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Abstract. We consider an adaptive isogeometric method (AIGM) based on

(truncated) hierarchical B-splines and present the study of its numerical prop-

erties. By following [9, 11, 10], optimal convergence rates of the AIGM can be
proved when suitable approximation classes are considered. This is in line with

the theory of adaptive methods developed for finite elements, recently well re-

viewed in [43]. The important output of our analysis is the definition of classes
of admissibility for meshes underlying hierarchical splines and the design of

an optimal adaptive strategy based on these classes of meshes. The adaptiv-

ity analysis is validated on a selection of numerical tests. We also compare
the results obtained with suitably graded meshes related to different classes of

admissibility for 2D and 3D configurations.

1. Introduction. The design of efficient numerical schemes for the approximation
of partial differential equations (PDEs) naturally demands suitable adaptive tech-
niques, that automatically enable the refinement in well localized regions of the
computational domain. The use of adaptive schemes is even more important in
presence of singularities, when standard methods that do not support local mesh
refinements do not achieve optimal convergence rates. In the context of isogeometric
analysis [27], the design and development of adaptive methods necessarily require
suitable spline spaces with local refinement capabilities.

The hierarchical spline model is one of the most elegant solutions to easily de-
fine adaptive spline constructions, see e.g., [31, 49], and it has been successfully
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2 ADAPTIVE ISOGEOMETRIC METHODS WITH HIERARCHICAL SPLINES

applied in challenging engineering applications [34, 46, 36]. In particular, truncated
hierarchical B-splines (THB-splines) [24] properly meet the requirements needed for
developing not only effective geometric modeling tools, but also efficient computa-
tional schemes [30, 23]. Indeed, THB-splines have been succesfully used in the
design and analysis of adaptive techniques for elliptic problems in [9, 11, 10], on
which this review is based upon, while analogous schemes for hierarchical splines
have been studied in [20] or in [12] as well as in the very recent contributions
[1, 41]. Adaptive techniques for boundary integro-differential equations have been
introduced in [18, 19]. The main difference between the approach presented in
this review and the ones presented in the papers cited above is that our refinement
strategy is based on THB-splines, while other approaches are based on the standard
hierarchical basis. For this reason, our adaptive strategy may produce less refined
meshes for the same error thresholds [6].

Besides hierarchical splines, other types of splines have been successfully used to
design adaptive isogeometric methods. For example, the first use of adaptivity in the
context of isogeometric methods was based on T-splines [47, 2, 15], see also [17, 44],
while their analysis suitable [35] or dual compatible [3, 4] formulations have been
used to design refinement strategies with linear complexity, as in [40, 38]. Another
example is the one of LR-splines, first defined in [14] and used in an adaptive setting
in e.g., [28, 32, 33]. For a numerical comparison of all these approaches, we refer to
[29, 26]. We remark that, unlike for hierarchical splines, the mathematical theory
of adaptive methods based on T-splines or LR-splines has not been developed so
far.

For our analysis, we consider the elliptic model problem:

− div(A∇u) = f in Ω, u
∣∣
∂Ω

= 0, (1)

where Ω ⊂ Rd, d ≥ 1, is a bounded domain with Lipschitz boundary ∂Ω, f is any
square integrable function and the tensor A satisfies

∀x ∈ Ω, ξ ∈ Rd η1|ξ|2 ≤ A(x)ξ · ξ and |A(x)ξ| ≤ η2|ξ|

with 0 < η1 ≤ η2. Analogously to adaptive finite elements, the solution of the model
problem with an adaptive isogeometric method (AIGM) is obtained by an iterative
procedure, where each iteration of the adaptivity loop consists of the following four
key steps:

SOLVE → ESTIMATE → MARK → REFINE .

Following the guidelines from the theory of adaptive finite elements, see e.g. [42, 43],
the theory of convergence for adaptive isogeometric methods, using THB-splines
with residual error estimators, has been recently developed in [9, 11, 10]. One of
the key ingredients of the theoretical analysis is the definition of (strictly) admissible
classes of hierarchical meshes. This class governs the maximum number of levels of
THB-splines that do not vanish on any mesh element, and in practice it requires
the mesh to be sufficiently graded.

In the present paper we review the convergence results developed in [9, 11, 10],
considering and analyzing each of the four steps of the adaptive loop. We also
complement the previous works by studying the performance of the method in a
selection of numerical tests.

The content of the next sections is as follows. Some preliminary aspects of hierar-
chical B-spline constructions are reviewed in Section 2 together with the definition
of THB-splines and related properties, before introducing the notion of (strictly)
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admissible meshes. The module SOLVE and ESTIMATE of the adaptive isogeo-
metric method are discussed in Sections 3 and 4, respectively. To define the mod-
ule SOLVE and compute the numerical solution of problem (1), we consider the
Galerkin method on hierarchical spline spaces in connection with admissible mesh
configurations. An a posteriori error analysis in terms of both local upper and
lower bound for the energy error is also presented. Section 5 deals with the MARK
and REFINE modules. We first recall a well-known marking strategy, and then
introduce a refinement strategy that preserves the class of admissibility during the
adaptive loop. Section 6 is devoted to the result of optimal convergence, while Sec-
tion 7 presents some numerical examples to analyze how the class of admissibility
influences convergence. We end with some concluding remarks.

