Figure 3, whose BC-cliques are S; = {1,2,3,5,6}, So = {3,4,5} and
Sz = {2,5,7,8}. We focus on Sj, as shown in Figure 5, and begin with its layers.
The elements 1,2, 3,5, 6 have layers, respectively, 0, 1,3, 2,2 (relatively to S; and from
t =SEED(S1) =1, e.g. LAYg,(2) =1 and LAYg, (5) = 2). A detailed view is shown in
Figure 5. By sorting these elements according to the definition of -°<151, we obtain the
solution order 1 | 2| 5,6 | 3, with layers in increasing order separated by “|”. Also,
we observe that Sy is a root as COMPLETE applied to each prefix S[j] (i.e. S[1] = 1;
S[2] =1,2;...; S[5] =1,2,5,6,3) always gives S;.

Consider now the other two BC-cliques Sz and Ss. Their solution order is 3 |
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5|4and 2| 58| 7 Also, Sy is their parent: for example, S; = PARENT(S2) =
COMPLETE({3,5}) and thus CORE(Sz) = {3,5} and P1(S2) = 4. We observe that
during the execution of COMPLETE, the SEED changes (and so the solution order
changes significantly): {35} = {253} = {1]2]5|3} = {1]2]|5,6]|3}. Also,
CORE(S3) = {2,5} and P1(S3) = 8.

It follows that So and S5 are the children of S; (as there are no other maximal BC-
cliques in the graph). Thus, S; is the only solution that is a root, and the arborescence
forest only contains a single arborescence with three nodes and height 1.

3.4. Complexity with the implicit product graph. We give the complexity
of our framework, taking into account that the product graph G is not a generic graph
with white and black edges, but an implicit product graph between H and F' that we
do not want to materialize, whose size and features depend on H and F'.

Recall that each node of G corresponds to a mapping between two nodes of
H and F. For any given v € V(G), let these nodes be respectively vy € V(H)
and vp € V(F). Also Ay and Ap are the maximum node degree in H and F,
while Ap is the maximum degree in Gg. By construction of the product graph we
have Agp < Ay Ap. For brevity, we define A as Ay + Apr. These parameters are
all significantly smaller than the size of G, which has |V(H)| - |V (F)| nodes, and
O([V(H)|*- |[V(F)|?) edges, either black or white.

Let X be a BC-clique in G. We denote as Xy and Xp respectively the set of
nodes of H and F mapped in X. We keep a dictionary between the nodes of X and
those of Xy and X, allowing us to retrieve vy and vg from v, or vice versa, in O(1)
time.!?

LEMMA 3.2. Let X be a BC-clique in G and v a node in V(G). Testing whether
X U{v} € F, e.g. it is a BC-clique, takes O(min(|X|,A)) time and O(|X|) space.

Proof. As X is a BC-clique in G, in order to check that X U {v} is a BC-clique in
G we need to check that {v} is connected to a node in X through a black edge, and
to all the others through either white or black edges. This can trivially be done in
O(]X]) time by checking adjacency with the nodes of X one by one.

However, a faster solution is possible if we focus on the edges that are not in
G: for a given node = € X, corresponding to a mapping between zy € V(H) and
xp € V(F), there is no edge in G between v and x if either {vy,zy} € E(H) and
{vp,2r} € E(F), or {vg,zp} ¢ F(H) and {vp,xr} € E(F). Otherwise, there is
either a black or white edge between v and =x.

To check the presence of missing edges between v and nodes of X we can iterate
over all xy € Ngy(vyg) N Xg, and check that each is mapped by X in a node zp €
Np(vp) N Xp. Then, similarly, iterate over all xp € Np(vp) N XF and check that
they are mapped in some zg € Ny (vy) N Xp. This can be done in O(|Ny (vy)| +
INp(vp)|) = O(A) time. If no missing edge exists then X U {v} is a clique in G. As
a byproduct, this process finds all black edges between v and X, thus we may check
at the same time that there is at least one, and thus that X U {v} is a BC-clique. 0O

LEMMA 3.3. For any BC-clique X in G, computing LAY x (v) for all v € X takes
O(|X| min(|X|, Am,Ar)) time and O(|X|) space.