2. Hierarchical splines and admissible meshes. We consider a nested se-
quence of N tensor-product d-variate spline spaces V 0 ⊂ V 1 ⊂ . . . ⊂ V N−1 defined

on a closed hyper-rectangle D in Rd. Let B̂` be the tensor-product B-spline basis of

level `, ` = 0, 1, . . . , N − 1, and degree p = (p1, . . . , pd), defined on the grid Ĝ`. In
each coordinate direction, the knot vectors at level zero are assumed to be open so
that the first and the last knots are repeated pi+1 times, for i = 1, . . . , d. B-splines
are the standard form for spline representation in computer aided (geometric) de-
sign, see e.g., [13, 45]. They are locally linearly independent and non-negative.
In addition they have local support and form a partition of unity. When nested
spline spaces are considered, there exists a two-scale relation so that any function
s ∈ V ` ⊂ V `+1 can be expressed as

s =
∑

β̂∈B̂`+1

c`+1

β̂
(s)β̂, (2)

in terms of the coefficients c`+1

β̂
.

Let Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N−1 be a nested sequence of closed subsets of D, such
that

Ω̂` =
⋃

Q̂∈R`−1

Q̂,

with R`−1 ⊂ Ĝ`−1 the refined elements of level `− 1. Let

Ĝ` :=
{
Q̂ ∈ Ĝ` : Q̂ ⊂ Ω̂` ∧ Q̂ 6⊂ Ω̂`+1

}
and Q̂ :=

{
Q̂ ∈ Ĝ`, ` = 0, . . . , N − 1

}
(3)

be the collection of active (i.e., no more refined) elements at level ` and the hierar-

chical mesh, respectively. For any element Q̂ of the hierarchical mesh Q̂, we assume
that

hQ̂ . diam(Q̂) . hQ̂ (4)

where hQ̂ := |Q̂|1/d. Note that the symbol . is used here and it what follows to

denote an inequality which does not depend on the number of hierarchical levels. A

mesh Q̂∗ is a refinement of Q̂, usually indicated as Q̂∗ � Q̂, if each element Q̂∗ ∈ Q̂∗
either also belongs to Q̂ or is obtained by refinement of an element of Q̂.

The hierarchical B-spline basis can be defined as follows, see also [31, 49].

Definition 1. The hierarchical B-spline (HB-spline) basis Ĥ with respect to the

mesh Q̂ is defined as

Ĥ(Q̂) :=
{
β̂ ∈ B̂` : supp β̂ ⊆ Ω̂` ∧ supp β̂ 6⊆ Ω̂`+1, ` = 0, . . . , N − 1

}
.
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Figure 1. A univariate quadratic B-spline of level ` (left) and its
truncation obtained by considering Ω`+1 = [1, 3.0] (right).

Hierarchical B-splines are non-negative, linearly independent, and define nested
hierarchical spline spaces, see e.g., [49]. The study of the hierarchical spline space
was presented in [22] and [37] for the bivariate case with single knots and the general
multivariate setting with arbitrary knot multiplicities, respectively. By considering

suitable mesh configurations, it was there proved that span Ĥ(Q̂) contains all piece-
wise polynomial functions defined over the hierarchical mesh. From a practical point
of view, uniform knot vectors and a fixed degree are usually considered at all levels,
however the hierarchical B-spline model can be also applied with non-uniform mesh
configurations and increasing degrees, as long as the tensor-product spaces in the
sequence remain nested.

The following definition introduces the truncated basis for hierarchical splines
[24] and hinges on the notion of the so-called truncation, namely

trunc`+1s :=
∑

β̂∈B̂`+1, supp β̂ 6⊆Ω̂`+1

c`+1

β̂
(s)β̂, (5)

where c`+1

β̂
(s) is the coefficient of the function s ∈ V ` with respect to β̂ introduced

in equation (2). By starting from the two-scale relation (2), the truncation of the
function s with respect to level ` + 1 defined by (5) considers only the B-splines

of level ` + 1 which do not belong to Ĥ(Q̂). Figure 1 shows an example of trun-
cation for a univariate quadratic B-spline. When iteratively applied to hierarchical
basis functions, the truncation eliminates from coarser B-splines the contribution
of B-splines introduced at subsequent refinement levels, according to the following
definition.

Definition 2. The truncated hierarchical B-spline (THB-spline) basis T̂ with re-

spect to the mesh Q̂ is defined as

T̂ (Q̂) :=
{

Trunc`+1 β̂ : β̂ ∈ B̂` ∩ Ĥ(Q̂), ` = 0, . . . , N − 1
}
,

where Trunc`+1 β̂ := truncN−1(truncN−2(. . . (trunc`+1(β̂)) . . . )), for any β̂ ∈ B̂` ∩
Ĥ(Q̂).

The level of a THB-spline τ̂ = Trunc`+1 β̂ in T̂ (Q̂) is the level of its corresponding

mother function β̂. We will denote Ĥ = Ĥ(Q̂), T̂ = T̂ (Q̂) when there will be no
ambiguity in the text. THB-splines span the same space of HB-splines, are non-
negative, linearly independent, and form a partition of unity [24]. In addition, they
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are a strongly stable basis, see [25] for the details. The two properties of non-
negativity and partition of unity imply the convex hull property, which facilitates
adaptive modeling operations [30]. Note that the reduced support of THB-splines
with respect to HB-splines decreases the overlapping of basis functions introduced
at different levels of the spline hierarchy.

In order to develop an adaptivity theory that exploits the reduced support of
THB-splines with respect to standard hierarchical B-splines, the notion of admissible
meshes was introduced in [7].

Definition 3. A mesh Q̂ is admissible of class m if the truncated basis functions

in T̂ (Q̂) which take non-zero values over any element Q̂ ∈ Q̂ belong to at most m
successive levels.

When an admissible mesh Q̂ of class m is considered, the number of THB-splines

in T̂ (Q̂) which are non-zero on each mesh element is bounded. In particular, it is

less than m
∏d
i=1(pi+1). Moreover, if Q̂ is an admissible mesh, any truncated basis

function τ̂ ∈ T̂ (Q̂) satisfies

|Q̂| . | supp τ̂ | . |Q̂| ∀Q̂ ∈ Q̂ : Q̂ ∩ supp τ̂ 6= ∅.
Note that the hidden constants in the above inequalities depend on m but not on

τ̂ , Q̂ or N .
To easily link the local support of THB-splines to a certain subset of admissible

meshes, we extend the definition of the support extension of a mesh element to the
hierarchical setting as follows.

Definition 4. The support extension S(Q̂, k) of an element Q̂ ∈ Ĝ` with respect to
level k, with 0 ≤ k ≤ `, is defined as

S(Q̂, k) :=
{
Q̂′ ∈ Ĝk : ∃ β̂ ∈ B̂k, supp β̂ ∩ Q̂′ 6= ∅ ∧ supp β̂ ∩ Q̂ 6= ∅

}
.

To keep the notation as simple as possible, we will also denote by S(Q̂, k) the

region occupied by the closure of elements in S(Q̂, k). By considering the auxiliary
subdomains

ω̂` :=
⋃{

Q̂ : Q̂ ∈ Ĝ` ∧ S(Q̂, `) ⊆ Ω̂`
}
,

for ` = 0, . . . , N − 1, we arrive at the following proposition.

Proposition 5. Let Q̂ be the mesh of active elements defined according to (3) with

respect to the domain hierarchy Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N−1. If

Ω̂` ⊆ ω̂`−m+1,

for ` = m,m+ 1, . . . , N − 1, then the mesh Q̂ is admissible of class m.

The proof of this result can be found in [9]. As we will see in Section 5, it is
possible to define refinement algorithms such that the constructed meshes satisfy
the assumptions in the proposition. This relevant set of admissible meshes, called
strictly admissible meshes, is defined as follows.

Definition 6. A mesh Q̂ is strictly admissible of class m if it verifies the assump-
tions of Proposition 5.

The meshes considered in Section 7 are examples of strictly admissible meshes
of different classes.
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Remark 7. In [20] admissible meshes for hierarchical B-splines, instead of THB-
splines, were considered by limiting the interaction between the basis functions acting
on any mesh element to 2 consecutive values (analogous to consider m = 2 with re-
spect to HB-splines in Definition 3). This kind of admissible refinements for m ≥ 2
were also considered in [39]. A general framework for the design and implementation
of (strictly) admissible refinements for HB- and THB-spline was recently presented
in [6]. The properties of the hierarchical mesh configurations obtained with these
algorithms were there analyzed and compared.

3. The module SOLVE. Let T̂0 be the truncated basis defined on an initial
strictly admissible mesh Q̂0. We assume that the computational domain is defined
as

x ∈ Ω , x = F(x̂) =
∑
τ̂∈T̂0

Cτ̂ τ̂(x̂), x̂ ∈ Ω̂0

with Cτ̂ ∈ Rd. We also assume that the mapping F : Ω̂0 → Ω is a bi-Lipschitz
homeomorphism:

‖DαF‖L∞(Ω̂0) ≤ CF, ‖DαF−1‖L∞(Ω) ≤ c−1
F , |α| ≤ 1, (6)

where cF and and CF are independent constants bounded away from infinity.
To define the variational formulation of problem (1), we consider the space of

functions in H1(Ω) with vanishing trace on ∂Ω

V := H1
0 (Ω) :=

{
v ∈ H1(Ω) : v

∣∣
∂Ω

= 0
}
,

endowed with the norm ‖u‖2V = ‖∇v‖2L2(Ω)d + ‖v‖2L2(Ω). A weak solution of (1) is a

function u ∈ V satisfying

u ∈ V : a(u, v) = 〈f, v〉, ∀ v ∈ V, (7)

where a : V× V→ R is the bilinear form

a(u, v) :=

∫
Ω

A∇u · ∇v, ∀u, v ∈ V,

and f ∈ L2(Ω). Due to the assumptions on A, the bilinear form a(u, v) is coercive
and continuous:

a(u, u) ≥ α1‖u‖2V, a(u, v) ≤ α2‖u‖V‖v‖V, u, v ∈ V,
with constants α1 and α2, respectively. In addition, it induces the energy norm
|||v|||Ω := a(v, v)1/2, ∀v ∈ V. The coercivity and continuity properties of a(u, v)
imply the equivalence between the energy and the H1(Ω) norms on V. The Lax-
Milgram theorem ensures the existence and uniqueness of the weak solution (7).