Proof. The values of LAY x (v) correspond to their distance from the x = SEED(X)
in Gg[X]. This can be done via a BFS of Gg[X] rooted at z. As Gp[X] has |X]|

12This data structure will be built at the beginning of a COMPLETE call. As building it takes
O(|X|) time and space, it will not affect the final complexity.
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nodes, the trivial bound for this traversal is | X|2. Once again, we can exploit the fact
that G is the product graph of H and F": indeed, each node v of X corresponds to a
mapping of a node vy of H into one node vg of F. For this reason, while v can have
up to Ap neighbors in Gp, vy may have at most |Ng(vy)| neighbors in Xpy.

We can thus iterate on the black neighborhood of v in X in O(min(Ag, Ar))
time by iterating on the neighbors of either vy in H or vp in F and then retrieve the
corresponding nodes in X. In total, we process | X| nodes, each in O(min(Ag, Ap))
time. The cost follows. d

LEMMA 3.4. COMPLETE(X) takes O(q(q + Ap)A) = O(¢*>A + gABA) time and
O(q) space.

Proof. In order to perform COMPLETE(X), we iterate over all nodes that can be
added to X, adding the smallest, with respect to X and its seed z, first. For each node
v in X (including those that are added during the procedure), we keep an iterator
which will scan in increasing order its black neighbors. Clearly, each node must be
considered after the smallest ones, and once it is considered it is either added to X
or discarded, thus it does not need to be considered as a candidate anymore.

Given a node ¢ ¢ X, that has a black neighbor in X, we can see that LAYx (¢) =
LAY x (v) + 1, where v is the black neighbor of ¢ in X that minimizes this value.
Hence, to select the lexicographically smallest node, we must first consider the black
neighbors of the nodes v that minimize LAY x (v). We thus order the nodes in a priority
queue by value of LAY x (v), breaking ties by the value of the smallest black neighbor
yet to consider, so that the first node in the priority queue is the smallest candidate
to consider for addition to X.

As X will contain |X| = O(g) nodes, and we will iterate on the O(Ap) black
neighbors of each node exactly once, the total cost of this iteration is O(¢Apg) time,
and will yield up to gAp nodes. Since by Lemma 3.2 testing a candidate takes
O(min(g, A)) time, the total cost is O(¢Ap min(g, A)).

Furthermore, we need to account for the cost of changing SEED: after we add
a node z to X, this becomes the new SEED of X if its label is smaller than that
of the previous SEED. In this case, we need to update both the values of LAY x (v),
and the priority queue of candidate nodes. By Lemma 3.3, this can be done in
O(gqmin(q, Ay, Ar)) time. We pay this cost at most ¢ times as we add up to ¢ nodes,
for a cost of O(¢? min(q, Ag, Ar)) which is upper bounded by O(g?A).

The total cost is thus O(gAp min(g, A) + ¢?A) = O(q(q + Ap)A) time. ad

Let cAND(P) be the set of nodes that do not belong to P, but are neighbors of
some node of P in G g, noting that these are at most |P|Ap < gAp. We observe that
for any child S of P, we must have CORE(S) U {P1(S)} € F, meaning that P1(S) must
be neighbor in Gg of some node in P, i.e., it must be in CAND(P). In other words,
when considering CHILDREN(P, w), we can restrict our attention to just w € CAND(P).

LEMMA 3.5. CHILDREN(P,w) for all w € CAND(P) takes overall O(q*AA +
CALA) = O(¢* AL AL + PA3AL) = O(¢* A% AL) time and O(q) space.

Proof. For a given P and w, note that the corresponding input-restricted problem
RESTR(P, w) only has two solutions. The cost of CHILDREN(P, w) is thus bounded by
that of executing O(q) times the last two lines in its pseudocode of Algorithm 1, which
is bounded by the cost of a COMPLETE() call, i.e., O(¢(q¢ + Ap)A) time. Since the
number of nodes in CAND(S) is at most ¢Ap, and for each we execute COMPLETE()
O(q) times, the total cost will be O(¢>ApA(q + Ap)), and since A = O(Ay Af)
and A = O(Ay + Ar), the cost is also bounded by O(g*A%; A3). d
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GRAPH H GRAPH F Koch [28] ours ours parallel
n m |Ag| n m |Ap 719 \m #sol | TIME  #sol | TIME #sol
200 | 235 5| 200| 234 7|5 |12 28s 6691 | 0.2s 6691 | 0.04s 6691
100 | 122 7| 100| 119 514 |22 11s 3654 | 0.6s 3654 | 0.1s 3654

2763 | 9488 | 1426299059 | 12|12 |68 2h 1998 2h 33874 2h 887293

TABLE 1
Comparison of polynomial space algorithms: running time of Koch’s algorithm [28] vs ours and
its parallel implementation. The first two rows are two pairs of random Erdos-Renyi graphs, and
the last one a pair of graphs representing proteins from the Protein Data Bank (1ald and 1goz) with
a time limit of two hours. Parameters n, m, and o are the number of nodes, edges, and node labels
of the graphs, Ay and Ap their mazimum degrees, and q the size of the largest found MCCIS.