All the notation introduced in the previous section for the parametric domain is
now used in the computational domain by simply removing the ·̂. In particular, for

any admissible mesh Q̂ � Q̂0 and truncated basis T̂ (Q̂), the corresponding mesh
and functions of the physical domain are defined as

τ(x) = τ̂(x̂), x = F(x̂).

The basis T (Q) collects the mapped THB-splines with respect to the hierarchical

mesh Q on the domain Ω, and S(Q) := span T (Q). We denote by Q̂ the mesh

element Q = F(Q̂), and by hQ = |Q|1/d, where |Q| represents the volume of Q, its
size. In view of (4) and (6), we have: hQ . diam(Q) . hQ. We also set:

Ω` = F(Ω̂`), ω` = F(ω̂`), G` = {Q ∈ Q : Q̂ ∈ Ĝ`}, G` = {Q ⊂ Ω : Q̂ ∈ Ĝ`},
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Analogously, the support extension of Q ∈ G` with respect to level k is given by

S(Q, k) = {Q′ ∈ Gk : Q̂′ ∈ S(Q̂, k)}. (8)

Finally, when Q? is a refinement of Q, we will write Q? � Q, when their pre-

images Q̂? and Q̂ satisfy Q̂? � Q̂.
We define the module SOLVE of the AIGM as the Galerkin discretization of (7)

in terms of hierarchical splines on Ω, that corresponds to

find U ∈ SD(Q) : a(U, V ) = 〈f, V 〉, ∀V ∈ SD(Q), (9)

where SD(Q) = S(Q) ∩ H1
0 (Ω). For simplicity, even if not strictly needed, we

assume SD(Q) ⊂ C1(Ω). The general case could be treated on the line of the
classical theory of adaptive finite element methods.

4. The module ESTIMATE. Let u be the exact weak solution of the model
problem (7). The residual 〈r, v〉 := 〈f, v〉 − a(U, v) associated to U ∈ SD is the
functional in the dual space to V that satisfies

〈r, v〉 = a(u− U, v), ∀ v ∈ V, a(u− U, V ) = 〈r, V 〉 = 0, ∀V ∈ S.

The module ESTIMATE of the AIGM computes the error indicator

ε2
Q(U,Q) =

∑
Q∈Q

ε2
Q(U,Q) with ε2

Q(U,Q) = h2
Q||r||2L2(Q), (10)

which is defined in terms of the element residual r = f + div(A∇U). Note that
the residual does not contain any edge contribution as in a typical finite element
setting, due to the assumption SD(Ω) ⊂ C1(Ω).

The a posteriori error analysis of the adaptive isogeometric methods was pre-
sented in [9] leading to the upper and lower bound for the Galerkin error:

||u− U ||V . εQ(U,Q) . ||u− U ||V + oscQ(U,Q), (11)

where the oscillations are defined as

osc2
Q(U,Q) =

∑
Q∈Q

osc2(U,Q) with osc(U,Q) = hQ‖r −Πnr‖L2(Q),

and Πn : L2(Q)→ Qn, n = (n1, . . . , nd), denotes the L2 projector onto the space of
polynomials of degree nj in the space direction j. Note that the hidden constants
in (11) do not depend on the mesh size and the hierarchical level.

While (11) directly leads to a local version of the lower bound, namely

εQ(U,Q) . ||u− U ||V(Q) + oscQ(U,Q),

a separate study is necessary to derive a local upper bound. Let Q and Q∗ be
two admissible meshes so that Q∗ � Q. The corresponding Galerkin solutions
U ∈ SD(Q) and U∗ ∈ SD(Q∗) of problem (9) satisfy

|||U − U∗|||2Ω . ε2
Q(U,R), (12)

where R := RQ→Q∗ is the refined set of elements, namely the elements of Q that

do not belong to Q∗, and ΩR :=
⋃{

Q : Q ∈ R
}

.

Remark 8. The local version of the upper bound in (12) was derived in [10] by ex-
ploiting a well selected quasi-interpolation operator IQ on hierarchical spline spaces
that satisfies

IQw = w in ΩQ := Ω \ ΩR,
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for w ∈ SD(Q∗). In order to do this, a class of L2-stable quasi-interpolation oper-
ators onto the space of splines on tensor-product meshes [8] was suitably combined
with hierarchical quasi-intepolants expressed in terms of the truncated basis [48].