Looking at Algorithm 1, we can see that the delay is bounded by the cost of the
function CHILDREN(P), and the preprocessing by calling COMPLETE() for each node in
G, i.e., at most |Vy|-|Vp| times. Furthermore, as shown in Lemmas 3.2, 3.3, and 3.4,
the space required is always O(g). We can thus state the main result of this section.

THEOREM 3.6. Given two graphs H and F, each respectively of mazimum de-
gree A and Ap, their (isomorphisms corresponding to) MCCISs can be listed in
O(¢* A% AL) delay using O(q) space, where q is the number of nodes in the largest
MCCIS, after a preprocessing of O(q*|Vu|A%|VE|AZ) time.

As a final remark, the result in Theorem 3.6 can be implemented efficiently.
Table 1 reports the running time of a sequential and parallel implementation'? in
C++, compared to the state-of-the-art algorithm by Koch [28]. Experiments were
executed on a 12-core machine with two Intel Xeon E5-2620 CPUs and 128 gigabytes
of RAM, with a time limit of two hours, showing that on top of giving theoretical
guarantees, our algorithm is also fast in practice.

4. Other Application Examples. This section shows some more examples of
results obtained by applying our framework.

4.1. Connected k-plexes. Berlowitz et al. [7] give an exponential space algo-
rithm for listing maximal connected k-plexes, a popular pseudo-clique model. Given
a graph G = (V, E) with |V| = n nodes and |E| = m edges, a k-plex S is a set of
nodes such that each node of S has at least |S| — k neighbors in S.

The delay of the algorithm is parameterized in k (in particular is polynomial when
k = O(1)), by essentially applying [14] and efficiently solving the input-restricted
problem.

It immediately follows that we may apply our framework to the problem by plug-
ging the subroutine for solving the input-restricted problem [7], obtaining an algorithm
that uses polynomial space, and whose delay is larger than [7] by a polynomial factor,
i.e., also parameterized in k. Indeed, our framework runs with space O(|U|+ Mgs+Rs)
and delay O(¢*|U|> MR x +Rr|U|), that is also O(¢*|U|>* M1 Rr) by observing that
Ry < Rr (as at least O(1) time is required to return each solution).

In the case of connected k-plexes we have |U| = n, the maximum size of a solution
q is O(n), and M = O(n?) as we can check that S is a k-plex by checking for each
node in S how many nodes of S are adjacent to it. We thus obtain an algorithm with
delay O(n®Rr), where Ry is the time required by [7] to solve the input-restricted

13Code available at https://github.com /veluca93/parallel_enum/tree/becliques as part of a par-
allel enumeration framework.
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problem (this is not stated explicitly in [7], but is proven to be polynomial when
k = O(1) and in general parameterized in k). As for the space, Mg = O(m) as
we only need to store the input graph, and Rg is surely polynomial when R is
polynomial, thus for & = O(1) our framework yields the first polynomial space and
polynomial delay algorithm for listing maximal connected k-plexes.

THEOREM 4.1. The maximal connected k-plexes of a graph can be listed using
polynomial space, in polynomial delay when k = O(1), or space and delay parameter-
ized in k, when k is unbounded.

4.2. Connected bipartite (induced) subgraphs. Given a graph G = (V, E),
a subset S C F of its edges is a bipartite subgraph if the edges form no cycle of odd
length. Similarly, a subset S C V of its nodes is an induced bipartite subgraph if the
subgraph G[S] induced by the nodes of S contains no cycle of odd length. A bipartite
(sub)graph can be equivalently seen as a graph that is two-colorable (it is possible to
assign one out of two colors to each node such that no pair of adjacent nodes has the
same color).

We will first consider non-induced subgraphs. In this case, the instance of the
input-restricted problem consists of a bipartite graph S C E plus one extra edge e that
connects two nodes x and y of the same color. Any subset of the edges in the input-
restricted problem that gives a maximal solution different from S must be missing
enough edges to disconnect these two nodes in the original bipartite graph, i.e. the
set of removed edges must be a cut in the bipartite graph: indeed, any connection
between x and y in .S must have been of even length, thus it forms an odd cycle when
adding e. Moreover, since we are interested in maximal solutions, the set of edges
forming the cut must be inclusion minimal. Note that minimal x, y-cuts divide the
graph into two connected components one containing  and the other y, thus adding
e to the graph always yields a connected graph.

We can thus solve the input-restricted problem by listing minimal cuts, which
can be done in polynomial total time as shown in Provan et al. [39]. As we remarked
at the end of Section 2.7, this gives us a polynomial space and polynomial total time
algorithm for maximal bipartite subgraphs.

As for induced subgraphs, we have a bipartite subgraph S C V, and the extra
node v having some neighbors of one color and some of the other. We will call these
two sets of neighbors B and W respectively. As before, we need to break the odd
cycles involving v. To do so, we need to remove one or more nodes from the original
bipartite graph so that there is no path from any node in B to any node in W.

This can be done by enumerating the minimal node-cuts between two dummy
nodes b and w, where b is connected to all nodes in B and w to all those in W.
As before, removing minimal node-cuts leaves the graph split into two connected
components, and since v is the node obtained by identifying b with w, we have that
the resulting graph is connected. Moreover, minimal node-cuts can be enumerated in
polynomial total time, as shown in Shen et al. [43]. We thus obtain the result below.

THEOREM 4.2. The mazimal connected bipartite (induced) subgraphs of a graph
can be listed in polynomial total time, using polynomial space.

4.3. Minimal feedback vertex and arc sets. A feedback vertex set of a
graph G = (V, E) is a set of nodes S C V such that removing S from G makes the
graph acyclic. A feedback arc set is a similarly defined set of edges. In this case, we
can observe that the complements of the solutions, corresponding to maximal acyclic
(induced) subgraphs, form a hereditary set system. Listing minimal feedback vertex
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sets and arc sets has been solved in polynomial delay by [42], albeit using exponential
space.

As with bipartite subgraphs, the input-restricted problem involves a maximal
solution S and an extra single node or a single arc to break all the cycles that are
formed in a graph with no cycles. Thus, it may be solved by enumerating maximal
cuts or node-cuts in the original graph. As seen in Section 4.2, node cuts in undirected
graphs may be enumerated in polynomial total time (see [43]), and edge cuts may be
enumerated in polynomial total time both in undirected and directed graphs (see [39]).
The following result can be achieved using either Cohen et al. [14] or our framework
as a further example of application.

THEOREM 4.3. All the minimal feedback vertex sets in an undirected graph may be
enumerated in polynomial total time, using only polynomial space. Moreover, all the
minimal feedback arc sets in both directed and undirected graphs may be enumerated
in polynomial total time, using only polynomial space.

5. Conclusions. This paper described an algorithmic framework that can be
used to design time- and space-efficient listing algorithms for maximal solutions in
strongly accessible set systems. Both positive and negatives results are provided in
the area of enumeration: on one hand we enlarge the classes of listing problems which
allow for polynomial delay and space algorithms, and on the other hand we show
conditional lower bounds which prevent us from obtaining significantly lower running
times on all strongly accessible set systems.

Specifically, one version of our framework has complexity O(a2?) time, where « is
the number of maximal solutions and ¢ the maximum size of one. This is, to the best of
our knowledge, the first non-trivial general bound for this class of enumeration prob-
lems, that approaches our conditional lower bound of ©(a29/2) time. Furthermore, we
solve the open problem left by Cohen et al. [14] by giving an improved version of our
framework which links its delay to the input-restricted problem, but still uses polyno-
mial space, for commutable set systems (which include the connected-hereditary graph
properties considered in [14]). As a case study, we apply our framework to obtain the
first polynomial-delay and polynomial-space algorithm for listing maximal connected
subgraph isomorphisms between any two graphs, along with its implementation.

Future work is aimed at applying this framework to a variety of problems. Fur-
thermore, an interesting point would be to achieve comparable complexity bounds in
a wider class of problems, e.g., without relying on the commutable property or strong
accessibility.
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