5. The modules MARK and REFINE. The module MARK of the AIGM
selects and marks a set of elements M⊂ Q according to Dörfler’s marking [16]. A
set of marked elements M such that

εQ(U,M) ≥ θ εQ(U,Q),

is suitably selected by considering a fixed parameter θ ∈ (0, 1]. Even if the for the
convergence of method, the cardinality of this set is not crucial, it plays a key role
for deriving the optimality of the method in Section 6. In particular, its minimal
cardinality is required in Lemma 14 below where a suitable bound of the number
of elements marked at the iterative step k is provided.

The REFINE module is based on a refinement strategy which exploits the proper-
ties of THB-splines for obtaining strictly admissible meshes between two successive
steps of the adaptive loop. Note that the strict version of admissibility is considered
in order to keep the refinement routine as simple as possible while still exploiting the
effect of the truncation on the support of THB-splines. By recalling the definition
of the support extension S(Q, k) of an element Q with respect to level k introduced
in (8), the refinement should be recursively propagated to a certain neighborhood of
every marked element.

Definition 9. The neighborhood of Q ∈ Q ∩ G` with respect to m is defined as

N (Q, Q,m) :=
{
Q′ ∈ G`−m+1 : ∃Q′′ ∈ S(Q, `−m+ 2), Q′′ ⊆ Q′

}
,

when `−m+ 1 ≥ 0, and N (Q, Q,m) = ∅ for `−m+ 1 < 0.

The automatic refinement of the AIGM is based on the definition of the RE-
FINE and REFINE RECURSIVE modules presented in Figure 2, that were first
introduced in [9]. The fundamental properties of these algorithms, summarized in
Lemma 10 and Proposition 11 below, were analyzed and proved in [9].

Q? = REFINE(Q,M,m)

for all Q ∈ Q ∩M
Q = REFINE RECURSIVE(Q, Q,m)

end
Q? = Q

Q = REFINE RECURSIVE(Q, Q,m)

for all Q′ ∈ N (Q, Q,m)

Q = REFINE RECURSIVE(Q, Q′,m)

end

if Q has not been subdivided

subdivide Q and

update Q by replacing Q with its children

end

Figure 2. The REFINE and REFINE RECURSIVE modules.

Lemma 10. (Recursive refinement) Let Q be a strictly admissible mesh of class
m. The call to Q∗ = REFINE RECURSIVE(Q, Q,m) terminates and returns a
refined mesh Q∗ with elements that either were already active in Q or are obtained
by single refinement of an element of Q.
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Proposition 11. Let Q be a strictly admissible mesh of class m ≥ 2 and let QM
be an active element of level `, for some 0 ≤ ` ≤ N − 1. The call to Q∗ =
REFINE RECURSIVE (Q, QM,m) returns a strictly admissible mesh Q∗ � Q of
class m.

Proposition 11 is one of the most important results of our theory, since it guar-
antees that the strict class of admissibility of the mesh is preserved by the internal
REFINE RECURSIVE module. The same property naturally extends to the RE-
FINE procedure.

Corollary 12. Let Q be a strictly admissible mesh of class m ≥ 2 and M the set
of elements of Q marked for refinement. The call to Q∗ = REFINE (Q,M,m)
terminates and returns a strictly admissible mesh Q∗ � Q of class m.

The adaptivity analysis of hierarchical isogeometric methods also requires an
estimate for the growth of the number of mesh elements with respect to the number
of elements that are marked for refinement by the AIGM. Our estimate is in the
line of the similar ones proved in the context of adaptive finite element methods.
A linear complexity of this kind was derived in [11], by assuming the initial tensor-
product grid as the image of open hypercubes with side length 1, and consequently

hQ := 2−` for all Q ∈ G`. If M :=
⋃J−1
j=0 Mj is the set of marked elements used to

generate the sequence of strictly admissible meshes

Qj = REFINE(Qj−1,Mj−1,m), Mj−1 ⊆ Qj−1 for j ∈ {1, . . . , J},
there exists a constant Λ > 0 such that

#QJ −#Q0 ≤ Λ

J−1∑
j=0

#Mj , (13)

with Λ = Λ(d, p,m) := 4(4C̃ + 1)d, where C̃ :=
(

2−1 + 2
1−21−mCs

)
and Cs :=

2m−2(2 p+1). Note, however, that this result can also be generalized to the current
setting by suitably taking into account the corresponding maximum local mesh size.

A last remark concerning the hierarchical refinement should be devoted to the
overlay mesh Q∗ := Q1⊗Q2 of two meshes Q1,Q2 obtained as the coarsest common
refinement of Q1 and Q2. When strictly admissible meshes are considered, the
overlay is still strictly admissible [11] and its cardinality satisfies [5, 40]

#Q∗ = #(Q1 ⊗Q2) ≤ #Q1 + #Q2 −#Q0, (14)

where Q0 is the initial mesh configuration. Even if both the complexity estimate

(13) and the overlay inequality (14) were obtained on the parametric domain Ω̂ in
[11], they also hold on physical meshes defined as images of parametric meshes.

6. Optimal convergence. Let Qm be the set of strictly admissible refinements of
class m obtained starting from Q0. Let QmM ⊂ Qm,

QmM := {Q ∈ Qm : #Q−#Q0 ≤M} ,
be the set of refinements of Q0 whose number of elements differs at most M by the
one of Q0.

We define the approximation class As as

As :=

{
(v, f,A) : |v, f,A|s := sup

M>0
(Msσ(M ; v, f,A)) <∞

}
,
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for s > 0, where

σ(M ;u, f,A) := inf
Q∈Qm

M

σe(Q;u, f,A)1/2

characterizes the quality of the best approximation in QmM with respect to the best
total error defined as

σe(Q;u, f,A) := inf
V ∈SD(Q)

(
|||u− V |||2Ω + osc2

Q(V,Q)
)
.

A complete analysis of these approximation classes is still missing and goes be-
yond the scope of this paper. In particular, the connection and possible dependence
of the class of approximation on the value of m have not been identified.

In the paper [10], the following two additional results associated to the considered
AIGM were recently given.

Lemma 13. (Quasi-optimality of total error) Let Q ∈ Qm be a strictly admissible
mesh. The total error associated to the Galerkin solution U ∈ SD(Q) of problem
(9) on SD(Q) satisfies

|||u− U |||2Ω + osc2
Q(U,Q) . inf

V ∈SD(Q)

(
|||u− V |||2Ω + osc2

Q(V,Q)
)
.

Lemma 14. (Cardinality ofMk) Assume that the module MARK selects a setMk

of marked elements with minimal cardinality, and the marking parameter θ to be
small enough. Let u be the solution of the model problem (1). If (u, f,A) ∈ As,
the AIGM generates a sequence {Qk,SD(Qk), Uk}k≥0 of strictly admissible meshes,
hierarchical spline spaces, and discrete solutions so that

#Mk . |u, f,A|1/ss

[
|||u− Uk|||2Ω + osc2

Qk
(Uk,Qk)

]− 1
2s ,

for any k ≥ 0.

The quasi-optimality result, summarized in the next theorem, was also proved in
[10] by exploiting Lemmas 13 and 14, together with the complexity estimate (13),
the (global) lower bound in (11), and the contraction property [9].

Theorem 15. Let the marking parameter θ satisfy θ ∈ (0, θ∗) with θ∗ small enough,
and assume that the module MARK selects a set Mk of marked elements with min-
imal cardinality. Let u be the solution of the model problem (1). If (u, f,A) ∈ As,
the AIGM generates a sequence {Qk,SD(Qk), Uk}k≥0 of strictly admissible meshes,
hierarchical spline spaces, and discrete solutions so that[

|||u− Uk|||2Ω + osc2
Qk

(Uk,Qk)
] 1

2 . |u, f,A|s(#Qk −#Q0)−s,

for any k ≥ 1.

7. Numerical examples. In this section we show the performance of the adaptive
isogeometric method by applying it to Poisson problem

−∆u = f in Ω,

u = gD on ΓD,
∂u

∂n
= gN on ΓN ,

where ΓD∪ΓN = ∂Ω, ΓD∩ΓN = ∅ and ΓD 6= ∅. We note that, to deal with Neumann
boundary conditions, the error indicator must be modified in the following way

ε2Q(U,Q) = h2
Q‖r‖2L2(Q) + hQ‖rN‖2L2(∂Q∩ΓN )
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where r is defined as in (10), and rN = ∂U/∂n − gN . Although Neumann and
non-homogeneous Dirichlet conditions are not covered by our theory, we have in-
cluded such conditions in some of the numerical tests, since their main purpose is
to analyze the behavior of the adaptive method when considering different degrees
and different values of the admissibility class m. All the results are obtained by
using the isogeometric Matlab/Octave GeoPDEs library, see [21].

We consider three different numerical tests with different kind of solutions:
the first one with smooth solution, and the other two with singular solution, for
which local refinement is required to obtain optimal convergence rates. For all the
numerical tests, we discretize with hierarchical B-splines of degrees p = (p, p) =
(2, 2), (3, 3), (4, 4) and we consider the admissibility classes m = 2, 3, 4,∞, where
m = ∞ corresponds to strictly consider the set of marked elements without refin-
ing any elements in the neighborhood in the REFINE RECURSIVE module. The
adaptivity algorithm is stopped when the hierarchical mesh reaches a certain num-
ber of levels (seven in the first example, nine in the second and eight in the third).
At each step k ≥ 0 of the adaptive procedure, for the approximate solution Uk
in the hierarchical space S(Qk), we compute the error estimator εQk

(Uk,Qk) and,
when an exact solution is available, the H1-seminorm of the error and the effectivity
index Ike , defined as

Ike :=
εQk

(Uk,Qk)

|u− Uk|H1(Ω)
, k ≥ 0.

Example 1: Smooth function with a peak. In the first numerical example the
domain is the unit square Ω = (0, 1)2, and we impose Dirichlet boundary conditions
on ΓD = ∂Ω, and a source function f such that the exact solution is given by

u(x, y) = e−100((x−0.5)2+(y−0.5)2),

which is shown on the left of Figure 3. The solution is a smooth function with a
peak in the center of the domain. For the adaptive algorithm the first iteration

Figure 3. Exact solutions for the smooth function with a peak
(left) and the singular function (right).

is computed in a Cartesian mesh of 4× 4 elements, and Dörfler’s marking strategy
is performed setting the parameter θ = 0.25. On the left of Figure 4 we show
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the behavior of the error and of the estimator during adaptive refinement. With
any of the considered values of degree p and admissibility class m we obtain the

optimal convergence rate O(N
−p/2
d ), where Nd = #T (Q) is the number of degrees

of freedom. Notice that since the solution is smooth, optimal convergence rate is
also obtained with uniform refinement, but the adaptive method always requires
less degrees of freedom.

On the right of Figure 4 we plot the effectivity index divided by 10. The effec-
tivity index remains bounded from above and from below for all the values of the
admissibility class, which indicates the good behavior of the estimator in all cases.

Although the convergence rates are optimal for all cases, independently of the
admissibility class, there is a relative impact of the value of m in the number of re-
fined elements, and consequently in the number of degrees of freedom. As expected,
when the value of m is increased the refinement is more localized in the center of
the domain, see Figure 5. This loss of locality for low values of m is also observed
in the error plot of Figure 4, as the curve for m equal 2 remains slightly above those
for m equal to 3 and 4. We also report, in Table 1, the total number of elements
and degrees of freedom at the last iteration.

p = (2, 2) p = (3, 3) p = (4, 4)

#Q #T (Q) #Q #T (Q) #Q #T (Q)

m = 2 3232 2876 3880 3313 3736 3400

m = 3 2500 2244 3868 3317 2824 2224
m = 4 3628 3272 3064 2614 2224 1672

m = ∞ 3616 3244 2980 2446 2284 1756

Table 1. Number of elements (#Q) and degrees of freedom
(#T (Q)) for Example 1.

Example 2: singular function. For the second numerical test, the domain is
again the unit square Ω = (0, 1)2, and we impose homogeneous Dirichlet boundary
conditions on ΓD = ∂Ω, and a source function f such that the exact solution is
given by

u(x, y) = x2.3(1− x)y2.9(1− y),

which is shown on the right of Figure 3. The adaptive algorithm is run with
the same paraters of the previous example. In this case the solution belongs to
Hs(Ω), for some 2 < s < 3, with two different singularities on the edges x = 0
and y = 0. Hence, uniform refinement will not attain optimal convergence rates for
high degree p, and local refinement near the two edges is necessary. This expected
behavior is indeed observed in the convergence errors of Figure 6 (left). Moreover,
the optimal convergence rate for adaptive refinement is obtained for all the values
of the admissibility class m, with a slight improvement in terms of the number of
degrees of freedom for higher m, as in the previous example.

On the right of Figure 6 we show the effectivity index divided by 10. As in the
previous numerical test, the effectivity index remains bounded from above and from
below for any degree and any value of m, which indicates that the estimator works
properly both for smooth and singular solutions.

We report in Table 2 the number of elements and degrees of freedom obtained at
the last iteration of the adaptivity procedure. As expected, much coarser meshes can
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(a) Error and estimator, p = (2, 2) (b) Effectivity index, p = (2, 2)

(c) Error and estimator, p = (3, 3) (d) Effectivity index, p = (3, 3)

(e) Error and estimator, p = (4, 4) (f) Effectivity index, p = (4, 4)

Figure 4. Numerical error and estimator (left) and effectivity in-
dex (right) for the smooth function with a peak. On the left, the
error (solid lines) and the estimator (dashed lines) are plot for
different degrees. The red, green, blue and black lines (star, di-
amond, cross and circle markers, respectively) represent admissi-
bility classes m = 2, 3, 4,∞, respectively, while the magenta line
(square marker) corresponds to uniform refinement. The same col-
oring and marking is used for the effectivity index (divided by 10)
on the right figure.

be used for high degree. This can be also verified from the plots of the hierarchical
meshes in Figure 7. Moreover, increasing the value of m also reduces the number
of elements, since refinement is less spread by the REFINE procedure.
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(a) p = (2, 2), m = 2 (b) p = (3, 3), m = 2 (c) p = (4, 4), m = 2

(d) p = (2, 2), m = 3 (e) p = (3, 3), m = 3 (f) p = (4, 4), m = 3

(g) p = (2, 2), m = 4 (h) p = (3, 3), m = 4 (i) p = (4, 4), m = 4

(j) p = (2, 2), m = ∞ (k) p = (3, 3), m = ∞ (l) p = (4, 4), m = ∞

Figure 5. Hierarchical meshes obtained for the smooth solution
with a peak.

p = (2, 2) p = (3, 3) p = (4, 4)

#Q #T (Q) #Q #T (Q) #Q #T (Q)

m = 2 68677 68860 8776 8938 3700 3822
m = 3 68014 68201 6346 6631 2875 2966

m = 4 68008 68195 6208 6484 3010 3138

m = ∞ 68008 68195 6208 6484 2827 2895

Table 2. Number of elements (#Q) and degrees of freedom
(#T (Q)) for Example 2.
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(a) Error and estimator, p = (2, 2) (b) Effectivity index, p = (2, 2)

(c) Error and estimator, p = (3, 3) (d) Effectivity index, p = (3, 3)

(e) Error and estimator, p = (4, 4) (f) Effectivity index, p = (4, 4)

Figure 6. Numerical error and estimator (left) and effectivity in-
dex (right) for the example with singular solution. On the left,
the error (solid lines) and the estimator (dashed lines) are plot
for different degrees. The red, green, blue and black lines (star,
diamond, cross and circle markers, respectively) represent admis-
sibility classes m = 2, 3, 4,∞, respectively, while the magenta line
(square marker) corresponds to uniform refinement. The same col-
oring and marking is used for the effectivity index (divided by 10)
on the right figure.

In both examples any value of m provides the optimal convergence rate. In
order to maximize the efficiency of the adaptive method, and to keep the number
of degrees of freedom as small as possible, the numerical tests suggest that higher
values of m should be used. We remark that in these examples optimal convergence
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(a) p = (2, 2), m = 2 (b) p = (3, 3), m = 2 (c) p = (4, 4), m = 2

(d) p = (2, 2), m = 3 (e) p = (3, 3), m = 3 (f) p = (4, 4), m = 3

(g) p = (2, 2), m = 4 (h) p = (3, 3), m = 4 (i) p = (4, 4), m = 4

(j) p = (2, 2), m = ∞ (k) p = (3, 3),m = ∞ (l) p = (4, 4), m = ∞

Figure 7. Hierarchical meshes obtained for the example with sin-
gular solution.

is also obtained for m =∞, but it is important to note that this is not guaranteed
by the theory.
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Example 3: 3D example. For the last example we consider a three dimensional
domain with non-trivial geometry. The domain is obtained by linear interpolation
of two surfaces, where the first one is a quarter of a ring with inner and outer radius
equal to one and two, respectively, while the second one is the same surface rotated
90 degrees around the z axis, and then translated by the vector (0.5, 0, 1) (see Fig-
ure 8(a)). We consider a null source function, and impose a Neumann condition on
the upper boundary with gN = 1, and homogeneous Dirichlet conditions elsewhere.
This generates singularities on the edges of the upper boundary. In this case the
exact solution is not known, but an approximation is shown in Figure 8(b). For

(a) Geometry of the 3D example. (b) Solution restricted to the boundary.

Figure 8. Geometry and solution for the 3D example.

the adaptive algorithm we start with a mesh formed by one single element, and
refine using Dörfler’s marking strategy with a parameter θ = 0.75. Since the exact
solution is not known, we only present in Figure 9 the convergence of the error
indicator. The adaptive method attains optimal convergence rates in terms of the

degrees of freedom, which is now O(N
−p/3
d ). Moreover, as in the previous examples

better convergence is obtained with higher values of the admissibility class m, and
this good behavior is even more evident in the current three-dimensional example
than in the previous ones. Finally, we show in Figure 10 the restriction to the
boundary of the final hierarchical mesh, for degree p = (4, 4) and for all the chosen
admissibility classes. The adaptive method localizes the refinement near the edges
where the singularity is more pronounced. As in the two-dimensional examples, a
lower value of m reduces the locality of the refinement, which propagates to the
interior.

8. Closure. This paper is largely inspired by [10, 9, 11] and provides a compre-
hensive analysis of adaptive isogeometric methods based on truncated hierarchical
B-splines with a residual-based error estimator. As it is natural, at each adap-
tive step, in order to restore the good properties of the mesh, i.e. to maintain its
class of admissibility, refinement is done “around” marked elements. Although the
complexity estimates derived in [11] prove that this procedure still enjoys optimal
complexity, in practice we add a non-negligible number of degrees of freedom, and
the question whether this is really needed remains open. Our numerical results give
some insight about this problem: the larger m is chosen the less the proliferation of
degrees of freedom is obtained while preserving optimal convergence rates. Addi-
tional numerical investigations on the best values of m and on the impact of such a
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(a) Estimator for p = (2, 2) (b) Estimator for p = (3, 3)

(c) Estimator for p = (4, 4)

Figure 9. Convergence of the estimator for the 3D example.
The red, green, blue and black lines (star, diamond, cross and
circle markers, respectively) represent admissibility classes m =
2, 3, 4,∞, respectively, while the magenta line (square marker) cor-
responds to uniform refinement.

proliferation on the computational cost for a given tolerance are object of ongoing
research.
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(a) Mesh for m = 2 (b) Mesh for m = 3

(c) Mesh for m = 4 (d) Mesh for m = ∞

Figure 10. Meshes obtained for the 3D example degree p = (4, 4)
and different values of the admissibility class m.

an overview, Discret. Contin. Dyn. S. 39, 241-261, 2019., is available online at:
https://www.aimsciences.org/article/doi/10.3934/dcds.2019010.
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[22] C. Giannelli and B. Jüttler, Bases and dimensions of bivariate hierarchical tensor–product
splines, J. Comput. Appl. Math., 239 (2013), 162–178.
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